warp-lang 1.7.0__py3-none-manylinux_2_34_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
warp/fem/utils.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from typing import Tuple, Union
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
import warp.fem.cache as cache
|
|
22
|
+
from warp.fem.linalg import ( # noqa: F401 (for backward compatibility, not part of public API but used in examples)
|
|
23
|
+
array_axpy,
|
|
24
|
+
inverse_qr,
|
|
25
|
+
symmetric_eigenvalues_qr,
|
|
26
|
+
)
|
|
27
|
+
from warp.fem.types import NULL_NODE_INDEX
|
|
28
|
+
from warp.utils import array_scan, radix_sort_pairs, runlength_encode
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def compress_node_indices(
|
|
32
|
+
node_count: int,
|
|
33
|
+
node_indices: wp.array(dtype=int),
|
|
34
|
+
return_unique_nodes=False,
|
|
35
|
+
temporary_store: cache.TemporaryStore = None,
|
|
36
|
+
) -> Union[Tuple[cache.Temporary, cache.Temporary], Tuple[cache.Temporary, cache.Temporary, int, cache.Temporary]]:
|
|
37
|
+
"""
|
|
38
|
+
Compress an unsorted list of node indices into:
|
|
39
|
+
- a node_offsets array, giving for each node the start offset of corresponding indices in sorted_array_indices
|
|
40
|
+
- a sorted_array_indices array, listing the indices in the input array corresponding to each node
|
|
41
|
+
|
|
42
|
+
Plus if `return_unique_nodes` is ``True``,
|
|
43
|
+
- the number of unique node indices
|
|
44
|
+
- a unique_node_indices array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1])
|
|
45
|
+
|
|
46
|
+
Node indices equal to NULL_NODE_INDEX will be ignored
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
index_count = node_indices.size
|
|
50
|
+
device = node_indices.device
|
|
51
|
+
|
|
52
|
+
with wp.ScopedDevice(device):
|
|
53
|
+
sorted_node_indices_temp = cache.borrow_temporary(temporary_store, shape=2 * index_count, dtype=int)
|
|
54
|
+
sorted_array_indices_temp = cache.borrow_temporary_like(sorted_node_indices_temp, temporary_store)
|
|
55
|
+
|
|
56
|
+
sorted_node_indices = sorted_node_indices_temp.array
|
|
57
|
+
sorted_array_indices = sorted_array_indices_temp.array
|
|
58
|
+
|
|
59
|
+
indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1]
|
|
60
|
+
wp.launch(
|
|
61
|
+
kernel=_prepare_node_sort_kernel,
|
|
62
|
+
dim=index_count,
|
|
63
|
+
inputs=[node_indices.flatten(), sorted_node_indices, sorted_array_indices, indices_per_element],
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
# Sort indices
|
|
67
|
+
radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count)
|
|
68
|
+
|
|
69
|
+
# Build prefix sum of number of elements per node
|
|
70
|
+
unique_node_indices_temp = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
|
|
71
|
+
node_element_counts_temp = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
|
|
72
|
+
|
|
73
|
+
unique_node_indices = unique_node_indices_temp.array
|
|
74
|
+
node_element_counts = node_element_counts_temp.array
|
|
75
|
+
|
|
76
|
+
unique_node_count_dev = cache.borrow_temporary(temporary_store, shape=(1,), dtype=int)
|
|
77
|
+
|
|
78
|
+
runlength_encode(
|
|
79
|
+
sorted_node_indices,
|
|
80
|
+
unique_node_indices,
|
|
81
|
+
node_element_counts,
|
|
82
|
+
value_count=index_count,
|
|
83
|
+
run_count=unique_node_count_dev.array,
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
# Scatter seen run counts to global array of element count per node
|
|
87
|
+
node_offsets_temp = cache.borrow_temporary(temporary_store, shape=(node_count + 1), dtype=int)
|
|
88
|
+
node_offsets = node_offsets_temp.array
|
|
89
|
+
|
|
90
|
+
node_offsets.zero_()
|
|
91
|
+
wp.launch(
|
|
92
|
+
kernel=_scatter_node_counts,
|
|
93
|
+
dim=node_count + 1, # +1 to accommodate possible NULL node,
|
|
94
|
+
inputs=[node_element_counts, unique_node_indices, node_offsets, unique_node_count_dev.array],
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
if device.is_cuda and return_unique_nodes:
|
|
98
|
+
unique_node_count_host = cache.borrow_temporary(
|
|
99
|
+
temporary_store, shape=(1,), dtype=int, pinned=True, device="cpu"
|
|
100
|
+
)
|
|
101
|
+
wp.copy(src=unique_node_count_dev.array, dest=unique_node_count_host.array, count=1)
|
|
102
|
+
copy_event = cache.capture_event(device)
|
|
103
|
+
|
|
104
|
+
# Prefix sum of number of elements per node
|
|
105
|
+
array_scan(node_offsets, node_offsets, inclusive=True)
|
|
106
|
+
|
|
107
|
+
sorted_node_indices_temp.release()
|
|
108
|
+
node_element_counts_temp.release()
|
|
109
|
+
|
|
110
|
+
if not return_unique_nodes:
|
|
111
|
+
unique_node_count_dev.release()
|
|
112
|
+
return node_offsets_temp, sorted_array_indices_temp
|
|
113
|
+
|
|
114
|
+
if device.is_cuda:
|
|
115
|
+
cache.synchronize_event(copy_event)
|
|
116
|
+
unique_node_count_dev.release()
|
|
117
|
+
else:
|
|
118
|
+
unique_node_count_host = unique_node_count_dev
|
|
119
|
+
unique_node_count = int(unique_node_count_host.array.numpy()[0])
|
|
120
|
+
unique_node_count_host.release()
|
|
121
|
+
return node_offsets_temp, sorted_array_indices_temp, unique_node_count, unique_node_indices_temp
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def host_read_at_index(array: wp.array, index: int = -1, temporary_store: cache.TemporaryStore = None) -> int:
|
|
125
|
+
"""Returns the value of the array element at the given index on host"""
|
|
126
|
+
|
|
127
|
+
if index < 0:
|
|
128
|
+
index += array.shape[0]
|
|
129
|
+
|
|
130
|
+
if array.device.is_cuda:
|
|
131
|
+
temp = cache.borrow_temporary(temporary_store, shape=1, dtype=int, pinned=True, device="cpu")
|
|
132
|
+
wp.copy(dest=temp.array, src=array, src_offset=index, count=1)
|
|
133
|
+
wp.synchronize_stream(wp.get_stream(array.device))
|
|
134
|
+
return temp.array.numpy()[0]
|
|
135
|
+
|
|
136
|
+
return array.numpy()[index]
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def masked_indices(
|
|
140
|
+
mask: wp.array, missing_index=-1, temporary_store: cache.TemporaryStore = None
|
|
141
|
+
) -> Tuple[cache.Temporary, cache.Temporary]:
|
|
142
|
+
"""
|
|
143
|
+
From an array of boolean masks (must be either 0 or 1), returns:
|
|
144
|
+
- The list of indices for which the mask is 1
|
|
145
|
+
- A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero.
|
|
146
|
+
"""
|
|
147
|
+
|
|
148
|
+
offsets_temp = cache.borrow_temporary_like(mask, temporary_store)
|
|
149
|
+
offsets = offsets_temp.array
|
|
150
|
+
|
|
151
|
+
wp.utils.array_scan(mask, offsets, inclusive=True)
|
|
152
|
+
|
|
153
|
+
# Get back total counts on host
|
|
154
|
+
masked_count = int(host_read_at_index(offsets, temporary_store=temporary_store))
|
|
155
|
+
|
|
156
|
+
# Convert counts to indices
|
|
157
|
+
indices_temp = cache.borrow_temporary(temporary_store, shape=masked_count, device=mask.device, dtype=int)
|
|
158
|
+
|
|
159
|
+
wp.launch(
|
|
160
|
+
kernel=_masked_indices_kernel,
|
|
161
|
+
dim=offsets.shape,
|
|
162
|
+
inputs=[missing_index, mask, offsets, indices_temp.array, offsets],
|
|
163
|
+
device=mask.device,
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
return indices_temp, offsets_temp
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
@wp.kernel
|
|
170
|
+
def _prepare_node_sort_kernel(
|
|
171
|
+
node_indices: wp.array(dtype=int),
|
|
172
|
+
sort_keys: wp.array(dtype=int),
|
|
173
|
+
sort_values: wp.array(dtype=int),
|
|
174
|
+
divisor: int,
|
|
175
|
+
):
|
|
176
|
+
i = wp.tid()
|
|
177
|
+
node = node_indices[i]
|
|
178
|
+
sort_keys[i] = wp.where(node >= 0, node, NULL_NODE_INDEX)
|
|
179
|
+
sort_values[i] = i // divisor
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@wp.kernel
|
|
183
|
+
def _scatter_node_counts(
|
|
184
|
+
unique_counts: wp.array(dtype=int),
|
|
185
|
+
unique_node_indices: wp.array(dtype=int),
|
|
186
|
+
node_counts: wp.array(dtype=int),
|
|
187
|
+
unique_node_count: wp.array(dtype=int),
|
|
188
|
+
):
|
|
189
|
+
i = wp.tid()
|
|
190
|
+
|
|
191
|
+
if i >= unique_node_count[0]:
|
|
192
|
+
return
|
|
193
|
+
|
|
194
|
+
node_index = unique_node_indices[i]
|
|
195
|
+
if node_index == NULL_NODE_INDEX:
|
|
196
|
+
wp.atomic_sub(unique_node_count, 0, 1)
|
|
197
|
+
return
|
|
198
|
+
|
|
199
|
+
node_counts[1 + node_index] = unique_counts[i]
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
@wp.kernel
|
|
203
|
+
def _masked_indices_kernel(
|
|
204
|
+
missing_index: int,
|
|
205
|
+
mask: wp.array(dtype=int),
|
|
206
|
+
offsets: wp.array(dtype=int),
|
|
207
|
+
masked_to_global: wp.array(dtype=int),
|
|
208
|
+
global_to_masked: wp.array(dtype=int),
|
|
209
|
+
):
|
|
210
|
+
i = wp.tid()
|
|
211
|
+
|
|
212
|
+
if mask[i] == 0:
|
|
213
|
+
global_to_masked[i] = missing_index
|
|
214
|
+
else:
|
|
215
|
+
masked_idx = offsets[i] - 1
|
|
216
|
+
global_to_masked[i] = masked_idx
|
|
217
|
+
masked_to_global[masked_idx] = i
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
def grid_to_tris(Nx: int, Ny: int):
|
|
221
|
+
"""Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles.
|
|
222
|
+
|
|
223
|
+
The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction
|
|
224
|
+
|
|
225
|
+
Args:
|
|
226
|
+
Nx: Resolution of the grid along `x` dimension
|
|
227
|
+
Ny: Resolution of the grid along `y` dimension
|
|
228
|
+
|
|
229
|
+
Returns:
|
|
230
|
+
Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle
|
|
231
|
+
"""
|
|
232
|
+
|
|
233
|
+
cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij")
|
|
234
|
+
|
|
235
|
+
vidx = np.transpose(
|
|
236
|
+
np.array(
|
|
237
|
+
[
|
|
238
|
+
(Ny + 1) * cx + cy,
|
|
239
|
+
(Ny + 1) * (cx + 1) + cy,
|
|
240
|
+
(Ny + 1) * (cx + 1) + (cy + 1),
|
|
241
|
+
(Ny + 1) * cx + cy,
|
|
242
|
+
(Ny + 1) * (cx + 1) + (cy + 1),
|
|
243
|
+
(Ny + 1) * (cx) + (cy + 1),
|
|
244
|
+
]
|
|
245
|
+
)
|
|
246
|
+
).reshape((-1, 3))
|
|
247
|
+
|
|
248
|
+
return vidx
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def grid_to_tets(Nx: int, Ny: int, Nz: int):
|
|
252
|
+
"""Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons
|
|
253
|
+
|
|
254
|
+
The resulting tets have positive volume assuming that `z` is the fastest moving index direction
|
|
255
|
+
|
|
256
|
+
Args:
|
|
257
|
+
Nx: Resolution of the grid along `x` dimension
|
|
258
|
+
Ny: Resolution of the grid along `y` dimension
|
|
259
|
+
Nz: Resolution of the grid along `z` dimension
|
|
260
|
+
|
|
261
|
+
Returns:
|
|
262
|
+
Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet
|
|
263
|
+
"""
|
|
264
|
+
|
|
265
|
+
# Global node indices for each cell
|
|
266
|
+
cx, cy, cz = np.meshgrid(
|
|
267
|
+
np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij"
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
grid_vidx = np.array(
|
|
271
|
+
[
|
|
272
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz,
|
|
273
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1,
|
|
274
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz,
|
|
275
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1,
|
|
276
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz,
|
|
277
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1,
|
|
278
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz,
|
|
279
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1,
|
|
280
|
+
]
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
# decompose grid cells into 5 tets
|
|
284
|
+
tet_vidx = np.array(
|
|
285
|
+
[
|
|
286
|
+
[0, 1, 2, 4],
|
|
287
|
+
[3, 2, 1, 7],
|
|
288
|
+
[5, 1, 7, 4],
|
|
289
|
+
[6, 7, 4, 2],
|
|
290
|
+
[4, 1, 2, 7],
|
|
291
|
+
]
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
# Convert to 3d index coordinates
|
|
295
|
+
vidx_coords = np.array(
|
|
296
|
+
[
|
|
297
|
+
[0, 0, 0],
|
|
298
|
+
[0, 0, 1],
|
|
299
|
+
[0, 1, 0],
|
|
300
|
+
[0, 1, 1],
|
|
301
|
+
[1, 0, 0],
|
|
302
|
+
[1, 0, 1],
|
|
303
|
+
[1, 1, 0],
|
|
304
|
+
[1, 1, 1],
|
|
305
|
+
]
|
|
306
|
+
)
|
|
307
|
+
tet_coords = vidx_coords[tet_vidx]
|
|
308
|
+
|
|
309
|
+
# Symmetry bits for each cell
|
|
310
|
+
ox, oy, oz = np.meshgrid(
|
|
311
|
+
np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij"
|
|
312
|
+
)
|
|
313
|
+
tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape))
|
|
314
|
+
|
|
315
|
+
# Flip coordinates according to symmetry
|
|
316
|
+
ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1])
|
|
317
|
+
oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1])
|
|
318
|
+
oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1])
|
|
319
|
+
|
|
320
|
+
tet_coords_x = tet_coords[..., 0] ^ ox_bk
|
|
321
|
+
tet_coords_y = tet_coords[..., 1] ^ oy_bk
|
|
322
|
+
tet_coords_z = tet_coords[..., 2] ^ oz_bk
|
|
323
|
+
|
|
324
|
+
# Back to local vertex indices
|
|
325
|
+
corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z
|
|
326
|
+
|
|
327
|
+
# Now go from cell-local to global node indices
|
|
328
|
+
# There must be a nicer way than this, but for small grids this works
|
|
329
|
+
|
|
330
|
+
corner_indices = corner_indices.reshape(-1, 4)
|
|
331
|
+
|
|
332
|
+
grid_vidx = grid_vidx.reshape((8, -1, 1))
|
|
333
|
+
grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5))
|
|
334
|
+
grid_vidx = grid_vidx.reshape((8, -1))
|
|
335
|
+
|
|
336
|
+
node_indices = np.arange(corner_indices.shape[0])
|
|
337
|
+
tet_grid_vidx = np.transpose(
|
|
338
|
+
[
|
|
339
|
+
grid_vidx[corner_indices[:, 0], node_indices],
|
|
340
|
+
grid_vidx[corner_indices[:, 1], node_indices],
|
|
341
|
+
grid_vidx[corner_indices[:, 2], node_indices],
|
|
342
|
+
grid_vidx[corner_indices[:, 3], node_indices],
|
|
343
|
+
]
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
return tet_grid_vidx
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
def grid_to_quads(Nx: int, Ny: int):
|
|
350
|
+
"""Constructs a quadrilateral mesh topology from a dense 2D grid
|
|
351
|
+
|
|
352
|
+
The resulting quads will be indexed counter-clockwise
|
|
353
|
+
|
|
354
|
+
Args:
|
|
355
|
+
Nx: Resolution of the grid along `x` dimension
|
|
356
|
+
Ny: Resolution of the grid along `y` dimension
|
|
357
|
+
|
|
358
|
+
Returns:
|
|
359
|
+
Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral
|
|
360
|
+
"""
|
|
361
|
+
|
|
362
|
+
quad_vtx = np.array(
|
|
363
|
+
[
|
|
364
|
+
[0, 0],
|
|
365
|
+
[1, 0],
|
|
366
|
+
[1, 1],
|
|
367
|
+
[0, 1],
|
|
368
|
+
]
|
|
369
|
+
).T
|
|
370
|
+
|
|
371
|
+
quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij"))
|
|
372
|
+
|
|
373
|
+
quads_vtx_shape = (*quads.shape, quad_vtx.shape[1])
|
|
374
|
+
quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to(
|
|
375
|
+
quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape
|
|
376
|
+
)
|
|
377
|
+
|
|
378
|
+
quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1]
|
|
379
|
+
|
|
380
|
+
return quad_vtx_indices.reshape(-1, 4)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
def grid_to_hexes(Nx: int, Ny: int, Nz: int):
|
|
384
|
+
"""Constructs a hexahedral mesh topology from a dense 3D grid
|
|
385
|
+
|
|
386
|
+
The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction
|
|
387
|
+
(counter-clockwise bottom vertices, then counter-clockwise top vertices)
|
|
388
|
+
|
|
389
|
+
Args:
|
|
390
|
+
Nx: Resolution of the grid along `x` dimension
|
|
391
|
+
Ny: Resolution of the grid along `y` dimension
|
|
392
|
+
Nz: Resolution of the grid along `z` dimension
|
|
393
|
+
|
|
394
|
+
Returns:
|
|
395
|
+
Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexahedron
|
|
396
|
+
"""
|
|
397
|
+
|
|
398
|
+
hex_vtx = np.array(
|
|
399
|
+
[
|
|
400
|
+
[0, 0, 0],
|
|
401
|
+
[1, 0, 0],
|
|
402
|
+
[1, 1, 0],
|
|
403
|
+
[0, 1, 0],
|
|
404
|
+
[0, 0, 1],
|
|
405
|
+
[1, 0, 1],
|
|
406
|
+
[1, 1, 1],
|
|
407
|
+
[0, 1, 1],
|
|
408
|
+
]
|
|
409
|
+
).T
|
|
410
|
+
|
|
411
|
+
hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij"))
|
|
412
|
+
|
|
413
|
+
hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1])
|
|
414
|
+
hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to(
|
|
415
|
+
hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2]
|
|
419
|
+
|
|
420
|
+
return hexes_vtx_indices.reshape(-1, 8)
|
warp/jax.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import warp
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def device_to_jax(warp_device: warp.context.Devicelike):
|
|
20
|
+
"""Return the Jax device corresponding to a Warp device.
|
|
21
|
+
|
|
22
|
+
Returns:
|
|
23
|
+
:class:`jax.Device`
|
|
24
|
+
|
|
25
|
+
Raises:
|
|
26
|
+
RuntimeError: Failed to find the corresponding Jax device.
|
|
27
|
+
"""
|
|
28
|
+
import jax
|
|
29
|
+
|
|
30
|
+
d = warp.get_device(warp_device)
|
|
31
|
+
|
|
32
|
+
if d.is_cuda:
|
|
33
|
+
cuda_devices = jax.devices("cuda")
|
|
34
|
+
if d.ordinal >= len(cuda_devices):
|
|
35
|
+
raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
|
|
36
|
+
return cuda_devices[d.ordinal]
|
|
37
|
+
else:
|
|
38
|
+
cpu_devices = jax.devices("cpu")
|
|
39
|
+
if not cpu_devices:
|
|
40
|
+
raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
|
|
41
|
+
return cpu_devices[0]
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def device_from_jax(jax_device) -> warp.context.Device:
|
|
45
|
+
"""Return the Warp device corresponding to a Jax device.
|
|
46
|
+
|
|
47
|
+
Args:
|
|
48
|
+
jax_device (jax.Device): A Jax device descriptor.
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
RuntimeError: The Jax device is neither a CPU nor GPU device.
|
|
52
|
+
"""
|
|
53
|
+
if jax_device.platform == "cpu":
|
|
54
|
+
return warp.get_device("cpu")
|
|
55
|
+
elif jax_device.platform == "gpu":
|
|
56
|
+
return warp.get_cuda_device(jax_device.id)
|
|
57
|
+
else:
|
|
58
|
+
raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def get_jax_device():
|
|
62
|
+
"""Get the current Jax device."""
|
|
63
|
+
import jax
|
|
64
|
+
|
|
65
|
+
# TODO: is there a simpler way of getting the Jax "current" device?
|
|
66
|
+
# check if jax.default_device() context manager is active
|
|
67
|
+
device = jax.config.jax_default_device
|
|
68
|
+
# if default device is not set, use first device
|
|
69
|
+
if device is None:
|
|
70
|
+
device = jax.local_devices()[0]
|
|
71
|
+
return device
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def dtype_to_jax(warp_dtype):
|
|
75
|
+
"""Return the Jax dtype corresponding to a Warp dtype.
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
warp_dtype: A Warp data type that has a corresponding Jax data type.
|
|
79
|
+
|
|
80
|
+
Raises:
|
|
81
|
+
TypeError: Unable to find a corresponding Jax data type.
|
|
82
|
+
"""
|
|
83
|
+
# initialize lookup table on first call to defer jax import
|
|
84
|
+
if dtype_to_jax.type_map is None:
|
|
85
|
+
import jax.numpy as jp
|
|
86
|
+
|
|
87
|
+
dtype_to_jax.type_map = {
|
|
88
|
+
warp.float16: jp.float16,
|
|
89
|
+
warp.float32: jp.float32,
|
|
90
|
+
warp.float64: jp.float64,
|
|
91
|
+
warp.int8: jp.int8,
|
|
92
|
+
warp.int16: jp.int16,
|
|
93
|
+
warp.int32: jp.int32,
|
|
94
|
+
warp.int64: jp.int64,
|
|
95
|
+
warp.uint8: jp.uint8,
|
|
96
|
+
warp.uint16: jp.uint16,
|
|
97
|
+
warp.uint32: jp.uint32,
|
|
98
|
+
warp.uint64: jp.uint64,
|
|
99
|
+
warp.bool: jp.bool_,
|
|
100
|
+
}
|
|
101
|
+
|
|
102
|
+
jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
|
|
103
|
+
if jax_dtype is not None:
|
|
104
|
+
return jax_dtype
|
|
105
|
+
else:
|
|
106
|
+
raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def dtype_from_jax(jax_dtype):
|
|
110
|
+
"""Return the Warp dtype corresponding to a Jax dtype.
|
|
111
|
+
|
|
112
|
+
Raises:
|
|
113
|
+
TypeError: Unable to find a corresponding Warp data type.
|
|
114
|
+
"""
|
|
115
|
+
# initialize lookup table on first call to defer jax import
|
|
116
|
+
if dtype_from_jax.type_map is None:
|
|
117
|
+
import jax.numpy as jp
|
|
118
|
+
|
|
119
|
+
dtype_from_jax.type_map = {
|
|
120
|
+
# Jax scalar types
|
|
121
|
+
jp.float16: warp.float16,
|
|
122
|
+
jp.float32: warp.float32,
|
|
123
|
+
jp.float64: warp.float64,
|
|
124
|
+
jp.int8: warp.int8,
|
|
125
|
+
jp.int16: warp.int16,
|
|
126
|
+
jp.int32: warp.int32,
|
|
127
|
+
jp.int64: warp.int64,
|
|
128
|
+
jp.uint8: warp.uint8,
|
|
129
|
+
jp.uint16: warp.uint16,
|
|
130
|
+
jp.uint32: warp.uint32,
|
|
131
|
+
jp.uint64: warp.uint64,
|
|
132
|
+
jp.bool_: warp.bool,
|
|
133
|
+
# Jax dtype objects
|
|
134
|
+
jp.dtype(jp.float16): warp.float16,
|
|
135
|
+
jp.dtype(jp.float32): warp.float32,
|
|
136
|
+
jp.dtype(jp.float64): warp.float64,
|
|
137
|
+
jp.dtype(jp.int8): warp.int8,
|
|
138
|
+
jp.dtype(jp.int16): warp.int16,
|
|
139
|
+
jp.dtype(jp.int32): warp.int32,
|
|
140
|
+
jp.dtype(jp.int64): warp.int64,
|
|
141
|
+
jp.dtype(jp.uint8): warp.uint8,
|
|
142
|
+
jp.dtype(jp.uint16): warp.uint16,
|
|
143
|
+
jp.dtype(jp.uint32): warp.uint32,
|
|
144
|
+
jp.dtype(jp.uint64): warp.uint64,
|
|
145
|
+
jp.dtype(jp.bool_): warp.bool,
|
|
146
|
+
}
|
|
147
|
+
|
|
148
|
+
wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
|
|
149
|
+
if wp_dtype is not None:
|
|
150
|
+
return wp_dtype
|
|
151
|
+
else:
|
|
152
|
+
raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
# lookup tables initialized when needed
|
|
156
|
+
dtype_from_jax.type_map = None
|
|
157
|
+
dtype_to_jax.type_map = None
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def to_jax(warp_array):
|
|
161
|
+
"""
|
|
162
|
+
Convert a Warp array to a Jax array without copying the data.
|
|
163
|
+
|
|
164
|
+
Args:
|
|
165
|
+
warp_array (warp.array): The Warp array to convert.
|
|
166
|
+
|
|
167
|
+
Returns:
|
|
168
|
+
jax.Array: The converted Jax array.
|
|
169
|
+
"""
|
|
170
|
+
import jax.dlpack
|
|
171
|
+
|
|
172
|
+
return jax.dlpack.from_dlpack(warp_array)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
def from_jax(jax_array, dtype=None) -> warp.array:
|
|
176
|
+
"""Convert a Jax array to a Warp array without copying the data.
|
|
177
|
+
|
|
178
|
+
Args:
|
|
179
|
+
jax_array (jax.Array): The Jax array to convert.
|
|
180
|
+
dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
|
|
181
|
+
|
|
182
|
+
Returns:
|
|
183
|
+
warp.array: The converted Warp array.
|
|
184
|
+
"""
|
|
185
|
+
import jax.dlpack
|
|
186
|
+
|
|
187
|
+
return warp.from_dlpack(jax.dlpack.to_dlpack(jax_array), dtype=dtype)
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from .custom_call import jax_kernel
|