warp-lang 1.7.0__py3-none-manylinux_2_34_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (429) hide show
  1. warp/__init__.py +139 -0
  2. warp/__init__.pyi +1 -0
  3. warp/autograd.py +1142 -0
  4. warp/bin/warp-clang.so +0 -0
  5. warp/bin/warp.so +0 -0
  6. warp/build.py +557 -0
  7. warp/build_dll.py +405 -0
  8. warp/builtins.py +6855 -0
  9. warp/codegen.py +3969 -0
  10. warp/config.py +158 -0
  11. warp/constants.py +57 -0
  12. warp/context.py +6812 -0
  13. warp/dlpack.py +462 -0
  14. warp/examples/__init__.py +24 -0
  15. warp/examples/assets/bear.usd +0 -0
  16. warp/examples/assets/bunny.usd +0 -0
  17. warp/examples/assets/cartpole.urdf +110 -0
  18. warp/examples/assets/crazyflie.usd +0 -0
  19. warp/examples/assets/cube.usd +0 -0
  20. warp/examples/assets/nonuniform.usd +0 -0
  21. warp/examples/assets/nv_ant.xml +92 -0
  22. warp/examples/assets/nv_humanoid.xml +183 -0
  23. warp/examples/assets/nvidia_logo.png +0 -0
  24. warp/examples/assets/pixel.jpg +0 -0
  25. warp/examples/assets/quadruped.urdf +268 -0
  26. warp/examples/assets/rocks.nvdb +0 -0
  27. warp/examples/assets/rocks.usd +0 -0
  28. warp/examples/assets/sphere.usd +0 -0
  29. warp/examples/assets/square_cloth.usd +0 -0
  30. warp/examples/benchmarks/benchmark_api.py +389 -0
  31. warp/examples/benchmarks/benchmark_cloth.py +296 -0
  32. warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
  33. warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
  34. warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
  35. warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
  36. warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
  37. warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
  38. warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
  39. warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
  40. warp/examples/benchmarks/benchmark_gemm.py +164 -0
  41. warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
  42. warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
  43. warp/examples/benchmarks/benchmark_launches.py +301 -0
  44. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  45. warp/examples/browse.py +37 -0
  46. warp/examples/core/example_cupy.py +86 -0
  47. warp/examples/core/example_dem.py +241 -0
  48. warp/examples/core/example_fluid.py +299 -0
  49. warp/examples/core/example_graph_capture.py +150 -0
  50. warp/examples/core/example_marching_cubes.py +194 -0
  51. warp/examples/core/example_mesh.py +180 -0
  52. warp/examples/core/example_mesh_intersect.py +211 -0
  53. warp/examples/core/example_nvdb.py +182 -0
  54. warp/examples/core/example_raycast.py +111 -0
  55. warp/examples/core/example_raymarch.py +205 -0
  56. warp/examples/core/example_render_opengl.py +193 -0
  57. warp/examples/core/example_sample_mesh.py +300 -0
  58. warp/examples/core/example_sph.py +411 -0
  59. warp/examples/core/example_torch.py +211 -0
  60. warp/examples/core/example_wave.py +269 -0
  61. warp/examples/fem/example_adaptive_grid.py +286 -0
  62. warp/examples/fem/example_apic_fluid.py +423 -0
  63. warp/examples/fem/example_burgers.py +261 -0
  64. warp/examples/fem/example_convection_diffusion.py +178 -0
  65. warp/examples/fem/example_convection_diffusion_dg.py +204 -0
  66. warp/examples/fem/example_deformed_geometry.py +172 -0
  67. warp/examples/fem/example_diffusion.py +196 -0
  68. warp/examples/fem/example_diffusion_3d.py +225 -0
  69. warp/examples/fem/example_diffusion_mgpu.py +220 -0
  70. warp/examples/fem/example_distortion_energy.py +228 -0
  71. warp/examples/fem/example_magnetostatics.py +240 -0
  72. warp/examples/fem/example_mixed_elasticity.py +291 -0
  73. warp/examples/fem/example_navier_stokes.py +261 -0
  74. warp/examples/fem/example_nonconforming_contact.py +298 -0
  75. warp/examples/fem/example_stokes.py +213 -0
  76. warp/examples/fem/example_stokes_transfer.py +262 -0
  77. warp/examples/fem/example_streamlines.py +352 -0
  78. warp/examples/fem/utils.py +1000 -0
  79. warp/examples/interop/example_jax_callable.py +116 -0
  80. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  81. warp/examples/interop/example_jax_kernel.py +205 -0
  82. warp/examples/optim/example_bounce.py +266 -0
  83. warp/examples/optim/example_cloth_throw.py +228 -0
  84. warp/examples/optim/example_diffray.py +561 -0
  85. warp/examples/optim/example_drone.py +870 -0
  86. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  87. warp/examples/optim/example_inverse_kinematics.py +182 -0
  88. warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
  89. warp/examples/optim/example_softbody_properties.py +400 -0
  90. warp/examples/optim/example_spring_cage.py +245 -0
  91. warp/examples/optim/example_trajectory.py +227 -0
  92. warp/examples/sim/example_cartpole.py +143 -0
  93. warp/examples/sim/example_cloth.py +225 -0
  94. warp/examples/sim/example_cloth_self_contact.py +322 -0
  95. warp/examples/sim/example_granular.py +130 -0
  96. warp/examples/sim/example_granular_collision_sdf.py +202 -0
  97. warp/examples/sim/example_jacobian_ik.py +244 -0
  98. warp/examples/sim/example_particle_chain.py +124 -0
  99. warp/examples/sim/example_quadruped.py +203 -0
  100. warp/examples/sim/example_rigid_chain.py +203 -0
  101. warp/examples/sim/example_rigid_contact.py +195 -0
  102. warp/examples/sim/example_rigid_force.py +133 -0
  103. warp/examples/sim/example_rigid_gyroscopic.py +115 -0
  104. warp/examples/sim/example_rigid_soft_contact.py +140 -0
  105. warp/examples/sim/example_soft_body.py +196 -0
  106. warp/examples/tile/example_tile_cholesky.py +87 -0
  107. warp/examples/tile/example_tile_convolution.py +66 -0
  108. warp/examples/tile/example_tile_fft.py +55 -0
  109. warp/examples/tile/example_tile_filtering.py +113 -0
  110. warp/examples/tile/example_tile_matmul.py +85 -0
  111. warp/examples/tile/example_tile_mlp.py +383 -0
  112. warp/examples/tile/example_tile_nbody.py +199 -0
  113. warp/examples/tile/example_tile_walker.py +327 -0
  114. warp/fabric.py +355 -0
  115. warp/fem/__init__.py +106 -0
  116. warp/fem/adaptivity.py +508 -0
  117. warp/fem/cache.py +572 -0
  118. warp/fem/dirichlet.py +202 -0
  119. warp/fem/domain.py +411 -0
  120. warp/fem/field/__init__.py +125 -0
  121. warp/fem/field/field.py +619 -0
  122. warp/fem/field/nodal_field.py +326 -0
  123. warp/fem/field/restriction.py +37 -0
  124. warp/fem/field/virtual.py +848 -0
  125. warp/fem/geometry/__init__.py +32 -0
  126. warp/fem/geometry/adaptive_nanogrid.py +857 -0
  127. warp/fem/geometry/closest_point.py +84 -0
  128. warp/fem/geometry/deformed_geometry.py +221 -0
  129. warp/fem/geometry/element.py +776 -0
  130. warp/fem/geometry/geometry.py +362 -0
  131. warp/fem/geometry/grid_2d.py +392 -0
  132. warp/fem/geometry/grid_3d.py +452 -0
  133. warp/fem/geometry/hexmesh.py +911 -0
  134. warp/fem/geometry/nanogrid.py +571 -0
  135. warp/fem/geometry/partition.py +389 -0
  136. warp/fem/geometry/quadmesh.py +663 -0
  137. warp/fem/geometry/tetmesh.py +855 -0
  138. warp/fem/geometry/trimesh.py +806 -0
  139. warp/fem/integrate.py +2335 -0
  140. warp/fem/linalg.py +419 -0
  141. warp/fem/operator.py +293 -0
  142. warp/fem/polynomial.py +229 -0
  143. warp/fem/quadrature/__init__.py +17 -0
  144. warp/fem/quadrature/pic_quadrature.py +299 -0
  145. warp/fem/quadrature/quadrature.py +591 -0
  146. warp/fem/space/__init__.py +228 -0
  147. warp/fem/space/basis_function_space.py +468 -0
  148. warp/fem/space/basis_space.py +667 -0
  149. warp/fem/space/dof_mapper.py +251 -0
  150. warp/fem/space/function_space.py +309 -0
  151. warp/fem/space/grid_2d_function_space.py +177 -0
  152. warp/fem/space/grid_3d_function_space.py +227 -0
  153. warp/fem/space/hexmesh_function_space.py +257 -0
  154. warp/fem/space/nanogrid_function_space.py +201 -0
  155. warp/fem/space/partition.py +367 -0
  156. warp/fem/space/quadmesh_function_space.py +223 -0
  157. warp/fem/space/restriction.py +179 -0
  158. warp/fem/space/shape/__init__.py +143 -0
  159. warp/fem/space/shape/cube_shape_function.py +1105 -0
  160. warp/fem/space/shape/shape_function.py +133 -0
  161. warp/fem/space/shape/square_shape_function.py +926 -0
  162. warp/fem/space/shape/tet_shape_function.py +834 -0
  163. warp/fem/space/shape/triangle_shape_function.py +672 -0
  164. warp/fem/space/tetmesh_function_space.py +271 -0
  165. warp/fem/space/topology.py +424 -0
  166. warp/fem/space/trimesh_function_space.py +194 -0
  167. warp/fem/types.py +99 -0
  168. warp/fem/utils.py +420 -0
  169. warp/jax.py +187 -0
  170. warp/jax_experimental/__init__.py +16 -0
  171. warp/jax_experimental/custom_call.py +351 -0
  172. warp/jax_experimental/ffi.py +698 -0
  173. warp/jax_experimental/xla_ffi.py +602 -0
  174. warp/math.py +244 -0
  175. warp/native/array.h +1145 -0
  176. warp/native/builtin.h +1800 -0
  177. warp/native/bvh.cpp +492 -0
  178. warp/native/bvh.cu +791 -0
  179. warp/native/bvh.h +554 -0
  180. warp/native/clang/clang.cpp +536 -0
  181. warp/native/coloring.cpp +613 -0
  182. warp/native/crt.cpp +51 -0
  183. warp/native/crt.h +362 -0
  184. warp/native/cuda_crt.h +1058 -0
  185. warp/native/cuda_util.cpp +646 -0
  186. warp/native/cuda_util.h +307 -0
  187. warp/native/error.cpp +77 -0
  188. warp/native/error.h +36 -0
  189. warp/native/exports.h +1878 -0
  190. warp/native/fabric.h +245 -0
  191. warp/native/hashgrid.cpp +311 -0
  192. warp/native/hashgrid.cu +87 -0
  193. warp/native/hashgrid.h +240 -0
  194. warp/native/initializer_array.h +41 -0
  195. warp/native/intersect.h +1230 -0
  196. warp/native/intersect_adj.h +375 -0
  197. warp/native/intersect_tri.h +339 -0
  198. warp/native/marching.cpp +19 -0
  199. warp/native/marching.cu +514 -0
  200. warp/native/marching.h +19 -0
  201. warp/native/mat.h +2220 -0
  202. warp/native/mathdx.cpp +87 -0
  203. warp/native/matnn.h +343 -0
  204. warp/native/mesh.cpp +266 -0
  205. warp/native/mesh.cu +404 -0
  206. warp/native/mesh.h +1980 -0
  207. warp/native/nanovdb/GridHandle.h +366 -0
  208. warp/native/nanovdb/HostBuffer.h +590 -0
  209. warp/native/nanovdb/NanoVDB.h +6624 -0
  210. warp/native/nanovdb/PNanoVDB.h +3390 -0
  211. warp/native/noise.h +859 -0
  212. warp/native/quat.h +1371 -0
  213. warp/native/rand.h +342 -0
  214. warp/native/range.h +139 -0
  215. warp/native/reduce.cpp +174 -0
  216. warp/native/reduce.cu +364 -0
  217. warp/native/runlength_encode.cpp +79 -0
  218. warp/native/runlength_encode.cu +61 -0
  219. warp/native/scan.cpp +47 -0
  220. warp/native/scan.cu +53 -0
  221. warp/native/scan.h +23 -0
  222. warp/native/solid_angle.h +466 -0
  223. warp/native/sort.cpp +251 -0
  224. warp/native/sort.cu +277 -0
  225. warp/native/sort.h +33 -0
  226. warp/native/sparse.cpp +378 -0
  227. warp/native/sparse.cu +524 -0
  228. warp/native/spatial.h +657 -0
  229. warp/native/svd.h +702 -0
  230. warp/native/temp_buffer.h +46 -0
  231. warp/native/tile.h +2584 -0
  232. warp/native/tile_reduce.h +264 -0
  233. warp/native/vec.h +1426 -0
  234. warp/native/volume.cpp +501 -0
  235. warp/native/volume.cu +67 -0
  236. warp/native/volume.h +969 -0
  237. warp/native/volume_builder.cu +477 -0
  238. warp/native/volume_builder.h +52 -0
  239. warp/native/volume_impl.h +70 -0
  240. warp/native/warp.cpp +1082 -0
  241. warp/native/warp.cu +3636 -0
  242. warp/native/warp.h +381 -0
  243. warp/optim/__init__.py +17 -0
  244. warp/optim/adam.py +163 -0
  245. warp/optim/linear.py +1137 -0
  246. warp/optim/sgd.py +112 -0
  247. warp/paddle.py +407 -0
  248. warp/render/__init__.py +18 -0
  249. warp/render/render_opengl.py +3518 -0
  250. warp/render/render_usd.py +784 -0
  251. warp/render/utils.py +160 -0
  252. warp/sim/__init__.py +65 -0
  253. warp/sim/articulation.py +793 -0
  254. warp/sim/collide.py +2395 -0
  255. warp/sim/graph_coloring.py +300 -0
  256. warp/sim/import_mjcf.py +790 -0
  257. warp/sim/import_snu.py +227 -0
  258. warp/sim/import_urdf.py +579 -0
  259. warp/sim/import_usd.py +894 -0
  260. warp/sim/inertia.py +324 -0
  261. warp/sim/integrator.py +242 -0
  262. warp/sim/integrator_euler.py +1997 -0
  263. warp/sim/integrator_featherstone.py +2101 -0
  264. warp/sim/integrator_vbd.py +2048 -0
  265. warp/sim/integrator_xpbd.py +3292 -0
  266. warp/sim/model.py +4791 -0
  267. warp/sim/particles.py +121 -0
  268. warp/sim/render.py +427 -0
  269. warp/sim/utils.py +428 -0
  270. warp/sparse.py +2057 -0
  271. warp/stubs.py +3333 -0
  272. warp/tape.py +1203 -0
  273. warp/tests/__init__.py +1 -0
  274. warp/tests/__main__.py +4 -0
  275. warp/tests/assets/curlnoise_golden.npy +0 -0
  276. warp/tests/assets/mlp_golden.npy +0 -0
  277. warp/tests/assets/pixel.npy +0 -0
  278. warp/tests/assets/pnoise_golden.npy +0 -0
  279. warp/tests/assets/spiky.usd +0 -0
  280. warp/tests/assets/test_grid.nvdb +0 -0
  281. warp/tests/assets/test_index_grid.nvdb +0 -0
  282. warp/tests/assets/test_int32_grid.nvdb +0 -0
  283. warp/tests/assets/test_vec_grid.nvdb +0 -0
  284. warp/tests/assets/torus.nvdb +0 -0
  285. warp/tests/assets/torus.usda +105 -0
  286. warp/tests/aux_test_class_kernel.py +34 -0
  287. warp/tests/aux_test_compile_consts_dummy.py +18 -0
  288. warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
  289. warp/tests/aux_test_dependent.py +29 -0
  290. warp/tests/aux_test_grad_customs.py +29 -0
  291. warp/tests/aux_test_instancing_gc.py +26 -0
  292. warp/tests/aux_test_module_unload.py +23 -0
  293. warp/tests/aux_test_name_clash1.py +40 -0
  294. warp/tests/aux_test_name_clash2.py +40 -0
  295. warp/tests/aux_test_reference.py +9 -0
  296. warp/tests/aux_test_reference_reference.py +8 -0
  297. warp/tests/aux_test_square.py +16 -0
  298. warp/tests/aux_test_unresolved_func.py +22 -0
  299. warp/tests/aux_test_unresolved_symbol.py +22 -0
  300. warp/tests/cuda/__init__.py +0 -0
  301. warp/tests/cuda/test_async.py +676 -0
  302. warp/tests/cuda/test_ipc.py +124 -0
  303. warp/tests/cuda/test_mempool.py +233 -0
  304. warp/tests/cuda/test_multigpu.py +169 -0
  305. warp/tests/cuda/test_peer.py +139 -0
  306. warp/tests/cuda/test_pinned.py +84 -0
  307. warp/tests/cuda/test_streams.py +634 -0
  308. warp/tests/geometry/__init__.py +0 -0
  309. warp/tests/geometry/test_bvh.py +200 -0
  310. warp/tests/geometry/test_hash_grid.py +221 -0
  311. warp/tests/geometry/test_marching_cubes.py +74 -0
  312. warp/tests/geometry/test_mesh.py +316 -0
  313. warp/tests/geometry/test_mesh_query_aabb.py +399 -0
  314. warp/tests/geometry/test_mesh_query_point.py +932 -0
  315. warp/tests/geometry/test_mesh_query_ray.py +311 -0
  316. warp/tests/geometry/test_volume.py +1103 -0
  317. warp/tests/geometry/test_volume_write.py +346 -0
  318. warp/tests/interop/__init__.py +0 -0
  319. warp/tests/interop/test_dlpack.py +729 -0
  320. warp/tests/interop/test_jax.py +371 -0
  321. warp/tests/interop/test_paddle.py +800 -0
  322. warp/tests/interop/test_torch.py +1001 -0
  323. warp/tests/run_coverage_serial.py +39 -0
  324. warp/tests/sim/__init__.py +0 -0
  325. warp/tests/sim/disabled_kinematics.py +244 -0
  326. warp/tests/sim/flaky_test_sim_grad.py +290 -0
  327. warp/tests/sim/test_collision.py +604 -0
  328. warp/tests/sim/test_coloring.py +258 -0
  329. warp/tests/sim/test_model.py +224 -0
  330. warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
  331. warp/tests/sim/test_sim_kinematics.py +98 -0
  332. warp/tests/sim/test_vbd.py +597 -0
  333. warp/tests/test_adam.py +163 -0
  334. warp/tests/test_arithmetic.py +1096 -0
  335. warp/tests/test_array.py +2972 -0
  336. warp/tests/test_array_reduce.py +156 -0
  337. warp/tests/test_assert.py +250 -0
  338. warp/tests/test_atomic.py +153 -0
  339. warp/tests/test_bool.py +220 -0
  340. warp/tests/test_builtins_resolution.py +1298 -0
  341. warp/tests/test_closest_point_edge_edge.py +327 -0
  342. warp/tests/test_codegen.py +810 -0
  343. warp/tests/test_codegen_instancing.py +1495 -0
  344. warp/tests/test_compile_consts.py +215 -0
  345. warp/tests/test_conditional.py +252 -0
  346. warp/tests/test_context.py +42 -0
  347. warp/tests/test_copy.py +238 -0
  348. warp/tests/test_ctypes.py +638 -0
  349. warp/tests/test_dense.py +73 -0
  350. warp/tests/test_devices.py +97 -0
  351. warp/tests/test_examples.py +482 -0
  352. warp/tests/test_fabricarray.py +996 -0
  353. warp/tests/test_fast_math.py +74 -0
  354. warp/tests/test_fem.py +2003 -0
  355. warp/tests/test_fp16.py +136 -0
  356. warp/tests/test_func.py +454 -0
  357. warp/tests/test_future_annotations.py +98 -0
  358. warp/tests/test_generics.py +656 -0
  359. warp/tests/test_grad.py +893 -0
  360. warp/tests/test_grad_customs.py +339 -0
  361. warp/tests/test_grad_debug.py +341 -0
  362. warp/tests/test_implicit_init.py +411 -0
  363. warp/tests/test_import.py +45 -0
  364. warp/tests/test_indexedarray.py +1140 -0
  365. warp/tests/test_intersect.py +73 -0
  366. warp/tests/test_iter.py +76 -0
  367. warp/tests/test_large.py +177 -0
  368. warp/tests/test_launch.py +411 -0
  369. warp/tests/test_lerp.py +151 -0
  370. warp/tests/test_linear_solvers.py +193 -0
  371. warp/tests/test_lvalue.py +427 -0
  372. warp/tests/test_mat.py +2089 -0
  373. warp/tests/test_mat_lite.py +122 -0
  374. warp/tests/test_mat_scalar_ops.py +2913 -0
  375. warp/tests/test_math.py +178 -0
  376. warp/tests/test_mlp.py +282 -0
  377. warp/tests/test_module_hashing.py +258 -0
  378. warp/tests/test_modules_lite.py +44 -0
  379. warp/tests/test_noise.py +252 -0
  380. warp/tests/test_operators.py +299 -0
  381. warp/tests/test_options.py +129 -0
  382. warp/tests/test_overwrite.py +551 -0
  383. warp/tests/test_print.py +339 -0
  384. warp/tests/test_quat.py +2315 -0
  385. warp/tests/test_rand.py +339 -0
  386. warp/tests/test_reload.py +302 -0
  387. warp/tests/test_rounding.py +185 -0
  388. warp/tests/test_runlength_encode.py +196 -0
  389. warp/tests/test_scalar_ops.py +105 -0
  390. warp/tests/test_smoothstep.py +108 -0
  391. warp/tests/test_snippet.py +318 -0
  392. warp/tests/test_sparse.py +582 -0
  393. warp/tests/test_spatial.py +2229 -0
  394. warp/tests/test_special_values.py +361 -0
  395. warp/tests/test_static.py +592 -0
  396. warp/tests/test_struct.py +734 -0
  397. warp/tests/test_tape.py +204 -0
  398. warp/tests/test_transient_module.py +93 -0
  399. warp/tests/test_triangle_closest_point.py +145 -0
  400. warp/tests/test_types.py +562 -0
  401. warp/tests/test_utils.py +588 -0
  402. warp/tests/test_vec.py +1487 -0
  403. warp/tests/test_vec_lite.py +80 -0
  404. warp/tests/test_vec_scalar_ops.py +2327 -0
  405. warp/tests/test_verify_fp.py +100 -0
  406. warp/tests/tile/__init__.py +0 -0
  407. warp/tests/tile/test_tile.py +780 -0
  408. warp/tests/tile/test_tile_load.py +407 -0
  409. warp/tests/tile/test_tile_mathdx.py +208 -0
  410. warp/tests/tile/test_tile_mlp.py +402 -0
  411. warp/tests/tile/test_tile_reduce.py +447 -0
  412. warp/tests/tile/test_tile_shared_memory.py +247 -0
  413. warp/tests/tile/test_tile_view.py +173 -0
  414. warp/tests/unittest_serial.py +47 -0
  415. warp/tests/unittest_suites.py +427 -0
  416. warp/tests/unittest_utils.py +468 -0
  417. warp/tests/walkthrough_debug.py +93 -0
  418. warp/thirdparty/__init__.py +0 -0
  419. warp/thirdparty/appdirs.py +598 -0
  420. warp/thirdparty/dlpack.py +145 -0
  421. warp/thirdparty/unittest_parallel.py +570 -0
  422. warp/torch.py +391 -0
  423. warp/types.py +5230 -0
  424. warp/utils.py +1137 -0
  425. warp_lang-1.7.0.dist-info/METADATA +516 -0
  426. warp_lang-1.7.0.dist-info/RECORD +429 -0
  427. warp_lang-1.7.0.dist-info/WHEEL +5 -0
  428. warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
  429. warp_lang-1.7.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1140 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import unittest
17
+ from typing import Any
18
+
19
+ import numpy as np
20
+
21
+ import warp as wp
22
+ from warp.tests.test_array import FillStruct
23
+ from warp.tests.unittest_utils import *
24
+
25
+
26
+ @wp.kernel
27
+ def kernel_1d(a: wp.indexedarray(dtype=float), expected: wp.array(dtype=float)):
28
+ i = wp.tid()
29
+
30
+ wp.expect_eq(a[i], expected[i])
31
+
32
+ a[i] = 2.0 * a[i]
33
+
34
+ wp.atomic_add(a, i, 1.0)
35
+
36
+ wp.expect_eq(a[i], 2.0 * expected[i] + 1.0)
37
+
38
+
39
+ def test_indexedarray_1d(test, device):
40
+ values = np.arange(10, dtype=np.float32)
41
+ arr = wp.array(data=values, device=device)
42
+
43
+ indices = wp.array([1, 3, 5, 7, 9], dtype=int, device=device)
44
+
45
+ iarr = wp.indexedarray1d(arr, [indices])
46
+
47
+ test.assertEqual(iarr.dtype, arr.dtype)
48
+ test.assertEqual(iarr.ndim, 1)
49
+ test.assertEqual(iarr.shape, (5,))
50
+ test.assertEqual(iarr.size, 5)
51
+
52
+ expected_arr = wp.array(data=[1, 3, 5, 7, 9], dtype=float, device=device)
53
+
54
+ wp.launch(kernel_1d, dim=iarr.size, inputs=[iarr, expected_arr], device=device)
55
+
56
+
57
+ @wp.kernel
58
+ def kernel_2d(a: wp.indexedarray2d(dtype=float), expected: wp.array2d(dtype=float)):
59
+ i, j = wp.tid()
60
+
61
+ # check expected values
62
+ wp.expect_eq(a[i, j], expected[i, j])
63
+
64
+ # test wp.view()
65
+ wp.expect_eq(a[i][j], a[i, j])
66
+
67
+ a[i, j] = 2.0 * a[i, j]
68
+
69
+ wp.atomic_add(a, i, j, 1.0)
70
+
71
+ wp.expect_eq(a[i, j], 2.0 * expected[i, j] + 1.0)
72
+
73
+
74
+ def test_indexedarray_2d(test, device):
75
+ values = np.arange(100, dtype=np.float32).reshape((10, 10))
76
+ arr = wp.array(data=values, device=device)
77
+
78
+ indices0 = wp.array([1, 3], dtype=int, device=device)
79
+ indices1 = wp.array([2, 4, 8], dtype=int, device=device)
80
+
81
+ iarr = wp.indexedarray2d(arr, [indices0, indices1])
82
+
83
+ test.assertEqual(iarr.dtype, arr.dtype)
84
+ test.assertEqual(iarr.ndim, 2)
85
+ test.assertEqual(iarr.shape, (2, 3))
86
+ test.assertEqual(iarr.size, 6)
87
+
88
+ expected_values = [[12, 14, 18], [32, 34, 38]]
89
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
90
+
91
+ wp.launch(kernel_2d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
92
+
93
+
94
+ @wp.kernel
95
+ def kernel_3d(a: wp.indexedarray3d(dtype=float), expected: wp.array3d(dtype=float)):
96
+ i, j, k = wp.tid()
97
+
98
+ # check expected values
99
+ wp.expect_eq(a[i, j, k], expected[i, j, k])
100
+
101
+ # test wp.view()
102
+ wp.expect_eq(a[i][j][k], a[i, j, k])
103
+ wp.expect_eq(a[i, j][k], a[i, j, k])
104
+ wp.expect_eq(a[i][j, k], a[i, j, k])
105
+
106
+ a[i, j, k] = 2.0 * a[i, j, k]
107
+
108
+ wp.atomic_add(a, i, j, k, 1.0)
109
+
110
+ wp.expect_eq(a[i, j, k], 2.0 * expected[i, j, k] + 1.0)
111
+
112
+
113
+ def test_indexedarray_3d(test, device):
114
+ values = np.arange(1000, dtype=np.float32).reshape((10, 10, 10))
115
+ arr = wp.array(data=values, device=device)
116
+
117
+ indices0 = wp.array([1, 3], dtype=int, device=device)
118
+ indices1 = wp.array([2, 4, 8], dtype=int, device=device)
119
+ indices2 = wp.array([0, 5], dtype=int, device=device)
120
+
121
+ iarr = wp.indexedarray3d(arr, [indices0, indices1, indices2])
122
+
123
+ test.assertEqual(iarr.dtype, arr.dtype)
124
+ test.assertEqual(iarr.ndim, 3)
125
+ test.assertEqual(iarr.shape, (2, 3, 2))
126
+ test.assertEqual(iarr.size, 12)
127
+
128
+ expected_values = [
129
+ [[120, 125], [140, 145], [180, 185]],
130
+ [[320, 325], [340, 345], [380, 385]],
131
+ ]
132
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
133
+
134
+ wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
135
+
136
+
137
+ @wp.kernel
138
+ def kernel_4d(a: wp.indexedarray4d(dtype=float), expected: wp.array4d(dtype=float)):
139
+ i, j, k, l = wp.tid()
140
+
141
+ # check expected values
142
+ wp.expect_eq(a[i, j, k, l], expected[i, j, k, l])
143
+
144
+ # test wp.view()
145
+ wp.expect_eq(a[i][j][k][l], a[i, j, k, l])
146
+ wp.expect_eq(a[i][j, k, l], a[i, j, k, l])
147
+ wp.expect_eq(a[i, j][k, l], a[i, j, k, l])
148
+ wp.expect_eq(a[i, j, k][l], a[i, j, k, l])
149
+
150
+ a[i, j, k, l] = 2.0 * a[i, j, k, l]
151
+
152
+ wp.atomic_add(a, i, j, k, l, 1.0)
153
+
154
+ wp.expect_eq(a[i, j, k, l], 2.0 * expected[i, j, k, l] + 1.0)
155
+
156
+
157
+ def test_indexedarray_4d(test, device):
158
+ values = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10))
159
+ arr = wp.array(data=values, device=device)
160
+
161
+ indices0 = wp.array([1, 3], dtype=int, device=device)
162
+ indices1 = wp.array([2, 4, 8], dtype=int, device=device)
163
+ indices2 = wp.array([0, 5], dtype=int, device=device)
164
+ indices3 = wp.array([6, 7, 9], dtype=int, device=device)
165
+
166
+ iarr = wp.indexedarray4d(arr, [indices0, indices1, indices2, indices3])
167
+
168
+ test.assertEqual(iarr.dtype, arr.dtype)
169
+ test.assertEqual(iarr.ndim, 4)
170
+ test.assertEqual(iarr.shape, (2, 3, 2, 3))
171
+ test.assertEqual(iarr.size, 36)
172
+
173
+ expected_values = [
174
+ [
175
+ [[1206, 1207, 1209], [1256, 1257, 1259]],
176
+ [[1406, 1407, 1409], [1456, 1457, 1459]],
177
+ [[1806, 1807, 1809], [1856, 1857, 1859]],
178
+ ],
179
+ [
180
+ [[3206, 3207, 3209], [3256, 3257, 3259]],
181
+ [[3406, 3407, 3409], [3456, 3457, 3459]],
182
+ [[3806, 3807, 3809], [3856, 3857, 3859]],
183
+ ],
184
+ ]
185
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
186
+
187
+ wp.launch(kernel_4d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
188
+
189
+
190
+ def test_indexedarray_mixed(test, device):
191
+ # [[[ 0, 1, 2, 3],
192
+ # [ 4, 5, 6, 7],
193
+ # [ 8, 9, 10, 11],
194
+ # [12, 13, 14, 15]],
195
+ # [[16, 17, 18, 19],
196
+ # [20, 21, 22, 23],
197
+ # [24, 25, 26, 27],
198
+ # [28, 29, 30, 31]],
199
+ # [[32, 33, 34, 35],
200
+ # [36, 37, 38, 39],
201
+ # [40, 41, 42, 43],
202
+ # [44, 45, 46, 47],
203
+ # [[48, 49, 50, 51],
204
+ # [52, 53, 54, 55],
205
+ # [56, 57, 58, 59],
206
+ # [60, 61, 62, 63]]]]
207
+ values = np.arange(64, dtype=np.float32).reshape((4, 4, 4))
208
+
209
+ indices = wp.array([0, 3], dtype=int, device=device)
210
+
211
+ # -----
212
+
213
+ arr = wp.array(data=values, device=device)
214
+ iarr = wp.indexedarray(arr, [indices, None, None])
215
+ test.assertEqual(iarr.dtype, arr.dtype)
216
+ test.assertEqual(iarr.ndim, 3)
217
+ test.assertEqual(iarr.shape, (2, 4, 4))
218
+ test.assertEqual(iarr.size, 32)
219
+
220
+ expected_values = [
221
+ [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]],
222
+ [[48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61, 62, 63]],
223
+ ]
224
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
225
+
226
+ wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
227
+
228
+ # -----
229
+
230
+ arr = wp.array(data=values, device=device)
231
+ iarr = wp.indexedarray(arr, [indices, indices, None])
232
+ test.assertEqual(iarr.dtype, arr.dtype)
233
+ test.assertEqual(iarr.ndim, 3)
234
+ test.assertEqual(iarr.shape, (2, 2, 4))
235
+ test.assertEqual(iarr.size, 16)
236
+
237
+ expected_values = [[[0, 1, 2, 3], [12, 13, 14, 15]], [[48, 49, 50, 51], [60, 61, 62, 63]]]
238
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
239
+
240
+ wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
241
+
242
+ # -----
243
+
244
+ arr = wp.array(data=values, device=device)
245
+ iarr = wp.indexedarray(arr, [indices, None, indices])
246
+ test.assertEqual(iarr.dtype, arr.dtype)
247
+ test.assertEqual(iarr.ndim, 3)
248
+ test.assertEqual(iarr.shape, (2, 4, 2))
249
+ test.assertEqual(iarr.size, 16)
250
+
251
+ expected_values = [[[0, 3], [4, 7], [8, 11], [12, 15]], [[48, 51], [52, 55], [56, 59], [60, 63]]]
252
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
253
+
254
+ wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
255
+
256
+ # -----
257
+
258
+ arr = wp.array(data=values, device=device)
259
+ iarr = wp.indexedarray(arr, [None, indices, indices])
260
+ test.assertEqual(iarr.dtype, arr.dtype)
261
+ test.assertEqual(iarr.ndim, 3)
262
+ test.assertEqual(iarr.shape, (4, 2, 2))
263
+ test.assertEqual(iarr.size, 16)
264
+
265
+ expected_values = [[[0, 3], [12, 15]], [[16, 19], [28, 31]], [[32, 35], [44, 47]], [[48, 51], [60, 63]]]
266
+ expected_arr = wp.array(data=expected_values, dtype=float, device=device)
267
+
268
+ wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
269
+
270
+
271
+ vec2i = wp.types.vector(length=2, dtype=wp.int32)
272
+ vec3i = wp.types.vector(length=3, dtype=wp.int32)
273
+ vec4i = wp.types.vector(length=4, dtype=wp.int32)
274
+
275
+
276
+ @wp.kernel
277
+ def shape_kernel_1d(arr: wp.indexedarray1d(dtype=float), expected: int):
278
+ wp.expect_eq(arr.shape[0], expected)
279
+
280
+
281
+ @wp.kernel
282
+ def shape_kernel_2d(arr: wp.indexedarray2d(dtype=float), expected: vec2i):
283
+ wp.expect_eq(arr.shape[0], expected[0])
284
+ wp.expect_eq(arr.shape[1], expected[1])
285
+
286
+ # 1d slice
287
+ view = arr[0]
288
+ wp.expect_eq(view.shape[0], expected[1])
289
+
290
+
291
+ @wp.kernel
292
+ def shape_kernel_3d(arr: wp.indexedarray3d(dtype=float), expected: vec3i):
293
+ wp.expect_eq(arr.shape[0], expected[0])
294
+ wp.expect_eq(arr.shape[1], expected[1])
295
+ wp.expect_eq(arr.shape[2], expected[2])
296
+
297
+ # 2d slice
298
+ view2 = arr[0]
299
+ wp.expect_eq(view2.shape[0], expected[1])
300
+ wp.expect_eq(view2.shape[1], expected[2])
301
+
302
+ # 1d slice
303
+ view1 = arr[0, 0]
304
+ wp.expect_eq(view1.shape[0], expected[2])
305
+
306
+
307
+ @wp.kernel
308
+ def shape_kernel_4d(arr: wp.indexedarray4d(dtype=float), expected: vec4i):
309
+ wp.expect_eq(arr.shape[0], expected[0])
310
+ wp.expect_eq(arr.shape[1], expected[1])
311
+ wp.expect_eq(arr.shape[2], expected[2])
312
+ wp.expect_eq(arr.shape[3], expected[3])
313
+
314
+ # 3d slice
315
+ view3 = arr[0]
316
+ wp.expect_eq(view3.shape[0], expected[1])
317
+ wp.expect_eq(view3.shape[1], expected[2])
318
+ wp.expect_eq(view3.shape[2], expected[3])
319
+
320
+ # 2d slice
321
+ view2 = arr[0, 0]
322
+ wp.expect_eq(view2.shape[0], expected[2])
323
+ wp.expect_eq(view2.shape[1], expected[3])
324
+
325
+ # 1d slice
326
+ view1 = arr[0, 0, 0]
327
+ wp.expect_eq(view1.shape[0], expected[3])
328
+
329
+
330
+ def test_indexedarray_shape(test, device):
331
+ with wp.ScopedDevice(device):
332
+ data1 = wp.zeros(10, dtype=float)
333
+ data2 = wp.zeros((10, 20), dtype=float)
334
+ data3 = wp.zeros((10, 20, 30), dtype=float)
335
+ data4 = wp.zeros((10, 20, 30, 40), dtype=float)
336
+
337
+ indices1 = wp.array(data=[2, 7], dtype=int)
338
+ indices2 = wp.array(data=[2, 7, 12, 17], dtype=int)
339
+ indices3 = wp.array(data=[2, 7, 12, 17, 22, 27], dtype=int)
340
+ indices4 = wp.array(data=[2, 7, 12, 17, 22, 27, 32, 37], dtype=int)
341
+
342
+ ia1 = wp.indexedarray(data1, [indices1])
343
+ wp.launch(shape_kernel_1d, dim=1, inputs=[ia1, 2])
344
+
345
+ ia2_1 = wp.indexedarray(data2, [indices1, None])
346
+ ia2_2 = wp.indexedarray(data2, [None, indices2])
347
+ ia2_3 = wp.indexedarray(data2, [indices1, indices2])
348
+ wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_1, vec2i(2, 20)])
349
+ wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_2, vec2i(10, 4)])
350
+ wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_3, vec2i(2, 4)])
351
+
352
+ ia3_1 = wp.indexedarray(data3, [indices1, None, None])
353
+ ia3_2 = wp.indexedarray(data3, [None, indices2, None])
354
+ ia3_3 = wp.indexedarray(data3, [None, None, indices3])
355
+ ia3_4 = wp.indexedarray(data3, [indices1, indices2, None])
356
+ ia3_5 = wp.indexedarray(data3, [indices1, None, indices3])
357
+ ia3_6 = wp.indexedarray(data3, [None, indices2, indices3])
358
+ ia3_7 = wp.indexedarray(data3, [indices1, indices2, indices3])
359
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_1, vec3i(2, 20, 30)])
360
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_2, vec3i(10, 4, 30)])
361
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_3, vec3i(10, 20, 6)])
362
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_4, vec3i(2, 4, 30)])
363
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_5, vec3i(2, 20, 6)])
364
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_6, vec3i(10, 4, 6)])
365
+ wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_7, vec3i(2, 4, 6)])
366
+
367
+ ia4_1 = wp.indexedarray(data4, [indices1, None, None, None])
368
+ ia4_2 = wp.indexedarray(data4, [indices1, None, None, indices4])
369
+ ia4_3 = wp.indexedarray(data4, [None, indices2, indices3, None])
370
+ ia4_4 = wp.indexedarray(data4, [indices1, indices2, indices3, indices4])
371
+ wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_1, vec4i(2, 20, 30, 40)])
372
+ wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_2, vec4i(2, 20, 30, 8)])
373
+ wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_3, vec4i(10, 4, 6, 40)])
374
+ wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_4, vec4i(2, 4, 6, 8)])
375
+
376
+ wp.synchronize_device(device)
377
+
378
+
379
+ def test_indexedarray_getitem(test, device):
380
+ with wp.ScopedDevice(device):
381
+ data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
382
+
383
+ I = wp.array(data=[0, 1, 2], dtype=int)
384
+
385
+ # use constructor
386
+ a1 = wp.indexedarray(data, [None, None, I])
387
+ a2 = wp.indexedarray(data, [None, I])
388
+ a3 = wp.indexedarray(data, [None, I, I])
389
+ a4 = wp.indexedarray(data, [I])
390
+ a5 = wp.indexedarray(data, [I, None, I])
391
+ a6 = wp.indexedarray(data, [I, I])
392
+ a7 = wp.indexedarray(data, [I, I, I])
393
+
394
+ # use array.__getitem__()
395
+ b1 = data[:, :, I]
396
+ b2 = data[:, I]
397
+ b3 = data[:, I, I]
398
+ b4 = data[I]
399
+ b5 = data[I, :, I]
400
+ b6 = data[I, I]
401
+ b7 = data[I, I, I]
402
+
403
+ test.assertEqual(type(a1), type(b1))
404
+ test.assertEqual(type(a2), type(b2))
405
+ test.assertEqual(type(a3), type(b3))
406
+ test.assertEqual(type(a4), type(b4))
407
+ test.assertEqual(type(a5), type(b5))
408
+ test.assertEqual(type(a6), type(b6))
409
+ test.assertEqual(type(a7), type(b7))
410
+
411
+ assert_np_equal(a1.numpy(), b1.numpy())
412
+ assert_np_equal(a2.numpy(), b2.numpy())
413
+ assert_np_equal(a3.numpy(), b3.numpy())
414
+ assert_np_equal(a4.numpy(), b4.numpy())
415
+ assert_np_equal(a5.numpy(), b5.numpy())
416
+ assert_np_equal(a6.numpy(), b6.numpy())
417
+ assert_np_equal(a7.numpy(), b7.numpy())
418
+
419
+
420
+ def test_indexedarray_slicing(test, device):
421
+ with wp.ScopedDevice(device):
422
+ data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
423
+
424
+ # test equivalence of slicing and indexing the same range
425
+ s = slice(0, 3)
426
+ I = wp.array(data=[0, 1, 2], dtype=int)
427
+
428
+ a0 = data[s, s, s]
429
+ test.assertEqual(type(a0), wp.array)
430
+ a1 = data[s, s, I]
431
+ test.assertEqual(type(a1), wp.indexedarray)
432
+ a2 = data[s, I, s]
433
+ test.assertEqual(type(a2), wp.indexedarray)
434
+ a3 = data[s, I, I]
435
+ test.assertEqual(type(a3), wp.indexedarray)
436
+ a4 = data[I, s, s]
437
+ test.assertEqual(type(a4), wp.indexedarray)
438
+ a5 = data[I, s, I]
439
+ test.assertEqual(type(a5), wp.indexedarray)
440
+ a6 = data[I, I, s]
441
+ test.assertEqual(type(a6), wp.indexedarray)
442
+ a7 = data[I, I, I]
443
+ test.assertEqual(type(a7), wp.indexedarray)
444
+
445
+ expected = a0.numpy()
446
+
447
+ assert_np_equal(a1.numpy(), expected)
448
+ assert_np_equal(a2.numpy(), expected)
449
+ assert_np_equal(a3.numpy(), expected)
450
+ assert_np_equal(a4.numpy(), expected)
451
+ assert_np_equal(a5.numpy(), expected)
452
+ assert_np_equal(a6.numpy(), expected)
453
+ assert_np_equal(a7.numpy(), expected)
454
+
455
+
456
+ # generic increment kernels that work with any array (regular or indexed)
457
+ @wp.kernel
458
+ def inc_1d(a: Any):
459
+ i = wp.tid()
460
+ a[i] = a[i] + 1
461
+
462
+
463
+ @wp.kernel
464
+ def inc_2d(a: Any):
465
+ i, j = wp.tid()
466
+ a[i, j] = a[i, j] + 1
467
+
468
+
469
+ @wp.kernel
470
+ def inc_3d(a: Any):
471
+ i, j, k = wp.tid()
472
+ a[i, j, k] = a[i, j, k] + 1
473
+
474
+
475
+ @wp.kernel
476
+ def inc_4d(a: Any):
477
+ i, j, k, l = wp.tid()
478
+ a[i, j, k, l] = a[i, j, k, l] + 1
479
+
480
+
481
+ # optional overloads to avoid module reloading
482
+ wp.overload(inc_1d, [wp.array1d(dtype=int)])
483
+ wp.overload(inc_2d, [wp.array2d(dtype=int)])
484
+ wp.overload(inc_3d, [wp.array3d(dtype=int)])
485
+ wp.overload(inc_4d, [wp.array4d(dtype=int)])
486
+
487
+ wp.overload(inc_1d, [wp.indexedarray1d(dtype=int)])
488
+ wp.overload(inc_2d, [wp.indexedarray2d(dtype=int)])
489
+ wp.overload(inc_3d, [wp.indexedarray3d(dtype=int)])
490
+ wp.overload(inc_4d, [wp.indexedarray4d(dtype=int)])
491
+
492
+
493
+ def test_indexedarray_generics(test, device):
494
+ with wp.ScopedDevice(device):
495
+ data1 = wp.zeros((5,), dtype=int)
496
+ data2 = wp.zeros((5, 5), dtype=int)
497
+ data3 = wp.zeros((5, 5, 5), dtype=int)
498
+ data4 = wp.zeros((5, 5, 5, 5), dtype=int)
499
+
500
+ indices = wp.array(data=[0, 4], dtype=int)
501
+
502
+ ia1 = wp.indexedarray(data1, [indices])
503
+ ia2 = wp.indexedarray(data2, [indices, indices])
504
+ ia3 = wp.indexedarray(data3, [indices, indices, indices])
505
+ ia4 = wp.indexedarray(data4, [indices, indices, indices, indices])
506
+
507
+ wp.launch(inc_1d, dim=data1.shape, inputs=[data1])
508
+ wp.launch(inc_2d, dim=data2.shape, inputs=[data2])
509
+ wp.launch(inc_3d, dim=data3.shape, inputs=[data3])
510
+ wp.launch(inc_4d, dim=data4.shape, inputs=[data4])
511
+
512
+ wp.launch(inc_1d, dim=ia1.shape, inputs=[ia1])
513
+ wp.launch(inc_2d, dim=ia2.shape, inputs=[ia2])
514
+ wp.launch(inc_3d, dim=ia3.shape, inputs=[ia3])
515
+ wp.launch(inc_4d, dim=ia4.shape, inputs=[ia4])
516
+
517
+ expected1 = np.ones(5, dtype=np.int32)
518
+ expected1[0] = 2
519
+ expected1[4] = 2
520
+
521
+ expected2 = np.ones((5, 5), dtype=np.int32)
522
+ expected2[0, 0] = 2
523
+ expected2[0, 4] = 2
524
+ expected2[4, 0] = 2
525
+ expected2[4, 4] = 2
526
+
527
+ expected3 = np.ones((5, 5, 5), dtype=np.int32)
528
+ expected3[0, 0, 0] = 2
529
+ expected3[0, 0, 4] = 2
530
+ expected3[0, 4, 0] = 2
531
+ expected3[0, 4, 4] = 2
532
+ expected3[4, 0, 0] = 2
533
+ expected3[4, 0, 4] = 2
534
+ expected3[4, 4, 0] = 2
535
+ expected3[4, 4, 4] = 2
536
+
537
+ expected4 = np.ones((5, 5, 5, 5), dtype=np.int32)
538
+ expected4[0, 0, 0, 0] = 2
539
+ expected4[0, 0, 0, 4] = 2
540
+ expected4[0, 0, 4, 0] = 2
541
+ expected4[0, 0, 4, 4] = 2
542
+ expected4[0, 4, 0, 0] = 2
543
+ expected4[0, 4, 0, 4] = 2
544
+ expected4[0, 4, 4, 0] = 2
545
+ expected4[0, 4, 4, 4] = 2
546
+ expected4[4, 0, 0, 0] = 2
547
+ expected4[4, 0, 0, 4] = 2
548
+ expected4[4, 0, 4, 0] = 2
549
+ expected4[4, 0, 4, 4] = 2
550
+ expected4[4, 4, 0, 0] = 2
551
+ expected4[4, 4, 0, 4] = 2
552
+ expected4[4, 4, 4, 0] = 2
553
+ expected4[4, 4, 4, 4] = 2
554
+
555
+ assert_np_equal(data1.numpy(), expected1)
556
+ assert_np_equal(data2.numpy(), expected2)
557
+ assert_np_equal(data3.numpy(), expected3)
558
+ assert_np_equal(data4.numpy(), expected4)
559
+
560
+ assert_np_equal(ia1.numpy(), np.full((2,), 2, dtype=np.int32))
561
+ assert_np_equal(ia2.numpy(), np.full((2, 2), 2, dtype=np.int32))
562
+ assert_np_equal(ia3.numpy(), np.full((2, 2, 2), 2, dtype=np.int32))
563
+ assert_np_equal(ia4.numpy(), np.full((2, 2, 2, 2), 2, dtype=np.int32))
564
+
565
+
566
+ def test_indexedarray_empty(test, device):
567
+ # Test whether common operations work with empty (zero-sized) indexed arrays
568
+ # without throwing exceptions.
569
+
570
+ def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
571
+ data_shape = (1,) * ndim
572
+ dtype_shape = ()
573
+
574
+ if wptype in wp.types.scalar_types:
575
+ # scalar, vector, or matrix
576
+ if ncols > 0:
577
+ if nrows > 0:
578
+ wptype = wp.types.matrix((nrows, ncols), wptype)
579
+ else:
580
+ wptype = wp.types.vector(ncols, wptype)
581
+ dtype_shape = wptype._shape_
582
+ fill_value = wptype(42)
583
+ else:
584
+ # struct
585
+ fill_value = wptype()
586
+
587
+ # create a data array
588
+ data = wp.empty(data_shape, dtype=wptype, device=device, requires_grad=True)
589
+
590
+ # create a zero-sized array of indices
591
+ indices = wp.empty(0, dtype=int, device=device)
592
+
593
+ a = data[indices]
594
+
595
+ # we expect dim to be zero for the empty indexed array, unchanged otherwise
596
+ expected_shape = (0, *data_shape[1:])
597
+
598
+ test.assertEqual(a.size, 0)
599
+ test.assertEqual(a.shape, expected_shape)
600
+
601
+ # all of these methods should succeed with zero-sized arrays
602
+ a.zero_()
603
+ a.fill_(fill_value)
604
+ b = a.contiguous()
605
+
606
+ b = wp.empty_like(a)
607
+ b = wp.zeros_like(a)
608
+ b = wp.full_like(a, fill_value)
609
+ b = wp.clone(a)
610
+
611
+ wp.copy(a, b)
612
+ a.assign(b)
613
+
614
+ na = a.numpy()
615
+ test.assertEqual(na.size, 0)
616
+ test.assertEqual(na.shape, (*expected_shape, *dtype_shape))
617
+ test.assertEqual(na.dtype, nptype)
618
+
619
+ test.assertEqual(a.list(), [])
620
+
621
+ for ndim in range(1, 5):
622
+ # test with scalars, vectors, and matrices
623
+ for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
624
+ # scalars
625
+ test_empty_ops(ndim, 0, 0, wptype, nptype)
626
+
627
+ for ncols in [2, 3, 4, 5]:
628
+ # vectors
629
+ test_empty_ops(ndim, 0, ncols, wptype, nptype)
630
+ # square matrices
631
+ test_empty_ops(ndim, ncols, ncols, wptype, nptype)
632
+
633
+ # non-square matrices
634
+ test_empty_ops(ndim, 2, 3, wptype, nptype)
635
+ test_empty_ops(ndim, 3, 2, wptype, nptype)
636
+ test_empty_ops(ndim, 3, 4, wptype, nptype)
637
+ test_empty_ops(ndim, 4, 3, wptype, nptype)
638
+
639
+ # test with structs
640
+ test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
641
+
642
+
643
+ def test_indexedarray_fill_scalar(test, device):
644
+ dim_x = 4
645
+
646
+ for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
647
+ data1 = wp.zeros(dim_x, dtype=wptype, device=device)
648
+ data2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
649
+ data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
650
+ data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
651
+
652
+ indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
653
+
654
+ a1 = data1[indices]
655
+ a2 = data2[indices]
656
+ a3 = data3[indices]
657
+ a4 = data4[indices]
658
+
659
+ assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
660
+ assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
661
+ assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
662
+ assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
663
+
664
+ # fill with int value
665
+ fill_value = 42
666
+
667
+ a1.fill_(fill_value)
668
+ a2.fill_(fill_value)
669
+ a3.fill_(fill_value)
670
+ a4.fill_(fill_value)
671
+
672
+ assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
673
+ assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
674
+ assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
675
+ assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
676
+
677
+ a1.zero_()
678
+ a2.zero_()
679
+ a3.zero_()
680
+ a4.zero_()
681
+
682
+ assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
683
+ assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
684
+ assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
685
+ assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
686
+
687
+ if wptype in wp.types.float_types:
688
+ # fill with float value
689
+ fill_value = 13.37
690
+
691
+ a1.fill_(fill_value)
692
+ a2.fill_(fill_value)
693
+ a3.fill_(fill_value)
694
+ a4.fill_(fill_value)
695
+
696
+ assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
697
+ assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
698
+ assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
699
+ assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
700
+
701
+ # fill with Warp scalar value
702
+ fill_value = wptype(17)
703
+
704
+ a1.fill_(fill_value)
705
+ a2.fill_(fill_value)
706
+ a3.fill_(fill_value)
707
+ a4.fill_(fill_value)
708
+
709
+ assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
710
+ assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
711
+ assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
712
+ assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
713
+
714
+
715
+ def test_indexedarray_fill_vector(test, device):
716
+ # test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
717
+
718
+ dim_x = 4
719
+
720
+ for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
721
+ # vector types
722
+ vector_types = [
723
+ wp.types.vector(2, wptype),
724
+ wp.types.vector(3, wptype),
725
+ wp.types.vector(4, wptype),
726
+ wp.types.vector(5, wptype),
727
+ ]
728
+
729
+ for vec_type in vector_types:
730
+ vec_len = vec_type._length_
731
+
732
+ data1 = wp.zeros(dim_x, dtype=vec_type, device=device)
733
+ data2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
734
+ data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
735
+ data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
736
+
737
+ indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
738
+
739
+ a1 = data1[indices]
740
+ a2 = data2[indices]
741
+ a3 = data3[indices]
742
+ a4 = data4[indices]
743
+
744
+ assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
745
+ assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
746
+ assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
747
+ assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
748
+
749
+ # fill with int scalar
750
+ fill_value = 42
751
+
752
+ a1.fill_(fill_value)
753
+ a2.fill_(fill_value)
754
+ a3.fill_(fill_value)
755
+ a4.fill_(fill_value)
756
+
757
+ assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
758
+ assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
759
+ assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
760
+ assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
761
+
762
+ # test zeroing
763
+ a1.zero_()
764
+ a2.zero_()
765
+ a3.zero_()
766
+ a4.zero_()
767
+
768
+ assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
769
+ assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
770
+ assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
771
+ assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
772
+
773
+ # vector values can be passed as a list, numpy array, or Warp vector instance
774
+ fill_list = [17, 42, 99, 101, 127][:vec_len]
775
+ fill_arr = np.array(fill_list, dtype=nptype)
776
+ fill_vec = vec_type(fill_list)
777
+
778
+ expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
779
+ expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
780
+ expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
781
+ expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
782
+
783
+ # fill with list of vector length
784
+ a1.fill_(fill_list)
785
+ a2.fill_(fill_list)
786
+ a3.fill_(fill_list)
787
+ a4.fill_(fill_list)
788
+
789
+ assert_np_equal(a1.numpy(), expected1)
790
+ assert_np_equal(a2.numpy(), expected2)
791
+ assert_np_equal(a3.numpy(), expected3)
792
+ assert_np_equal(a4.numpy(), expected4)
793
+
794
+ # clear
795
+ a1.zero_()
796
+ a2.zero_()
797
+ a3.zero_()
798
+ a4.zero_()
799
+
800
+ # fill with numpy array of vector length
801
+ a1.fill_(fill_arr)
802
+ a2.fill_(fill_arr)
803
+ a3.fill_(fill_arr)
804
+ a4.fill_(fill_arr)
805
+
806
+ assert_np_equal(a1.numpy(), expected1)
807
+ assert_np_equal(a2.numpy(), expected2)
808
+ assert_np_equal(a3.numpy(), expected3)
809
+ assert_np_equal(a4.numpy(), expected4)
810
+
811
+ # clear
812
+ a1.zero_()
813
+ a2.zero_()
814
+ a3.zero_()
815
+ a4.zero_()
816
+
817
+ # fill with vec instance
818
+ a1.fill_(fill_vec)
819
+ a2.fill_(fill_vec)
820
+ a3.fill_(fill_vec)
821
+ a4.fill_(fill_vec)
822
+
823
+ assert_np_equal(a1.numpy(), expected1)
824
+ assert_np_equal(a2.numpy(), expected2)
825
+ assert_np_equal(a3.numpy(), expected3)
826
+ assert_np_equal(a4.numpy(), expected4)
827
+
828
+ if wptype in wp.types.float_types:
829
+ # fill with float scalar
830
+ fill_value = 13.37
831
+
832
+ a1.fill_(fill_value)
833
+ a2.fill_(fill_value)
834
+ a3.fill_(fill_value)
835
+ a4.fill_(fill_value)
836
+
837
+ assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
838
+ assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
839
+ assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
840
+ assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
841
+
842
+ # fill with float list of vector length
843
+ fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
844
+
845
+ a1.fill_(fill_list)
846
+ a2.fill_(fill_list)
847
+ a3.fill_(fill_list)
848
+ a4.fill_(fill_list)
849
+
850
+ expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
851
+ expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
852
+ expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
853
+ expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
854
+
855
+ assert_np_equal(a1.numpy(), expected1)
856
+ assert_np_equal(a2.numpy(), expected2)
857
+ assert_np_equal(a3.numpy(), expected3)
858
+ assert_np_equal(a4.numpy(), expected4)
859
+
860
+
861
+ def test_indexedarray_fill_matrix(test, device):
862
+ # test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
863
+
864
+ dim_x = 4
865
+
866
+ for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
867
+ # matrix types
868
+ matrix_types = [
869
+ # square matrices
870
+ wp.types.matrix((2, 2), wptype),
871
+ wp.types.matrix((3, 3), wptype),
872
+ wp.types.matrix((4, 4), wptype),
873
+ wp.types.matrix((5, 5), wptype),
874
+ # non-square matrices
875
+ wp.types.matrix((2, 3), wptype),
876
+ wp.types.matrix((3, 2), wptype),
877
+ wp.types.matrix((3, 4), wptype),
878
+ wp.types.matrix((4, 3), wptype),
879
+ ]
880
+
881
+ for mat_type in matrix_types:
882
+ mat_len = mat_type._length_
883
+ mat_shape = mat_type._shape_
884
+
885
+ data1 = wp.zeros(dim_x, dtype=mat_type, device=device)
886
+ data2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
887
+ data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
888
+ data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
889
+
890
+ indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
891
+
892
+ a1 = data1[indices]
893
+ a2 = data2[indices]
894
+ a3 = data3[indices]
895
+ a4 = data4[indices]
896
+
897
+ assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
898
+ assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
899
+ assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
900
+ assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
901
+
902
+ # fill with scalar
903
+ fill_value = 42
904
+
905
+ a1.fill_(fill_value)
906
+ a2.fill_(fill_value)
907
+ a3.fill_(fill_value)
908
+ a4.fill_(fill_value)
909
+
910
+ assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
911
+ assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
912
+ assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
913
+ assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
914
+
915
+ # test zeroing
916
+ a1.zero_()
917
+ a2.zero_()
918
+ a3.zero_()
919
+ a4.zero_()
920
+
921
+ assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
922
+ assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
923
+ assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
924
+ assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
925
+
926
+ # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
927
+ if wptype != wp.bool:
928
+ fill_arr1 = np.arange(mat_len, dtype=nptype)
929
+ else:
930
+ fill_arr1 = np.ones(mat_len, dtype=nptype)
931
+ fill_arr2 = fill_arr1.reshape(mat_shape)
932
+ fill_list1 = list(fill_arr1)
933
+ fill_list2 = [list(row) for row in fill_arr2]
934
+ fill_mat = mat_type(fill_arr1)
935
+
936
+ expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
937
+ expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
938
+ expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
939
+ expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
940
+
941
+ # fill with 1d numpy array
942
+ a1.fill_(fill_arr1)
943
+ a2.fill_(fill_arr1)
944
+ a3.fill_(fill_arr1)
945
+ a4.fill_(fill_arr1)
946
+
947
+ assert_np_equal(a1.numpy(), expected1)
948
+ assert_np_equal(a2.numpy(), expected2)
949
+ assert_np_equal(a3.numpy(), expected3)
950
+ assert_np_equal(a4.numpy(), expected4)
951
+
952
+ # clear
953
+ a1.zero_()
954
+ a2.zero_()
955
+ a3.zero_()
956
+ a4.zero_()
957
+
958
+ # fill with 2d numpy array
959
+ a1.fill_(fill_arr2)
960
+ a2.fill_(fill_arr2)
961
+ a3.fill_(fill_arr2)
962
+ a4.fill_(fill_arr2)
963
+
964
+ assert_np_equal(a1.numpy(), expected1)
965
+ assert_np_equal(a2.numpy(), expected2)
966
+ assert_np_equal(a3.numpy(), expected3)
967
+ assert_np_equal(a4.numpy(), expected4)
968
+
969
+ # clear
970
+ a1.zero_()
971
+ a2.zero_()
972
+ a3.zero_()
973
+ a4.zero_()
974
+
975
+ # fill with flat list
976
+ a1.fill_(fill_list1)
977
+ a2.fill_(fill_list1)
978
+ a3.fill_(fill_list1)
979
+ a4.fill_(fill_list1)
980
+
981
+ assert_np_equal(a1.numpy(), expected1)
982
+ assert_np_equal(a2.numpy(), expected2)
983
+ assert_np_equal(a3.numpy(), expected3)
984
+ assert_np_equal(a4.numpy(), expected4)
985
+
986
+ # clear
987
+ a1.zero_()
988
+ a2.zero_()
989
+ a3.zero_()
990
+ a4.zero_()
991
+
992
+ # fill with nested list
993
+ a1.fill_(fill_list2)
994
+ a2.fill_(fill_list2)
995
+ a3.fill_(fill_list2)
996
+ a4.fill_(fill_list2)
997
+
998
+ assert_np_equal(a1.numpy(), expected1)
999
+ assert_np_equal(a2.numpy(), expected2)
1000
+ assert_np_equal(a3.numpy(), expected3)
1001
+ assert_np_equal(a4.numpy(), expected4)
1002
+
1003
+ # clear
1004
+ a1.zero_()
1005
+ a2.zero_()
1006
+ a3.zero_()
1007
+ a4.zero_()
1008
+
1009
+ # fill with mat instance
1010
+ a1.fill_(fill_mat)
1011
+ a2.fill_(fill_mat)
1012
+ a3.fill_(fill_mat)
1013
+ a4.fill_(fill_mat)
1014
+
1015
+ assert_np_equal(a1.numpy(), expected1)
1016
+ assert_np_equal(a2.numpy(), expected2)
1017
+ assert_np_equal(a3.numpy(), expected3)
1018
+ assert_np_equal(a4.numpy(), expected4)
1019
+
1020
+
1021
+ def test_indexedarray_fill_struct(test, device):
1022
+ dim_x = 8
1023
+
1024
+ nptype = FillStruct.numpy_dtype()
1025
+
1026
+ data1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
1027
+ data2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
1028
+ data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
1029
+ data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
1030
+
1031
+ indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
1032
+
1033
+ a1 = data1[indices]
1034
+ a2 = data2[indices]
1035
+ a3 = data3[indices]
1036
+ a4 = data4[indices]
1037
+
1038
+ assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
1039
+ assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
1040
+ assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
1041
+ assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
1042
+
1043
+ s = FillStruct()
1044
+
1045
+ # fill with default struct value (should be all zeros)
1046
+ a1.fill_(s)
1047
+ a2.fill_(s)
1048
+ a3.fill_(s)
1049
+ a4.fill_(s)
1050
+
1051
+ assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
1052
+ assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
1053
+ assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
1054
+ assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
1055
+
1056
+ # scalars
1057
+ s.i1 = -17
1058
+ s.i2 = 42
1059
+ s.i4 = 99
1060
+ s.i8 = 101
1061
+ s.f2 = -1.25
1062
+ s.f4 = 13.37
1063
+ s.f8 = 0.125
1064
+ # vectors
1065
+ s.v2 = [21, 22]
1066
+ s.v3 = [31, 32, 33]
1067
+ s.v4 = [41, 42, 43, 44]
1068
+ s.v5 = [51, 52, 53, 54, 55]
1069
+ # matrices
1070
+ s.m2 = [[61, 62]] * 2
1071
+ s.m3 = [[71, 72, 73]] * 3
1072
+ s.m4 = [[81, 82, 83, 84]] * 4
1073
+ s.m5 = [[91, 92, 93, 94, 95]] * 5
1074
+ # arrays
1075
+ s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
1076
+ s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
1077
+ s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
1078
+ s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
1079
+
1080
+ # fill with custom struct value
1081
+ a1.fill_(s)
1082
+ a2.fill_(s)
1083
+ a3.fill_(s)
1084
+ a4.fill_(s)
1085
+
1086
+ ns = s.numpy_value()
1087
+
1088
+ expected1 = np.empty(a1.shape, dtype=nptype)
1089
+ expected2 = np.empty(a2.shape, dtype=nptype)
1090
+ expected3 = np.empty(a3.shape, dtype=nptype)
1091
+ expected4 = np.empty(a4.shape, dtype=nptype)
1092
+
1093
+ expected1.fill(ns)
1094
+ expected2.fill(ns)
1095
+ expected3.fill(ns)
1096
+ expected4.fill(ns)
1097
+
1098
+ assert_np_equal(a1.numpy(), expected1)
1099
+ assert_np_equal(a2.numpy(), expected2)
1100
+ assert_np_equal(a3.numpy(), expected3)
1101
+ assert_np_equal(a4.numpy(), expected4)
1102
+
1103
+ # test clearing
1104
+ a1.zero_()
1105
+ a2.zero_()
1106
+ a3.zero_()
1107
+ a4.zero_()
1108
+
1109
+ assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
1110
+ assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
1111
+ assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
1112
+ assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
1113
+
1114
+
1115
+ devices = get_test_devices()
1116
+
1117
+
1118
+ class TestIndexedArray(unittest.TestCase):
1119
+ pass
1120
+
1121
+
1122
+ add_function_test(TestIndexedArray, "test_indexedarray_1d", test_indexedarray_1d, devices=devices)
1123
+ add_function_test(TestIndexedArray, "test_indexedarray_2d", test_indexedarray_2d, devices=devices)
1124
+ add_function_test(TestIndexedArray, "test_indexedarray_3d", test_indexedarray_3d, devices=devices)
1125
+ add_function_test(TestIndexedArray, "test_indexedarray_4d", test_indexedarray_4d, devices=devices)
1126
+ add_function_test(TestIndexedArray, "test_indexedarray_mixed", test_indexedarray_mixed, devices=devices)
1127
+ add_function_test(TestIndexedArray, "test_indexedarray_shape", test_indexedarray_shape, devices=devices)
1128
+ add_function_test(TestIndexedArray, "test_indexedarray_getitem", test_indexedarray_getitem, devices=devices)
1129
+ add_function_test(TestIndexedArray, "test_indexedarray_slicing", test_indexedarray_slicing, devices=devices)
1130
+ add_function_test(TestIndexedArray, "test_indexedarray_generics", test_indexedarray_generics, devices=devices)
1131
+ add_function_test(TestIndexedArray, "test_indexedarray_empty", test_indexedarray_empty, devices=devices)
1132
+ add_function_test(TestIndexedArray, "test_indexedarray_fill_scalar", test_indexedarray_fill_scalar, devices=devices)
1133
+ add_function_test(TestIndexedArray, "test_indexedarray_fill_vector", test_indexedarray_fill_vector, devices=devices)
1134
+ add_function_test(TestIndexedArray, "test_indexedarray_fill_matrix", test_indexedarray_fill_matrix, devices=devices)
1135
+ add_function_test(TestIndexedArray, "test_indexedarray_fill_struct", test_indexedarray_fill_struct, devices=devices)
1136
+
1137
+
1138
+ if __name__ == "__main__":
1139
+ wp.clear_kernel_cache()
1140
+ unittest.main(verbosity=2)