euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 403
|
3
|
+
:name: Lattice points enclosed by parabola and line
|
4
|
+
:url: http://projecteuler.net/problem=403
|
5
|
+
:content: "\r\n<p>\r\nFor integers <var>a</var> and <var>b</var>, we define <var>D</var>(<var>a</var>,
|
6
|
+
<var>b</var>) as the domain enclosed by the parabola <var>y</var> = <var>x</var><sup>2</sup>
|
7
|
+
and the line <var>y</var> = <var>a</var>·<var>x</var> + <var>b</var>:<br><var>D</var>(<var>a</var>,
|
8
|
+
<var>b</var>) = { (<var>x</var>, <var>y</var>) | <var>x</var><sup>2</sup><img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>y</var>
|
10
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><var>a</var>·<var>x</var> + <var>b</var> }.\r\n</p>\r\n<p>\r\nL(<var>a</var>,
|
12
|
+
<var>b</var>) is defined as the number of lattice points contained in <var>D</var>(<var>a</var>,
|
13
|
+
<var>b</var>).<br>\r\nFor example, L(1, 2) = 8 and L(2, -1) = 1.\r\n</p>\r\n<p>\r\nWe
|
14
|
+
also define S(<var>N</var>) as the sum of L(<var>a</var>, <var>b</var>) for all
|
15
|
+
the pairs (<var>a</var>, <var>b</var>) such that the area of <var>D</var>(<var>a</var>,
|
16
|
+
<var>b</var>) is a rational number and |<var>a</var>|,|<var>b</var>| <img src=\"images/symbol_le.gif\"
|
17
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nWe
|
18
|
+
can verify that S(5) = 344 and S(100) = 26709528.\r\n</p>\r\n<p>\r\nFind S(10<sup>12</sup>).
|
19
|
+
Give your answer mod 10<sup>8</sup>.\r\n</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 404
|
3
|
+
:name: Crisscross Ellipses
|
4
|
+
:url: http://projecteuler.net/problem=404
|
5
|
+
:content: "\r\n<p>\r\nE<sub><var>a</var></sub> is an ellipse with an equation of the
|
6
|
+
form x<sup>2</sup> + 4y<sup>2</sup> = 4<var>a</var><sup>2</sup>.<br>\r\nE<sub><var>a</var></sub>'
|
7
|
+
is the rotated image of E<sub><var>a</var></sub> by θ degrees counterclockwise around
|
8
|
+
the origin O(0, 0) for 0° <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
|
9
|
+
alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> θ <img src=\"images/symbol_lt.gif\"
|
10
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
90°.\r\n</p>\r\n\r\n<div align=\"center\">\r\n<img src=\"project/images/p_404_c_ellipse.gif\">\n</div>\r\n\r\n<p>\r\n<var>b</var>
|
12
|
+
is the distance to the origin of the two intersection points closest to the origin
|
13
|
+
and <var>c</var> is the distance of the two other intersection points.<br>\r\nWe
|
14
|
+
call an ordered triplet (<var>a</var>, <var>b</var>, <var>c</var>) a <i>canonical
|
15
|
+
ellipsoidal triplet</i> if <var>a</var>, <var>b</var> and <var>c</var> are positive
|
16
|
+
integers.<br>\r\nFor example, (209, 247, 286) is a canonical ellipsoidal triplet.\r\n</p>\r\n\r\n<p>\r\nLet
|
17
|
+
C(<var>N</var>) be the number of distinct canonical ellipsoidal triplets (<var>a</var>,
|
18
|
+
<var>b</var>, <var>c</var>) for <var>a</var> <img src=\"images/symbol_le.gif\" width=\"10\"
|
19
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nIt
|
20
|
+
can be verified that C(10<sup>3</sup>) = 7, C(10<sup>4</sup>) = 106 and C(10<sup>6</sup>)
|
21
|
+
= 11845.\r\n</p>\r\n\r\n<p>\r\nFind C(10<sup>17</sup>).\r\n</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 405
|
3
|
+
:name: A rectangular tiling
|
4
|
+
:url: http://projecteuler.net/problem=405
|
5
|
+
:content: "\r\n<p>\r\nWe wish to tile a rectangle whose length is twice its width.<br>\r\nLet
|
6
|
+
<var>T</var>(0) be the tiling consisting of a single rectangle.<br>\r\nFor <var>n</var>
|
7
|
+
> 0, let <var>T</var>(<var>n</var>) be obtained from <var>T</var>(<var>n</var>-1)
|
8
|
+
by replacing all tiles in the following manner:\r\n</p>\r\n\r\n<div align=\"center\">\r\n<img
|
9
|
+
src=\"project/images/p_405_tile1.png\">\n</div>\r\n\r\n<p>\r\nThe following animation
|
10
|
+
demonstrates the tilings <var>T</var>(<var>n</var>) for <var>n</var> from 0 to 5:\r\n</p>\r\n\r\n<div
|
11
|
+
align=\"center\">\r\n<img src=\"project/images/p_405_tile2.gif\">\n</div>\r\n\r\n<p>\r\nLet
|
12
|
+
<var>f</var>(<var>n</var>) be the number of points where four tiles meet in <var>T</var>(<var>n</var>).<br>\r\nFor
|
13
|
+
example, <var>f</var>(1) = 0, <var>f</var>(4) = 82 and <var>f</var>(10<sup>9</sup>)
|
14
|
+
mod 17<sup>7</sup> = 126897180.\r\n</p>\r\n\r\n<p>\r\nFind <var>f</var>(10<sup><var>k</var></sup>)
|
15
|
+
for <var>k</var> = 10<sup>18</sup>, give your answer modulo 17<sup>7</sup>.\r\n</p>\r\n"
|
@@ -0,0 +1,46 @@
|
|
1
|
+
---
|
2
|
+
:id: 406
|
3
|
+
:name: Guessing Game
|
4
|
+
:url: http://projecteuler.net/problem=406
|
5
|
+
:content: "\r\n<p>We are trying to find a hidden number selected from the set of integers
|
6
|
+
{1, 2, ..., <var>n</var>} by asking questions. \r\nEach number (question) we ask,
|
7
|
+
we get one of three possible answers:<br></p>\n<ul>\n<li> \"Your guess is lower
|
8
|
+
than the hidden number\" (and you incur a cost of <var>a</var>), or</li>\r\n<li>
|
9
|
+
\"Your guess is higher than the hidden number\" (and you incur a cost of <var>b</var>),
|
10
|
+
or</li>\r\n<li> \"Yes, that's it!\" (and the game ends).</li>\r\n</ul>\n<p>Given
|
11
|
+
the value of <var>n</var>, <var>a</var>, and <var>b</var>, an <i>optimal strategy</i>
|
12
|
+
minimizes the total cost <u>for the worst possible case</u>.</p>\r\n\r\n<p>For example,
|
13
|
+
if <var>n</var> = 5, <var>a</var> = 2, and <var>b</var> = 3, then we may begin by
|
14
|
+
asking \"<b>2</b>\" as our first question.</p>\r\n\r\n<p>If we are told that 2 is
|
15
|
+
higher than the hidden number (for a cost of <var>b</var>=3), then we are sure that
|
16
|
+
\"<b>1</b>\" is the hidden number (for a total cost of <span style=\"color:blue;\"><b>3</b></span>).<br>\r\nIf
|
17
|
+
we are told that 2 is lower than the hidden number (for a cost of <var>a</var>=2),
|
18
|
+
then our next question will be \"<b>4</b>\".<br>\r\nIf we are told that 4 is higher
|
19
|
+
than the hidden number (for a cost of <var>b</var>=3), then we are sure that \"<b>3</b>\"
|
20
|
+
is the hidden number (for a total cost of 2+3=<span style=\"color:blue;\"><b>5</b></span>).<br>\r\nIf
|
21
|
+
we are told that 4 is lower than the hidden number (for a cost of <var>a</var>=2),
|
22
|
+
then we are sure that \"<b>5</b>\" is the hidden number (for a total cost of 2+2=<span
|
23
|
+
style=\"color:blue;\"><b>4</b></span>).<br>\r\nThus, the worst-case cost achieved
|
24
|
+
by this strategy is <span style=\"color:red;\"><b>5</b></span>. It can also be shown
|
25
|
+
that this is the lowest worst-case cost that can be achieved. \r\nSo, in fact, we
|
26
|
+
have just described an optimal strategy for the given values of <var>n</var>, <var>a</var>,
|
27
|
+
and <var>b</var>.</p>\r\n\r\n<p>Let C(<var>n</var>, <var>a</var>, <var>b</var>)
|
28
|
+
be the worst-case cost achieved by an optimal strategy for the given values of <var>n</var>,
|
29
|
+
<var>a</var>, and <var>b</var>.</p>\r\n\r\n<p>Here are a few examples:<br>\r\nC(5,
|
30
|
+
2, 3) = 5<br>\r\nC(500, <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
|
31
|
+
alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2, <img src=\"images/symbol_radic.gif\"
|
32
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">3)
|
33
|
+
= 13.22073197...<br>\r\nC(20000, 5, 7) = 82<br>\r\nC(2000000, <img src=\"images/symbol_radic.gif\"
|
34
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5,
|
35
|
+
<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
36
|
+
style=\"vertical-align:middle;\">7) = 49.63755955...</p>\r\n\r\n<p>Let F<sub><var>k</var></sub>
|
37
|
+
be the Fibonacci numbers: F<sub><var>k</var></sub> = F<sub><var>k</var>-1</sub>
|
38
|
+
+ F<sub><var>k</var>-2</sub> with base cases F<sub>1</sub> = F<sub>2</sub> = 1.<br>Find
|
39
|
+
<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
40
|
+
style=\"vertical-align:middle;\"><sub>1<img src=\"images/symbol_le.gif\" width=\"10\"
|
41
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var><img
|
42
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">30</sub> C(10<sup>12</sup>,
|
43
|
+
<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
44
|
+
style=\"vertical-align:middle;\"><var>k</var>, <img src=\"images/symbol_radic.gif\"
|
45
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">F<sub><var>k</var></sub>),
|
46
|
+
and give your answer rounded to 8 decimal places behind the decimal point.</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 407
|
3
|
+
:name: Idempotents
|
4
|
+
:url: http://projecteuler.net/problem=407
|
5
|
+
:content: "\r\n<p>\r\nIf we calculate <var>a</var><sup>2</sup> mod 6 for 0 <img src=\"images/symbol_le.gif\"
|
6
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
7
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> 5 we get: 0,1,4,3,4,1.\r\n</p>\r\n<p>\r\nThe largest
|
9
|
+
value of <var>a</var> such that <var>a</var><sup>2</sup><img src=\"images/symbol_cong.gif\"
|
10
|
+
width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
11
|
+
mod 6 is 4.<br>\r\nLet's call M(<var>n</var>) the largest value of <var>a</var>
|
12
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"><var>n</var> such that <var>a</var><sup>2</sup><img
|
14
|
+
src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"><var>a</var> (mod <var>n</var>).<br>\r\nSo M(6)
|
16
|
+
= 4.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
17
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">M(<var>n</var>) for 1 <img
|
18
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
19
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 10<sup>7</sup>.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 408
|
3
|
+
:name: Admissible paths through a grid
|
4
|
+
:url: http://projecteuler.net/problem=408
|
5
|
+
:content: "\r\n<p>Let's call a lattice point (<var>x</var>, <var>y</var>) <i>inadmissible</i>
|
6
|
+
if <var>x</var>, <var>y</var> and <var>x</var> + <var>y</var> are all positive perfect
|
7
|
+
squares.<br>\r\nFor example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9,
|
8
|
+
4) are not.</p>\r\n\r\n<p>Consider a path from point (<var>x</var><sub>1</sub>,
|
9
|
+
<var>y</var><sub>1</sub>) to point (<var>x</var><sub>2</sub>, <var>y</var><sub>2</sub>)
|
10
|
+
using only unit steps north or east.<br>\r\nLet's call such a path <i>admissible</i>
|
11
|
+
if none of its intermediate points are inadmissible.</p>\r\n\r\n<p>Let P(<var>n</var>)
|
12
|
+
be the number of admissible paths from (0, 0) to (<var>n</var>, <var>n</var>).<br>\r\nIt
|
13
|
+
can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007
|
14
|
+
= 341920854.</p>\r\n\r\n<p>Find P(10 000 000) mod 1 000 000 007.</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 409
|
3
|
+
:name: Nim Extreme
|
4
|
+
:url: http://projecteuler.net/problem=409
|
5
|
+
:content: "\r\n<p>Let <var>n</var> be a positive integer. Consider <b>nim</b> positions
|
6
|
+
where:</p>\n<ul>\n<li>There are <var>n</var> non-empty piles.\r\n</li>\n<li>Each
|
7
|
+
pile has size less than 2<sup><var>n</var></sup>.\r\n</li>\n<li>No two piles have
|
8
|
+
the same size.\r\n</li>\n</ul>\n<p>Let W(<var>n</var>) be the number of winning
|
9
|
+
nim positions satisfying the above\r\nconditions (a position is winning if the first
|
10
|
+
player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5)
|
11
|
+
= 19764360 and W(100) mod 1 000 000 007 = 384777056.\r\n</p>\r\n<p>Find W(10 000 000)
|
12
|
+
mod 1 000 000 007.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 41
|
3
|
+
:name: Pandigital prime
|
4
|
+
:url: http://projecteuler.net/problem=41
|
5
|
+
:content: "\r\n\n<p>We shall say that an <i>n</i>-digit number is pandigital if it
|
6
|
+
makes use of all the digits 1 to <i>n</i> exactly once. For example, 2143 is a 4-digit
|
7
|
+
pandigital and is also prime.</p>\n<p>What is the largest <i>n</i>-digit pandigital
|
8
|
+
prime that exists?</p>\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 410
|
3
|
+
:name: Circle and tangent line
|
4
|
+
:url: http://projecteuler.net/problem=410
|
5
|
+
:content: "\r\n<p>Let C be the circle with radius <var>r</var>, <var>x</var><sup>2</sup>
|
6
|
+
+ <var>y</var><sup>2</sup> = <var>r</var><sup>2</sup>. We choose two points P(<var>a</var>,
|
7
|
+
<var>b</var>) and Q(-<var>a</var>, <var>c</var>) so that the line passing through
|
8
|
+
P and Q is tangent to C.</p>\r\n\r\n<p>For example, the quadruplet (<var>r</var>,
|
9
|
+
<var>a</var>, <var>b</var>, <var>c</var>) = (2, 6, 2, -7) satisfies this property.</p>\r\n\r\n<p>Let
|
10
|
+
F(<var>R</var>, <var>X</var>) be the number of the integer quadruplets (<var>r</var>,
|
11
|
+
<var>a</var>, <var>b</var>, <var>c</var>) with this property, and with 0 <img src=\"images/symbol_lt.gif\"
|
12
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>r</var>
|
13
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"><var>R</var> and 0 <img src=\"images/symbol_lt.gif\"
|
15
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
16
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"><var>X</var>.</p>\r\n\r\n<p>We can verify that
|
18
|
+
F(1, 5) = 10, F(2, 10) = 52 and F(10, 100) = 3384.<br>\r\nFind F(10<sup>8</sup>,
|
19
|
+
10<sup>9</sup>) + F(10<sup>9</sup>, 10<sup>8</sup>).</p>\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 411
|
3
|
+
:name: Uphill paths
|
4
|
+
:url: http://projecteuler.net/problem=411
|
5
|
+
:content: "\r\n<p>\r\nLet <var>n</var> be a positive integer. Suppose there are stations
|
6
|
+
at the coordinates (<var>x</var>, <var>y</var>) = (2<sup><var>i</var></sup> mod
|
7
|
+
<var>n</var>, 3<sup><var>i</var></sup> mod <var>n</var>) for 0 <img src=\"images/symbol_le.gif\"
|
8
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
|
9
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"> 2<var>n</var>. We will consider stations with
|
11
|
+
the same coordinates as the same station.\r\n</p>\n<p>\r\nWe wish to form a path
|
12
|
+
from (0, 0) to (<var>n</var>, <var>n</var>) such that the x and y coordinates never
|
13
|
+
decrease.<br>\r\nLet S(<var>n</var>) be the maximum number of stations such a path
|
14
|
+
can pass through.\r\n</p>\n<p>\r\nFor example, if <var>n</var> = 22, there are 11
|
15
|
+
distinct stations, and a valid path can pass through at most 5 stations. Therefore,
|
16
|
+
S(22) = 5.\r\nThe case is illustrated below, with an example of an optimal path:\r\n</p>\r\n<p
|
17
|
+
align=\"center\"><img src=\"project/images/p411_longpath.png\"></p>\r\n<p>\r\nIt
|
18
|
+
can also be verified that S(123) = 14 and S(10000) = 48.\r\n</p>\n<p>\r\nFind <img
|
19
|
+
src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> S(<var>k</var><sup>5</sup>) for 1 <img src=\"images/symbol_le.gif\"
|
21
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
|
22
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
23
|
+
style=\"vertical-align:middle;\"> 30.\r\n</p>\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 412
|
3
|
+
:name: Gnomon numbering
|
4
|
+
:url: http://projecteuler.net/problem=412
|
5
|
+
:content: "\r\n<p>For integers <var>m</var>, <var>n</var> (0 <img src=\"images/symbol_le.gif\"
|
6
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> <var>n</var> m),
|
7
|
+
let L(<var>m</var>, <var>n</var>) be an <var>m</var><img src=\"images/symbol_times.gif\"
|
8
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><var>m</var>
|
9
|
+
grid with the top-right <var>n</var><img src=\"images/symbol_times.gif\" width=\"9\"
|
10
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
11
|
+
grid removed.</p>\r\n\r\n<p>For example, L(5, 3) looks like this:</p>\r\n\r\n<p><img
|
12
|
+
src=\"project/images/p412_table53.png\"></p>\r\n\r\n<p>We want to number each cell
|
13
|
+
of L(<var>m</var>, <var>n</var>) with consecutive integers 1, 2, 3, ... such that
|
14
|
+
the number in every cell is smaller than the number below it and to the left of
|
15
|
+
it.</p>\r\n\r\n<p>For example, here are two valid numberings of L(5, 3):</p>\r\n<p><img
|
16
|
+
src=\"project/images/p412_tablenums.png\"></p>\r\n\r\n<p>Let LC(<var>m</var>, <var>n</var>)
|
17
|
+
be the number of valid numberings of L(<var>m</var>, <var>n</var>).<br>\r\nIt can
|
18
|
+
be verified that LC(3, 0) = 42, LC(5, 3) = 250250, LC(6, 3) = 406029023400 and LC(10, 5)
|
19
|
+
mod 76543217 = 61251715.</p>\r\n\r\n<p>Find LC(10000, 5000) mod 76543217.</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 413
|
3
|
+
:name: One-child Numbers
|
4
|
+
:url: http://projecteuler.net/problem=413
|
5
|
+
:content: "\r\n<p>We say that a <var>d</var>-digit positive number (no leading zeros)
|
6
|
+
is a one-child number if exactly one of its sub-strings is divisible by <var>d</var>.</p>\r\n\r\n<p>For
|
7
|
+
example, 5671 is a 4-digit one-child number. Among all its sub-strings 5, 6, 7,
|
8
|
+
1, 56, 67, 71, 567, 671 and 5671, only 56 is divisible by 4.<br>\r\nSimilarly, 104
|
9
|
+
is a 3-digit one-child number because only 0 is divisible by 3.<br>\r\n1132451 is
|
10
|
+
a 7-digit one-child number because only 245 is divisible by 7.</p>\r\n\r\n<p>Let
|
11
|
+
F(<var>N</var>) be the number of the one-child numbers less than <var>N</var>.<br>\r\nWe
|
12
|
+
can verify that F(10) = 9, F(10<sup>3</sup>) = 389 and F(10<sup>7</sup>) = 277674.</p>\r\n\r\n<p>Find
|
13
|
+
F(10<sup>19</sup>).</p>\r\n"
|
@@ -0,0 +1,40 @@
|
|
1
|
+
---
|
2
|
+
:id: 414
|
3
|
+
:name: Kaprekar constant
|
4
|
+
:url: http://projecteuler.net/problem=414
|
5
|
+
:content: "\r\n<p>\r\n6174 is a remarkable number; if we sort its digits in increasing
|
6
|
+
order and subtract that number from the number you get when you sort the digits
|
7
|
+
in decreasing order, we get 7641-1467=6174.<br>\r\nEven more remarkable is that
|
8
|
+
if we start from any 4 digit number and repeat this process of sorting and subtracting,
|
9
|
+
we'll eventually end up with 6174 or immediately with 0 if all digits are equal.<br>
|
10
|
+
\r\nThis also works with numbers that have less than 4 digits if we pad the number
|
11
|
+
with leading zeroes until we have 4 digits.<br>\r\nE.g. let's start with the number
|
12
|
+
0837:<br>\r\n8730-0378=8352<br>\r\n8532-2358=6174\r\n</p>\r\n<p>\r\n6174 is called
|
13
|
+
the <b>Kaprekar constant</b>. The process of sorting and subtracting and repeating
|
14
|
+
this until either 0 or the Kaprekar constant is reached is called the <b>Kaprekar
|
15
|
+
routine</b>.\r\n</p>\r\n<p>\r\nWe can consider the Kaprekar routine for other bases
|
16
|
+
and number of digits.<br> \r\nUnfortunately, it is not guaranteed a Kaprekar constant
|
17
|
+
exists in all cases; either the routine can end up in a cycle for some input numbers
|
18
|
+
or the constant the routine arrives at can be different for different input numbers.<br>\r\nHowever,
|
19
|
+
it can be shown that for 5 digits and a base b = 6t+3<img src=\"images/symbol_ne.gif\"
|
20
|
+
width=\"11\" height=\"10\" alt=\"≠\" border=\"0\" style=\"vertical-align:middle;\">9,
|
21
|
+
a Kaprekar constant exists.<br>\r\nE.g. base 15: (10,4,14,9,5)<sub>15</sub><br>\r\nbase
|
22
|
+
21: (14,6,20,13,7)<sub>21</sub></p>\r\n<p>\r\nDefine <var>C<sub>b</sub></var> to
|
23
|
+
be the Kaprekar constant in base <var>b</var> for 5 digits.\r\nDefine the function
|
24
|
+
<var>sb(i)</var> to be\r\n</p>\n<ul>\n<li> 0 if i = <var>C<sub>b</sub></var> or
|
25
|
+
if <var>i</var> written in base <var>b</var> consists of 5 identical digits\r\n</li>\n<li>
|
26
|
+
the number of iterations it takes the Kaprekar routine in base <var>b</var> to arrive
|
27
|
+
at <var>C<sub>b</sub></var>, otherwise\r\n</li>\n</ul>\r\nNote that we can define
|
28
|
+
<var>sb(i)</var> for all integers <var>i</var> <img src=\"images/symbol_lt.gif\"
|
29
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var><sup>5</sup>.
|
30
|
+
If <var>i</var> written in base <var>b</var> takes less than 5 digits, the number
|
31
|
+
is padded with leading zero digits until we have 5 digits before applying the Kaprekar
|
32
|
+
routine.\r\n\r\n<p>\r\nDefine <var>S(b)</var> as the sum of <var>sb(i)</var> for
|
33
|
+
0 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
34
|
+
style=\"vertical-align:middle;\"><var>i</var> <img src=\"images/symbol_lt.gif\"
|
35
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var><sup>5</sup>.<br>\r\nE.g.
|
36
|
+
S(15) = 5274369<br> \r\nS(111) = 400668930299\r\n</p>\r\n<p>\r\nFind the sum of
|
37
|
+
S(6k+3) for 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
38
|
+
border=\"0\" style=\"vertical-align:middle;\"> k <img src=\"images/symbol_le.gif\"
|
39
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
40
|
+
300.<br>\r\nGive the last 18 digits as your answer.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 415
|
3
|
+
:name: Titanic sets
|
4
|
+
:url: http://projecteuler.net/problem=415
|
5
|
+
:content: "\r\n<p>A set of lattice points S is called a <i>titanic set</i> if there
|
6
|
+
exists a line passing through exactly two points in S.</p>\r\n\r\n<p>An example
|
7
|
+
of a titanic set is S = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)}, where
|
8
|
+
the line passing through (0, 1) and (2, 0) does not pass through any other point
|
9
|
+
in S.</p>\r\n\r\n<p>On the other hand, the set {(0, 0), (1, 1), (2, 2), (4, 4)}
|
10
|
+
is not a titanic set since the line passing through any two points in the set also
|
11
|
+
passes through the other two.</p>\r\n\r\n<p>For any positive integer <var>N</var>,
|
12
|
+
let <var>T</var>(<var>N</var>) be the number of titanic sets S whose every point
|
13
|
+
(<var>x</var>, <var>y</var>) satisfies 0 <img src=\"images/symbol_le.gif\" width=\"10\"
|
14
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var>,
|
15
|
+
<var>y</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
16
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.\r\nIt can be verified
|
17
|
+
that <var>T</var>(1) = 11, <var>T</var>(2) = 494, <var>T</var>(4) = 33554178, <var>T</var>(111)
|
18
|
+
mod 10<sup>8</sup> = 13500401 and <var>T</var>(10<sup>5</sup>) mod 10<sup>8</sup>
|
19
|
+
= 63259062.</p>\r\n\r\n<p>Find <var>T</var>(10<sup>11</sup>) mod 10<sup>8</sup>.</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 416
|
3
|
+
:name: A frog's trip
|
4
|
+
:url: http://projecteuler.net/problem=416
|
5
|
+
:content: "\r\n<p>A row of <var>n</var> squares contains a frog in the leftmost square.
|
6
|
+
By successive jumps the frog goes to the rightmost square and then back to the leftmost
|
7
|
+
square. On the outward trip he jumps one, two or three squares to the right, and
|
8
|
+
on the homeward trip he jumps to the left in a similar manner. He cannot jump outside
|
9
|
+
the squares. He repeats the round-trip travel <var>m</var> times.</p>\r\n\r\n<p>Let
|
10
|
+
F(<var>m</var>, <var>n</var>) be the number of the ways the frog can travel so that
|
11
|
+
at most one square remains unvisited.<br>\r\nFor example, F(1, 3) = 4, F(1, 4) =
|
12
|
+
15, F(1, 5) = 46, F(2, 3) = 16 and F(2, 100) mod 10<sup>9</sup> = 429619151.</p>\r\n\r\n<p>Find
|
13
|
+
the last 9 digits of F(10, 10<sup>12</sup>).</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 417
|
3
|
+
:name: Reciprocal cycles II
|
4
|
+
:url: http://projecteuler.net/problem=417
|
5
|
+
:content: "\r\n<p>A unit fraction contains 1 in the numerator. The decimal representation
|
6
|
+
of the unit fractions with denominators 2 to 10 are given:</p>\r\n<blockquote>\r\n<table>\n<tr>\n<td>\n<sup>1</sup>/<sub>2</sub>\n</td>\n<td>= </td>\n<td>0.5</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>3</sub>\n</td>\n<td>= </td>\n<td>0.(3)</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>4</sub>\n</td>\n<td>= </td>\n<td>0.25</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>5</sub>\n</td>\n<td>= </td>\n<td>0.2</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>6</sub>\n</td>\n<td>= </td>\n<td>0.1(6)</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>7</sub>\n</td>\n<td>= </td>\n<td>0.(142857)</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>8</sub>\n</td>\n<td>= </td>\n<td>0.125</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>9</sub>\n</td>\n<td>= </td>\n<td>0.(1)</td>\r\n</tr>\n<tr>\n<td>\n<sup>1</sup>/<sub>10</sub>\n</td>\n<td>= </td>\n<td>0.1</td>\r\n</tr>\n</table>\n</blockquote>\r\n<p>Where
|
7
|
+
0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that
|
8
|
+
<sup>1</sup>/<sub>7</sub> has a 6-digit recurring cycle.</p>\r\n<p>\r\nUnit fractions
|
9
|
+
whose denominator has no other prime factors than 2 and/or 5 are not considered
|
10
|
+
to have a recurring cycle.<br>\r\nWe define the length of the recurring cycle of
|
11
|
+
those unit fractions as 0. \r\n</p>\r\n<p>\r\nLet L(n) denote the length of the
|
12
|
+
recurring cycle of 1/n.\r\nYou are given that <img src=\"images/symbol_sum.gif\"
|
13
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">L(n)
|
14
|
+
for 3 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"> n <img src=\"images/symbol_le.gif\" width=\"10\"
|
16
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 1 000 000
|
17
|
+
equals 55535191115.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\"
|
18
|
+
height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">L(n) for 3
|
19
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> n <img src=\"images/symbol_le.gif\" width=\"10\"
|
21
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 100 000 000\r\n</p>"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 418
|
3
|
+
:name: Factorisation triples
|
4
|
+
:url: http://projecteuler.net/problem=418
|
5
|
+
:content: "\r\n<p>\r\nLet <var>n</var> be a positive integer. An integer triple (<var>a</var>,
|
6
|
+
<var>b</var>, <var>c</var>) is called a <i>factorisation triple</i> of <var>n</var>
|
7
|
+
if:</p>\n<ul>\n<li> 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
8
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var> <img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var>
|
10
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><var>c</var>\r\n</li>\n<li> <var>a</var>·<var>b</var>·<var>c</var>
|
12
|
+
= <var>n</var>.\r\n</li>\n</ul>\n<p>\r\nDefine <var>f</var>(<var>n</var>) to be
|
13
|
+
<var>a</var> + <var>b</var> + <var>c</var> for the factorisation triple (<var>a</var>,
|
14
|
+
<var>b</var>, <var>c</var>) of <var>n</var> which minimises <var>c</var> / <var>a</var>.
|
15
|
+
One can show that this triple is unique.\r\n</p>\r\n<p>\r\nFor example, <var>f</var>(165)
|
16
|
+
= 19, <var>f</var>(100100) = 142 and <var>f</var>(20!) = 4034872.\r\n</p>\r\n<p>\r\nFind
|
17
|
+
<var>f</var>(43!).\r\n</p>\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 419
|
3
|
+
:name: Look and say sequence
|
4
|
+
:url: http://projecteuler.net/problem=419
|
5
|
+
:content: "\r\n<p>\r\nThe <b>look and say</b> sequence goes 1, 11, 21, 1211, 111221,
|
6
|
+
312211, 13112221, 1113213211, ...<br>\r\nThe sequence starts with 1 and all other
|
7
|
+
members are obtained by describing the previous member in terms of consecutive digits.<br>\r\nIt
|
8
|
+
helps to do this out loud:<br>\r\n1 is 'one one' <img src=\"images/symbol_maps.gif\"
|
9
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
10
|
+
11<br>\r\n11 is 'two ones' <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\"
|
11
|
+
alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 21<br>\r\n21 is 'one two
|
12
|
+
and one one' <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\"
|
13
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1211 <br>\r\n1211 is 'one one, one
|
14
|
+
two and two ones' <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\"
|
15
|
+
alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 111221<br>\r\n111221 is
|
16
|
+
'three ones, two twos and one one' <img src=\"images/symbol_maps.gif\" width=\"15\"
|
17
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 312211<br>\r\n...\r\n</p>\r\n<p>\r\nDefine
|
18
|
+
A(n), B(n) and C(n) as the number of ones, twos and threes in the n'th element of
|
19
|
+
the sequence respectively.<br>\r\nOne can verify that A(40) = 31254, B(40) = 20259
|
20
|
+
and C(40) = 11625.\r\n</p>\r\n<p>\r\nFind A(n), B(n) and C(n) for n = 10<sup>12</sup>.<br>
|
21
|
+
\r\nGive your answer modulo 2<sup>30</sup> and separate your values for A, B and
|
22
|
+
C by a comma.<br> \r\nE.g. for n = 40 the answer would be 31254,20259,11625\r\n</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 42
|
3
|
+
:name: Coded triangle numbers
|
4
|
+
:url: http://projecteuler.net/problem=42
|
5
|
+
:content: "\r\n<p>The <i>n</i><sup>th</sup> term of the sequence of triangle numbers
|
6
|
+
is given by, <i>t<sub>n</sub></i> = ½<i>n</i>(<i>n</i>+1); so the first ten triangle
|
7
|
+
numbers are:</p>\r\n<p style=\"text-align:center;\">1, 3, 6, 10, 15, 21, 28, 36,
|
8
|
+
45, 55, ...</p>\r\n<p>By converting each letter in a word to a number corresponding
|
9
|
+
to its alphabetical position and adding these values we form a word value. For example,
|
10
|
+
the word value for SKY is 19 + 11 + 25 = 55 = <i>t</i><sub>10</sub>. If the word
|
11
|
+
value is a triangle number then we shall call the word a triangle word.</p>\r\n<p>Using
|
12
|
+
<a href=\"project/words.txt\">words.txt</a> (right click and 'Save Link/Target As...'),
|
13
|
+
a 16K text file containing nearly two-thousand common English words, how many are
|
14
|
+
triangle words?</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 420
|
3
|
+
:name: 2x2 positive integer matrix
|
4
|
+
:url: http://projecteuler.net/problem=420
|
5
|
+
:content: "\r\n<p>A <i>positive integer matrix</i> is a matrix whose elements are
|
6
|
+
all positive integers.<br>\r\nSome positive integer matrices can be expressed as
|
7
|
+
a square of a positive integer matrix in two different ways. Here is an example:</p>\r\n\r\n<div
|
8
|
+
align=\"center\">\r\n<img src=\"project/images/p_420_matrix.gif\">\n</div>\r\n\r\n<p>\r\nWe
|
9
|
+
define F(<var>N</var>) as the number of the 2x2 positive integer matrices which
|
10
|
+
have a <dfn title=\"the sum of the elements on the main diagonal\">trace</dfn> less
|
11
|
+
than <var>N</var> and which can be expressed as a square of a positive integer matrix
|
12
|
+
in two different ways.<br>\r\nWe can verify that F(50) = 7 and F(1000) = 1019.\r\n</p>\r\n\r\n<p>\r\nFind
|
13
|
+
F(10<sup>7</sup>).\r\n</p>\r\n"
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
:id: 421
|
3
|
+
:name: Prime factors of <var>n</var><sup>15</sup>+1
|
4
|
+
:url: http://projecteuler.net/problem=421
|
5
|
+
:content: "\r\n<p>\r\nNumbers of the form <var>n</var><sup>15</sup>+1 are composite
|
6
|
+
for every integer <var>n</var> <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\"
|
7
|
+
alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 1.<br>\r\nFor positive
|
8
|
+
integers <var>n</var> and <var>m</var> let <var>s</var>(<var>n,m</var>) be defined
|
9
|
+
as the sum of the <i>distinct</i> prime factors of <var>n</var><sup>15</sup>+1 not
|
10
|
+
exceeding <var>m</var>.\r\n</p>\r\nE.g. 2<sup>15</sup>+1 = 3<img src=\"images/symbol_times.gif\"
|
11
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">3<img
|
12
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\">11<img src=\"images/symbol_times.gif\" width=\"9\"
|
14
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">331.<br>\r\nSo
|
15
|
+
<var>s</var>(2,10) = 3 and <var>s</var>(2,1000) = 3+11+331 = 345.<br><br>\r\n\r\nAlso
|
16
|
+
10<sup>15</sup>+1 = 7<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
17
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">11<img src=\"images/symbol_times.gif\"
|
18
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">13<img
|
19
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\">211<img src=\"images/symbol_times.gif\" width=\"9\"
|
21
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">241<img src=\"images/symbol_times.gif\"
|
22
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2161<img
|
23
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\">9091.<br>\r\nSo <var>s</var>(10,100) = 31 and <var>s</var>(10,1000)
|
25
|
+
= 483.<br><p>\r\nFind &Sum; <var>s</var>(<var>n</var>,10<sup>8</sup>) for 1
|
26
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
27
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
28
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
29
|
+
10<sup>11</sup>.\r\n</p>\r\n\r\n"
|