warp-lang 1.7.0__py3-none-manylinux_2_34_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,447 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp.tests.unittest_utils import *
|
|
22
|
+
|
|
23
|
+
TILE_M = wp.constant(8)
|
|
24
|
+
TILE_N = wp.constant(4)
|
|
25
|
+
TILE_K = wp.constant(8)
|
|
26
|
+
|
|
27
|
+
# num threads per-tile
|
|
28
|
+
TILE_DIM = 64
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@wp.kernel
|
|
32
|
+
def tile_sum_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
33
|
+
# output tile index
|
|
34
|
+
i = wp.tid()
|
|
35
|
+
|
|
36
|
+
n = input.shape[1]
|
|
37
|
+
count = int(n / TILE_DIM)
|
|
38
|
+
|
|
39
|
+
s = wp.tile_zeros(shape=1, dtype=float)
|
|
40
|
+
|
|
41
|
+
for j in range(count):
|
|
42
|
+
a = wp.tile_load(input[i], shape=TILE_DIM, offset=j * TILE_DIM)
|
|
43
|
+
s += wp.tile_sum(a) * 0.5
|
|
44
|
+
|
|
45
|
+
wp.tile_store(output, s, offset=i)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def test_tile_reduce_sum(test, device):
|
|
49
|
+
batch_count = 56
|
|
50
|
+
|
|
51
|
+
N = TILE_DIM * 3
|
|
52
|
+
|
|
53
|
+
rng = np.random.default_rng(42)
|
|
54
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
55
|
+
|
|
56
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
57
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
58
|
+
|
|
59
|
+
with wp.Tape() as tape:
|
|
60
|
+
wp.launch_tiled(
|
|
61
|
+
tile_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
sum_wp = output_wp.numpy()
|
|
65
|
+
for i in range(batch_count):
|
|
66
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
67
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
|
|
68
|
+
|
|
69
|
+
output_wp.grad.fill_(1.0)
|
|
70
|
+
|
|
71
|
+
tape.backward()
|
|
72
|
+
|
|
73
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@wp.kernel
|
|
77
|
+
def tile_min_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
78
|
+
# output tile index
|
|
79
|
+
i = wp.tid()
|
|
80
|
+
|
|
81
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
82
|
+
m = wp.tile_min(a)
|
|
83
|
+
|
|
84
|
+
wp.tile_store(output, m, offset=i)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def test_tile_reduce_min(test, device):
|
|
88
|
+
batch_count = 56
|
|
89
|
+
|
|
90
|
+
N = TILE_DIM
|
|
91
|
+
|
|
92
|
+
rng = np.random.default_rng(42)
|
|
93
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
94
|
+
|
|
95
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
96
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
97
|
+
|
|
98
|
+
with wp.Tape() as tape:
|
|
99
|
+
wp.launch_tiled(
|
|
100
|
+
tile_min_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
min_wp = output_wp.numpy()
|
|
104
|
+
for i in range(batch_count):
|
|
105
|
+
min_np = np.min(input[i])
|
|
106
|
+
test.assertAlmostEqual(min_wp[i], min_np, places=4)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@wp.kernel
|
|
110
|
+
def tile_max_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
111
|
+
# output tile index
|
|
112
|
+
i = wp.tid()
|
|
113
|
+
|
|
114
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
115
|
+
m = wp.tile_max(a)
|
|
116
|
+
|
|
117
|
+
wp.tile_store(output, m, offset=i)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def test_tile_reduce_max(test, device):
|
|
121
|
+
batch_count = 56
|
|
122
|
+
|
|
123
|
+
N = TILE_DIM
|
|
124
|
+
|
|
125
|
+
rng = np.random.default_rng(42)
|
|
126
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
127
|
+
|
|
128
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
129
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
130
|
+
|
|
131
|
+
with wp.Tape() as tape:
|
|
132
|
+
wp.launch_tiled(
|
|
133
|
+
tile_max_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
max_wp = output_wp.numpy()
|
|
137
|
+
for i in range(batch_count):
|
|
138
|
+
max_np = np.max(input[i])
|
|
139
|
+
test.assertAlmostEqual(max_wp[i], max_np, places=4)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@wp.kernel
|
|
143
|
+
def tile_reduce_custom_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
144
|
+
# output tile index
|
|
145
|
+
i = wp.tid()
|
|
146
|
+
|
|
147
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
148
|
+
m = wp.tile_reduce(wp.mul, a)
|
|
149
|
+
|
|
150
|
+
wp.tile_store(output, m, offset=i)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def test_tile_reduce_custom(test, device):
|
|
154
|
+
batch_count = 56
|
|
155
|
+
|
|
156
|
+
N = TILE_DIM
|
|
157
|
+
|
|
158
|
+
rng = np.random.default_rng(42)
|
|
159
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
160
|
+
|
|
161
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
162
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
163
|
+
|
|
164
|
+
with wp.Tape() as tape:
|
|
165
|
+
wp.launch_tiled(
|
|
166
|
+
tile_reduce_custom_kernel,
|
|
167
|
+
dim=[batch_count],
|
|
168
|
+
inputs=[input_wp, output_wp],
|
|
169
|
+
block_dim=TILE_DIM,
|
|
170
|
+
device=device,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
prod_wp = output_wp.numpy()
|
|
174
|
+
for i in range(batch_count):
|
|
175
|
+
prod_np = np.prod(input[i])
|
|
176
|
+
test.assertAlmostEqual(prod_wp[i], prod_np, places=4)
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
@wp.struct
|
|
180
|
+
class KeyValue:
|
|
181
|
+
key: wp.int32
|
|
182
|
+
value: wp.float32
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
@wp.func
|
|
186
|
+
def kv_max(a: KeyValue, b: KeyValue) -> KeyValue:
|
|
187
|
+
return wp.where(a.value < b.value, b, a)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
@wp.kernel
|
|
191
|
+
def initialize_key_value(values: wp.array2d(dtype=wp.float32), keyvalues: wp.array2d(dtype=KeyValue)):
|
|
192
|
+
batch, idx = wp.tid()
|
|
193
|
+
keyvalues[batch, idx] = KeyValue(idx, values[batch, idx])
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
@wp.kernel(enable_backward=False)
|
|
197
|
+
def tile_reduce_custom_struct_kernel(values: wp.array2d(dtype=KeyValue), res: wp.array(dtype=KeyValue)):
|
|
198
|
+
# output tile index
|
|
199
|
+
i = wp.tid()
|
|
200
|
+
|
|
201
|
+
t = wp.tile_load(values, shape=(1, TILE_DIM), offset=(i, 0))
|
|
202
|
+
|
|
203
|
+
max_el = wp.tile_reduce(kv_max, t)
|
|
204
|
+
wp.tile_store(res, max_el, offset=i)
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
def test_tile_reduce_custom_struct(test, device):
|
|
208
|
+
batch_count = 56
|
|
209
|
+
|
|
210
|
+
N = TILE_DIM
|
|
211
|
+
|
|
212
|
+
rng = np.random.default_rng(42)
|
|
213
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
214
|
+
|
|
215
|
+
input_wp = wp.array(input, dtype=wp.float32, device=device)
|
|
216
|
+
keyvalues_wp = wp.empty(input_wp.shape, dtype=KeyValue, device=device)
|
|
217
|
+
|
|
218
|
+
wp.launch(initialize_key_value, dim=[batch_count, N], inputs=[input_wp], outputs=[keyvalues_wp], device=device)
|
|
219
|
+
|
|
220
|
+
output_wp = wp.empty(batch_count, dtype=KeyValue, device=device)
|
|
221
|
+
|
|
222
|
+
wp.launch_tiled(
|
|
223
|
+
tile_reduce_custom_struct_kernel,
|
|
224
|
+
dim=[batch_count],
|
|
225
|
+
inputs=[keyvalues_wp],
|
|
226
|
+
outputs=[output_wp],
|
|
227
|
+
block_dim=TILE_DIM,
|
|
228
|
+
device=device,
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
prod_wp = np.array([k for k, v in output_wp.numpy()])
|
|
232
|
+
expected = np.argmax(input, axis=1)
|
|
233
|
+
|
|
234
|
+
assert_np_equal(prod_wp, expected)
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
@wp.kernel
|
|
238
|
+
def tile_grouped_sum_kernel(input: wp.array3d(dtype=float), output: wp.array(dtype=float)):
|
|
239
|
+
# output tile index
|
|
240
|
+
i = wp.tid()
|
|
241
|
+
|
|
242
|
+
a = wp.tile_load(input[i], shape=(TILE_M, TILE_N))
|
|
243
|
+
s = wp.tile_sum(a) * 0.5
|
|
244
|
+
|
|
245
|
+
wp.tile_store(output, s, offset=i)
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def test_tile_reduce_grouped_sum(test, device):
|
|
249
|
+
batch_count = 56
|
|
250
|
+
|
|
251
|
+
M = TILE_M
|
|
252
|
+
N = TILE_N
|
|
253
|
+
|
|
254
|
+
rng = np.random.default_rng(42)
|
|
255
|
+
input = rng.random((batch_count, M, N), dtype=np.float32)
|
|
256
|
+
|
|
257
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
258
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
259
|
+
|
|
260
|
+
with wp.Tape() as tape:
|
|
261
|
+
wp.launch_tiled(
|
|
262
|
+
tile_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
sum_wp = output_wp.numpy()
|
|
266
|
+
for i in range(batch_count):
|
|
267
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
268
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
|
|
269
|
+
|
|
270
|
+
output_wp.grad.fill_(1.0)
|
|
271
|
+
|
|
272
|
+
tape.backward()
|
|
273
|
+
|
|
274
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
@wp.kernel
|
|
278
|
+
def tile_reduce_simt_kernel(output: wp.array(dtype=int)):
|
|
279
|
+
# thread index
|
|
280
|
+
i = wp.tid()
|
|
281
|
+
|
|
282
|
+
t = wp.tile(i) # convert to block wide tile
|
|
283
|
+
s = wp.tile_sum(t) # sum over block
|
|
284
|
+
|
|
285
|
+
# update global sum
|
|
286
|
+
wp.tile_atomic_add(output, s)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def test_tile_reduce_simt(test, device):
|
|
290
|
+
# use an unaligned grid dimension
|
|
291
|
+
N = TILE_DIM * 4 + 5
|
|
292
|
+
|
|
293
|
+
output = wp.zeros(shape=1, dtype=int, requires_grad=True, device=device)
|
|
294
|
+
|
|
295
|
+
with wp.Tape() as tape:
|
|
296
|
+
wp.launch(tile_reduce_simt_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
297
|
+
|
|
298
|
+
test.assertEqual(output.numpy()[0], np.sum(np.arange(N)))
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
@wp.kernel
|
|
302
|
+
def tile_untile_kernel(output: wp.array(dtype=int)):
|
|
303
|
+
# thread index
|
|
304
|
+
i = wp.tid()
|
|
305
|
+
|
|
306
|
+
# convert to block wide tile
|
|
307
|
+
t = wp.tile(i) * 2
|
|
308
|
+
s = wp.untile(t)
|
|
309
|
+
|
|
310
|
+
output[i] = s
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
def test_tile_untile(test, device):
|
|
314
|
+
# use an unaligned grid dimension
|
|
315
|
+
N = TILE_DIM * 4 + 5
|
|
316
|
+
|
|
317
|
+
output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
|
|
318
|
+
|
|
319
|
+
with wp.Tape() as tape:
|
|
320
|
+
wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
321
|
+
|
|
322
|
+
assert_np_equal(output.numpy(), np.arange(N) * 2)
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
@wp.kernel
|
|
326
|
+
def tile_untile_scalar_kernel(output: wp.array(dtype=int)):
|
|
327
|
+
# thread index
|
|
328
|
+
i = wp.tid()
|
|
329
|
+
|
|
330
|
+
# convert to block wide tile
|
|
331
|
+
t = wp.tile(i) * 2
|
|
332
|
+
s = wp.untile(t)
|
|
333
|
+
|
|
334
|
+
output[i] = s
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
def test_tile_untile_scalar(test, device):
|
|
338
|
+
# use an unaligned grid dimension
|
|
339
|
+
N = TILE_DIM * 4 + 5
|
|
340
|
+
|
|
341
|
+
output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
|
|
342
|
+
|
|
343
|
+
with wp.Tape() as tape:
|
|
344
|
+
wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
345
|
+
|
|
346
|
+
assert_np_equal(output.numpy(), np.arange(N) * 2)
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
@wp.kernel
|
|
350
|
+
def test_untile_vector_kernel(input: wp.array(dtype=wp.vec3), output: wp.array(dtype=wp.vec3)):
|
|
351
|
+
i = wp.tid()
|
|
352
|
+
|
|
353
|
+
v = input[i] * 0.5
|
|
354
|
+
|
|
355
|
+
t = wp.tile(v)
|
|
356
|
+
u = wp.untile(t)
|
|
357
|
+
|
|
358
|
+
output[i] = u * 2.0
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
def test_tile_untile_vector(test, device):
|
|
362
|
+
input = wp.full(16, wp.vec3(1.0, 2.0, 3.0), requires_grad=True, device=device)
|
|
363
|
+
output = wp.zeros_like(input, device=device)
|
|
364
|
+
|
|
365
|
+
with wp.Tape() as tape:
|
|
366
|
+
wp.launch(test_untile_vector_kernel, dim=16, inputs=[input, output], block_dim=16, device=device)
|
|
367
|
+
|
|
368
|
+
output.grad = wp.ones_like(output, device=device)
|
|
369
|
+
tape.backward()
|
|
370
|
+
|
|
371
|
+
assert_np_equal(output.numpy(), input.numpy())
|
|
372
|
+
assert_np_equal(input.grad.numpy(), np.ones((16, 3)))
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
@wp.kernel
|
|
376
|
+
def tile_ones_kernel(out: wp.array(dtype=float)):
|
|
377
|
+
i = wp.tid()
|
|
378
|
+
|
|
379
|
+
t = wp.tile_ones(dtype=float, shape=(16, 16))
|
|
380
|
+
s = wp.tile_sum(t)
|
|
381
|
+
|
|
382
|
+
wp.tile_store(out, s)
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
def test_tile_ones(test, device):
|
|
386
|
+
output = wp.zeros(1, dtype=float, device=device)
|
|
387
|
+
|
|
388
|
+
with wp.Tape() as tape:
|
|
389
|
+
wp.launch_tiled(tile_ones_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
|
|
390
|
+
|
|
391
|
+
test.assertAlmostEqual(output.numpy()[0], 256.0)
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
@wp.kernel
|
|
395
|
+
def tile_arange_kernel(out: wp.array2d(dtype=int)):
|
|
396
|
+
i = wp.tid()
|
|
397
|
+
|
|
398
|
+
a = wp.tile_arange(17, dtype=int)
|
|
399
|
+
b = wp.tile_arange(5, 23, dtype=int)
|
|
400
|
+
c = wp.tile_arange(0, 34, 2, dtype=int)
|
|
401
|
+
d = wp.tile_arange(-1, 16, dtype=int)
|
|
402
|
+
e = wp.tile_arange(17, 0, -1, dtype=int)
|
|
403
|
+
|
|
404
|
+
wp.tile_store(out[0], a)
|
|
405
|
+
wp.tile_store(out[1], b)
|
|
406
|
+
wp.tile_store(out[2], c)
|
|
407
|
+
wp.tile_store(out[3], d)
|
|
408
|
+
wp.tile_store(out[4], e)
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def test_tile_arange(test, device):
|
|
412
|
+
N = 17
|
|
413
|
+
|
|
414
|
+
output = wp.zeros(shape=(5, N), dtype=int, device=device)
|
|
415
|
+
|
|
416
|
+
with wp.Tape() as tape:
|
|
417
|
+
wp.launch_tiled(tile_arange_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
|
|
418
|
+
|
|
419
|
+
assert_np_equal(output.numpy()[0], np.arange(17))
|
|
420
|
+
assert_np_equal(output.numpy()[1], np.arange(5, 22))
|
|
421
|
+
assert_np_equal(output.numpy()[2], np.arange(0, 34, 2))
|
|
422
|
+
assert_np_equal(output.numpy()[3], np.arange(-1, 16))
|
|
423
|
+
assert_np_equal(output.numpy()[4], np.arange(17, 0, -1))
|
|
424
|
+
|
|
425
|
+
|
|
426
|
+
devices = get_test_devices()
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
class TestTileReduce(unittest.TestCase):
|
|
430
|
+
pass
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
add_function_test(TestTileReduce, "test_tile_reduce_sum", test_tile_reduce_sum, devices=devices)
|
|
434
|
+
add_function_test(TestTileReduce, "test_tile_reduce_min", test_tile_reduce_min, devices=devices)
|
|
435
|
+
add_function_test(TestTileReduce, "test_tile_reduce_max", test_tile_reduce_max, devices=devices)
|
|
436
|
+
add_function_test(TestTileReduce, "test_tile_reduce_custom", test_tile_reduce_custom, devices=devices)
|
|
437
|
+
add_function_test(TestTileReduce, "test_tile_reduce_custom_struct", test_tile_reduce_custom_struct, devices=devices)
|
|
438
|
+
add_function_test(TestTileReduce, "test_tile_reduce_grouped_sum", test_tile_reduce_sum, devices=devices)
|
|
439
|
+
add_function_test(TestTileReduce, "test_tile_reduce_simt", test_tile_reduce_simt, devices=devices)
|
|
440
|
+
add_function_test(TestTileReduce, "test_tile_ones", test_tile_ones, devices=devices)
|
|
441
|
+
add_function_test(TestTileReduce, "test_tile_arange", test_tile_arange, devices=devices)
|
|
442
|
+
add_function_test(TestTileReduce, "test_tile_untile_scalar", test_tile_untile_scalar, devices=devices)
|
|
443
|
+
add_function_test(TestTileReduce, "test_tile_untile_vector", test_tile_untile_vector, devices=devices)
|
|
444
|
+
|
|
445
|
+
if __name__ == "__main__":
|
|
446
|
+
wp.clear_kernel_cache()
|
|
447
|
+
unittest.main(verbosity=2, failfast=True)
|
|
@@ -0,0 +1,247 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp.tests.unittest_utils import *
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
# checks that we can configure shared memory to the expected size
|
|
25
|
+
def test_tile_shared_mem_size(test, device):
|
|
26
|
+
DIM_M = 32
|
|
27
|
+
DIM_N = 32
|
|
28
|
+
|
|
29
|
+
BLOCK_DIM = 256
|
|
30
|
+
|
|
31
|
+
@wp.kernel
|
|
32
|
+
def compute(out: wp.array2d(dtype=float)):
|
|
33
|
+
a = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared")
|
|
34
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 2.0
|
|
35
|
+
|
|
36
|
+
c = a + b
|
|
37
|
+
wp.tile_store(out, c)
|
|
38
|
+
|
|
39
|
+
out = wp.empty((DIM_M, DIM_N), dtype=float, device=device)
|
|
40
|
+
|
|
41
|
+
wp.launch_tiled(compute, dim=[1], inputs=[out], block_dim=BLOCK_DIM, device=device)
|
|
42
|
+
|
|
43
|
+
# check output
|
|
44
|
+
assert_np_equal(out.numpy(), np.ones((DIM_M, DIM_N)) * 3.0)
|
|
45
|
+
|
|
46
|
+
# check required shared memory
|
|
47
|
+
expected_forward_bytes = DIM_M * DIM_N * 4 * 2
|
|
48
|
+
expected_backward_bytes = expected_forward_bytes * 2
|
|
49
|
+
|
|
50
|
+
# check shared memory for kernel on the device
|
|
51
|
+
module_exec = compute.module.load(device, BLOCK_DIM)
|
|
52
|
+
hooks = module_exec.get_kernel_hooks(compute)
|
|
53
|
+
|
|
54
|
+
assert hooks.forward_smem_bytes == expected_forward_bytes
|
|
55
|
+
assert hooks.backward_smem_bytes == expected_backward_bytes
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
# checks that we can configure shared memory > 48kb default
|
|
59
|
+
def test_tile_shared_mem_large(test, device):
|
|
60
|
+
# set dimensions that require 64kb for the forward kernel
|
|
61
|
+
DIM_M = 64
|
|
62
|
+
DIM_N = 128
|
|
63
|
+
|
|
64
|
+
BLOCK_DIM = 256
|
|
65
|
+
|
|
66
|
+
# we disable backward kernel gen since 128k is not supported on most architectures
|
|
67
|
+
@wp.kernel(enable_backward=False)
|
|
68
|
+
def compute(out: wp.array2d(dtype=float)):
|
|
69
|
+
a = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared")
|
|
70
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 2.0
|
|
71
|
+
|
|
72
|
+
c = a + b
|
|
73
|
+
wp.tile_store(out, c)
|
|
74
|
+
|
|
75
|
+
out = wp.empty((DIM_M, DIM_N), dtype=float, device=device)
|
|
76
|
+
|
|
77
|
+
wp.launch_tiled(compute, dim=[1], inputs=[out], block_dim=BLOCK_DIM, device=device)
|
|
78
|
+
|
|
79
|
+
# check output
|
|
80
|
+
assert_np_equal(out.numpy(), np.ones((DIM_M, DIM_N)) * 3.0)
|
|
81
|
+
|
|
82
|
+
# check required shared memory
|
|
83
|
+
expected_forward_bytes = DIM_M * DIM_N * 4 * 2
|
|
84
|
+
expected_backward_bytes = 0
|
|
85
|
+
|
|
86
|
+
assert expected_forward_bytes == 2**16
|
|
87
|
+
|
|
88
|
+
# check shared memory for kernel on the device
|
|
89
|
+
module_exec = compute.module.load(device, BLOCK_DIM)
|
|
90
|
+
hooks = module_exec.get_kernel_hooks(compute)
|
|
91
|
+
|
|
92
|
+
assert hooks.forward_smem_bytes == expected_forward_bytes
|
|
93
|
+
assert hooks.backward_smem_bytes == expected_backward_bytes
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
# checks that we can configure dynamic shared memory during graph capture
|
|
97
|
+
def test_tile_shared_mem_graph(test, device):
|
|
98
|
+
DIM_M = 32
|
|
99
|
+
DIM_N = 32
|
|
100
|
+
|
|
101
|
+
BLOCK_DIM = 256
|
|
102
|
+
|
|
103
|
+
@wp.kernel
|
|
104
|
+
def compute(out: wp.array2d(dtype=float)):
|
|
105
|
+
a = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared")
|
|
106
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 2.0
|
|
107
|
+
|
|
108
|
+
c = a + b
|
|
109
|
+
wp.tile_store(out, c)
|
|
110
|
+
|
|
111
|
+
out = wp.empty((DIM_M, DIM_N), dtype=float, device=device)
|
|
112
|
+
|
|
113
|
+
wp.load_module(device=device)
|
|
114
|
+
|
|
115
|
+
wp.capture_begin(device, force_module_load=False)
|
|
116
|
+
wp.launch_tiled(compute, dim=[1], inputs=[out], block_dim=BLOCK_DIM, device=device)
|
|
117
|
+
graph = wp.capture_end(device)
|
|
118
|
+
|
|
119
|
+
wp.capture_launch(graph)
|
|
120
|
+
|
|
121
|
+
# check output
|
|
122
|
+
assert_np_equal(out.numpy(), np.ones((DIM_M, DIM_N)) * 3.0)
|
|
123
|
+
|
|
124
|
+
# check required shared memory
|
|
125
|
+
expected_forward_bytes = DIM_M * DIM_N * 4 * 2
|
|
126
|
+
expected_backward_bytes = expected_forward_bytes * 2
|
|
127
|
+
|
|
128
|
+
# check shared memory for kernel on the device
|
|
129
|
+
module_exec = compute.module.load(device, BLOCK_DIM)
|
|
130
|
+
hooks = module_exec.get_kernel_hooks(compute)
|
|
131
|
+
|
|
132
|
+
assert hooks.forward_smem_bytes == expected_forward_bytes
|
|
133
|
+
assert hooks.backward_smem_bytes == expected_backward_bytes
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
# checks that stack allocations work for user functions
|
|
137
|
+
def test_tile_shared_mem_func(test, device):
|
|
138
|
+
DIM_M = 64
|
|
139
|
+
DIM_N = 64
|
|
140
|
+
|
|
141
|
+
SMALL_DIM_M = 64 // 4
|
|
142
|
+
SMALL_DIM_N = 64 // 4
|
|
143
|
+
|
|
144
|
+
BLOCK_DIM = 256
|
|
145
|
+
|
|
146
|
+
@wp.func
|
|
147
|
+
def add_tile_small():
|
|
148
|
+
a = wp.tile_ones(shape=(SMALL_DIM_M, SMALL_DIM_N), dtype=float, storage="shared")
|
|
149
|
+
b = wp.tile_ones(shape=(SMALL_DIM_M, SMALL_DIM_N), dtype=float, storage="shared") * 2.0
|
|
150
|
+
|
|
151
|
+
return a + b
|
|
152
|
+
|
|
153
|
+
@wp.func
|
|
154
|
+
def add_tile_big():
|
|
155
|
+
a = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared")
|
|
156
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 2.0
|
|
157
|
+
|
|
158
|
+
return a + b
|
|
159
|
+
|
|
160
|
+
@wp.kernel
|
|
161
|
+
def compute(out: wp.array2d(dtype=float)):
|
|
162
|
+
s = add_tile_small()
|
|
163
|
+
b = add_tile_big()
|
|
164
|
+
|
|
165
|
+
wp.tile_store(out, b)
|
|
166
|
+
|
|
167
|
+
out = wp.empty((DIM_M, DIM_N), dtype=float, device=device)
|
|
168
|
+
|
|
169
|
+
wp.launch_tiled(compute, dim=[1], inputs=[out], block_dim=BLOCK_DIM, device=device)
|
|
170
|
+
|
|
171
|
+
# check shared memory for kernel on the device
|
|
172
|
+
module_exec = compute.module.load(device, BLOCK_DIM)
|
|
173
|
+
hooks = module_exec.get_kernel_hooks(compute)
|
|
174
|
+
|
|
175
|
+
# ensure that total required dynamic shared is the larger of the two tiles
|
|
176
|
+
expected_required_shared = 64 * 64 * 4 * 2
|
|
177
|
+
|
|
178
|
+
assert hooks.forward_smem_bytes == expected_required_shared
|
|
179
|
+
assert hooks.backward_smem_bytes == expected_required_shared * 2
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def round_up(a, b):
|
|
183
|
+
return b * ((a + b - 1) // b)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
# checks that using non-16B aligned sizes work
|
|
187
|
+
def test_tile_shared_non_aligned(test, device):
|
|
188
|
+
# Tile size = 4 (float) * 1 * 3 = 12B % 16 != 0
|
|
189
|
+
DIM_M = 1
|
|
190
|
+
DIM_N = 3
|
|
191
|
+
|
|
192
|
+
BLOCK_DIM = 256
|
|
193
|
+
|
|
194
|
+
@wp.func
|
|
195
|
+
def foo():
|
|
196
|
+
a = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 2.0
|
|
197
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared") * 3.0
|
|
198
|
+
return a + b
|
|
199
|
+
|
|
200
|
+
@wp.kernel
|
|
201
|
+
def compute(out: wp.array2d(dtype=float)):
|
|
202
|
+
# This test the logic in the stack allocator, which should increment and
|
|
203
|
+
# decrement the stack pointer each time foo() is called
|
|
204
|
+
# Failing to do so correct will make b out of bounds and corrupt the results
|
|
205
|
+
for _ in range(4096):
|
|
206
|
+
foo()
|
|
207
|
+
b = wp.tile_ones(shape=(DIM_M, DIM_N), dtype=float, storage="shared")
|
|
208
|
+
wp.tile_store(out, b)
|
|
209
|
+
|
|
210
|
+
out = wp.empty((DIM_M, DIM_N), dtype=float, device=device)
|
|
211
|
+
|
|
212
|
+
wp.launch_tiled(compute, dim=[1], inputs=[out], block_dim=BLOCK_DIM, device=device)
|
|
213
|
+
|
|
214
|
+
assert_np_equal(out.numpy(), np.ones((DIM_M, DIM_N), dtype=float))
|
|
215
|
+
|
|
216
|
+
# check shared memory for kernel on the device
|
|
217
|
+
module_exec = compute.module.load(device, BLOCK_DIM)
|
|
218
|
+
hooks = module_exec.get_kernel_hooks(compute)
|
|
219
|
+
|
|
220
|
+
# ensure that total required dynamic shared is the larger of the two tiles
|
|
221
|
+
expected_required_shared = 3 * round_up(DIM_M * DIM_N * 4, 16)
|
|
222
|
+
|
|
223
|
+
assert hooks.forward_smem_bytes == expected_required_shared
|
|
224
|
+
assert hooks.backward_smem_bytes == expected_required_shared * 2
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
devices = get_cuda_test_devices()
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
class TestTileSharedMemory(unittest.TestCase):
|
|
231
|
+
pass
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
add_function_test(
|
|
235
|
+
TestTileSharedMemory, "test_tile_shared_mem_size", test_tile_shared_mem_size, devices=devices, check_output=False
|
|
236
|
+
)
|
|
237
|
+
add_function_test(
|
|
238
|
+
TestTileSharedMemory, "test_tile_shared_mem_large", test_tile_shared_mem_large, devices=devices, check_output=False
|
|
239
|
+
)
|
|
240
|
+
add_function_test(TestTileSharedMemory, "test_tile_shared_mem_graph", test_tile_shared_mem_graph, devices=devices)
|
|
241
|
+
add_function_test(TestTileSharedMemory, "test_tile_shared_mem_func", test_tile_shared_mem_func, devices=devices)
|
|
242
|
+
add_function_test(TestTileSharedMemory, "test_tile_shared_non_aligned", test_tile_shared_non_aligned, devices=devices)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
if __name__ == "__main__":
|
|
246
|
+
wp.clear_kernel_cache()
|
|
247
|
+
unittest.main(verbosity=2, failfast=True)
|