euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 422
3
+ :name: Sequence of points on a hyperbola
4
+ :url: http://projecteuler.net/problem=422
5
+ :content: "\r\n<p>Let H be the hyperbola defined by the equation 12<var>x</var><sup>2</sup>
6
+ + 7<var>x</var><var>y</var> - 12<var>y</var><sup>2</sup> = 625.</p>\r\n\r\n<p>Next,
7
+ define X as the point (7, 1). It can be seen that X is in H.</p>\r\n\r\n<p>Now we
8
+ define a sequence of points in H, {P<sub><var>i</var></sub> : <var>i</var> <img
9
+ src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
10
+ 1}, as:\r\n</p>\n<ul>\n<li> P<sub>1</sub> = (13, 61/4).\r\n</li>\n<li> P<sub>2</sub>
11
+ = (-43/6, -4).\r\n</li>\n<li> For <var>i</var> &gt; 2, P<sub><var>i</var></sub>
12
+ is the unique point in H that is different from P<sub><var>i</var>-1</sub> and such
13
+ that line P<sub><var>i</var></sub>P<sub><var>i</var>-1</sub> is parallel to line
14
+ P<sub><var>i</var>-2</sub>X. It can be shown that P<sub><var>i</var></sub> is well-defined,
15
+ and that its coordinates are always rational.\r\n</li>\n</ul>\n<img src=\"project/images/p422_hyperbola.gif\"><p>You
16
+ are given that P<sub>3</sub> = (-19/2, -229/24), P<sub>4</sub> = (1267/144, -37/12)
17
+ and P<sub>7</sub> = (17194218091/143327232, 274748766781/1719926784).</p>\r\n\r\n<p>Find
18
+ P<sub><var>n</var></sub> for <var>n</var> = 11<sup>14</sup> in the following format:<br>If
19
+ P<sub><var>n</var></sub> = (<var>a</var>/<var>b</var>, <var>c</var>/<var>d</var>)
20
+ where the fractions are in lowest terms and the denominators are positive, then
21
+ the answer is (<var>a</var> + <var>b</var> + <var>c</var> + <var>d</var>) mod 1 000 000 007.</p>\r\n\r\n<p>For
22
+ <var>n</var> = 7, the answer would have been: 806236837.</p>\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 423
3
+ :name: Consecutive die throws
4
+ :url: http://projecteuler.net/problem=423
5
+ :content: "\r\n<p>Let <var>n</var> be a positive integer.<br>\r\nA 6-sided die is
6
+ thrown <var>n</var> times. Let <var>c</var> be the number of pairs of consecutive
7
+ throws that give the same value.</p>\r\n\r\n<p>For example, if <var>n</var> = 7
8
+ and the values of the die throws are (1,1,5,6,6,6,3), then the following pairs of
9
+ consecutive throws give the same value:<br>\r\n(<u>1,1</u>,5,6,6,6,3)<br>\r\n(1,1,5,<u>6,6</u>,6,3)<br>\r\n(1,1,5,6,<u>6,6</u>,3)<br>\r\nTherefore,
10
+ <var>c</var> = 3 for (1,1,5,6,6,6,3).</p>\r\n\r\n<p>Define C(<var>n</var>) as the
11
+ number of outcomes of throwing a 6-sided die <var>n</var> times such that <var>c</var>
12
+ does not exceed π(<var>n</var>).<sup>1</sup><br>\r\nFor example, C(3) = 216, C(4)
13
+ = 1290, C(11) = 361912500 and C(24) = 4727547363281250000.</p>\r\n\r\n<p>Define
14
+ S(<var>L</var>) as <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
15
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"> C(<var>n</var>) for 1 <img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
17
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>L</var>.<br>\r\nFor example, S(50) mod 1 000 000 007
19
+ = 832833871.</p>\r\n\r\n<p>Find S(50 000 000) mod 1 000 000 007.</p>\r\n\r\n<p><sup>1</sup>
20
+ π denotes the <b>prime-counting function</b>, i.e. π(<var>n</var>) is the number
21
+ of primes <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.</p>\r\n"
@@ -0,0 +1,37 @@
1
+ ---
2
+ :id: 424
3
+ :name: Kakuro
4
+ :url: http://projecteuler.net/problem=424
5
+ :content: "\r\n<p align=\"center\">\r\n<img src=\"project/images/p_424_kakuro1.gif\"></p>\r\n<p>\r\nThe
6
+ above is an example of a cryptic kakuro (also known as cross sums, or even sums
7
+ cross) puzzle, with its final solution on the right. (The common rules of kakuro
8
+ puzzles can be found easily on numerous internet sites. Other related information
9
+ can also be currently found at <a href=\"http://krazydad.com/\">krazydad.com</a>
10
+ whose author has provided the puzzle data for this challenge.)\r\n</p>\n<p>\r\n</p>\n<p>\r\nThe
11
+ downloadable text file (<a href=\"project/kakuro200.txt\">kakuro200.txt</a>) contains
12
+ the description of 200 such puzzles, a mix of 5x5 and 6x6 types. The first puzzle
13
+ in the file is the above example which is coded as follows:\r\n</p>\r\n<p>\r\n6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X\r\n</p>\r\n<p>\r\nThe
14
+ first character is a numerical digit indicating the size of the information grid.
15
+ It would be either a 6 (for a 5x5 kakuro puzzle) or a 7 (for a 6x6 puzzle) followed
16
+ by a comma (,). The extra top line and left column are needed to insert information.\r\n</p>\r\n<p>\r\nThe
17
+ content of each cell is then described and followed by a comma, going left to right
18
+ and starting with the top line.<br>\r\nX = Gray cell, not required to be filled
19
+ by a digit.<br>\r\nO (upper case letter)= White empty cell to be filled by a digit.<br>\r\nA
20
+ = Or any one of the upper case letters from A to J to be replaced by its equivalent
21
+ digit in the solved puzzle.<br>\r\n( ) = Location of the encrypted sums. Horizontal
22
+ sums are preceded by a lower case \"h\" and vertical sums are preceded by a lower
23
+ case \"v\". Those are followed by one or two upper case letters depending if the
24
+ sum is a single digit or double digit one. For double digit sums, the first letter
25
+ would be for the \"tens\" and the second one for the \"units\". When the cell must
26
+ contain information for both a horizontal and a vertical sum, the first one is always
27
+ for the horizontal sum and the two are separated by a comma within the same set
28
+ of brackets, ex.: (hFE,vD). Each set of brackets is also immediately followed by
29
+ a comma.\r\n</p>\r\n<p>\r\nThe description of the last cell is followed by a Carriage
30
+ Return/Line Feed (CRLF) instead of a comma.\r\n</p>\r\n<p>\r\nThe required answer
31
+ to each puzzle is based on the value of each letter necessary to arrive at the solution
32
+ and according to the alphabetical order. As indicated under the example puzzle,
33
+ its answer would be 8426039571. At least 9 out of the 10 encrypting letters are
34
+ always part of the problem description. When only 9 are given, the missing one must
35
+ be assigned the remaining digit.\r\n</p>\r\n<p>\r\nYou are given that the sum of
36
+ the answers for the first 10 puzzles in the file is 64414157580.\r\n</p>\r\n<p>\r\nFind
37
+ the sum of the answers for the 200 puzzles.\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 425
3
+ :name: Prime connection
4
+ :url: http://projecteuler.net/problem=425
5
+ :content: "\r\n<p>\r\nTwo positive numbers A and B are said to be <i>connected</i>
6
+ (denoted by \"A ↔ B\") if one of these conditions holds:<br>\r\n(1) A and B have
7
+ the same length and differ in exactly one digit; for example, 123 ↔ 173.<br>\r\n(2)
8
+ Adding one digit to the left of A (or B) makes B (or A); for example, 23 ↔ 223 and
9
+ 123 ↔ 23.\r\n</p>\r\n<p>\r\nWe call a prime P a <i>2's relative</i> if there exists
10
+ a chain of connected primes between 2 and P and no prime in the chain exceeds P.\r\n</p>\r\n<p>\r\nFor
11
+ example, 127 is a 2's relative. One of the possible chains is shown below:<br>\r\n2
12
+ ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127<br>\r\nHowever, 11 and 103 are not 2's relatives.\r\n</p>\r\n<p>\r\nLet
13
+ F(N) be the sum of the primes <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
14
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N which are not 2's relatives.<br>\r\nWe
15
+ can verify that F(10<sup>3</sup>) = 431 and F(10<sup>4</sup>) = 78728.\r\n</p>\r\n<p>\r\nFind
16
+ F(10<sup>7</sup>).\r\n</p>\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 426
3
+ :name: Box-ball system
4
+ :url: http://projecteuler.net/problem=426
5
+ :content: "\r\n<p>\r\nConsider an infinite row of boxes. Some of the boxes contain
6
+ a ball. For example, an initial configuration of 2 consecutive occupied boxes followed
7
+ by 2 empty boxes, 2 occupied boxes, 1 empty box, and 2 occupied boxes can be denoted
8
+ by the sequence (2, 2, 2, 1, 2), in which the number of consecutive occupied and
9
+ empty boxes appear alternately.\r\n</p>\r\n<p>\r\nA turn consists of moving each
10
+ ball exactly once according to the following rule: Transfer the leftmost ball which
11
+ has not been moved to the nearest empty box to its right.\r\n</p>\r\n<p>\r\nAfter
12
+ one turn the sequence (2, 2, 2, 1, 2) becomes (2, 2, 1, 2, 3) as can be seen below;
13
+ note that we begin the new sequence starting at the first occupied box.\r\n</p>\r\n\r\n<div
14
+ align=\"center\">\r\n<img src=\"project/images/p_426_baxball1.gif\">\n</div>\r\n\r\n<p>\r\nA
15
+ system like this is called a <b>Box-Ball System</b> or <b>BBS</b> for short.\r\n</p>\r\n<p>\r\nIt
16
+ can be shown that after a sufficient number of turns, the system evolves to a state
17
+ where the consecutive numbers of occupied boxes is invariant. In the example below,
18
+ the consecutive numbers of <b>occupied boxes</b> evolves to [1, 2, 3]; we shall
19
+ call this the final state.\r\n</p>\r\n\r\n<div align=\"center\">\r\n<img src=\"project/images/p_426_baxball2.gif\">\n</div>\r\n\r\n<p>\r\nWe
20
+ define the sequence {<var>t</var><sub><var>i</var></sub>}:<br></p>\n<ul>\n<li>\n<var>s</var><sub>0</sub>
21
+ = 290797\r\n</li>\n<li>\n<var>s</var><sub><var>k</var>+1</sub> = <var>s</var><sub><var>k</var></sub><sup>2</sup>
22
+ mod 50515093\r\n</li>\n<li>\n<var>t</var><sub><var>k</var></sub> = (<var>s</var><sub><var>k</var></sub>
23
+ mod 64) + 1\r\n</li>\n</ul>\n<p>\r\nStarting from the initial configuration (<var>t</var><sub>0</sub>,
24
+ <var>t</var><sub>1</sub>, …, <var>t</var><sub>10</sub>), the final state becomes
25
+ [1, 3, 10, 24, 51, 75].<br>\r\nStarting from the initial configuration (<var>t</var><sub>0</sub>,
26
+ <var>t</var><sub>1</sub>, …, <var>t</var><sub>10 000 000</sub>), find the final
27
+ state.<br>\r\nGive as your answer the sum of the squares of the elements of the
28
+ final state. For example, if the final state is [1, 2, 3] then 14 ( = 1<sup>2</sup>
29
+ + 2<sup>2</sup> + 3<sup>2</sup>) is your answer.\r\n</p>\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 427
3
+ :name: n-sequences
4
+ :url: http://projecteuler.net/problem=427
5
+ :content: "\r\n<p>A sequence of integers S = {s<sub><var>i</var></sub>} is called
6
+ an <var>n-sequence</var> if it has <var>n</var> elements and each element s<sub><var>i</var></sub>
7
+ satisfies 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
8
+ border=\"0\" style=\"vertical-align:middle;\"> s<sub><var>i</var></sub><img src=\"images/symbol_le.gif\"
9
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.
10
+ Thus there are <var>n</var><sup><var>n</var></sup> distinct <var>n</var>-sequences
11
+ in total.\r\nFor example, the sequence S = {1, 5, 5, 10, 7, 7, 7, 2, 3, 7} is a
12
+ 10-sequence.</p>\r\n\r\n<p>For any sequence S, let L(S) be the length of the longest
13
+ contiguous subsequence of S with the same value.\r\nFor example, for the given sequence
14
+ S above, L(S) = 3, because of the three consecutive 7's.</p>\r\n\r\n<p>Let <var>f</var>(<var>n</var>)
15
+ = <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> L(S) for all <var>n</var>-sequences S.</p>\r\n\r\n<p>For
17
+ example, <var>f</var>(3) = 45, <var>f</var>(7) = 1403689 and <var>f</var>(11) =
18
+ 481496895121.</p>\r\n\r\n<p>Find <var>f</var>(7 500 000) mod 1 000 000 009.</p>\r\n\r\n\r\n"
@@ -0,0 +1,32 @@
1
+ ---
2
+ :id: 428
3
+ :name: Necklace of circles
4
+ :url: http://projecteuler.net/problem=428
5
+ :content: "\r\n<p>Let <var>a</var>, <var>b</var> and <var>c</var> be positive numbers.<br>\r\nLet
6
+ W, X, Y, Z be four collinear points where |WX| = <var>a</var>, |XY| = <var>b</var>,
7
+ |YZ| = <var>c</var> and |WZ| = <var>a</var> + <var>b</var> + <var>c</var>.<br>\r\nLet
8
+ C<sub>in</sub> be the circle having the diameter XY.<br>\r\nLet C<sub>out</sub>
9
+ be the circle having the diameter WZ.<br></p>\r\n\r\n<p>\r\nThe triplet (<var>a</var>,
10
+ <var>b</var>, <var>c</var>) is called a <em>necklace triplet</em> if you can place
11
+ <var>k</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\"
12
+ border=\"0\" style=\"vertical-align:middle;\"> 3 distinct circles C<sub>1</sub>,
13
+ C<sub>2</sub>, ..., C<sub><var>k</var></sub> such that:\r\n</p>\n<ul>\n<li>C<sub><var>i</var></sub>
14
+ has no common interior points with any C<sub><var>j</var></sub> for 1 <img src=\"images/symbol_le.gif\"
15
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>,
16
+ <var>j</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
17
+ border=\"0\" style=\"vertical-align:middle;\"><var>k</var> and <var>i</var> <img
18
+ src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\" style=\"vertical-align:middle;\"><var>j</var>,\r\n</li>\n<li>C<sub><var>i</var></sub>
19
+ is tangent to both C<sub>in</sub> and C<sub>out</sub> for 1 <img src=\"images/symbol_le.gif\"
20
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
21
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
22
+ style=\"vertical-align:middle;\"><var>k</var>,\r\n</li>\n<li>C<sub><var>i</var></sub>
23
+ is tangent to C<sub><var>i</var>+1</sub> for 1 <img src=\"images/symbol_le.gif\"
24
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
25
+ k, and\r\n</li>\n<li>C<sub><var>k</var></sub> is tangent to C<sub>1</sub>.\r\n</li>\n</ul>\n<p>\r\nFor
26
+ example, (5, 5, 5) and (4, 3, 21) are necklace triplets, while it can be shown that
27
+ (2, 2, 5) is not.\r\n</p>\r\n<p align=\"center\"><img src=\"project/images/p428_necklace.png\"></p>\r\n\r\n<p>\r\nLet
28
+ T(<var>n</var>) be the number of necklace triplets (<var>a</var>, <var>b</var>,
29
+ <var>c</var>) such that <var>a</var>, <var>b</var> and <var>c</var> are positive
30
+ integers, and <var>b</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
31
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.\r\nFor example,
32
+ T(1) = 9, T(20) = 732 and T(3000) = 438106.\r\n</p>\r\n<p>\r\nFind T(1 000 000 000).\r\n</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 429
3
+ :name: Sum of squares of unitary divisors
4
+ :url: http://projecteuler.net/problem=429
5
+ :content: "\r\n<p>\r\nA unitary divisor <var>d</var> of a number <var>n</var> is a
6
+ divisor of <var>n</var> that has the property gcd(<var>d, n/d</var>) = 1.<br>\r\nThe
7
+ unitary divisors of 4! = 24 are 1, 3, 8 and 24.<br>\r\nThe sum of their squares
8
+ is 1<sup>2</sup> + 3<sup>2</sup> + 8<sup>2</sup> + 24<sup>2</sup> = 650.\r\n</p>\r\n<p>\r\nLet
9
+ S(<var>n</var>) represent the sum of the squares of the unitary divisors of <var>n</var>.
10
+ Thus S(4!)=650.\r\n</p>\r\n<p>\r\nFind S(100 000 000!) modulo 1 000 000 009.\r\n</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 43
3
+ :name: Sub-string divisibility
4
+ :url: http://projecteuler.net/problem=43
5
+ :content: "\r\n<p>The number, 1406357289, is a 0 to 9 pandigital number because it
6
+ is made up of each of the digits 0 to 9 in some order, but it also has a rather
7
+ interesting sub-string divisibility property.</p>\r\n<p>Let <i>d</i><sub>1</sub>
8
+ be the 1<sup>st</sup> digit, <i>d</i><sub>2</sub> be the 2<sup>nd</sup> digit, and
9
+ so on. In this way, we note the following:</p>\r\n<ul>\n<li>\n<i>d</i><sub>2</sub><i>d</i><sub>3</sub><i>d</i><sub>4</sub>=406
10
+ is divisible by 2</li>\r\n<li>\n<i>d</i><sub>3</sub><i>d</i><sub>4</sub><i>d</i><sub>5</sub>=063
11
+ is divisible by 3</li>\r\n<li>\n<i>d</i><sub>4</sub><i>d</i><sub>5</sub><i>d</i><sub>6</sub>=635
12
+ is divisible by 5</li>\r\n<li>\n<i>d</i><sub>5</sub><i>d</i><sub>6</sub><i>d</i><sub>7</sub>=357
13
+ is divisible by 7</li>\r\n<li>\n<i>d</i><sub>6</sub><i>d</i><sub>7</sub><i>d</i><sub>8</sub>=572
14
+ is divisible by 11</li>\r\n<li>\n<i>d</i><sub>7</sub><i>d</i><sub>8</sub><i>d</i><sub>9</sub>=728
15
+ is divisible by 13</li>\r\n<li>\n<i>d</i><sub>8</sub><i>d</i><sub>9</sub><i>d</i><sub>10</sub>=289
16
+ is divisible by 17</li>\r\n</ul>\n<p>Find the sum of all 0 to 9 pandigital numbers
17
+ with this property.</p>\r\n\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 430
3
+ :name: Range flips
4
+ :url: http://projecteuler.net/problem=430
5
+ :content: "\r\n<p><var>N</var> disks are placed in a row, indexed 1 to <var>N</var>
6
+ from left to right.<br>\r\nEach disk has a black side and white side. Initially
7
+ all disks show their white side.</p>\r\n\r\n<p>At each turn, two, not necessarily
8
+ distinct, integers <var>A</var> and <var>B</var> between 1 and <var>N</var> (inclusive)
9
+ are chosen uniformly at random.<br>\r\nAll disks with an index from <var>A</var>
10
+ to <var>B</var> (inclusive) are flipped.</p>\r\n\r\n<p>The following example shows
11
+ the case <var>N</var> = 8. At the first turn <var>A</var> = 5 and <var>B</var> =
12
+ 2, and at the second turn <var>A</var> = 4 and <var>B</var> = 6.</p>\r\n\r\n<p align=\"center\"><img
13
+ src=\"project/images/p_430_flips.gif\"></p>\r\n\r\n<p>Let E(<var>N</var>, <var>M</var>)
14
+ be the expected number of disks that show their white side after <var>M</var> turns.<br>\r\nWe
15
+ can verify that E(3, 1) = 10/9, E(3, 2) = 5/3, E(10, 4) <img src=\"images/symbol_asymp.gif\"
16
+ width=\"11\" height=\"9\" alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\">
17
+ 5.157 and E(100, 10) <img src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\"
18
+ alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\"> 51.893.</p>\r\n\r\n<p>Find
19
+ E(10<sup>10</sup>, 4000).<br>\r\nGive your answer rounded to 2 decimal places behind
20
+ the decimal point.</p>\r\n"
@@ -0,0 +1,33 @@
1
+ ---
2
+ :id: 431
3
+ :name: Square Space Silo
4
+ :url: http://projecteuler.net/problem=431
5
+ :content: "\r\n<p>Fred the farmer arranges to have a new storage silo installed on
6
+ his farm and having an obsession for all things square he is absolutely devastated
7
+ when he discovers that it is circular. Quentin, the representative from the company
8
+ that installed the silo, explains that they only manufacture cylindrical silos,
9
+ but he points out that it is resting on a square base. Fred is not amused and insists
10
+ that it is removed from his property.</p>\r\n\r\n<p>Quick thinking Quentin explains
11
+ that when granular materials are delivered from above a conical slope is formed
12
+ and the natural angle made with the horizontal is called the angle of repose. For
13
+ example if the angle of repose, $\\alpha = 30$ degrees, and grain is delivered at
14
+ the centre of the silo then a perfect cone will form towards the top of the cylinder.
15
+ In the case of this silo, which has a diameter of 6m, the amount of space wasted
16
+ would be approximately 32.648388556 m<sup>3</sup>. However, if grain is delivered
17
+ at a point on the top which has a horizontal distance of $x$ metres from the centre
18
+ then a cone with a strangely curved and sloping base is formed. He shows Fred a
19
+ picture.</p>\r\n\r\n<div style=\"text-align:center;\">\r\n <img src=\"project/images/p_431_grain_silo.png\">\n</div>\r\n\r\n<p>We
20
+ shall let the amount of space wasted in cubic metres be given by $V(x)$. If $x =
21
+ 1.114785284$, which happens to have three squared decimal places, then the amount
22
+ of space wasted, $V(1.114785284) \\approx 36$. Given the range of possible solutions
23
+ to this problem there is exactly one other option: $V(2.511167869) \\approx 49$.
24
+ It would be like knowing that the square is king of the silo, sitting in splendid
25
+ glory on top of your grain.</p>\r\n\r\n<p>Fred's eyes light up with delight at this
26
+ elegant resolution, but on closer inspection of Quentin's drawings and calculations
27
+ his happiness turns to despondency once more. Fred points out to Quentin that it's
28
+ the radius of the silo that is 6 metres, not the diameter, and the angle of repose
29
+ for his grain is 40 degrees. However, if Quentin can find a set of solutions for
30
+ this particular silo then he will be more than happy to keep it.</p>\r\n\r\n<p>If
31
+ Quick thinking Quentin is to satisfy frustratingly fussy Fred the farmer's appetite
32
+ for all things square then determine the values of $x$ for all possible square space
33
+ wastage options and calculate $\\sum x$ correct to 9 decimal places.</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 432
3
+ :name: Totient sum
4
+ :url: http://projecteuler.net/problem=432
5
+ :content: "\r\n<p>\r\nLet S(<var>n,m</var>) = <img src=\"images/symbol_sum.gif\" width=\"11\"
6
+ height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">φ(<var>n <img
7
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
8
+ style=\"vertical-align:middle;\"> i</var>) for 1 <img src=\"images/symbol_le.gif\"
9
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i
10
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> m</var>. (φ is Euler's totient function)<br>\r\nYou
12
+ are given that S(510510,10<sup>6</sup> )= 45480596821125120. \r\n</p>\r\n<p>\r\nFind
13
+ S(510510,10<sup>11</sup>).<br>\r\nGive the last 9 digits of your answer.\r\n</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 433
3
+ :name: Steps in Euclid's algorithm
4
+ :url: http://projecteuler.net/problem=433
5
+ :content: "\r\n<p>\r\nLet E(<var>x</var><sub>0</sub>, <var>y</var><sub>0</sub>) be
6
+ the number of steps it takes to determine the greatest common divisor of <var>x</var><sub>0</sub>
7
+ and <var>y</var><sub>0</sub> with <b>Euclid's algorithm</b>. More formally:<br><var>x</var><sub>1</sub>
8
+ = <var>y</var><sub>0</sub>, <var>y</var><sub>1</sub> = <var>x</var><sub>0</sub>
9
+ mod <var>y</var><sub>0</sub><br><var>x<sub>n</sub></var> = <var>y</var><sub><var>n</var>-1</sub>,
10
+ <var>y</var><sub><var>n</var></sub> = <var>x</var><sub><var>n</var>-1</sub> mod
11
+ <var>y</var><sub><var>n</var>-1</sub><br>\r\nE(<var>x</var><sub>0</sub>, <var>y</var><sub>0</sub>)
12
+ is the smallest <var>n</var> such that <var>y</var><sub><var>n</var></sub> = 0.\r\n</p>\r\n<p>\r\nWe
13
+ have E(1,1) = 1, E(10,6) = 3 and E(6,10) = 4.\r\n</p>\r\n<p>\r\nDefine S(N) as the
14
+ sum of E(<var>x,y</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
15
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x,y</var> <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
17
+ N.<br>\r\nWe have S(1) = 1, S(10) = 221 and S(100) = 39826.\r\n</p>\r\n<p>\r\nFind
18
+ S(5·10<sup>6</sup>).\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,32 @@
1
+ ---
2
+ :id: 434
3
+ :name: Rigid graphs
4
+ :url: http://projecteuler.net/problem=434
5
+ :content: "\r\n<p>Recall that a graph is a collection of vertices and edges connecting
6
+ the vertices, and that two vertices connected by an edge are called adjacent.<br>\r\nGraphs
7
+ can be embedded in Euclidean space by associating each vertex with a point in the
8
+ Euclidean space.<br>\r\nA <strong>flexible</strong> graph is an embedding of a graph
9
+ where it is possible to move one or more vertices continuously so that the distance
10
+ between at least two nonadjacent vertices is altered while the distances between
11
+ each pair of adjacent vertices is kept constant.<br>\r\nA <strong>rigid</strong>
12
+ graph is an embedding of a graph which is not flexible.<br>\r\nInformally, a graph
13
+ is rigid if by replacing the vertices with fully rotating hinges and the edges with
14
+ rods that are unbending and inelastic, no parts of the graph can be moved independently
15
+ from the rest of the graph.\r\n</p>\r\n<p>The <strong>grid graphs</strong> embedded
16
+ in the Euclidean plane are not rigid, as the following animation demonstrates:<br><img
17
+ src=\"project/images/p434_rigid.gif\"></p>\r\n<p>However, one can make them rigid
18
+ by adding diagonal edges to the cells. For example, for the 2x3 grid graph, there
19
+ are 19 ways to make the graph rigid:<br><img src=\"project/images/p434_rigid23.png\"></p>\r\n<p>Note
20
+ that for the purposes of this problem, we do not consider changing the orientation
21
+ of a diagonal edge or adding both diagonal edges to a cell as a different way of
22
+ making a grid graph rigid.\r\n</p>\r\n<p>Let <var>R</var>(<var>m</var>,<var>n</var>)
23
+ be the number of ways to make the <var>m</var> <img src=\"images/symbol_times.gif\"
24
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
25
+ grid graph rigid. <br>\r\nE.g. <var>R</var>(2,3) = 19 and <var>R</var>(5,5) = 23679901\r\n</p>\r\n<p>Define
26
+ <var>S</var>(<var>N</var>) as <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
27
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><var>R</var>(<var>i</var>,<var>j</var>)
28
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
29
+ style=\"vertical-align:middle;\"><var>i</var>, <var>j</var> <img src=\"images/symbol_le.gif\"
30
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nE.g.
31
+ <var>S</var>(5) = 25021721.<br>\r\nFind <var>S</var>(100), give your answer modulo
32
+ 1000000033\r\n</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 435
3
+ :name: Polynomials of Fibonacci numbers
4
+ :url: http://projecteuler.net/problem=435
5
+ :content: "\r\n<p>The <strong>Fibonacci numbers</strong> {f<sub>n</sub>, n <img src=\"images/symbol_ge.gif\"
6
+ width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
7
+ 0} are defined recursively as f<sub>n</sub> = f<sub>n-1</sub> + f<sub>n-2</sub>
8
+ with base cases f<sub>0</sub> = 0 and f<sub>1</sub> = 1.</p>\r\n<p>Define the polynomials
9
+ {F<sub>n</sub>, n <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\"
10
+ border=\"0\" style=\"vertical-align:middle;\"> 0} as F<sub>n</sub>(x) = <img src=\"images/symbol_sum.gif\"
11
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f<sub>i</sub>x<sup>i</sup>
12
+ for 0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> i <img src=\"images/symbol_le.gif\" width=\"10\"
14
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> n.</p>\r\n<p>For
15
+ example, F<sub>7</sub>(x) = x + x<sup>2</sup> + 2x<sup>3</sup> + 3x<sup>4</sup>
16
+ + 5x<sup>5</sup> + 8x<sup>6</sup> + 13x<sup>7</sup>, and F<sub>7</sub>(11) = 268357683.</p>\r\n<p>Let
17
+ n = 10<sup>15</sup>. Find the sum [<img src=\"images/symbol_sum.gif\" width=\"11\"
18
+ height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><sub>0<img
19
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">x<img
20
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">100</sub>
21
+ F<sub>n</sub>(x)] mod 1307674368000 (= 15!).</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 436
3
+ :name: Unfair wager
4
+ :url: http://projecteuler.net/problem=436
5
+ :content: "\r\n<p>Julie proposes the following wager to her sister Louise.<br>\r\nShe
6
+ suggests they play a game of chance to determine who will wash the dishes.<br>\r\nFor
7
+ this game, they shall use a generator of independent random numbers uniformly distributed
8
+ between 0 and 1.<br>\r\nThe game starts with <var>S</var> = 0.<br>\r\nThe first
9
+ player, Louise, adds to <var>S</var> different random numbers from the generator
10
+ until <var>S</var> &gt; 1 and records her last random number '<var>x</var>'.<br>\r\nThe
11
+ second player, Julie, continues adding to <var>S</var> different random numbers
12
+ from the generator until <var>S</var> &gt; 2 and records her last random number
13
+ '<var>y</var>'.<br>\r\nThe player with the highest number wins and the loser washes
14
+ the dishes, i.e. if <var>y</var> &gt; <var>x</var> the second player wins.</p>\r\n\r\n<p>For
15
+ e<var>x</var>ample, if the first player draws 0.62 and 0.44, the first player turn
16
+ ends since 0.62+0.44 &gt; 1 and <var>x</var> = 0.44.<br>\r\nIf the second players
17
+ draws 0.1, 0.27 and 0.91, the second player turn ends since 0.62+0.44+0.1+0.27+0.91
18
+ &gt; 2 and <var>y</var> = 0.91.\r\nSince <var>y</var> &gt; <var>x</var>, the second
19
+ player wins.</p>\r\n\r\n<p>Louise thinks about it for a second, and objects: \"That's
20
+ not fair\".<br>\r\nWhat is the probability that the second player wins?<br>\r\nGive
21
+ your answer rounded to 10 places behind the decimal point in the form 0.abcdefghij</p>\r\n\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 437
3
+ :name: Fibonacci primitive roots
4
+ :url: http://projecteuler.net/problem=437
5
+ :content: "\r\n<p>\r\nWhen we calculate 8<sup>n</sup> modulo 11 for n=0 to 9 we get:
6
+ 1, 8, 9, 6, 4, 10, 3, 2, 5, 7.<br>\r\nAs we see all possible values from 1 to 10
7
+ occur. So 8 is a <b>primitive root</b> of 11.<br>\r\nBut there is more:<br>\r\nIf
8
+ we take a closer look we see:<br>\r\n1+8=9<br>\r\n8+9=17<img src=\"images/symbol_cong.gif\"
9
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">6
10
+ mod 11<br>\r\n9+6=15<img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\"
11
+ alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">4 mod 11<br>\r\n6+4=10<br>\r\n4+10=14<img
12
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
13
+ style=\"vertical-align:middle;\">3 mod 11<br>\r\n10+3=13<img src=\"images/symbol_cong.gif\"
14
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">2
15
+ mod 11<br>\r\n3+2=5<br>\r\n2+5=7<br>\r\n5+7=12<img src=\"images/symbol_cong.gif\"
16
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">1
17
+ mod 11.\r\n</p>\r\nSo the powers of 8 mod 11 are cyclic with period 10, and 8<sup>n</sup>
18
+ + 8<sup>n+1</sup> ≡ 8<sup>n+2</sup> (mod 11).<br>\r\n8 is called a <b>Fibonacci
19
+ primitive root</b> of 11.<br>\r\nNot every prime has a Fibonacci primitive root.<br>\r\nThere
20
+ are 323 primes less than 10000 with one or more Fibonacci primitive roots and the
21
+ sum of these primes is 1480491.<br>\r\nFind the sum of the primes less than 100,000,000
22
+ with at least one Fibonacci primitive root.\r\n\r\n\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 438
3
+ :name: Integer part of polynomial equation's solutions
4
+ :url: http://projecteuler.net/problem=438
5
+ :content: "\r\n<p>\r\nFor an <var>n</var>-tuple of integers <var>t</var> = (<var>a</var><sub>1</sub>,
6
+ ..., <var>a</var><sub><var>n</var></sub>), let (<var>x</var><sub>1</sub>, ..., <var>x</var><sub><var>n</var></sub>)
7
+ be the solutions of the polynomial equation <var>x</var><sup><var>n</var></sup>
8
+ + <var>a</var><sub>1</sub><var>x</var><sup><var>n</var>-1</sup> + <var>a</var><sub>2</sub><var>x</var><sup><var>n</var>-2</sup>
9
+ + ... + <var>a</var><sub><var>n</var>-1</sub><var>x</var> + <var>a</var><sub><var>n</var></sub>
10
+ = 0.\r\n</p>\r\n<p>\r\nConsider the following two conditions:\r\n</p>\n<ul>\n<li>\n<var>x</var><sub>1</sub>,
11
+ ..., <var>x</var><sub><var>n</var></sub> are all real.\r\n</li>\n<li>If <var>x</var><sub>1</sub>,
12
+ ..., <var>x</var><sub><var>n</var></sub> are sorted, <img src=\"images/symbol_lfloor.gif\"
13
+ width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><sub><var>i</var></sub><img
14
+ src=\"images/symbol_rfloor.gif\" width=\"6\" height=\"16\" alt=\"⌋\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> = <var>i</var> for 1 <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
17
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>n</var>. (<img src=\"images/symbol_lfloor.gif\"
19
+ width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\" style=\"vertical-align:middle;\">·<img
20
+ src=\"images/symbol_rfloor.gif\" width=\"6\" height=\"16\" alt=\"⌋\" border=\"0\"
21
+ style=\"vertical-align:middle;\">: floor function.)\r\n</li>\n</ul>\n<p>\r\nIn the
22
+ case of <var>n</var> = 4, there are 12 <var>n</var>-tuples of integers which satisfy
23
+ both conditions.<br>\r\nWe define S(<var>t</var>) as the sum of the absolute values
24
+ of the integers in <var>t</var>.<br>\r\nFor <var>n</var> = 4 we can verify that
25
+ <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
26
+ style=\"vertical-align:middle;\">S(<var>t</var>) = 2087 for all <var>n</var>-tuples
27
+ <var>t</var> which satisfy both conditions.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\"
28
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(<var>t</var>)
29
+ for <var>n</var> = 7.\r\n</p>\r\n"