warp-lang 1.7.0__py3-none-manylinux_2_34_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,402 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
import warp.examples
|
|
22
|
+
import warp.optim
|
|
23
|
+
from warp.tests.unittest_utils import *
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def create_layer(rng, dim_in, dim_hid, dtype=float):
|
|
27
|
+
w = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, dim_in))
|
|
28
|
+
b = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, 1))
|
|
29
|
+
|
|
30
|
+
weights = wp.array(w, dtype=dtype, requires_grad=True)
|
|
31
|
+
bias = wp.array(b, dtype=dtype, requires_grad=True)
|
|
32
|
+
|
|
33
|
+
return (weights, bias)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def create_array(rng, dim_in, dim_hid, dtype=float):
|
|
37
|
+
s = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, dim_in))
|
|
38
|
+
a = wp.array(s, dtype=dtype, requires_grad=True)
|
|
39
|
+
|
|
40
|
+
return a
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def test_multi_layer_nn(test, device):
|
|
44
|
+
import torch as tc
|
|
45
|
+
|
|
46
|
+
if device.is_cuda and not wp.context.runtime.core.is_mathdx_enabled():
|
|
47
|
+
test.skipTest("Skipping test on CUDA device without MathDx (tolerance)")
|
|
48
|
+
|
|
49
|
+
NUM_FREQ = wp.constant(8)
|
|
50
|
+
|
|
51
|
+
DIM_IN = wp.constant(4 * NUM_FREQ) # sin,cos for both x,y at each frequency
|
|
52
|
+
DIM_HID = 32
|
|
53
|
+
DIM_OUT = 3
|
|
54
|
+
|
|
55
|
+
IMG_WIDTH = 256
|
|
56
|
+
IMG_HEIGHT = 256
|
|
57
|
+
|
|
58
|
+
BATCH_SIZE = min(512, int((IMG_WIDTH * IMG_HEIGHT) / 8))
|
|
59
|
+
|
|
60
|
+
if device.is_cpu:
|
|
61
|
+
NUM_THREADS = 1
|
|
62
|
+
else:
|
|
63
|
+
NUM_THREADS = 32
|
|
64
|
+
|
|
65
|
+
dtype = wp.float16
|
|
66
|
+
npdtype = wp.types.warp_type_to_np_dtype[dtype]
|
|
67
|
+
|
|
68
|
+
@wp.func
|
|
69
|
+
def relu(x: dtype):
|
|
70
|
+
return wp.max(x, dtype(0.0))
|
|
71
|
+
|
|
72
|
+
@wp.func
|
|
73
|
+
def sigmoid(x: dtype):
|
|
74
|
+
return dtype(1.0 / (1.0 + wp.exp(-float(x))))
|
|
75
|
+
|
|
76
|
+
@wp.kernel
|
|
77
|
+
def zero(loss: wp.array(dtype=float)):
|
|
78
|
+
loss[0] = 0.0
|
|
79
|
+
|
|
80
|
+
@wp.kernel(module="unique")
|
|
81
|
+
def compute(
|
|
82
|
+
batches: wp.array(dtype=int),
|
|
83
|
+
input: wp.array2d(dtype=dtype),
|
|
84
|
+
weights_0: wp.array2d(dtype=dtype),
|
|
85
|
+
bias_0: wp.array2d(dtype=dtype),
|
|
86
|
+
weights_1: wp.array2d(dtype=dtype),
|
|
87
|
+
bias_1: wp.array2d(dtype=dtype),
|
|
88
|
+
weights_2: wp.array2d(dtype=dtype),
|
|
89
|
+
bias_2: wp.array2d(dtype=dtype),
|
|
90
|
+
weights_3: wp.array2d(dtype=dtype),
|
|
91
|
+
bias_3: wp.array2d(dtype=dtype),
|
|
92
|
+
reference: wp.array2d(dtype=float),
|
|
93
|
+
loss: wp.array1d(dtype=float),
|
|
94
|
+
out: wp.array2d(dtype=float),
|
|
95
|
+
):
|
|
96
|
+
linear = batches[wp.tid()]
|
|
97
|
+
row = linear / IMG_WIDTH
|
|
98
|
+
col = linear % IMG_WIDTH
|
|
99
|
+
|
|
100
|
+
# normalize input coordinates to [-1, 1]
|
|
101
|
+
x = (float(row) / float(IMG_WIDTH) - 0.5) * 2.0
|
|
102
|
+
y = (float(col) / float(IMG_HEIGHT) - 0.5) * 2.0
|
|
103
|
+
|
|
104
|
+
local = wp.vector(dtype=dtype, length=DIM_IN)
|
|
105
|
+
|
|
106
|
+
# construct positional encoding
|
|
107
|
+
for s in range(NUM_FREQ):
|
|
108
|
+
scale = wp.pow(2.0, float(s)) * wp.pi
|
|
109
|
+
|
|
110
|
+
# x-coord
|
|
111
|
+
local[s * 4 + 0] = dtype(wp.sin(x * scale))
|
|
112
|
+
local[s * 4 + 1] = dtype(wp.cos(x * scale))
|
|
113
|
+
|
|
114
|
+
# y-coord
|
|
115
|
+
local[s * 4 + 2] = dtype(wp.sin(y * scale))
|
|
116
|
+
local[s * 4 + 3] = dtype(wp.cos(y * scale))
|
|
117
|
+
|
|
118
|
+
# write input back to array so that torch can use it
|
|
119
|
+
input[s * 4 + 0, linear] = local[s * 4 + 0]
|
|
120
|
+
input[s * 4 + 1, linear] = local[s * 4 + 1]
|
|
121
|
+
input[s * 4 + 2, linear] = local[s * 4 + 2]
|
|
122
|
+
input[s * 4 + 3, linear] = local[s * 4 + 3]
|
|
123
|
+
|
|
124
|
+
# tile feature vectors across the block, returns [dim(f), NUM_THREADS]
|
|
125
|
+
f = wp.tile(local)
|
|
126
|
+
|
|
127
|
+
# input layer
|
|
128
|
+
w0 = wp.tile_load(weights_0, shape=(DIM_HID, DIM_IN))
|
|
129
|
+
b0 = wp.tile_load(bias_0, shape=(DIM_HID, 1))
|
|
130
|
+
z = wp.tile_map(relu, wp.tile_matmul(w0, f) + wp.tile_broadcast(b0, shape=(DIM_HID, NUM_THREADS)))
|
|
131
|
+
|
|
132
|
+
# hidden layer
|
|
133
|
+
w1 = wp.tile_load(weights_1, shape=(DIM_HID, DIM_HID))
|
|
134
|
+
b1 = wp.tile_load(bias_1, shape=(DIM_HID, 1))
|
|
135
|
+
z = wp.tile_map(relu, wp.tile_matmul(w1, z) + wp.tile_broadcast(b1, shape=(DIM_HID, NUM_THREADS)))
|
|
136
|
+
|
|
137
|
+
w2 = wp.tile_load(weights_2, shape=(DIM_HID, DIM_HID))
|
|
138
|
+
b2 = wp.tile_load(bias_2, shape=(DIM_HID, 1))
|
|
139
|
+
z = wp.tile_map(relu, wp.tile_matmul(w2, z) + wp.tile_broadcast(b2, shape=(DIM_HID, NUM_THREADS)))
|
|
140
|
+
|
|
141
|
+
# output layer
|
|
142
|
+
w3 = wp.tile_load(weights_3, shape=(DIM_OUT, DIM_HID))
|
|
143
|
+
b3 = wp.tile_load(bias_3, shape=(DIM_OUT, 1))
|
|
144
|
+
o = wp.tile_map(relu, wp.tile_matmul(w3, z) + wp.tile_broadcast(b3, shape=(DIM_OUT, NUM_THREADS)))
|
|
145
|
+
|
|
146
|
+
# untile back to SIMT
|
|
147
|
+
output = wp.untile(o)
|
|
148
|
+
|
|
149
|
+
# compute error
|
|
150
|
+
error = wp.vec3(
|
|
151
|
+
float(output[0]) - reference[0, linear],
|
|
152
|
+
float(output[1]) - reference[1, linear],
|
|
153
|
+
float(output[2]) - reference[2, linear],
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
# write MSE loss
|
|
157
|
+
wp.atomic_add(loss, 0, wp.length_sq(error) / float(3 * BATCH_SIZE))
|
|
158
|
+
|
|
159
|
+
# image output
|
|
160
|
+
for i in range(DIM_OUT):
|
|
161
|
+
out[i, linear] = float(output[i])
|
|
162
|
+
|
|
163
|
+
with wp.ScopedDevice(device):
|
|
164
|
+
torch_device = wp.device_to_torch(device)
|
|
165
|
+
|
|
166
|
+
rng = np.random.default_rng(45)
|
|
167
|
+
|
|
168
|
+
weights_0, bias_0 = create_layer(rng, DIM_IN, DIM_HID, dtype=dtype)
|
|
169
|
+
weights_1, bias_1 = create_layer(rng, DIM_HID, DIM_HID, dtype=dtype)
|
|
170
|
+
weights_2, bias_2 = create_layer(rng, DIM_HID, DIM_HID, dtype=dtype)
|
|
171
|
+
weights_3, bias_3 = create_layer(rng, DIM_HID, DIM_OUT, dtype=dtype)
|
|
172
|
+
|
|
173
|
+
input = create_array(rng, IMG_WIDTH * IMG_HEIGHT, DIM_IN, dtype=dtype)
|
|
174
|
+
output = create_array(rng, IMG_WIDTH * IMG_HEIGHT, DIM_OUT)
|
|
175
|
+
|
|
176
|
+
reference_np = (
|
|
177
|
+
np.load(os.path.join(os.path.dirname(__file__), "..", "assets", "pixel.npy"), allow_pickle=True) / 255.0
|
|
178
|
+
)
|
|
179
|
+
reference = wp.array(reference_np, dtype=float)
|
|
180
|
+
|
|
181
|
+
assert reference.shape[1] == IMG_WIDTH * IMG_HEIGHT
|
|
182
|
+
|
|
183
|
+
loss = wp.zeros(1, dtype=float, requires_grad=True)
|
|
184
|
+
|
|
185
|
+
params = [weights_0, bias_0, weights_1, bias_1, weights_2, bias_2, weights_3, bias_3]
|
|
186
|
+
|
|
187
|
+
optimizer_grads = [p.grad.flatten() for p in params]
|
|
188
|
+
optimizer_inputs = [p.flatten() for p in params]
|
|
189
|
+
optimizer = warp.optim.Adam(optimizer_inputs, lr=0.01)
|
|
190
|
+
|
|
191
|
+
num_batches = int((IMG_WIDTH * IMG_HEIGHT) / BATCH_SIZE)
|
|
192
|
+
max_epochs = 30
|
|
193
|
+
|
|
194
|
+
# create randomized batch indices
|
|
195
|
+
batches = np.arange(0, IMG_WIDTH * IMG_HEIGHT, dtype=np.int32)
|
|
196
|
+
rng.shuffle(batches)
|
|
197
|
+
batches = wp.array(batches)
|
|
198
|
+
|
|
199
|
+
with wp.ScopedTimer("Training", active=False):
|
|
200
|
+
for epoch in range(max_epochs):
|
|
201
|
+
for b in range(0, IMG_WIDTH * IMG_HEIGHT, BATCH_SIZE):
|
|
202
|
+
loss.zero_()
|
|
203
|
+
|
|
204
|
+
with wp.Tape() as tape:
|
|
205
|
+
wp.launch(
|
|
206
|
+
compute,
|
|
207
|
+
dim=[BATCH_SIZE],
|
|
208
|
+
inputs=[
|
|
209
|
+
batches[b : b + BATCH_SIZE],
|
|
210
|
+
input,
|
|
211
|
+
weights_0,
|
|
212
|
+
bias_0,
|
|
213
|
+
weights_1,
|
|
214
|
+
bias_1,
|
|
215
|
+
weights_2,
|
|
216
|
+
bias_2,
|
|
217
|
+
weights_3,
|
|
218
|
+
bias_3,
|
|
219
|
+
reference,
|
|
220
|
+
loss,
|
|
221
|
+
output,
|
|
222
|
+
],
|
|
223
|
+
block_dim=NUM_THREADS,
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
tape.backward(loss)
|
|
227
|
+
|
|
228
|
+
# check outputs + grads on the first few epoch only
|
|
229
|
+
# since this is a relatively slow operation
|
|
230
|
+
verify = True
|
|
231
|
+
if verify and epoch < 3:
|
|
232
|
+
indices = batches[b : b + BATCH_SIZE].numpy()
|
|
233
|
+
|
|
234
|
+
z_np = np.maximum(weights_0.numpy() @ input.numpy()[:, indices] + bias_0.numpy(), 0.0)
|
|
235
|
+
z_np = np.maximum(weights_1.numpy() @ z_np + bias_1.numpy(), 0.0)
|
|
236
|
+
z_np = np.maximum(weights_2.numpy() @ z_np + bias_2.numpy(), 0.0)
|
|
237
|
+
z_np = np.maximum(weights_3.numpy() @ z_np + bias_3.numpy(), 0.0)
|
|
238
|
+
|
|
239
|
+
# test numpy forward
|
|
240
|
+
assert_np_equal(output.numpy()[:, indices].astype(npdtype), z_np, tol=1.0e-2)
|
|
241
|
+
|
|
242
|
+
# torch
|
|
243
|
+
input_tc = tc.tensor(input.numpy()[:, indices], requires_grad=True, device=torch_device)
|
|
244
|
+
|
|
245
|
+
weights_0_tc = tc.tensor(weights_0.numpy(), requires_grad=True, device=torch_device)
|
|
246
|
+
bias_0_tc = tc.tensor(bias_0.numpy(), requires_grad=True, device=torch_device)
|
|
247
|
+
|
|
248
|
+
weights_1_tc = tc.tensor(weights_1.numpy(), requires_grad=True, device=torch_device)
|
|
249
|
+
bias_1_tc = tc.tensor(bias_1.numpy(), requires_grad=True, device=torch_device)
|
|
250
|
+
|
|
251
|
+
weights_2_tc = tc.tensor(weights_2.numpy(), requires_grad=True, device=torch_device)
|
|
252
|
+
bias_2_tc = tc.tensor(bias_2.numpy(), requires_grad=True, device=torch_device)
|
|
253
|
+
|
|
254
|
+
weights_3_tc = tc.tensor(weights_3.numpy(), requires_grad=True, device=torch_device)
|
|
255
|
+
bias_3_tc = tc.tensor(bias_3.numpy(), requires_grad=True, device=torch_device)
|
|
256
|
+
|
|
257
|
+
z_tc = tc.clamp(weights_0_tc @ input_tc + bias_0_tc, min=0.0)
|
|
258
|
+
z_tc = tc.clamp(weights_1_tc @ z_tc + bias_1_tc, min=0.0)
|
|
259
|
+
z_tc = tc.clamp(weights_2_tc @ z_tc + bias_2_tc, min=0.0)
|
|
260
|
+
z_tc = tc.clamp(weights_3_tc @ z_tc + bias_3_tc, min=0.0)
|
|
261
|
+
|
|
262
|
+
ref_tc = tc.tensor(reference.numpy()[:, indices], requires_grad=True, device=torch_device)
|
|
263
|
+
|
|
264
|
+
l_tc = tc.mean((z_tc - ref_tc) ** 2)
|
|
265
|
+
l_tc.backward()
|
|
266
|
+
|
|
267
|
+
# test torch
|
|
268
|
+
assert_np_equal(
|
|
269
|
+
z_tc.cpu().detach().numpy(), output.numpy()[:, indices].astype(npdtype), tol=1.0e-2
|
|
270
|
+
)
|
|
271
|
+
assert_np_equal(weights_0.grad.numpy(), weights_0_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
272
|
+
assert_np_equal(bias_0.grad.numpy(), bias_0_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
273
|
+
assert_np_equal(weights_1.grad.numpy(), weights_1_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
274
|
+
assert_np_equal(bias_1.grad.numpy(), bias_1_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
275
|
+
assert_np_equal(weights_2.grad.numpy(), weights_2_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
276
|
+
assert_np_equal(bias_2.grad.numpy(), bias_2_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
277
|
+
assert_np_equal(weights_3.grad.numpy(), weights_3_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
278
|
+
assert_np_equal(bias_3.grad.numpy(), bias_3_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
|
|
279
|
+
|
|
280
|
+
optimizer.step(optimizer_grads)
|
|
281
|
+
tape.zero()
|
|
282
|
+
|
|
283
|
+
# initial loss is ~0.061
|
|
284
|
+
test.assertLess(loss.numpy()[0], 0.002)
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
def test_single_layer_nn(test, device):
|
|
288
|
+
import torch as tc
|
|
289
|
+
|
|
290
|
+
DIM_IN = 8
|
|
291
|
+
DIM_HID = 32
|
|
292
|
+
DIM_OUT = 16
|
|
293
|
+
|
|
294
|
+
NUM_BLOCKS = 56
|
|
295
|
+
|
|
296
|
+
if device.is_cpu:
|
|
297
|
+
NUM_THREADS = 1
|
|
298
|
+
else:
|
|
299
|
+
NUM_THREADS = 32
|
|
300
|
+
|
|
301
|
+
@wp.func
|
|
302
|
+
def relu(x: float):
|
|
303
|
+
return wp.max(x, 0.0)
|
|
304
|
+
|
|
305
|
+
@wp.kernel(module="unique")
|
|
306
|
+
def compute(
|
|
307
|
+
input: wp.array2d(dtype=float),
|
|
308
|
+
weights: wp.array2d(dtype=float),
|
|
309
|
+
bias: wp.array2d(dtype=float),
|
|
310
|
+
out: wp.array2d(dtype=float),
|
|
311
|
+
):
|
|
312
|
+
i = wp.tid()
|
|
313
|
+
|
|
314
|
+
f = wp.tile_load(input, shape=(DIM_IN, NUM_THREADS), offset=(0, i * NUM_THREADS))
|
|
315
|
+
|
|
316
|
+
w = wp.tile_load(weights, shape=(DIM_OUT, DIM_IN))
|
|
317
|
+
b = wp.tile_load(bias, shape=(DIM_OUT, 1))
|
|
318
|
+
|
|
319
|
+
o = wp.tile_map(relu, wp.tile_matmul(w, f) + wp.tile_broadcast(b, shape=(DIM_OUT, NUM_THREADS)))
|
|
320
|
+
|
|
321
|
+
wp.tile_store(out, o, offset=(0, i * NUM_THREADS))
|
|
322
|
+
|
|
323
|
+
with wp.ScopedDevice(device):
|
|
324
|
+
rng = np.random.default_rng(45)
|
|
325
|
+
|
|
326
|
+
# single layer weights, bias
|
|
327
|
+
weights, bias = create_layer(rng, DIM_IN, DIM_OUT, dtype=float)
|
|
328
|
+
|
|
329
|
+
input = create_array(rng, NUM_THREADS * NUM_BLOCKS, DIM_IN)
|
|
330
|
+
output = create_array(rng, NUM_THREADS * NUM_BLOCKS, DIM_OUT)
|
|
331
|
+
|
|
332
|
+
with wp.Tape() as tape:
|
|
333
|
+
wp.launch_tiled(compute, dim=[NUM_BLOCKS], inputs=[input, weights, bias, output], block_dim=NUM_THREADS)
|
|
334
|
+
|
|
335
|
+
output.grad = wp.ones_like(output)
|
|
336
|
+
tape.backward()
|
|
337
|
+
|
|
338
|
+
# numpy
|
|
339
|
+
output_np = np.maximum(weights.numpy() @ input.numpy() + bias.numpy(), 0.0)
|
|
340
|
+
|
|
341
|
+
# test numpy forward
|
|
342
|
+
assert_np_equal(output.numpy(), output_np, tol=1.0e-2)
|
|
343
|
+
|
|
344
|
+
# torch
|
|
345
|
+
weights_tc = tc.from_numpy(weights.numpy()).requires_grad_(True) # use .numpy() to avoid any memory aliasing
|
|
346
|
+
input_tc = tc.from_numpy(input.numpy()).requires_grad_(True)
|
|
347
|
+
bias_tc = tc.from_numpy(bias.numpy()).requires_grad_(True)
|
|
348
|
+
|
|
349
|
+
output_tc = tc.clamp(weights_tc @ input_tc + bias_tc, min=0.0)
|
|
350
|
+
output_tc.backward(tc.ones_like(output_tc))
|
|
351
|
+
|
|
352
|
+
# test torch
|
|
353
|
+
assert_np_equal(output_tc.detach().numpy(), output.numpy(), tol=1.0e-2)
|
|
354
|
+
assert_np_equal(input.grad.numpy(), input_tc.grad.detach().numpy(), tol=1.0e-2)
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
class TestTileMLP(unittest.TestCase):
|
|
358
|
+
pass
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
test_devices = get_test_devices()
|
|
362
|
+
|
|
363
|
+
try:
|
|
364
|
+
import torch
|
|
365
|
+
|
|
366
|
+
# check which Warp devices work with Torch
|
|
367
|
+
torch_compatible_devices = []
|
|
368
|
+
torch_compatible_cuda_devices = []
|
|
369
|
+
|
|
370
|
+
for d in test_devices:
|
|
371
|
+
try:
|
|
372
|
+
t = torch.arange(10, device=wp.device_to_torch(d))
|
|
373
|
+
t += 1
|
|
374
|
+
torch_compatible_devices.append(d)
|
|
375
|
+
if d.is_cuda:
|
|
376
|
+
torch_compatible_cuda_devices.append(d)
|
|
377
|
+
except Exception as e:
|
|
378
|
+
print(f"Skipping Torch tests on device '{d}' due to exception: {e}")
|
|
379
|
+
|
|
380
|
+
add_function_test(
|
|
381
|
+
TestTileMLP,
|
|
382
|
+
"test_single_layer_nn",
|
|
383
|
+
test_single_layer_nn,
|
|
384
|
+
check_output=False,
|
|
385
|
+
devices=torch_compatible_devices,
|
|
386
|
+
)
|
|
387
|
+
add_function_test(
|
|
388
|
+
TestTileMLP,
|
|
389
|
+
"test_multi_layer_nn",
|
|
390
|
+
test_multi_layer_nn,
|
|
391
|
+
check_output=False,
|
|
392
|
+
devices=torch_compatible_cuda_devices,
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
except Exception as e:
|
|
396
|
+
print(f"Skipping Torch tests due to exception: {e}")
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
if __name__ == "__main__":
|
|
400
|
+
wp.clear_kernel_cache()
|
|
401
|
+
wp.clear_lto_cache()
|
|
402
|
+
unittest.main(verbosity=2, failfast=True)
|