vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +107 -0
- vllm/_aiter_ops.py +1018 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2925 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +434 -0
- vllm/attention/backends/registry.py +286 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +975 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +120 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +469 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +51 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +136 -0
- vllm/attention/selector.py +268 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +117 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +448 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +827 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +180 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +614 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +315 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +136 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +260 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +1154 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +96 -0
- vllm/config/model.py +2274 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +131 -0
- vllm/config/parallel.py +653 -0
- vllm/config/pooler.py +124 -0
- vllm/config/scheduler.py +297 -0
- vllm/config/speculative.py +643 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +94 -0
- vllm/config/utils.py +324 -0
- vllm/config/vllm.py +1353 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +99 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1154 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +532 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1790 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2106 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +188 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1837 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1762 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1891 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +2465 -0
- vllm/entrypoints/openai/run_batch.py +631 -0
- vllm/entrypoints/openai/serving_chat.py +1782 -0
- vllm/entrypoints/openai/serving_completion.py +716 -0
- vllm/entrypoints/openai/serving_engine.py +1478 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_responses.py +2032 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +281 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +559 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +50 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +237 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +67 -0
- vllm/entrypoints/pooling/embed/protocol.py +208 -0
- vllm/entrypoints/pooling/embed/serving.py +697 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +63 -0
- vllm/entrypoints/pooling/pooling/protocol.py +148 -0
- vllm/entrypoints/pooling/pooling/serving.py +348 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +149 -0
- vllm/entrypoints/pooling/score/protocol.py +145 -0
- vllm/entrypoints/pooling/score/serving.py +505 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +148 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +240 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1710 -0
- vllm/forward_context.py +358 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +298 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +42 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +165 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +747 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +74 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/models.py +903 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +412 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +358 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +306 -0
- vllm/lora/worker_manager.py +268 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +595 -0
- vllm/model_executor/layers/attention_layer_base.py +32 -0
- vllm/model_executor/layers/batch_invariant.py +1058 -0
- vllm/model_executor/layers/conv.py +256 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +110 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +938 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
- vllm/model_executor/layers/fused_moe/layer.py +2152 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +388 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +255 -0
- vllm/model_executor/layers/mla.py +176 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +179 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +225 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1348 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +687 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1637 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +527 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +639 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
- vllm/model_executor/layers/rotary_embedding/base.py +240 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +321 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +349 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +296 -0
- vllm/model_executor/model_loader/weight_utils.py +1147 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +569 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +634 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +494 -0
- vllm/model_executor/models/bailing_moe.py +645 -0
- vllm/model_executor/models/bamba.py +516 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1098 -0
- vllm/model_executor/models/chatglm.py +499 -0
- vllm/model_executor/models/clip.py +1005 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +470 -0
- vllm/model_executor/models/config.py +510 -0
- vllm/model_executor/models/dbrx.py +485 -0
- vllm/model_executor/models/deepencoder.py +676 -0
- vllm/model_executor/models/deepseek_eagle.py +252 -0
- vllm/model_executor/models/deepseek_mtp.py +446 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1715 -0
- vllm/model_executor/models/deepseek_vl2.py +644 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +874 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1710 -0
- vllm/model_executor/models/ernie45_vl_moe.py +800 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +525 -0
- vllm/model_executor/models/exaone4.py +517 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +544 -0
- vllm/model_executor/models/falcon_h1.py +680 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +436 -0
- vllm/model_executor/models/gemma3.py +577 -0
- vllm/model_executor/models/gemma3_mm.py +665 -0
- vllm/model_executor/models/gemma3n.py +1167 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +298 -0
- vllm/model_executor/models/glm4_1v.py +1854 -0
- vllm/model_executor/models/glm4_moe.py +738 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +785 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +345 -0
- vllm/model_executor/models/gpt_neox.py +343 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +476 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +704 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +555 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1028 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +718 -0
- vllm/model_executor/models/interfaces.py +1148 -0
- vllm/model_executor/models/interfaces_base.py +243 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +454 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +609 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1765 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +658 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +516 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +704 -0
- vllm/model_executor/models/llama4.py +857 -0
- vllm/model_executor/models/llama4_eagle.py +216 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +743 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +828 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +657 -0
- vllm/model_executor/models/minicpm3.py +234 -0
- vllm/model_executor/models/minicpm_eagle.py +385 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1744 -0
- vllm/model_executor/models/minimax_m2.py +546 -0
- vllm/model_executor/models/minimax_text_01.py +1010 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1151 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +452 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1553 -0
- vllm/model_executor/models/moonvit.py +686 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
- vllm/model_executor/models/nemotron.py +502 -0
- vllm/model_executor/models/nemotron_h.py +850 -0
- vllm/model_executor/models/nemotron_nas.py +473 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +413 -0
- vllm/model_executor/models/olmo2.py +455 -0
- vllm/model_executor/models/olmoe.py +494 -0
- vllm/model_executor/models/opencua.py +271 -0
- vllm/model_executor/models/openpangu.py +1051 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +366 -0
- vllm/model_executor/models/ouro.py +508 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1380 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +376 -0
- vllm/model_executor/models/phi.py +370 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +670 -0
- vllm/model_executor/models/pixtral.py +1380 -0
- vllm/model_executor/models/plamo2.py +966 -0
- vllm/model_executor/models/plamo3.py +441 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +569 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
- vllm/model_executor/models/qwen2_5_vl.py +1594 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +590 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1593 -0
- vllm/model_executor/models/qwen3.py +332 -0
- vllm/model_executor/models/qwen3_moe.py +738 -0
- vllm/model_executor/models/qwen3_next.py +1390 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
- vllm/model_executor/models/qwen3_vl.py +1686 -0
- vllm/model_executor/models/qwen3_vl_moe.py +470 -0
- vllm/model_executor/models/qwen_vl.py +803 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1183 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +493 -0
- vllm/model_executor/models/siglip.py +1245 -0
- vllm/model_executor/models/siglip2navit.py +723 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +485 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +366 -0
- vllm/model_executor/models/step3_text.py +555 -0
- vllm/model_executor/models/step3_vl.py +1149 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +325 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +213 -0
- vllm/model_executor/models/ultravox.py +686 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +842 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +980 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +142 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +830 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2240 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +357 -0
- vllm/multimodal/utils.py +523 -0
- vllm/multimodal/video.py +333 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +410 -0
- vllm/platforms/cuda.py +642 -0
- vllm/platforms/interface.py +656 -0
- vllm/platforms/rocm.py +513 -0
- vllm/platforms/tpu.py +275 -0
- vllm/platforms/xpu.py +261 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +230 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +216 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +597 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +24 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/hf.py +124 -0
- vllm/tokenizers/mistral.py +554 -0
- vllm/tokenizers/protocol.py +111 -0
- vllm/tokenizers/registry.py +233 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1081 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +84 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +235 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +214 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/gguf_utils.py +209 -0
- vllm/transformers_utils/processor.py +423 -0
- vllm/transformers_utils/processors/__init__.py +23 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +127 -0
- vllm/transformers_utils/tokenizer_base.py +33 -0
- vllm/transformers_utils/utils.py +184 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +66 -0
- vllm/utils/argparse_utils.py +504 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +399 -0
- vllm/utils/flashinfer.py +532 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +81 -0
- vllm/utils/import_utils.py +449 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +265 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +647 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +497 -0
- vllm/v1/attention/backends/flash_attn.py +1050 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +945 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +117 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
- vllm/v1/attention/backends/mla/common.py +2069 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
- vllm/v1/attention/backends/mla/flashmla.py +317 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
- vllm/v1/attention/backends/mla/indexer.py +369 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +359 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +428 -0
- vllm/v1/attention/backends/triton_attn.py +377 -0
- vllm/v1/attention/backends/utils.py +1149 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +466 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +570 -0
- vllm/v1/core/kv_cache_manager.py +408 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1471 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +68 -0
- vllm/v1/core/sched/interface.py +187 -0
- vllm/v1/core/sched/output.py +230 -0
- vllm/v1/core/sched/request_queue.py +217 -0
- vllm/v1/core/sched/scheduler.py +1726 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +801 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +214 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1421 -0
- vllm/v1/engine/core_client.py +1406 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +636 -0
- vllm/v1/engine/llm_engine.py +416 -0
- vllm/v1/engine/logprobs.py +189 -0
- vllm/v1/engine/output_processor.py +658 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +20 -0
- vllm/v1/engine/utils.py +1068 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +404 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +86 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +66 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1268 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +431 -0
- vllm/v1/outputs.py +237 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +280 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
- vllm/v1/sample/rejection_sampler.py +805 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1325 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +101 -0
- vllm/v1/spec_decode/utils.py +121 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +210 -0
- vllm/v1/worker/dp_utils.py +250 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +97 -0
- vllm/v1/worker/gpu/attn_utils.py +189 -0
- vllm/v1/worker/gpu/block_table.py +314 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +430 -0
- vllm/v1/worker/gpu/model_runner.py +1007 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +101 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +179 -0
- vllm/v1/worker/gpu/sample/penalties.py +154 -0
- vllm/v1/worker/gpu/sample/sampler.py +75 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
- vllm/v1/worker/gpu/states.py +309 -0
- vllm/v1/worker/gpu/structured_outputs.py +76 -0
- vllm/v1/worker/gpu_input_batch.py +971 -0
- vllm/v1/worker/gpu_model_runner.py +5360 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
- vllm/v1/worker/gpu_worker.py +922 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
- vllm/v1/worker/lora_model_runner_mixin.py +212 -0
- vllm/v1/worker/tpu_input_batch.py +583 -0
- vllm/v1/worker/tpu_model_runner.py +2196 -0
- vllm/v1/worker/tpu_worker.py +351 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +365 -0
- vllm/v1/worker/worker_base.py +377 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +198 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu-0.12.0.dist-info/METADATA +300 -0
- vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
- vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
- vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2480 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import contextlib
|
|
4
|
+
import copy
|
|
5
|
+
import logging
|
|
6
|
+
import math
|
|
7
|
+
import queue
|
|
8
|
+
import threading
|
|
9
|
+
import time
|
|
10
|
+
import uuid
|
|
11
|
+
from collections import defaultdict
|
|
12
|
+
from collections.abc import Iterator
|
|
13
|
+
from concurrent.futures import Future, ThreadPoolExecutor
|
|
14
|
+
from dataclasses import dataclass
|
|
15
|
+
from typing import TYPE_CHECKING, Any, Optional
|
|
16
|
+
|
|
17
|
+
import msgspec
|
|
18
|
+
import numpy as np
|
|
19
|
+
import torch
|
|
20
|
+
import zmq
|
|
21
|
+
|
|
22
|
+
from vllm import envs
|
|
23
|
+
from vllm.attention.backends.abstract import AttentionBackend, AttentionMetadata
|
|
24
|
+
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
25
|
+
from vllm.attention.selector import get_attn_backend
|
|
26
|
+
from vllm.config import VllmConfig
|
|
27
|
+
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
|
|
28
|
+
CopyBlocksOp,
|
|
29
|
+
KVConnectorBase_V1,
|
|
30
|
+
KVConnectorHandshakeMetadata,
|
|
31
|
+
KVConnectorMetadata,
|
|
32
|
+
KVConnectorRole,
|
|
33
|
+
)
|
|
34
|
+
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
|
|
35
|
+
KVConnectorPromMetrics,
|
|
36
|
+
KVConnectorStats,
|
|
37
|
+
PromMetric,
|
|
38
|
+
PromMetricT,
|
|
39
|
+
)
|
|
40
|
+
from vllm.distributed.parallel_state import (
|
|
41
|
+
get_tensor_model_parallel_rank,
|
|
42
|
+
get_tensor_model_parallel_world_size,
|
|
43
|
+
get_tp_group,
|
|
44
|
+
)
|
|
45
|
+
from vllm.forward_context import ForwardContext
|
|
46
|
+
from vllm.logger import init_logger
|
|
47
|
+
from vllm.platforms import current_platform
|
|
48
|
+
from vllm.utils.network_utils import make_zmq_path, make_zmq_socket
|
|
49
|
+
from vllm.v1.attention.backends.utils import get_kv_cache_layout
|
|
50
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
51
|
+
from vllm.v1.worker.block_table import BlockTable
|
|
52
|
+
|
|
53
|
+
if TYPE_CHECKING:
|
|
54
|
+
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
|
|
55
|
+
from vllm.v1.kv_cache_interface import KVCacheConfig
|
|
56
|
+
from vllm.v1.request import Request
|
|
57
|
+
|
|
58
|
+
Transfer = tuple[int, float] # (xfer_handle, start_time)
|
|
59
|
+
EngineId = str
|
|
60
|
+
ReqId = str
|
|
61
|
+
|
|
62
|
+
GET_META_MSG = b"get_meta_msg"
|
|
63
|
+
|
|
64
|
+
logger = init_logger(__name__)
|
|
65
|
+
|
|
66
|
+
# Lazy import nixl_wrapper to avoid loading nixl_bindings if nixl is not used
|
|
67
|
+
try:
|
|
68
|
+
from nixl._api import nixl_agent as NixlWrapper
|
|
69
|
+
from nixl._bindings import nixlXferTelemetry
|
|
70
|
+
|
|
71
|
+
logger.info("NIXL is available")
|
|
72
|
+
except ImportError:
|
|
73
|
+
logger.warning("NIXL is not available")
|
|
74
|
+
NixlWrapper = None
|
|
75
|
+
nixlXferTelemetry = None
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
try:
|
|
79
|
+
from nixl._api import nixl_agent_config
|
|
80
|
+
except ImportError:
|
|
81
|
+
nixl_agent_config = None
|
|
82
|
+
logger.warning("NIXL agent config is not available")
|
|
83
|
+
|
|
84
|
+
# Supported platforms and types of kv transfer buffer.
|
|
85
|
+
# {device: tuple of supported kv buffer types}
|
|
86
|
+
_NIXL_SUPPORTED_DEVICE = {
|
|
87
|
+
"cuda": (
|
|
88
|
+
"cuda",
|
|
89
|
+
"cpu",
|
|
90
|
+
),
|
|
91
|
+
"tpu": ("cpu",),
|
|
92
|
+
"xpu": ("cpu",),
|
|
93
|
+
"cpu": ("cpu",),
|
|
94
|
+
}
|
|
95
|
+
# support for oot platform by providing mapping in current_platform
|
|
96
|
+
_NIXL_SUPPORTED_DEVICE.update(current_platform.get_nixl_supported_devices())
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@dataclass
|
|
100
|
+
class NixlAgentMetadata(KVConnectorHandshakeMetadata):
|
|
101
|
+
engine_id: str
|
|
102
|
+
agent_metadata: bytes
|
|
103
|
+
kv_caches_base_addr: list[int]
|
|
104
|
+
device_id: int
|
|
105
|
+
num_blocks: int
|
|
106
|
+
block_lens: list[int]
|
|
107
|
+
attn_backend_name: str
|
|
108
|
+
kv_cache_layout: str
|
|
109
|
+
block_size: int
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
@dataclass
|
|
113
|
+
class ReqMeta:
|
|
114
|
+
local_block_ids: list[int]
|
|
115
|
+
# To be used when logical block size does not match the kernel block size
|
|
116
|
+
local_physical_block_ids: list[int]
|
|
117
|
+
remote_block_ids: list[int]
|
|
118
|
+
remote_host: str
|
|
119
|
+
remote_port: int
|
|
120
|
+
remote_engine_id: str
|
|
121
|
+
tp_size: int
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class NixlConnectorMetadata(KVConnectorMetadata):
|
|
125
|
+
def __init__(self):
|
|
126
|
+
self.reqs_to_recv: dict[ReqId, ReqMeta] = {}
|
|
127
|
+
self.reqs_to_save: dict[ReqId, ReqMeta] = {}
|
|
128
|
+
self.reqs_to_send: dict[ReqId, float] = {}
|
|
129
|
+
self.reqs_in_batch: set[ReqId] = set()
|
|
130
|
+
self.reqs_not_processed: set[ReqId] = set()
|
|
131
|
+
|
|
132
|
+
def add_new_req(
|
|
133
|
+
self,
|
|
134
|
+
request_id: ReqId,
|
|
135
|
+
local_block_ids: list[int],
|
|
136
|
+
kv_transfer_params: dict[str, Any],
|
|
137
|
+
load_remote_cache: bool = True,
|
|
138
|
+
save_to_host: bool = False,
|
|
139
|
+
):
|
|
140
|
+
# save and load are mutually exclusive
|
|
141
|
+
assert load_remote_cache ^ save_to_host
|
|
142
|
+
_req = ReqMeta(
|
|
143
|
+
local_block_ids=local_block_ids,
|
|
144
|
+
local_physical_block_ids=local_block_ids,
|
|
145
|
+
remote_block_ids=kv_transfer_params["remote_block_ids"],
|
|
146
|
+
remote_engine_id=kv_transfer_params["remote_engine_id"],
|
|
147
|
+
remote_host=kv_transfer_params["remote_host"],
|
|
148
|
+
remote_port=kv_transfer_params["remote_port"],
|
|
149
|
+
# P workers don't need to receive tp_size from proxy here.
|
|
150
|
+
tp_size=kv_transfer_params.get("tp_size", 1),
|
|
151
|
+
)
|
|
152
|
+
if save_to_host:
|
|
153
|
+
self.reqs_to_save[request_id] = _req
|
|
154
|
+
if load_remote_cache:
|
|
155
|
+
self.reqs_to_recv[request_id] = _req
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
class NixlConnector(KVConnectorBase_V1):
|
|
159
|
+
def __init__(
|
|
160
|
+
self,
|
|
161
|
+
vllm_config: VllmConfig,
|
|
162
|
+
role: KVConnectorRole,
|
|
163
|
+
kv_cache_config: Optional["KVCacheConfig"] = None,
|
|
164
|
+
):
|
|
165
|
+
super().__init__(vllm_config, role, kv_cache_config)
|
|
166
|
+
|
|
167
|
+
assert vllm_config.kv_transfer_config is not None
|
|
168
|
+
assert vllm_config.kv_transfer_config.engine_id is not None
|
|
169
|
+
self.engine_id: EngineId = vllm_config.kv_transfer_config.engine_id
|
|
170
|
+
|
|
171
|
+
if role == KVConnectorRole.SCHEDULER:
|
|
172
|
+
self.connector_scheduler: NixlConnectorScheduler | None = (
|
|
173
|
+
NixlConnectorScheduler(vllm_config, self.engine_id)
|
|
174
|
+
)
|
|
175
|
+
self.connector_worker: NixlConnectorWorker | None = None
|
|
176
|
+
elif role == KVConnectorRole.WORKER:
|
|
177
|
+
self.connector_scheduler = None
|
|
178
|
+
self.connector_worker = NixlConnectorWorker(vllm_config, self.engine_id)
|
|
179
|
+
|
|
180
|
+
############################################################
|
|
181
|
+
# Class Methods
|
|
182
|
+
############################################################
|
|
183
|
+
@classmethod
|
|
184
|
+
def get_required_kvcache_layout(cls, vllm_config: VllmConfig):
|
|
185
|
+
if vllm_config.model_config is None:
|
|
186
|
+
logger.warning_once(
|
|
187
|
+
"Unable to detect current VLLM config. "
|
|
188
|
+
"Fallback to default kv cache layout."
|
|
189
|
+
)
|
|
190
|
+
return None
|
|
191
|
+
use_mla = vllm_config.model_config.use_mla
|
|
192
|
+
if use_mla:
|
|
193
|
+
# return None when we have mla
|
|
194
|
+
# as the layout should not matter in that case,
|
|
195
|
+
# which fallback to the default behavior.
|
|
196
|
+
return None
|
|
197
|
+
logger.info_once(
|
|
198
|
+
"NixlConnector setting KV cache layout to HND for better xfer performance."
|
|
199
|
+
)
|
|
200
|
+
return "HND"
|
|
201
|
+
|
|
202
|
+
############################################################
|
|
203
|
+
# Scheduler Side Methods
|
|
204
|
+
############################################################
|
|
205
|
+
|
|
206
|
+
def get_num_new_matched_tokens(
|
|
207
|
+
self, request: "Request", num_computed_tokens: int
|
|
208
|
+
) -> tuple[int | None, bool]:
|
|
209
|
+
assert self.connector_scheduler is not None
|
|
210
|
+
return self.connector_scheduler.get_num_new_matched_tokens(
|
|
211
|
+
request, num_computed_tokens
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
def update_state_after_alloc(
|
|
215
|
+
self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
|
|
216
|
+
):
|
|
217
|
+
assert self.connector_scheduler is not None
|
|
218
|
+
return self.connector_scheduler.update_state_after_alloc(
|
|
219
|
+
request, blocks, num_external_tokens
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
def build_connector_meta(
|
|
223
|
+
self,
|
|
224
|
+
scheduler_output: SchedulerOutput,
|
|
225
|
+
) -> KVConnectorMetadata:
|
|
226
|
+
assert self.connector_scheduler is not None
|
|
227
|
+
return self.connector_scheduler.build_connector_meta(scheduler_output)
|
|
228
|
+
|
|
229
|
+
def request_finished(
|
|
230
|
+
self,
|
|
231
|
+
request: "Request",
|
|
232
|
+
block_ids: list[int],
|
|
233
|
+
) -> tuple[bool, dict[str, Any] | None]:
|
|
234
|
+
assert self.connector_scheduler is not None
|
|
235
|
+
return self.connector_scheduler.request_finished(request, block_ids)
|
|
236
|
+
|
|
237
|
+
def set_xfer_handshake_metadata(
|
|
238
|
+
self, metadata: dict[int, KVConnectorHandshakeMetadata]
|
|
239
|
+
) -> None:
|
|
240
|
+
"""
|
|
241
|
+
Set the KV connector handshake metadata for this connector.
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
metadata (dict): the handshake metadata to set.
|
|
245
|
+
"""
|
|
246
|
+
assert self.connector_scheduler is not None
|
|
247
|
+
self.connector_scheduler.set_xfer_handshake_metadata(metadata)
|
|
248
|
+
|
|
249
|
+
############################################################
|
|
250
|
+
# Worker Side Methods
|
|
251
|
+
############################################################
|
|
252
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
253
|
+
assert self.connector_worker is not None
|
|
254
|
+
self.connector_worker.register_kv_caches(kv_caches)
|
|
255
|
+
|
|
256
|
+
def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
|
|
257
|
+
assert self.connector_worker is not None
|
|
258
|
+
self.connector_worker.set_host_xfer_buffer_ops(copy_operation)
|
|
259
|
+
|
|
260
|
+
def get_finished(self, finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
|
|
261
|
+
"""Get the finished recving and sending requests."""
|
|
262
|
+
assert self.connector_worker is not None
|
|
263
|
+
return self.connector_worker.get_finished()
|
|
264
|
+
|
|
265
|
+
def get_block_ids_with_load_errors(self) -> set[int]:
|
|
266
|
+
"""Get block IDs that failed to load via NIXL."""
|
|
267
|
+
assert self.connector_worker is not None
|
|
268
|
+
return self.connector_worker.get_block_ids_with_load_errors()
|
|
269
|
+
|
|
270
|
+
def get_kv_connector_stats(self) -> KVConnectorStats | None:
|
|
271
|
+
if self.connector_worker is None:
|
|
272
|
+
return None
|
|
273
|
+
return self.connector_worker.get_kv_connector_stats()
|
|
274
|
+
|
|
275
|
+
@classmethod
|
|
276
|
+
def build_kv_connector_stats(
|
|
277
|
+
cls, data: dict[str, Any] | None = None
|
|
278
|
+
) -> KVConnectorStats | None:
|
|
279
|
+
return (
|
|
280
|
+
NixlKVConnectorStats(data=data)
|
|
281
|
+
if data is not None
|
|
282
|
+
else NixlKVConnectorStats()
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
@classmethod
|
|
286
|
+
def build_prom_metrics(
|
|
287
|
+
cls,
|
|
288
|
+
vllm_config: VllmConfig,
|
|
289
|
+
metric_types: dict[type[PromMetric], type[PromMetricT]],
|
|
290
|
+
labelnames: list[str],
|
|
291
|
+
per_engine_labelvalues: dict[int, list[object]],
|
|
292
|
+
) -> KVConnectorPromMetrics:
|
|
293
|
+
return NixlPromMetrics(
|
|
294
|
+
vllm_config, metric_types, labelnames, per_engine_labelvalues
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
def start_load_kv(self, forward_context: "ForwardContext", **kwargs) -> None:
|
|
298
|
+
assert self.connector_worker is not None
|
|
299
|
+
assert isinstance(self._connector_metadata, NixlConnectorMetadata)
|
|
300
|
+
self.connector_worker.start_load_kv(self._connector_metadata)
|
|
301
|
+
|
|
302
|
+
def wait_for_layer_load(self, layer_name: str) -> None:
|
|
303
|
+
"""NixlConnector does not do layerwise saving."""
|
|
304
|
+
pass
|
|
305
|
+
|
|
306
|
+
def save_kv_layer(
|
|
307
|
+
self,
|
|
308
|
+
layer_name: str,
|
|
309
|
+
kv_layer: torch.Tensor,
|
|
310
|
+
attn_metadata: AttentionMetadata,
|
|
311
|
+
**kwargs,
|
|
312
|
+
) -> None:
|
|
313
|
+
"""NixlConnector does not save explicitly."""
|
|
314
|
+
pass
|
|
315
|
+
|
|
316
|
+
def wait_for_save(self):
|
|
317
|
+
assert self.connector_worker is not None
|
|
318
|
+
assert isinstance(self._connector_metadata, NixlConnectorMetadata)
|
|
319
|
+
if self.connector_worker.use_host_buffer and self.connector_worker.copy_blocks:
|
|
320
|
+
self.connector_worker.save_kv_to_host(self._connector_metadata)
|
|
321
|
+
|
|
322
|
+
def shutdown(self):
|
|
323
|
+
if self.connector_worker is not None:
|
|
324
|
+
self.connector_worker.shutdown()
|
|
325
|
+
if self.connector_scheduler is not None:
|
|
326
|
+
self.connector_scheduler.shutdown()
|
|
327
|
+
|
|
328
|
+
def get_handshake_metadata(self) -> KVConnectorHandshakeMetadata | None:
|
|
329
|
+
"""
|
|
330
|
+
Get the KVConnector handshake metadata for this connector.
|
|
331
|
+
This metadata is used for out-of-band connector handshake
|
|
332
|
+
between P/D workers.
|
|
333
|
+
|
|
334
|
+
Returns:
|
|
335
|
+
KVConnectorHandshakeMetadata: the handshake metadata.
|
|
336
|
+
None if no handshake metadata is available.
|
|
337
|
+
"""
|
|
338
|
+
assert self.connector_worker is not None
|
|
339
|
+
return self.connector_worker.xfer_handshake_metadata
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
class NixlConnectorScheduler:
|
|
343
|
+
"""Implementation of Scheduler side methods"""
|
|
344
|
+
|
|
345
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
346
|
+
self.vllm_config = vllm_config
|
|
347
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
348
|
+
self.engine_id: EngineId = engine_id
|
|
349
|
+
self.side_channel_host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
|
|
350
|
+
self.side_channel_port = (
|
|
351
|
+
envs.VLLM_NIXL_SIDE_CHANNEL_PORT
|
|
352
|
+
+ vllm_config.parallel_config.data_parallel_rank
|
|
353
|
+
)
|
|
354
|
+
assert vllm_config.kv_transfer_config is not None
|
|
355
|
+
if current_platform.device_type == "cpu":
|
|
356
|
+
self.use_host_buffer = False
|
|
357
|
+
else:
|
|
358
|
+
self.use_host_buffer = (
|
|
359
|
+
vllm_config.kv_transfer_config.kv_buffer_device == "cpu"
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
logger.info("Initializing NIXL Scheduler %s", engine_id)
|
|
363
|
+
|
|
364
|
+
# Background thread for handling new handshake requests.
|
|
365
|
+
self._nixl_handshake_listener_t: threading.Thread | None = None
|
|
366
|
+
self._encoded_xfer_handshake_metadata: dict[int, Any] = {}
|
|
367
|
+
self._stop_event = threading.Event()
|
|
368
|
+
|
|
369
|
+
# Requests that need to start recv/send.
|
|
370
|
+
# New requests are added by update_state_after_alloc in
|
|
371
|
+
# the scheduler. Used to make metadata passed to Worker.
|
|
372
|
+
self._reqs_need_recv: dict[ReqId, tuple[Request, list[int]]] = {}
|
|
373
|
+
self._reqs_need_save: dict[ReqId, tuple[Request, list[int]]] = {}
|
|
374
|
+
# Reqs to send and their expiration time
|
|
375
|
+
self._reqs_need_send: dict[ReqId, float] = {}
|
|
376
|
+
self._reqs_in_batch: set[ReqId] = set()
|
|
377
|
+
# Reqs to remove from processed set because they're not to send after
|
|
378
|
+
# remote prefill or aborted.
|
|
379
|
+
self._reqs_not_processed: set[ReqId] = set()
|
|
380
|
+
|
|
381
|
+
def shutdown(self):
|
|
382
|
+
self._stop_event.set()
|
|
383
|
+
if self._nixl_handshake_listener_t is not None:
|
|
384
|
+
self._nixl_handshake_listener_t.join()
|
|
385
|
+
self._nixl_handshake_listener_t = None
|
|
386
|
+
|
|
387
|
+
def set_xfer_handshake_metadata(
|
|
388
|
+
self, metadata: dict[int, KVConnectorHandshakeMetadata]
|
|
389
|
+
) -> None:
|
|
390
|
+
"""
|
|
391
|
+
Set the KV connector handshake metadata for this connector.
|
|
392
|
+
|
|
393
|
+
Args:
|
|
394
|
+
metadata (dict): the handshake metadata to set.
|
|
395
|
+
"""
|
|
396
|
+
encoded_data: dict[int, bytes] = {}
|
|
397
|
+
encoder = msgspec.msgpack.Encoder()
|
|
398
|
+
for tp_rank, rank_metadata in metadata.items():
|
|
399
|
+
if not isinstance(rank_metadata, NixlAgentMetadata):
|
|
400
|
+
raise ValueError(
|
|
401
|
+
"NixlConnectorScheduler expects NixlAgentMetadata for "
|
|
402
|
+
"handshake metadata."
|
|
403
|
+
)
|
|
404
|
+
encoded_data[tp_rank] = encoder.encode(rank_metadata)
|
|
405
|
+
logger.debug(
|
|
406
|
+
"Tp rank %d: encoded NixlAgentMetadata size: %s bytes",
|
|
407
|
+
tp_rank,
|
|
408
|
+
str(len(encoded_data[tp_rank])),
|
|
409
|
+
)
|
|
410
|
+
self._encoded_xfer_handshake_metadata = encoded_data
|
|
411
|
+
|
|
412
|
+
# Only start the listener when we have metadata to serve.
|
|
413
|
+
if self._nixl_handshake_listener_t is None:
|
|
414
|
+
ready_event = threading.Event()
|
|
415
|
+
self._nixl_handshake_listener_t = threading.Thread(
|
|
416
|
+
target=self._nixl_handshake_listener,
|
|
417
|
+
args=(
|
|
418
|
+
encoded_data,
|
|
419
|
+
ready_event,
|
|
420
|
+
self._stop_event,
|
|
421
|
+
self.side_channel_port,
|
|
422
|
+
),
|
|
423
|
+
daemon=True,
|
|
424
|
+
name="nixl_handshake_listener",
|
|
425
|
+
)
|
|
426
|
+
self._nixl_handshake_listener_t.start()
|
|
427
|
+
ready_event.wait() # Wait for listener ZMQ socket to be ready.
|
|
428
|
+
|
|
429
|
+
@staticmethod
|
|
430
|
+
def _nixl_handshake_listener(
|
|
431
|
+
encoded_data: dict[int, Any],
|
|
432
|
+
ready_event: threading.Event,
|
|
433
|
+
stop_event: threading.Event,
|
|
434
|
+
port: int,
|
|
435
|
+
):
|
|
436
|
+
"""Background thread for getting new NIXL handshakes."""
|
|
437
|
+
# NOTE(rob): this is a simple implementation. We will move
|
|
438
|
+
# to a better approach via HTTP endpoint soon.
|
|
439
|
+
|
|
440
|
+
# Listen for new requests for metadata.
|
|
441
|
+
host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
|
|
442
|
+
path = make_zmq_path("tcp", host, port)
|
|
443
|
+
logger.debug("Starting listening on path: %s", path)
|
|
444
|
+
with zmq_ctx(zmq.ROUTER, path) as sock:
|
|
445
|
+
sock.setsockopt(zmq.RCVTIMEO, 1000)
|
|
446
|
+
ready_event.set()
|
|
447
|
+
while True:
|
|
448
|
+
try:
|
|
449
|
+
identity, _, msg = sock.recv_multipart()
|
|
450
|
+
except zmq.Again:
|
|
451
|
+
if stop_event.is_set():
|
|
452
|
+
break
|
|
453
|
+
continue
|
|
454
|
+
# Decode the message which contains (GET_META_MSG, rank)
|
|
455
|
+
msg, target_tp_rank = msgspec.msgpack.decode(msg)
|
|
456
|
+
logger.debug(
|
|
457
|
+
"Received message for tp rank %s",
|
|
458
|
+
target_tp_rank,
|
|
459
|
+
)
|
|
460
|
+
if msg != GET_META_MSG:
|
|
461
|
+
logger.warning("Connection listener got unexpected message %s", msg)
|
|
462
|
+
sock.send_multipart((identity, b"", encoded_data[target_tp_rank]))
|
|
463
|
+
|
|
464
|
+
def get_num_new_matched_tokens(
|
|
465
|
+
self, request: "Request", num_computed_tokens: int
|
|
466
|
+
) -> tuple[int, bool]:
|
|
467
|
+
"""
|
|
468
|
+
For remote prefill, pull all prompt blocks from remote
|
|
469
|
+
asynchronously relative to engine execution.
|
|
470
|
+
|
|
471
|
+
Args:
|
|
472
|
+
request (Request): the request object.
|
|
473
|
+
num_computed_tokens (int): the number of locally
|
|
474
|
+
computed tokens for this request
|
|
475
|
+
Returns:
|
|
476
|
+
* the number of tokens that can be loaded from the
|
|
477
|
+
external KV cache beyond what is already computed.
|
|
478
|
+
* true if the external KV cache tokens will be loaded
|
|
479
|
+
asynchronously (between scheduler steps).
|
|
480
|
+
"""
|
|
481
|
+
|
|
482
|
+
params = request.kv_transfer_params
|
|
483
|
+
logger.debug(
|
|
484
|
+
"NIXLConnector get_num_new_matched_tokens: "
|
|
485
|
+
"num_computed_tokens=%s, kv_transfer_params=%s",
|
|
486
|
+
num_computed_tokens,
|
|
487
|
+
params,
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
if params is not None and params.get("do_remote_prefill"):
|
|
491
|
+
# Remote prefill: get all prompt blocks from remote.
|
|
492
|
+
token_ids = request.prompt_token_ids or []
|
|
493
|
+
count = len(token_ids) - num_computed_tokens
|
|
494
|
+
if count > 0:
|
|
495
|
+
return count, True
|
|
496
|
+
|
|
497
|
+
# No remote prefill for this request.
|
|
498
|
+
return 0, False
|
|
499
|
+
|
|
500
|
+
def update_state_after_alloc(
|
|
501
|
+
self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
|
|
502
|
+
):
|
|
503
|
+
params = request.kv_transfer_params
|
|
504
|
+
logger.debug(
|
|
505
|
+
"NIXLConnector update_state_after_alloc: "
|
|
506
|
+
"num_external_tokens=%s, kv_transfer_params=%s",
|
|
507
|
+
num_external_tokens,
|
|
508
|
+
params,
|
|
509
|
+
)
|
|
510
|
+
|
|
511
|
+
if not params:
|
|
512
|
+
return
|
|
513
|
+
|
|
514
|
+
if params.get("do_remote_decode"):
|
|
515
|
+
self._reqs_in_batch.add(request.request_id)
|
|
516
|
+
if self.use_host_buffer and params.get("do_remote_decode"):
|
|
517
|
+
# NOTE: when accelerator is not directly supported by Nixl,
|
|
518
|
+
# prefilled blocks need to be saved to host memory before transfer.
|
|
519
|
+
|
|
520
|
+
# save all blocks
|
|
521
|
+
block_ids = blocks.get_block_ids()[0]
|
|
522
|
+
# TODO: skip the blocks that are already in the host xfer buffer.
|
|
523
|
+
# Currently, the host xfer buffer block is 1-to-1 mapped to device
|
|
524
|
+
# kv blocks, so host blocks won't be flushed as long as its device
|
|
525
|
+
# block is not overwritten; and it will be safe to skip saving them
|
|
526
|
+
# to host xfer buffer.
|
|
527
|
+
if block_ids:
|
|
528
|
+
self._reqs_need_save[request.request_id] = (request, block_ids)
|
|
529
|
+
elif params.get("do_remote_prefill"):
|
|
530
|
+
if params.get("remote_block_ids"):
|
|
531
|
+
if all(
|
|
532
|
+
p in params
|
|
533
|
+
for p in ("remote_engine_id", "remote_host", "remote_port")
|
|
534
|
+
):
|
|
535
|
+
# If remote_blocks and num_external_tokens = 0, we have
|
|
536
|
+
# a full prefix cache hit on the D worker. We need to call
|
|
537
|
+
# send_notif in _read_blocks to free the memory on the P.
|
|
538
|
+
local_block_ids = (
|
|
539
|
+
blocks.get_unhashed_block_ids()
|
|
540
|
+
if num_external_tokens > 0
|
|
541
|
+
else []
|
|
542
|
+
)
|
|
543
|
+
# Get unhashed blocks to pull from remote.
|
|
544
|
+
self._reqs_need_recv[request.request_id] = (
|
|
545
|
+
request,
|
|
546
|
+
local_block_ids,
|
|
547
|
+
)
|
|
548
|
+
|
|
549
|
+
else:
|
|
550
|
+
logger.warning(
|
|
551
|
+
"Got invalid KVTransferParams: %s. This "
|
|
552
|
+
"request will not utilize KVTransfer",
|
|
553
|
+
params,
|
|
554
|
+
)
|
|
555
|
+
else:
|
|
556
|
+
assert num_external_tokens == 0
|
|
557
|
+
# Only trigger 1 KV transfer per request.
|
|
558
|
+
params["do_remote_prefill"] = False
|
|
559
|
+
|
|
560
|
+
def build_connector_meta(
|
|
561
|
+
self,
|
|
562
|
+
scheduler_output: SchedulerOutput,
|
|
563
|
+
) -> KVConnectorMetadata:
|
|
564
|
+
meta = NixlConnectorMetadata()
|
|
565
|
+
|
|
566
|
+
# Loop through scheduled reqs and convert to ReqMeta.
|
|
567
|
+
for req_id, (req, block_ids) in self._reqs_need_recv.items():
|
|
568
|
+
assert req.kv_transfer_params is not None
|
|
569
|
+
meta.add_new_req(
|
|
570
|
+
request_id=req_id,
|
|
571
|
+
local_block_ids=block_ids,
|
|
572
|
+
kv_transfer_params=req.kv_transfer_params,
|
|
573
|
+
load_remote_cache=True,
|
|
574
|
+
save_to_host=False,
|
|
575
|
+
)
|
|
576
|
+
|
|
577
|
+
for req_id, (req, block_ids) in self._reqs_need_save.items():
|
|
578
|
+
assert req.kv_transfer_params is not None
|
|
579
|
+
meta.add_new_req(
|
|
580
|
+
request_id=req_id,
|
|
581
|
+
local_block_ids=block_ids,
|
|
582
|
+
kv_transfer_params=req.kv_transfer_params,
|
|
583
|
+
load_remote_cache=False,
|
|
584
|
+
save_to_host=True,
|
|
585
|
+
)
|
|
586
|
+
|
|
587
|
+
meta.reqs_to_send = self._reqs_need_send
|
|
588
|
+
meta.reqs_in_batch = self._reqs_in_batch
|
|
589
|
+
meta.reqs_not_processed = self._reqs_not_processed
|
|
590
|
+
|
|
591
|
+
# Clear the list once workers start the transfers
|
|
592
|
+
self._reqs_need_recv.clear()
|
|
593
|
+
self._reqs_need_save.clear()
|
|
594
|
+
self._reqs_in_batch = set()
|
|
595
|
+
self._reqs_not_processed = set()
|
|
596
|
+
self._reqs_need_send = {}
|
|
597
|
+
|
|
598
|
+
return meta
|
|
599
|
+
|
|
600
|
+
def request_finished(
|
|
601
|
+
self,
|
|
602
|
+
request: "Request",
|
|
603
|
+
block_ids: list[int],
|
|
604
|
+
) -> tuple[bool, dict[str, Any] | None]:
|
|
605
|
+
"""
|
|
606
|
+
Once a request is finished, determine whether request blocks
|
|
607
|
+
should be freed now or will be sent asynchronously and freed later.
|
|
608
|
+
"""
|
|
609
|
+
from vllm.v1.request import RequestStatus
|
|
610
|
+
|
|
611
|
+
params = request.kv_transfer_params
|
|
612
|
+
logger.debug(
|
|
613
|
+
"NIXLConnector request_finished(%s), request_status=%s, "
|
|
614
|
+
"kv_transfer_params=%s",
|
|
615
|
+
request.request_id,
|
|
616
|
+
request.status,
|
|
617
|
+
params,
|
|
618
|
+
)
|
|
619
|
+
if not params:
|
|
620
|
+
return False, None
|
|
621
|
+
|
|
622
|
+
if params.get("do_remote_prefill"):
|
|
623
|
+
# If do_remote_prefill is still True when the request is finished,
|
|
624
|
+
# update_state_after_alloc must not have been called (the request
|
|
625
|
+
# must have been aborted before it was scheduled).
|
|
626
|
+
# To avoid stranding the prefill blocks in the prefill instance,
|
|
627
|
+
# we must add empty block_ids to _reqs_need_recv so that our
|
|
628
|
+
# worker side will notify and free blocks in the prefill instance.
|
|
629
|
+
self._reqs_need_recv[request.request_id] = (request, [])
|
|
630
|
+
params["do_remote_prefill"] = False
|
|
631
|
+
return False, None
|
|
632
|
+
|
|
633
|
+
if not params.get("do_remote_decode"):
|
|
634
|
+
return False, None
|
|
635
|
+
if request.status != RequestStatus.FINISHED_LENGTH_CAPPED:
|
|
636
|
+
# Also include the case of a P/D Prefill request with immediate
|
|
637
|
+
# block free (eg abort). Stop tracking this request.
|
|
638
|
+
self._reqs_not_processed.add(request.request_id)
|
|
639
|
+
return False, None
|
|
640
|
+
|
|
641
|
+
# TODO: check whether block_ids actually ever be 0. If not we could
|
|
642
|
+
# remove the conditional below
|
|
643
|
+
delay_free_blocks = len(block_ids) > 0
|
|
644
|
+
|
|
645
|
+
if delay_free_blocks:
|
|
646
|
+
# Prefill request on remote. It will be read from D upon completion
|
|
647
|
+
logger.debug(
|
|
648
|
+
"NIXLConnector request_finished(%s) waiting for %d seconds "
|
|
649
|
+
"for remote decode to fetch blocks",
|
|
650
|
+
request.request_id,
|
|
651
|
+
envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
|
|
652
|
+
)
|
|
653
|
+
self._reqs_need_send[request.request_id] = (
|
|
654
|
+
time.perf_counter() + envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT
|
|
655
|
+
)
|
|
656
|
+
|
|
657
|
+
return delay_free_blocks, dict(
|
|
658
|
+
do_remote_prefill=True,
|
|
659
|
+
do_remote_decode=False,
|
|
660
|
+
remote_block_ids=block_ids,
|
|
661
|
+
remote_engine_id=self.engine_id,
|
|
662
|
+
remote_host=self.side_channel_host,
|
|
663
|
+
remote_port=self.side_channel_port,
|
|
664
|
+
tp_size=self.vllm_config.parallel_config.tensor_parallel_size,
|
|
665
|
+
)
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
class NixlConnectorWorker:
|
|
669
|
+
"""Implementation of Worker side methods"""
|
|
670
|
+
|
|
671
|
+
@dataclass
|
|
672
|
+
class TpKVTopology:
|
|
673
|
+
"""
|
|
674
|
+
Helper class for tensor parallel and KV topology information for
|
|
675
|
+
mapping between local and remote TP workers.
|
|
676
|
+
"""
|
|
677
|
+
|
|
678
|
+
tp_rank: int
|
|
679
|
+
remote_tp_size: dict[EngineId, int]
|
|
680
|
+
is_mla: bool
|
|
681
|
+
total_num_kv_heads: int
|
|
682
|
+
attn_backend: type[AttentionBackend]
|
|
683
|
+
engine_id: EngineId
|
|
684
|
+
remote_block_size: dict[EngineId, int]
|
|
685
|
+
|
|
686
|
+
def __post_init__(self):
|
|
687
|
+
# Figure out whether the first dimension of the cache is K/V
|
|
688
|
+
# or num_blocks. This is used to register the memory regions correctly.
|
|
689
|
+
kv_cache_shape = self.attn_backend.get_kv_cache_shape(
|
|
690
|
+
num_blocks=1, block_size=16, num_kv_heads=1, head_size=1
|
|
691
|
+
)
|
|
692
|
+
# Non-MLA backends caches have 5 dims [2, num_blocks, H,N,D],
|
|
693
|
+
# we just mock num_blocks to 1 for the dimension check below.
|
|
694
|
+
self._is_kv_layout_blocks_first = (
|
|
695
|
+
len(kv_cache_shape) == 5 and kv_cache_shape[0] == 1
|
|
696
|
+
)
|
|
697
|
+
|
|
698
|
+
attn_backend = AttentionBackendEnum[self.attn_backend.get_name()]
|
|
699
|
+
self._use_pallas = attn_backend == AttentionBackendEnum.PALLAS
|
|
700
|
+
|
|
701
|
+
@property
|
|
702
|
+
def is_kv_layout_blocks_first(self) -> bool:
|
|
703
|
+
return self._is_kv_layout_blocks_first
|
|
704
|
+
|
|
705
|
+
@property
|
|
706
|
+
def split_k_and_v(self) -> bool:
|
|
707
|
+
# Whether to register regions for K and V separately (when present).
|
|
708
|
+
return not (
|
|
709
|
+
self.is_mla or self._use_pallas or self.is_kv_layout_blocks_first
|
|
710
|
+
)
|
|
711
|
+
|
|
712
|
+
@property
|
|
713
|
+
def tp_size(self) -> int:
|
|
714
|
+
return self.remote_tp_size[self.engine_id]
|
|
715
|
+
|
|
716
|
+
@property
|
|
717
|
+
def block_size(self) -> int:
|
|
718
|
+
return self.remote_block_size[self.engine_id]
|
|
719
|
+
|
|
720
|
+
def tp_ratio(
|
|
721
|
+
self,
|
|
722
|
+
remote_tp_size: int,
|
|
723
|
+
) -> int:
|
|
724
|
+
"""
|
|
725
|
+
Calculate the tensor parallel ratio between local and remote TP.
|
|
726
|
+
We can think of it as the number of local TP workers-per-remote TP
|
|
727
|
+
workers. Local workers will read from the same remote TP worker in
|
|
728
|
+
groups of size `tp_ratio`.
|
|
729
|
+
"""
|
|
730
|
+
assert self.tp_size % remote_tp_size == 0, (
|
|
731
|
+
f"Local tensor parallel size {self.tp_size} is not divisible "
|
|
732
|
+
f"by remote tensor parallel size {remote_tp_size}."
|
|
733
|
+
)
|
|
734
|
+
return self.tp_size // remote_tp_size
|
|
735
|
+
|
|
736
|
+
def block_size_ratio(
|
|
737
|
+
self,
|
|
738
|
+
remote_block_size: int,
|
|
739
|
+
) -> float:
|
|
740
|
+
"""
|
|
741
|
+
Calculate the block size ratio between local and remote TP.
|
|
742
|
+
"""
|
|
743
|
+
assert self.block_size % remote_block_size == 0, (
|
|
744
|
+
f"Local block size {self.block_size} is not divisible "
|
|
745
|
+
f"by remote block size {remote_block_size} or vice versa."
|
|
746
|
+
)
|
|
747
|
+
return self.block_size // remote_block_size
|
|
748
|
+
|
|
749
|
+
def tp_ratio_from_engine_id(
|
|
750
|
+
self,
|
|
751
|
+
remote_engine_id: EngineId,
|
|
752
|
+
) -> int:
|
|
753
|
+
remote_tp_size = self.remote_tp_size[remote_engine_id]
|
|
754
|
+
return self.tp_ratio(remote_tp_size)
|
|
755
|
+
|
|
756
|
+
def block_size_ratio_from_engine_id(
|
|
757
|
+
self,
|
|
758
|
+
remote_engine_id: EngineId,
|
|
759
|
+
) -> float:
|
|
760
|
+
remote_block_size = self.remote_block_size[remote_engine_id]
|
|
761
|
+
return self.block_size_ratio(remote_block_size)
|
|
762
|
+
|
|
763
|
+
def is_kv_replicated(self, engine_id: EngineId) -> bool:
|
|
764
|
+
"""
|
|
765
|
+
Whether the KV cache is replicated across TP workers due to the
|
|
766
|
+
number of TP workers being greater than the number of KV heads.
|
|
767
|
+
"""
|
|
768
|
+
tp_size = self.remote_tp_size[engine_id]
|
|
769
|
+
return tp_size // self.total_num_kv_heads >= 1
|
|
770
|
+
|
|
771
|
+
def replicates_kv_cache(self, remote_engine_id: EngineId) -> bool:
|
|
772
|
+
# MLA is always replicated as the hidden dim can't be split.
|
|
773
|
+
return self.is_mla or self.is_kv_replicated(remote_engine_id)
|
|
774
|
+
|
|
775
|
+
def get_target_remote_rank(
|
|
776
|
+
self,
|
|
777
|
+
remote_tp_size: int,
|
|
778
|
+
) -> int:
|
|
779
|
+
"""
|
|
780
|
+
Get the remote TP rank (on P) that the current local TP rank
|
|
781
|
+
(on D) will read from.
|
|
782
|
+
"""
|
|
783
|
+
tp_ratio = self.tp_ratio(remote_tp_size)
|
|
784
|
+
return self.tp_rank // tp_ratio
|
|
785
|
+
|
|
786
|
+
def get_target_remote_rank_from_engine_id(
|
|
787
|
+
self,
|
|
788
|
+
remote_engine_id: EngineId,
|
|
789
|
+
) -> int:
|
|
790
|
+
remote_tp_size = self.remote_tp_size[remote_engine_id]
|
|
791
|
+
return self.get_target_remote_rank(remote_tp_size)
|
|
792
|
+
|
|
793
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
794
|
+
if NixlWrapper is None:
|
|
795
|
+
logger.error("NIXL is not available")
|
|
796
|
+
raise RuntimeError("NIXL is not available")
|
|
797
|
+
logger.info("Initializing NIXL wrapper")
|
|
798
|
+
logger.info("Initializing NIXL worker %s", engine_id)
|
|
799
|
+
|
|
800
|
+
# Config.
|
|
801
|
+
self.vllm_config = vllm_config
|
|
802
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
803
|
+
|
|
804
|
+
if vllm_config.kv_transfer_config is None:
|
|
805
|
+
raise ValueError("kv_transfer_config must be set for NixlConnector")
|
|
806
|
+
self.kv_transfer_config = vllm_config.kv_transfer_config
|
|
807
|
+
|
|
808
|
+
self.nixl_backends = vllm_config.kv_transfer_config.get_from_extra_config(
|
|
809
|
+
"backends", ["UCX"]
|
|
810
|
+
)
|
|
811
|
+
|
|
812
|
+
# Agent.
|
|
813
|
+
non_ucx_backends = [b for b in self.nixl_backends if b != "UCX"]
|
|
814
|
+
# Configure NIXL num_threads to avoid UAR exhaustion on Mellanox NICs.
|
|
815
|
+
# Each UCX thread allocates UARs (doorbell pages) via DevX, and
|
|
816
|
+
# excessive NIXL UAR usage can exhaust NIC UAR space. This can cause
|
|
817
|
+
# components like NVSHMEM (used by DeepEP kernels) to fail during RDMA
|
|
818
|
+
# initialization with "mlx5dv_devx_alloc_uar" errors.
|
|
819
|
+
# Ref: https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf#page=63
|
|
820
|
+
num_threads = vllm_config.kv_transfer_config.get_from_extra_config(
|
|
821
|
+
"num_threads", 4
|
|
822
|
+
)
|
|
823
|
+
if nixl_agent_config is None:
|
|
824
|
+
config = None
|
|
825
|
+
else:
|
|
826
|
+
# Enable telemetry by default for NIXL 0.7.1 and above.
|
|
827
|
+
config = (
|
|
828
|
+
nixl_agent_config(backends=self.nixl_backends, capture_telemetry=True)
|
|
829
|
+
if len(non_ucx_backends) > 0
|
|
830
|
+
else nixl_agent_config(num_threads=num_threads, capture_telemetry=True)
|
|
831
|
+
)
|
|
832
|
+
|
|
833
|
+
self.nixl_wrapper = NixlWrapper(str(uuid.uuid4()), config)
|
|
834
|
+
# Map of engine_id -> {rank0: agent_name0, rank1: agent_name1..}.
|
|
835
|
+
self._remote_agents: dict[EngineId, dict[int, str]] = defaultdict(dict)
|
|
836
|
+
|
|
837
|
+
# Metadata.
|
|
838
|
+
self.engine_id: EngineId = engine_id
|
|
839
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
840
|
+
self.world_size = get_tensor_model_parallel_world_size()
|
|
841
|
+
self.tp_group = get_tp_group()
|
|
842
|
+
self.num_blocks = 0
|
|
843
|
+
self.enable_permute_local_kv = False
|
|
844
|
+
|
|
845
|
+
# KV Caches and nixl tracking data.
|
|
846
|
+
self.device_type = current_platform.device_type
|
|
847
|
+
self.kv_buffer_device: str = vllm_config.kv_transfer_config.kv_buffer_device
|
|
848
|
+
if self.device_type not in _NIXL_SUPPORTED_DEVICE:
|
|
849
|
+
raise RuntimeError(f"{self.device_type} is not supported.")
|
|
850
|
+
elif self.kv_buffer_device not in _NIXL_SUPPORTED_DEVICE[self.device_type]:
|
|
851
|
+
raise RuntimeError(
|
|
852
|
+
f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
|
|
853
|
+
"is not supported."
|
|
854
|
+
)
|
|
855
|
+
self.device_kv_caches: dict[str, torch.Tensor] = {}
|
|
856
|
+
|
|
857
|
+
# cpu kv buffer for xfer
|
|
858
|
+
# used when device memory can not be registered under nixl
|
|
859
|
+
self.host_xfer_buffers: dict[str, torch.Tensor] = {}
|
|
860
|
+
if self.device_type == "cpu":
|
|
861
|
+
self.use_host_buffer = False
|
|
862
|
+
else:
|
|
863
|
+
self.use_host_buffer = self.kv_buffer_device == "cpu"
|
|
864
|
+
|
|
865
|
+
# support for oot platform which can't register nixl memory
|
|
866
|
+
# type based on kv_buffer_device
|
|
867
|
+
nixl_memory_type = current_platform.get_nixl_memory_type()
|
|
868
|
+
if nixl_memory_type is None:
|
|
869
|
+
if self.kv_buffer_device == "cuda":
|
|
870
|
+
nixl_memory_type = "VRAM"
|
|
871
|
+
elif self.kv_buffer_device == "cpu":
|
|
872
|
+
nixl_memory_type = "DRAM"
|
|
873
|
+
if nixl_memory_type is None:
|
|
874
|
+
raise RuntimeError(
|
|
875
|
+
f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
|
|
876
|
+
"is not supported."
|
|
877
|
+
)
|
|
878
|
+
self.nixl_memory_type = nixl_memory_type
|
|
879
|
+
|
|
880
|
+
# Note: host xfer buffer ops when use_host_buffer is True
|
|
881
|
+
self.copy_blocks: CopyBlocksOp | None = None
|
|
882
|
+
|
|
883
|
+
# Map of engine_id -> kv_caches_base_addr. For TP case, each local
|
|
884
|
+
# rank will still only pull from a single remote TP worker.
|
|
885
|
+
self.kv_caches_base_addr: dict[EngineId, list[int]] = {}
|
|
886
|
+
self.device_id: int = 0
|
|
887
|
+
|
|
888
|
+
# Number of NIXL regions. Currently one region per cache
|
|
889
|
+
# (so 1 per layer for MLA, otherwise 2 per layer)
|
|
890
|
+
self.num_regions = 0
|
|
891
|
+
self.num_layers = 0
|
|
892
|
+
|
|
893
|
+
# nixl_prepped_dlist_handle.
|
|
894
|
+
self.src_xfer_side_handle: int = 0
|
|
895
|
+
self.src_xfer_side_handles: dict[int, int] = {}
|
|
896
|
+
# Map of engine_id -> nixl_prepped_dlist_handle (int)].
|
|
897
|
+
self.dst_xfer_side_handles: dict[EngineId, int] = {}
|
|
898
|
+
|
|
899
|
+
# Map of engine_id -> num_blocks. All ranks in the same deployment will
|
|
900
|
+
# have the same number of blocks.
|
|
901
|
+
self.dst_num_blocks: dict[EngineId, int] = {}
|
|
902
|
+
self._registered_descs: list[Any] = []
|
|
903
|
+
|
|
904
|
+
# In progress transfers.
|
|
905
|
+
# [req_id -> list[handle]]
|
|
906
|
+
self._recving_metadata: dict[ReqId, ReqMeta] = {}
|
|
907
|
+
self._recving_transfers = defaultdict[ReqId, list[Transfer]](list)
|
|
908
|
+
# Track the expiration time of requests that are waiting to be sent.
|
|
909
|
+
self._reqs_to_send: dict[ReqId, float] = {}
|
|
910
|
+
# Set of requests that have been part of a batch, regardless of status.
|
|
911
|
+
self._reqs_to_process: set[ReqId] = set()
|
|
912
|
+
|
|
913
|
+
# invalid blocks from failed NIXL operations
|
|
914
|
+
self._invalid_block_ids: set[int] = set()
|
|
915
|
+
# requests that skipped transfer (handshake or transfer failures)
|
|
916
|
+
self._failed_recv_reqs: set[ReqId] = set()
|
|
917
|
+
|
|
918
|
+
# Handshake metadata of this worker for NIXL transfers.
|
|
919
|
+
self.xfer_handshake_metadata: NixlAgentMetadata | None = None
|
|
920
|
+
# Background thread for initializing new NIXL handshakes.
|
|
921
|
+
self._handshake_initiation_executor = ThreadPoolExecutor(
|
|
922
|
+
# NIXL is not guaranteed to be thread-safe, limit 1 worker.
|
|
923
|
+
max_workers=1,
|
|
924
|
+
thread_name_prefix="vllm-nixl-handshake-initiator",
|
|
925
|
+
)
|
|
926
|
+
self._ready_requests = queue.Queue[tuple[ReqId, ReqMeta]]()
|
|
927
|
+
self._handshake_futures: dict[EngineId, Future[dict[int, str]]] = {}
|
|
928
|
+
# Protects _handshake_futures and _remote_agents.
|
|
929
|
+
self._handshake_lock = threading.RLock()
|
|
930
|
+
|
|
931
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
932
|
+
self.model_config = vllm_config.model_config
|
|
933
|
+
self.cache_config = vllm_config.cache_config
|
|
934
|
+
|
|
935
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
936
|
+
# Optimization for models with local attention (Llama 4)
|
|
937
|
+
# List of block window sizes for each layer for local attention
|
|
938
|
+
self.block_window_per_layer: list[int | None] = []
|
|
939
|
+
self.use_mla = self.model_config.use_mla
|
|
940
|
+
|
|
941
|
+
backend = get_attn_backend(
|
|
942
|
+
self.model_config.get_head_size(),
|
|
943
|
+
self.model_config.dtype,
|
|
944
|
+
self.cache_config.cache_dtype,
|
|
945
|
+
self.block_size,
|
|
946
|
+
use_mla=self.use_mla,
|
|
947
|
+
)
|
|
948
|
+
self.backend_name = backend.get_name()
|
|
949
|
+
self.kv_cache_layout = get_kv_cache_layout()
|
|
950
|
+
self.host_buffer_kv_cache_layout = self.kv_cache_layout
|
|
951
|
+
logger.debug("Detected attention backend %s", self.backend_name)
|
|
952
|
+
logger.debug("Detected kv cache layout %s", self.kv_cache_layout)
|
|
953
|
+
|
|
954
|
+
self._tp_size: dict[EngineId, int] = {self.engine_id: self.world_size}
|
|
955
|
+
self._block_size: dict[EngineId, int] = {self.engine_id: self.block_size}
|
|
956
|
+
# With heterogeneous TP, P must wait for all assigned D TP workers to
|
|
957
|
+
# finish reading before safely freeing the blocks.
|
|
958
|
+
self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
|
|
959
|
+
self.xfer_stats = NixlKVConnectorStats()
|
|
960
|
+
|
|
961
|
+
self.kv_topo = self.TpKVTopology(
|
|
962
|
+
tp_rank=self.tp_rank,
|
|
963
|
+
engine_id=self.engine_id,
|
|
964
|
+
remote_tp_size=self._tp_size, # shared state
|
|
965
|
+
remote_block_size=self._block_size, # shared state
|
|
966
|
+
is_mla=self.use_mla,
|
|
967
|
+
total_num_kv_heads=self.model_config.get_total_num_kv_heads(),
|
|
968
|
+
attn_backend=backend,
|
|
969
|
+
)
|
|
970
|
+
self._use_pallas = self.kv_topo._use_pallas
|
|
971
|
+
self._physical_blocks_per_logical_kv_block = 1
|
|
972
|
+
|
|
973
|
+
def _nixl_handshake(
|
|
974
|
+
self,
|
|
975
|
+
host: str,
|
|
976
|
+
port: int,
|
|
977
|
+
remote_tp_size: int,
|
|
978
|
+
expected_engine_id: str,
|
|
979
|
+
) -> dict[int, str]:
|
|
980
|
+
"""Do a NIXL handshake with a remote instance."""
|
|
981
|
+
|
|
982
|
+
start_time = time.perf_counter()
|
|
983
|
+
|
|
984
|
+
# NOTE(rob): we need each rank to have a unique port. This is
|
|
985
|
+
# a hack to keep us moving. We will switch when moving to etcd
|
|
986
|
+
# or where we have a single ZMQ socket in the scheduler.
|
|
987
|
+
|
|
988
|
+
# Handshake only with the remote TP rank that current local rank will
|
|
989
|
+
# pull from. With homogeneous TP it happens to be the same rank_i.
|
|
990
|
+
p_remote_rank = self.kv_topo.get_target_remote_rank(remote_tp_size)
|
|
991
|
+
path = make_zmq_path("tcp", host, port)
|
|
992
|
+
logger.debug(
|
|
993
|
+
"Querying metadata on path: %s at remote tp rank %s", path, p_remote_rank
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
# Send query for the request.
|
|
997
|
+
with zmq_ctx(zmq.REQ, path) as sock:
|
|
998
|
+
msg = msgspec.msgpack.encode((GET_META_MSG, p_remote_rank))
|
|
999
|
+
# Set receive timeout to 5 seconds to avoid hanging on dead server
|
|
1000
|
+
sock.setsockopt(zmq.RCVTIMEO, 5000) # milliseconds
|
|
1001
|
+
sock.send(msg)
|
|
1002
|
+
metadata_bytes = sock.recv()
|
|
1003
|
+
decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
|
|
1004
|
+
metadata = decoder.decode(metadata_bytes)
|
|
1005
|
+
got_metadata_time = time.perf_counter()
|
|
1006
|
+
logger.debug(
|
|
1007
|
+
"NIXL handshake: get metadata took: %s", got_metadata_time - start_time
|
|
1008
|
+
)
|
|
1009
|
+
|
|
1010
|
+
# Ensure engine id matches.
|
|
1011
|
+
if metadata.engine_id != expected_engine_id:
|
|
1012
|
+
raise RuntimeError(
|
|
1013
|
+
f"Remote NIXL agent engine ID mismatch. "
|
|
1014
|
+
f"Expected {expected_engine_id},"
|
|
1015
|
+
f"received {metadata.engine_id}."
|
|
1016
|
+
)
|
|
1017
|
+
|
|
1018
|
+
# Register Remote agent.
|
|
1019
|
+
assert metadata.block_size <= self.block_size, (
|
|
1020
|
+
"nP > nD is not supported yet."
|
|
1021
|
+
)
|
|
1022
|
+
remote_agent_name = self.add_remote_agent(
|
|
1023
|
+
metadata, p_remote_rank, remote_tp_size
|
|
1024
|
+
)
|
|
1025
|
+
|
|
1026
|
+
setup_agent_time = time.perf_counter()
|
|
1027
|
+
logger.debug(
|
|
1028
|
+
"NIXL handshake: add agent took: %s",
|
|
1029
|
+
setup_agent_time - got_metadata_time,
|
|
1030
|
+
)
|
|
1031
|
+
|
|
1032
|
+
# Remote rank -> agent name.
|
|
1033
|
+
return {p_remote_rank: remote_agent_name}
|
|
1034
|
+
|
|
1035
|
+
def initialize_host_xfer_buffer(self, kv_caches: dict[str, torch.Tensor]) -> None:
|
|
1036
|
+
"""
|
|
1037
|
+
Initialize transfer buffer in CPU mem for accelerators
|
|
1038
|
+
NOT directly supported by NIXL (e.g., tpu)
|
|
1039
|
+
"""
|
|
1040
|
+
xfer_buffers: dict[str, torch.Tensor] = {}
|
|
1041
|
+
inv_order = [0, 1, 3, 2, 4]
|
|
1042
|
+
try:
|
|
1043
|
+
for layer_name, kv_cache in kv_caches.items():
|
|
1044
|
+
kv_shape = kv_cache.shape
|
|
1045
|
+
kv_dtype = kv_cache.dtype
|
|
1046
|
+
permute_shape = False
|
|
1047
|
+
if (
|
|
1048
|
+
self.kv_cache_layout == "NHD"
|
|
1049
|
+
and self.vllm_config.kv_transfer_config is not None
|
|
1050
|
+
and self.vllm_config.kv_transfer_config.enable_permute_local_kv
|
|
1051
|
+
):
|
|
1052
|
+
logger.info_once(
|
|
1053
|
+
"'enable_permute_local_kv' flag is enabled while "
|
|
1054
|
+
"device KV Layout is NHD. Init host buffer with"
|
|
1055
|
+
" HND to better support Decode/Prefill TP_ratio > 1."
|
|
1056
|
+
)
|
|
1057
|
+
# Since NHD will not support Decode/Prefill TP_ratio > 1,
|
|
1058
|
+
# we can leverage host_buffer for permute
|
|
1059
|
+
self.host_buffer_kv_cache_layout = "HND"
|
|
1060
|
+
kv_shape = (
|
|
1061
|
+
tuple(kv_shape[i] for i in inv_order)
|
|
1062
|
+
if not self.use_mla
|
|
1063
|
+
else kv_shape
|
|
1064
|
+
)
|
|
1065
|
+
permute_shape = not self.use_mla
|
|
1066
|
+
|
|
1067
|
+
xfer_buffers[layer_name] = torch.empty(
|
|
1068
|
+
kv_shape, dtype=kv_dtype, device="cpu"
|
|
1069
|
+
)
|
|
1070
|
+
if permute_shape:
|
|
1071
|
+
xfer_buffers[layer_name] = xfer_buffers[layer_name].permute(
|
|
1072
|
+
inv_order
|
|
1073
|
+
)
|
|
1074
|
+
except MemoryError as e:
|
|
1075
|
+
logger.error("NIXLConnectorWorker gets %s.", e)
|
|
1076
|
+
raise
|
|
1077
|
+
|
|
1078
|
+
self.host_xfer_buffers = xfer_buffers
|
|
1079
|
+
|
|
1080
|
+
def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
|
|
1081
|
+
"""Assign copy (d2h, h2d) operations when host buffer is used."""
|
|
1082
|
+
# Set a no-op if the host buffer is not cpu.
|
|
1083
|
+
if self.kv_buffer_device != "cpu":
|
|
1084
|
+
return
|
|
1085
|
+
# Set a no-op if self.device_type is 'cpu'.
|
|
1086
|
+
if self.device_type == "cpu":
|
|
1087
|
+
return
|
|
1088
|
+
assert self.use_host_buffer
|
|
1089
|
+
self.copy_blocks = copy_operation
|
|
1090
|
+
|
|
1091
|
+
def _background_nixl_handshake(
|
|
1092
|
+
self, req_id: str, remote_engine_id: EngineId, meta: ReqMeta
|
|
1093
|
+
):
|
|
1094
|
+
# Do NIXL handshake in background and add to _ready_requests when done.
|
|
1095
|
+
fut = self._handshake_futures.get(remote_engine_id)
|
|
1096
|
+
if fut is None:
|
|
1097
|
+
fut = self._handshake_initiation_executor.submit(
|
|
1098
|
+
self._nixl_handshake,
|
|
1099
|
+
meta.remote_host,
|
|
1100
|
+
meta.remote_port,
|
|
1101
|
+
meta.tp_size,
|
|
1102
|
+
remote_engine_id,
|
|
1103
|
+
)
|
|
1104
|
+
self._handshake_futures[remote_engine_id] = fut
|
|
1105
|
+
|
|
1106
|
+
def done_callback(f: Future[dict[int, str]], eid=remote_engine_id):
|
|
1107
|
+
with self._handshake_lock:
|
|
1108
|
+
del self._handshake_futures[eid]
|
|
1109
|
+
try:
|
|
1110
|
+
self._remote_agents[eid] = f.result()
|
|
1111
|
+
except Exception:
|
|
1112
|
+
logger.exception("Handshake with %s failed", eid)
|
|
1113
|
+
|
|
1114
|
+
fut.add_done_callback(done_callback)
|
|
1115
|
+
|
|
1116
|
+
# check handshake success before proceeding with request
|
|
1117
|
+
def request_ready(f: Future[Any], entry=(req_id, meta)):
|
|
1118
|
+
try:
|
|
1119
|
+
# check if handshake succeeded
|
|
1120
|
+
f.result()
|
|
1121
|
+
self._ready_requests.put(entry)
|
|
1122
|
+
except Exception:
|
|
1123
|
+
# handshake failed - mark blocks as invalid
|
|
1124
|
+
logger.exception(
|
|
1125
|
+
"Handshake failed for request %s, marking blocks as invalid", req_id
|
|
1126
|
+
)
|
|
1127
|
+
if req_meta := self._recving_metadata.get(req_id):
|
|
1128
|
+
self._invalid_block_ids.update(req_meta.local_block_ids)
|
|
1129
|
+
self._failed_recv_reqs.add(req_id)
|
|
1130
|
+
|
|
1131
|
+
fut.add_done_callback(request_ready)
|
|
1132
|
+
|
|
1133
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
1134
|
+
"""Register the KV Cache data in nixl."""
|
|
1135
|
+
|
|
1136
|
+
if self.use_host_buffer:
|
|
1137
|
+
self.initialize_host_xfer_buffer(kv_caches=kv_caches)
|
|
1138
|
+
assert len(self.host_xfer_buffers) == len(kv_caches), (
|
|
1139
|
+
f"host_buffer: {len(self.host_xfer_buffers)}, "
|
|
1140
|
+
f"kv_caches: {len(kv_caches)}"
|
|
1141
|
+
)
|
|
1142
|
+
xfer_buffers = self.host_xfer_buffers
|
|
1143
|
+
else:
|
|
1144
|
+
xfer_buffers = kv_caches
|
|
1145
|
+
assert not self.host_xfer_buffers, (
|
|
1146
|
+
"host_xfer_buffer should not be initialized when "
|
|
1147
|
+
f"kv_buffer_device is {self.kv_buffer_device}"
|
|
1148
|
+
)
|
|
1149
|
+
|
|
1150
|
+
logger.info(
|
|
1151
|
+
"Registering KV_Caches. use_mla: %s, kv_buffer_device: %s, "
|
|
1152
|
+
"use_host_buffer: %s",
|
|
1153
|
+
self.use_mla,
|
|
1154
|
+
self.kv_buffer_device,
|
|
1155
|
+
self.use_host_buffer,
|
|
1156
|
+
)
|
|
1157
|
+
|
|
1158
|
+
caches_data = []
|
|
1159
|
+
# With hybrid allocator, layers can share a kv cache tensor
|
|
1160
|
+
seen_base_addresses = []
|
|
1161
|
+
|
|
1162
|
+
# Note(tms): I modified this from the original region setup code.
|
|
1163
|
+
# K and V are now in different regions. Advantage is that we can
|
|
1164
|
+
# elegantly support MLA and any cases where the K and V tensors
|
|
1165
|
+
# are non-contiguous (it's not locally guaranteed that they will be)
|
|
1166
|
+
# Disadvantage is that the encoded NixlAgentMetadata is now larger
|
|
1167
|
+
# (roughly 8KB vs 5KB).
|
|
1168
|
+
# Conversely for FlashInfer, K and V are registered in the same region
|
|
1169
|
+
# to better exploit the memory layout (ie num_blocks is the first dim).
|
|
1170
|
+
split_k_and_v = self.kv_topo.split_k_and_v
|
|
1171
|
+
tensor_size_bytes = None
|
|
1172
|
+
|
|
1173
|
+
# TODO (NickLucche): Get kernel_block_size in a cleaner way
|
|
1174
|
+
# NHD default "view" for non-MLA cache
|
|
1175
|
+
if self.device_type == "cpu":
|
|
1176
|
+
block_size_position = -2
|
|
1177
|
+
else:
|
|
1178
|
+
block_size_position = -2 if self.use_mla else -3
|
|
1179
|
+
|
|
1180
|
+
# Enable different block lengths for different layers when MLA is used.
|
|
1181
|
+
self.block_len_per_layer = list[int]()
|
|
1182
|
+
self.slot_size_per_layer = list[int]() # HD bytes in kv terms
|
|
1183
|
+
self.device_id = self.tp_rank
|
|
1184
|
+
for layer_name, cache_or_caches in xfer_buffers.items():
|
|
1185
|
+
cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
|
|
1186
|
+
|
|
1187
|
+
for cache in cache_list:
|
|
1188
|
+
base_addr = cache.data_ptr()
|
|
1189
|
+
if not self.use_host_buffer and current_platform.is_cuda_alike():
|
|
1190
|
+
self.device_id = cache.device.index
|
|
1191
|
+
if base_addr in seen_base_addresses:
|
|
1192
|
+
continue
|
|
1193
|
+
|
|
1194
|
+
kernel_block_size = cache.shape[block_size_position]
|
|
1195
|
+
|
|
1196
|
+
if self.block_size != kernel_block_size:
|
|
1197
|
+
logger.info_once(
|
|
1198
|
+
"User-specified logical block size (%s) does not match"
|
|
1199
|
+
" physical kernel block size (%s). Using the latter. ",
|
|
1200
|
+
self.block_size,
|
|
1201
|
+
kernel_block_size,
|
|
1202
|
+
)
|
|
1203
|
+
self._physical_blocks_per_logical_kv_block = (
|
|
1204
|
+
self.block_size // kernel_block_size
|
|
1205
|
+
)
|
|
1206
|
+
self.block_size = kernel_block_size
|
|
1207
|
+
self._block_size[self.engine_id] = kernel_block_size
|
|
1208
|
+
|
|
1209
|
+
seen_base_addresses.append(base_addr)
|
|
1210
|
+
curr_tensor_size_bytes = cache.numel() * cache.element_size()
|
|
1211
|
+
|
|
1212
|
+
if tensor_size_bytes is None:
|
|
1213
|
+
tensor_size_bytes = curr_tensor_size_bytes
|
|
1214
|
+
self.num_blocks = cache.shape[0]
|
|
1215
|
+
|
|
1216
|
+
assert cache.shape[0] == self.num_blocks, (
|
|
1217
|
+
"All kv cache tensors must have the same number of blocks"
|
|
1218
|
+
)
|
|
1219
|
+
|
|
1220
|
+
self.block_len_per_layer.append(
|
|
1221
|
+
curr_tensor_size_bytes // self.num_blocks
|
|
1222
|
+
)
|
|
1223
|
+
self.slot_size_per_layer.append(
|
|
1224
|
+
self.block_len_per_layer[-1] // self.block_size
|
|
1225
|
+
)
|
|
1226
|
+
|
|
1227
|
+
if not self.use_mla:
|
|
1228
|
+
# Different kv cache shape is not supported by HeteroTP
|
|
1229
|
+
assert tensor_size_bytes == curr_tensor_size_bytes, (
|
|
1230
|
+
"All kv cache tensors must have the same size"
|
|
1231
|
+
)
|
|
1232
|
+
# Need to make sure the device ID is non-negative for NIXL,
|
|
1233
|
+
# Torch uses -1 to indicate CPU tensors while NIXL uses explicit
|
|
1234
|
+
# memory type.
|
|
1235
|
+
self.device_id = max(cache.get_device(), 0)
|
|
1236
|
+
caches_data.append(
|
|
1237
|
+
(base_addr, curr_tensor_size_bytes, self.device_id, "")
|
|
1238
|
+
)
|
|
1239
|
+
|
|
1240
|
+
logger.debug(
|
|
1241
|
+
"Different block lengths collected: %s", set(self.block_len_per_layer)
|
|
1242
|
+
)
|
|
1243
|
+
assert len(self.block_len_per_layer) == len(seen_base_addresses)
|
|
1244
|
+
assert self.num_blocks != 0
|
|
1245
|
+
|
|
1246
|
+
self.kv_caches_base_addr[self.engine_id] = seen_base_addresses
|
|
1247
|
+
self.num_regions = len(caches_data)
|
|
1248
|
+
self.num_layers = len(xfer_buffers.keys())
|
|
1249
|
+
|
|
1250
|
+
descs = self.nixl_wrapper.get_reg_descs(caches_data, self.nixl_memory_type)
|
|
1251
|
+
logger.debug("Registering descs: %s", caches_data)
|
|
1252
|
+
self.nixl_wrapper.register_memory(descs, backends=self.nixl_backends)
|
|
1253
|
+
logger.debug("Done registering descs")
|
|
1254
|
+
self._registered_descs.append(descs)
|
|
1255
|
+
|
|
1256
|
+
self.device_kv_caches = kv_caches
|
|
1257
|
+
self.dst_num_blocks[self.engine_id] = self.num_blocks
|
|
1258
|
+
if self.kv_topo.is_kv_layout_blocks_first:
|
|
1259
|
+
for i in range(len(self.slot_size_per_layer)):
|
|
1260
|
+
assert self.slot_size_per_layer[i] % 2 == 0
|
|
1261
|
+
self.slot_size_per_layer[i] //= 2
|
|
1262
|
+
|
|
1263
|
+
# NOTE (NickLucche) When FlashInfer is used, memory is registered
|
|
1264
|
+
# with joint KV for each block. This minimizes the overhead in
|
|
1265
|
+
# registerMem allowing faster descs queries. In order to be able to
|
|
1266
|
+
# split on kv_heads dim as required by heterogeneous TP, one must
|
|
1267
|
+
# be able to index K/V separately. Hence we double the number
|
|
1268
|
+
# of 'virtual' regions here and halve `block_len` below.
|
|
1269
|
+
self.num_regions *= 2
|
|
1270
|
+
|
|
1271
|
+
# Register local/src descr for NIXL xfer.
|
|
1272
|
+
self.seen_base_addresses = seen_base_addresses
|
|
1273
|
+
self.src_xfer_side_handle = self.register_local_xfer_handler(self.block_size)
|
|
1274
|
+
|
|
1275
|
+
self.src_xfer_side_handles[self.block_size] = self.src_xfer_side_handle
|
|
1276
|
+
|
|
1277
|
+
# TODO(mgoin): Hybrid memory allocator is currently disabled for
|
|
1278
|
+
# models with local attention (Llama 4). Can remove this once enabled.
|
|
1279
|
+
if self.model_config.hf_config.model_type == "llama4":
|
|
1280
|
+
from transformers import Llama4TextConfig
|
|
1281
|
+
|
|
1282
|
+
assert isinstance(self.model_config.hf_text_config, Llama4TextConfig)
|
|
1283
|
+
llama4_config = self.model_config.hf_text_config
|
|
1284
|
+
no_rope_layers = llama4_config.no_rope_layers
|
|
1285
|
+
chunk_size = llama4_config.attention_chunk_size
|
|
1286
|
+
chunk_block_size = math.ceil(chunk_size / self.block_size)
|
|
1287
|
+
for layer_idx in range(self.num_layers):
|
|
1288
|
+
# no_rope_layers[layer_idx] == 0 means NoPE (global)
|
|
1289
|
+
# Any other value means RoPE (local chunked)
|
|
1290
|
+
is_local_attention = no_rope_layers[layer_idx] != 0
|
|
1291
|
+
block_window = chunk_block_size if is_local_attention else None
|
|
1292
|
+
self.block_window_per_layer.append(block_window)
|
|
1293
|
+
logger.debug(
|
|
1294
|
+
"Llama 4 block window per layer mapping: %s",
|
|
1295
|
+
self.block_window_per_layer,
|
|
1296
|
+
)
|
|
1297
|
+
assert len(self.block_window_per_layer) == self.num_layers
|
|
1298
|
+
|
|
1299
|
+
# After KV Caches registered, listen for new connections.
|
|
1300
|
+
self.xfer_handshake_metadata = NixlAgentMetadata(
|
|
1301
|
+
engine_id=self.engine_id,
|
|
1302
|
+
agent_metadata=self.nixl_wrapper.get_agent_metadata(),
|
|
1303
|
+
kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
|
|
1304
|
+
device_id=self.device_id,
|
|
1305
|
+
num_blocks=self.num_blocks,
|
|
1306
|
+
block_lens=self.block_len_per_layer,
|
|
1307
|
+
attn_backend_name=self.backend_name,
|
|
1308
|
+
kv_cache_layout=self.kv_cache_layout
|
|
1309
|
+
if not self.use_host_buffer
|
|
1310
|
+
else self.host_buffer_kv_cache_layout,
|
|
1311
|
+
block_size=self.block_size,
|
|
1312
|
+
)
|
|
1313
|
+
|
|
1314
|
+
def register_local_xfer_handler(
|
|
1315
|
+
self,
|
|
1316
|
+
block_size: int,
|
|
1317
|
+
) -> int:
|
|
1318
|
+
"""
|
|
1319
|
+
Function used for register local xfer handler with local block_size or
|
|
1320
|
+
Remote block_size.
|
|
1321
|
+
|
|
1322
|
+
When local block_size is same as remote block_size, we use local block_size
|
|
1323
|
+
to register local_xfer_handler during init.
|
|
1324
|
+
|
|
1325
|
+
When remote block size is less than local block size, we need to use
|
|
1326
|
+
register another local_xfer_handler using remote block len to ensure
|
|
1327
|
+
data copy correctness.
|
|
1328
|
+
"""
|
|
1329
|
+
block_size_ratio = self.block_size // block_size
|
|
1330
|
+
blocks_data = []
|
|
1331
|
+
for i, base_addr in enumerate(self.seen_base_addresses):
|
|
1332
|
+
# The new block_len is using prefill block_len;
|
|
1333
|
+
# and num_blocks is multiple with N
|
|
1334
|
+
kv_block_len = (
|
|
1335
|
+
self.get_backend_aware_kv_block_len(layer_idx=i) // block_size_ratio
|
|
1336
|
+
)
|
|
1337
|
+
block_len_per_layer = self.block_len_per_layer[i] // block_size_ratio
|
|
1338
|
+
num_blocks = self.num_blocks * block_size_ratio
|
|
1339
|
+
for block_id in range(num_blocks):
|
|
1340
|
+
block_offset = block_id * block_len_per_layer
|
|
1341
|
+
addr = base_addr + block_offset
|
|
1342
|
+
# (addr, len, device id)
|
|
1343
|
+
blocks_data.append((addr, kv_block_len, self.device_id))
|
|
1344
|
+
|
|
1345
|
+
if self.kv_topo.is_kv_layout_blocks_first:
|
|
1346
|
+
# Separate and interleave K/V regions to maintain the same
|
|
1347
|
+
# descs ordering. This is needed for selecting contiguous heads
|
|
1348
|
+
# when split across TP ranks.
|
|
1349
|
+
for block_id in range(num_blocks):
|
|
1350
|
+
block_offset = block_id * block_len_per_layer
|
|
1351
|
+
addr = base_addr + block_offset
|
|
1352
|
+
# Register addresses for V cache (K registered first).
|
|
1353
|
+
v_addr = addr + kv_block_len
|
|
1354
|
+
blocks_data.append((v_addr, kv_block_len, self.device_id))
|
|
1355
|
+
logger.debug(
|
|
1356
|
+
"Created %s blocks for src engine %s and rank %s on device id %s",
|
|
1357
|
+
len(blocks_data),
|
|
1358
|
+
self.engine_id,
|
|
1359
|
+
self.tp_rank,
|
|
1360
|
+
self.device_id,
|
|
1361
|
+
)
|
|
1362
|
+
|
|
1363
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
|
|
1364
|
+
# NIXL_INIT_AGENT to be used for preparations of local descs.
|
|
1365
|
+
return self.nixl_wrapper.prep_xfer_dlist("NIXL_INIT_AGENT", descs)
|
|
1366
|
+
|
|
1367
|
+
def add_remote_agent(
|
|
1368
|
+
self,
|
|
1369
|
+
nixl_agent_meta: NixlAgentMetadata,
|
|
1370
|
+
remote_tp_rank: int = 0,
|
|
1371
|
+
remote_tp_size: int = 1,
|
|
1372
|
+
) -> str:
|
|
1373
|
+
"""
|
|
1374
|
+
Add the remote NIXL agent and prepare the descriptors for reading cache
|
|
1375
|
+
blocks from remote.
|
|
1376
|
+
|
|
1377
|
+
In particular, handle both homogeneous and heterogeneous TP. The former
|
|
1378
|
+
requires local rank_i to read from remote rank_i.
|
|
1379
|
+
The latter, assuming D.world_size > P.world_size, requires that two or
|
|
1380
|
+
more local TP worker share the xfer from a single TP worker.
|
|
1381
|
+
|
|
1382
|
+
Here's an example (non-MLA case):
|
|
1383
|
+
|
|
1384
|
+
rank_offset p_remote_tp_rank
|
|
1385
|
+
(kv split no)
|
|
1386
|
+
--------------------------------
|
|
1387
|
+
0 0 Worker0 ---- 1st half of KV ----> Worker0 [ KV Cache ]
|
|
1388
|
+
/
|
|
1389
|
+
1 0 Worker1 ---- 2nd half of KV -----/
|
|
1390
|
+
|
|
1391
|
+
0 1 Worker2 ---- 1st half of KV ----> Worker1 [ KV Cache ]
|
|
1392
|
+
/
|
|
1393
|
+
1 1 Worker3 ---- 2nd half of KV -----/
|
|
1394
|
+
|
|
1395
|
+
|
|
1396
|
+
Decoder TP workers Prefix TP workers
|
|
1397
|
+
(world_size=4) (world_size=2)
|
|
1398
|
+
tp_ratio = 4 // 2 = 2
|
|
1399
|
+
|
|
1400
|
+
Considering the KV Caches, if P-Worker_i has cache size [2, num_blocksP, kv_heads, block_size, head_dim]
|
|
1401
|
+
then D-Worker_j has [2, num_blocksD, kv_heads//tp_ratio, block_size, head_dim]. Mind the "HND" layout format.
|
|
1402
|
+
Assuming num_blocksD >= num_blocksP, D-Worker0 reads from P-Worker0 by preparing the kv_heads//tp_ratio
|
|
1403
|
+
first heads from all the slots of all the blocks. D-Worker1 will do the same, but reading the second split
|
|
1404
|
+
along the kv_heads dimension, and so forth until "tp_ratio" D TP workers have pulled from P-Worker0.
|
|
1405
|
+
|
|
1406
|
+
Note that the above will also hold true for the homogeneous TP case, where tp_ratio evaluates to 1.
|
|
1407
|
+
|
|
1408
|
+
Regarding MLA case, the cache is replicated across TP workers so the rank_offset will just always be 0
|
|
1409
|
+
so that the whole cache is shared by "tp_ratio" D TP workers.
|
|
1410
|
+
""" # noqa: E501
|
|
1411
|
+
engine_id = nixl_agent_meta.engine_id
|
|
1412
|
+
# TODO re-evaluate refreshing for scaling/recovery
|
|
1413
|
+
if remote_tp_rank in self._remote_agents.get(engine_id, {}):
|
|
1414
|
+
logger.debug(
|
|
1415
|
+
"Remote agent with engine_id %s and rank"
|
|
1416
|
+
"%s already exchanged metadata, skip handshake.",
|
|
1417
|
+
engine_id,
|
|
1418
|
+
remote_tp_rank,
|
|
1419
|
+
)
|
|
1420
|
+
return self._remote_agents[engine_id][remote_tp_rank]
|
|
1421
|
+
|
|
1422
|
+
### Register remote agent metadata
|
|
1423
|
+
if engine_id not in self._tp_size:
|
|
1424
|
+
self._tp_size[engine_id] = remote_tp_size
|
|
1425
|
+
if engine_id not in self._block_size:
|
|
1426
|
+
self._block_size[engine_id] = nixl_agent_meta.block_size
|
|
1427
|
+
|
|
1428
|
+
remote_agent_name = self.nixl_wrapper.add_remote_agent(
|
|
1429
|
+
nixl_agent_meta.agent_metadata
|
|
1430
|
+
)
|
|
1431
|
+
|
|
1432
|
+
# Handle tp_size>num_kv_heads: replicate KV cache.
|
|
1433
|
+
replicates_kv_cache = self.kv_topo.replicates_kv_cache(engine_id)
|
|
1434
|
+
|
|
1435
|
+
# Create dst descs and xfer side handles. TP workers have same #blocks
|
|
1436
|
+
# so we only register once per engine_id.
|
|
1437
|
+
# Example:
|
|
1438
|
+
# block_size_ratio > 1:
|
|
1439
|
+
# remote: | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|
|
|
1440
|
+
# local origin:| 0| 1| 8| 12|
|
|
1441
|
+
# local mapped:| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|
|
|
1442
|
+
block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(engine_id)
|
|
1443
|
+
|
|
1444
|
+
if engine_id not in self.dst_num_blocks:
|
|
1445
|
+
self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
|
|
1446
|
+
|
|
1447
|
+
# Keep track of remote agent kv caches base addresses.
|
|
1448
|
+
self.kv_caches_base_addr[engine_id] = nixl_agent_meta.kv_caches_base_addr
|
|
1449
|
+
|
|
1450
|
+
self._validate_remote_agent_handshake(nixl_agent_meta, remote_tp_size)
|
|
1451
|
+
|
|
1452
|
+
# Number of D TP workers reading from a single P TP worker. This is
|
|
1453
|
+
# 1 when P and D `--tensor-parallel-size` match.
|
|
1454
|
+
tp_ratio = self.kv_topo.tp_ratio_from_engine_id(engine_id)
|
|
1455
|
+
|
|
1456
|
+
### Register remote agent memory regions
|
|
1457
|
+
blocks_data = []
|
|
1458
|
+
# With homogeneous TP, D pulls the whole kv cache from corresponding
|
|
1459
|
+
# rank. With heterogeneous TP, prepare the descriptors by splitting the
|
|
1460
|
+
# P KV cache along kv_head dim, of D worker's kv_head size (D>P).
|
|
1461
|
+
# Eg. PTP1 DTP2 => P0 KV:[block0-KV_0 | block0-KV_1..].
|
|
1462
|
+
|
|
1463
|
+
# Register all remote blocks, but only the corresponding kv heads.
|
|
1464
|
+
for i, base_addr in enumerate(nixl_agent_meta.kv_caches_base_addr):
|
|
1465
|
+
kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
|
|
1466
|
+
remote_kv_block_len = kv_block_len // block_size_ratio
|
|
1467
|
+
if block_size_ratio > 1:
|
|
1468
|
+
# using remote kv_block_len as transfer unit
|
|
1469
|
+
kv_block_len = remote_kv_block_len
|
|
1470
|
+
rank_offset = (
|
|
1471
|
+
self.tp_rank % tp_ratio * remote_kv_block_len
|
|
1472
|
+
if not replicates_kv_cache
|
|
1473
|
+
else 0
|
|
1474
|
+
)
|
|
1475
|
+
for block_id in range(nixl_agent_meta.num_blocks):
|
|
1476
|
+
block_offset = block_id * nixl_agent_meta.block_lens[i]
|
|
1477
|
+
# For each block, grab the heads chunk belonging to rank_i
|
|
1478
|
+
# of size remote_nheads // tp_ratio, which correspond to
|
|
1479
|
+
# self.block_len == remote_block_len//tp_ratio bytes.
|
|
1480
|
+
addr = base_addr + block_offset + rank_offset
|
|
1481
|
+
# (addr, len, device id)
|
|
1482
|
+
blocks_data.append((addr, kv_block_len, nixl_agent_meta.device_id))
|
|
1483
|
+
|
|
1484
|
+
if self.kv_topo.is_kv_layout_blocks_first:
|
|
1485
|
+
# With FlashInfer index V separately to allow head splitting.
|
|
1486
|
+
for block_id in range(nixl_agent_meta.num_blocks):
|
|
1487
|
+
block_offset = block_id * nixl_agent_meta.block_lens[i]
|
|
1488
|
+
addr = base_addr + block_offset + rank_offset
|
|
1489
|
+
v_addr = addr + nixl_agent_meta.block_lens[i] // 2
|
|
1490
|
+
blocks_data.append(
|
|
1491
|
+
(v_addr, kv_block_len, nixl_agent_meta.device_id)
|
|
1492
|
+
)
|
|
1493
|
+
|
|
1494
|
+
logger.debug(
|
|
1495
|
+
"Created %s blocks for dst engine %s with remote rank %s and local rank %s",
|
|
1496
|
+
len(blocks_data),
|
|
1497
|
+
engine_id,
|
|
1498
|
+
remote_tp_rank,
|
|
1499
|
+
self.tp_rank,
|
|
1500
|
+
)
|
|
1501
|
+
|
|
1502
|
+
# Register with NIXL.
|
|
1503
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
|
|
1504
|
+
self.dst_xfer_side_handles[engine_id] = self.nixl_wrapper.prep_xfer_dlist(
|
|
1505
|
+
remote_agent_name, descs
|
|
1506
|
+
)
|
|
1507
|
+
|
|
1508
|
+
if block_size_ratio > 1:
|
|
1509
|
+
# when prefill with smaller block_size, we need to init a
|
|
1510
|
+
# new handler with same block_len to match
|
|
1511
|
+
self.src_xfer_side_handles[nixl_agent_meta.block_size] = (
|
|
1512
|
+
self.register_local_xfer_handler(nixl_agent_meta.block_size)
|
|
1513
|
+
)
|
|
1514
|
+
|
|
1515
|
+
return remote_agent_name
|
|
1516
|
+
|
|
1517
|
+
def _validate_remote_agent_handshake(
|
|
1518
|
+
self, nixl_agent_meta: NixlAgentMetadata, remote_tp_size: int
|
|
1519
|
+
):
|
|
1520
|
+
"""
|
|
1521
|
+
Validate the remote agent handshake metadata ensuring the
|
|
1522
|
+
invariants hold true.
|
|
1523
|
+
"""
|
|
1524
|
+
remote_engine_id = nixl_agent_meta.engine_id
|
|
1525
|
+
|
|
1526
|
+
assert self._tp_size[remote_engine_id] == remote_tp_size
|
|
1527
|
+
# TODO We may eventually want to skip enforcing the same attn backend.
|
|
1528
|
+
assert nixl_agent_meta.attn_backend_name == self.backend_name
|
|
1529
|
+
|
|
1530
|
+
tp_ratio = self.kv_topo.tp_ratio_from_engine_id(remote_engine_id)
|
|
1531
|
+
block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
|
|
1532
|
+
remote_engine_id
|
|
1533
|
+
)
|
|
1534
|
+
assert tp_ratio > 0, "Decode TP cannot be smaller than prefill TP"
|
|
1535
|
+
assert not self._use_pallas or tp_ratio == 1, (
|
|
1536
|
+
"TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
|
|
1537
|
+
)
|
|
1538
|
+
kv_cache_layout = (
|
|
1539
|
+
self.kv_cache_layout
|
|
1540
|
+
if not self.use_host_buffer
|
|
1541
|
+
else self.host_buffer_kv_cache_layout
|
|
1542
|
+
)
|
|
1543
|
+
if not self.use_mla and nixl_agent_meta.kv_cache_layout != kv_cache_layout:
|
|
1544
|
+
if (
|
|
1545
|
+
self.kv_transfer_config.enable_permute_local_kv
|
|
1546
|
+
and nixl_agent_meta.kv_cache_layout == "HND"
|
|
1547
|
+
):
|
|
1548
|
+
logger.info(
|
|
1549
|
+
"Remote is HND and local is NHD, enabled additional permute "
|
|
1550
|
+
"on local device KV."
|
|
1551
|
+
)
|
|
1552
|
+
self.enable_permute_local_kv = True
|
|
1553
|
+
else:
|
|
1554
|
+
raise RuntimeError(
|
|
1555
|
+
"Heterogeneous TP expects same kv_cache_layout. "
|
|
1556
|
+
"Or enable experimental feature to use HND to NHD support by "
|
|
1557
|
+
"setting 'enable_permute_local_kv'=True in --kv-transfer-config."
|
|
1558
|
+
)
|
|
1559
|
+
|
|
1560
|
+
# Block len can only vary across layers when using MLA.
|
|
1561
|
+
remote_block_len = nixl_agent_meta.block_lens[0]
|
|
1562
|
+
if self.use_mla or self.kv_topo.is_kv_replicated(remote_engine_id):
|
|
1563
|
+
# With replicated KV cache, only the number of blocks can differ.
|
|
1564
|
+
for i in range(len(self.block_len_per_layer)):
|
|
1565
|
+
assert (
|
|
1566
|
+
self.block_len_per_layer[i] // block_size_ratio
|
|
1567
|
+
== nixl_agent_meta.block_lens[i]
|
|
1568
|
+
), "KV cache sizes must match between P and D when replicated"
|
|
1569
|
+
else:
|
|
1570
|
+
# When MLA is not used, this is a list of the same block length
|
|
1571
|
+
for block_len in nixl_agent_meta.block_lens:
|
|
1572
|
+
assert block_len == remote_block_len, (
|
|
1573
|
+
"All remote layers must have the same block size"
|
|
1574
|
+
)
|
|
1575
|
+
|
|
1576
|
+
assert (
|
|
1577
|
+
remote_block_len
|
|
1578
|
+
== (self.block_len_per_layer[0] * tp_ratio) // block_size_ratio
|
|
1579
|
+
), (
|
|
1580
|
+
"Remote P worker KV layer cache must be of shape [2, N, "
|
|
1581
|
+
"local_kv_heads*tp_ratio, block_size, head_dim] and same dtype."
|
|
1582
|
+
)
|
|
1583
|
+
|
|
1584
|
+
# TP workers have same #blocks.
|
|
1585
|
+
assert self.dst_num_blocks[remote_engine_id] == nixl_agent_meta.num_blocks
|
|
1586
|
+
|
|
1587
|
+
assert len(nixl_agent_meta.kv_caches_base_addr) == len(self.block_len_per_layer)
|
|
1588
|
+
|
|
1589
|
+
def sync_recved_kv_to_device(self, req_id: str, meta: ReqMeta):
|
|
1590
|
+
"""copy recved kv from host buffer to device."""
|
|
1591
|
+
assert self.use_host_buffer
|
|
1592
|
+
assert self.copy_blocks is not None
|
|
1593
|
+
|
|
1594
|
+
local_block_ids = meta.local_physical_block_ids
|
|
1595
|
+
self.copy_blocks(
|
|
1596
|
+
self.host_xfer_buffers,
|
|
1597
|
+
self.device_kv_caches,
|
|
1598
|
+
local_block_ids,
|
|
1599
|
+
local_block_ids,
|
|
1600
|
+
"h2d",
|
|
1601
|
+
)
|
|
1602
|
+
if logger.isEnabledFor(logging.DEBUG):
|
|
1603
|
+
logger.debug(
|
|
1604
|
+
"synced recved kv of request[%s] to device kv buffer,"
|
|
1605
|
+
"local_block_ids: %s. ",
|
|
1606
|
+
req_id,
|
|
1607
|
+
",".join(map(str, local_block_ids)),
|
|
1608
|
+
)
|
|
1609
|
+
|
|
1610
|
+
def save_kv_to_host(self, metadata: NixlConnectorMetadata):
|
|
1611
|
+
"""copy kv from device to host buffer."""
|
|
1612
|
+
assert self.use_host_buffer
|
|
1613
|
+
assert self.copy_blocks is not None
|
|
1614
|
+
|
|
1615
|
+
for req_id, meta in metadata.reqs_to_save.items():
|
|
1616
|
+
meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
|
|
1617
|
+
meta.local_block_ids
|
|
1618
|
+
)
|
|
1619
|
+
if logger.isEnabledFor(logging.DEBUG):
|
|
1620
|
+
logger.debug(
|
|
1621
|
+
"save_load_kv for request[%s] to host xfer buffer."
|
|
1622
|
+
"local_block_ids: %s. ",
|
|
1623
|
+
req_id,
|
|
1624
|
+
",".join(map(str, meta.local_physical_block_ids)),
|
|
1625
|
+
)
|
|
1626
|
+
# blocking
|
|
1627
|
+
self.copy_blocks(
|
|
1628
|
+
self.device_kv_caches,
|
|
1629
|
+
self.host_xfer_buffers,
|
|
1630
|
+
meta.local_physical_block_ids,
|
|
1631
|
+
meta.local_physical_block_ids,
|
|
1632
|
+
"d2h",
|
|
1633
|
+
)
|
|
1634
|
+
|
|
1635
|
+
def permute_device_kv(self, block_ids: list[int]):
|
|
1636
|
+
"""Transforms the layout of received KV cache blocks to the local format.
|
|
1637
|
+
|
|
1638
|
+
This method corrects layout mismatches from direct memory copies by
|
|
1639
|
+
permuting the tensor dimensions.
|
|
1640
|
+
|
|
1641
|
+
- **Source Layout:** `[num_blocks, n_kv_head, block_size, head_dim]`
|
|
1642
|
+
- **Target Layout:** `[num_blocks, block_size, n_kv_head, head_dim]`
|
|
1643
|
+
|
|
1644
|
+
Args:
|
|
1645
|
+
block_ids: A list of block IDs to update and permute.
|
|
1646
|
+
|
|
1647
|
+
Implementation:
|
|
1648
|
+
- x = blocks_to_update.reshape(src_shape) # view local kv with sender layout
|
|
1649
|
+
- permuted_blocks = x.permute(*inv_order) # transpose n_kv_heads, block_size
|
|
1650
|
+
- cache.index_copy_(0, indices, permuted_blocks) # copy permuted kv back
|
|
1651
|
+
|
|
1652
|
+
"""
|
|
1653
|
+
split_k_and_v = self.kv_topo.split_k_and_v
|
|
1654
|
+
inv_order = [0, 2, 1, 3]
|
|
1655
|
+
sample_cache = list(self.device_kv_caches.values())[0][0]
|
|
1656
|
+
target_shape = list(sample_cache.shape)
|
|
1657
|
+
target_shape[0] = -1
|
|
1658
|
+
src_shape = tuple(target_shape[i] for i in inv_order)
|
|
1659
|
+
indices = torch.tensor(block_ids, device=sample_cache.device)
|
|
1660
|
+
|
|
1661
|
+
for _, cache_or_caches in self.device_kv_caches.items():
|
|
1662
|
+
cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
|
|
1663
|
+
for cache in cache_list:
|
|
1664
|
+
blocks_to_update = cache.index_select(0, indices)
|
|
1665
|
+
permuted_blocks = blocks_to_update.reshape(src_shape).permute(
|
|
1666
|
+
*inv_order
|
|
1667
|
+
)
|
|
1668
|
+
cache.index_copy_(0, indices, permuted_blocks)
|
|
1669
|
+
|
|
1670
|
+
def blocksize_post_process(self, block_ids_per_ratio: dict[float, list[list[int]]]):
|
|
1671
|
+
def _process_local_gt_remote(blocks_to_update, block_size_ratio):
|
|
1672
|
+
n_kv_heads, block_size, head_size = blocks_to_update.shape[1:]
|
|
1673
|
+
remote_block_size = block_size // block_size_ratio
|
|
1674
|
+
n_blocks = block_size_ratio
|
|
1675
|
+
# actual permute is to convert
|
|
1676
|
+
# for local blocksize > remote blocksize
|
|
1677
|
+
# ex: local blocksize = 16 tokens, remote blocksize = 4 tokens
|
|
1678
|
+
# local block[0] = remote block[0, 1, 2, 3]
|
|
1679
|
+
# remote is |h0-b0|h1-b0|h2-b0|h3-b0|h0-b1|h1-b1|h2-b1|h3-b1|...
|
|
1680
|
+
# local is |h0-b0..................|h1-b0..................|...
|
|
1681
|
+
# permute is to:
|
|
1682
|
+
# 1. view => view remote as n_blocks * remote_shape(H,remoteN,D)
|
|
1683
|
+
# 2. permute => (H, nblocks, remoteN, D)
|
|
1684
|
+
# 3. flatten => (H, localN, D)
|
|
1685
|
+
permuted_blocks = (
|
|
1686
|
+
blocks_to_update.reshape(
|
|
1687
|
+
-1, n_blocks, n_kv_heads, remote_block_size, head_size
|
|
1688
|
+
)
|
|
1689
|
+
.permute(0, 2, 1, 3, 4)
|
|
1690
|
+
.flatten(2, 3)
|
|
1691
|
+
)
|
|
1692
|
+
return permuted_blocks
|
|
1693
|
+
|
|
1694
|
+
if len(self.device_kv_caches) == 0:
|
|
1695
|
+
return
|
|
1696
|
+
split_k_and_v = not (
|
|
1697
|
+
self.use_mla or self._use_pallas or self.kv_topo.is_kv_layout_blocks_first
|
|
1698
|
+
)
|
|
1699
|
+
sample_cache = list(self.device_kv_caches.values())[0][0]
|
|
1700
|
+
for block_size_ratio, block_ids_list in block_ids_per_ratio.items():
|
|
1701
|
+
assert block_size_ratio > 1, "Only nP < nD supported currently."
|
|
1702
|
+
block_ids_list = [[item for sublist in block_ids_list for item in sublist]]
|
|
1703
|
+
|
|
1704
|
+
for block_ids in block_ids_list:
|
|
1705
|
+
indices = torch.tensor(block_ids, device=sample_cache.device)
|
|
1706
|
+
|
|
1707
|
+
for _, cache_or_caches in self.device_kv_caches.items():
|
|
1708
|
+
cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
|
|
1709
|
+
for cache in cache_list:
|
|
1710
|
+
blocks_to_update = cache.index_select(0, indices)
|
|
1711
|
+
# because kv_cache is always using original layout NHD as
|
|
1712
|
+
# virtual shape while stride can be either HND / NHD at
|
|
1713
|
+
# initialization.
|
|
1714
|
+
# we need to firstly get physical view of the tensor
|
|
1715
|
+
permuted_blocks = _process_local_gt_remote(
|
|
1716
|
+
blocks_to_update.permute(0, 2, 1, 3), block_size_ratio
|
|
1717
|
+
).permute(0, 2, 1, 3)
|
|
1718
|
+
cache.index_copy_(0, indices, permuted_blocks)
|
|
1719
|
+
|
|
1720
|
+
def get_finished(self) -> tuple[set[str], set[str]]:
|
|
1721
|
+
"""
|
|
1722
|
+
Get requests that are done sending or recving on this specific worker.
|
|
1723
|
+
The scheduler process (via the MultiprocExecutor) will use this output
|
|
1724
|
+
to track which workers are done.
|
|
1725
|
+
"""
|
|
1726
|
+
done_sending = self._get_new_notifs()
|
|
1727
|
+
done_recving = self._pop_done_transfers(self._recving_transfers)
|
|
1728
|
+
|
|
1729
|
+
# add requests that skipped transfer to done_recving
|
|
1730
|
+
done_recving.update(self._failed_recv_reqs)
|
|
1731
|
+
self._failed_recv_reqs.clear()
|
|
1732
|
+
|
|
1733
|
+
if len(done_sending) > 0 or len(done_recving) > 0:
|
|
1734
|
+
logger.debug(
|
|
1735
|
+
"Rank %s, get_finished: %s requests done sending "
|
|
1736
|
+
"and %s requests done recving",
|
|
1737
|
+
self.tp_rank,
|
|
1738
|
+
len(done_sending),
|
|
1739
|
+
len(done_recving),
|
|
1740
|
+
)
|
|
1741
|
+
|
|
1742
|
+
block_ids_to_permute = []
|
|
1743
|
+
block_ids_for_blocksize_post_process = defaultdict(list)
|
|
1744
|
+
for req_id in done_recving:
|
|
1745
|
+
# clean up metadata for completed requests
|
|
1746
|
+
meta = self._recving_metadata.pop(req_id, None)
|
|
1747
|
+
assert meta is not None, f"{req_id} not found in recving_metadata list"
|
|
1748
|
+
if self.use_host_buffer:
|
|
1749
|
+
self.sync_recved_kv_to_device(req_id, meta)
|
|
1750
|
+
if self.enable_permute_local_kv:
|
|
1751
|
+
block_ids_to_permute += meta.local_physical_block_ids
|
|
1752
|
+
|
|
1753
|
+
# post processing for heteroblocksize
|
|
1754
|
+
block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
|
|
1755
|
+
meta.remote_engine_id
|
|
1756
|
+
)
|
|
1757
|
+
if (
|
|
1758
|
+
not self.use_mla
|
|
1759
|
+
and block_size_ratio > 1
|
|
1760
|
+
and self.kv_cache_layout == "HND"
|
|
1761
|
+
):
|
|
1762
|
+
block_ids_for_blocksize_post_process[block_size_ratio].append(
|
|
1763
|
+
meta.local_block_ids
|
|
1764
|
+
)
|
|
1765
|
+
self.blocksize_post_process(block_ids_for_blocksize_post_process)
|
|
1766
|
+
if len(block_ids_to_permute) > 0:
|
|
1767
|
+
self.permute_device_kv(block_ids_to_permute)
|
|
1768
|
+
|
|
1769
|
+
# Handle timeout to avoid stranding blocks on remote.
|
|
1770
|
+
now = time.perf_counter()
|
|
1771
|
+
while self._reqs_to_send:
|
|
1772
|
+
req_id, expires = next(iter(self._reqs_to_send.items()))
|
|
1773
|
+
# Sorted dict, oldest requests are put first so we can exit early.
|
|
1774
|
+
if now < expires:
|
|
1775
|
+
break
|
|
1776
|
+
count = self.consumer_notification_counts_by_req.pop(req_id, 0)
|
|
1777
|
+
logger.warning(
|
|
1778
|
+
"Releasing expired KV blocks for request %s which were "
|
|
1779
|
+
"retrieved by %d decode worker(s) within %d seconds.",
|
|
1780
|
+
req_id,
|
|
1781
|
+
count,
|
|
1782
|
+
envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
|
|
1783
|
+
)
|
|
1784
|
+
self._reqs_to_process.remove(req_id)
|
|
1785
|
+
del self._reqs_to_send[req_id]
|
|
1786
|
+
done_sending.add(req_id)
|
|
1787
|
+
|
|
1788
|
+
return done_sending, done_recving
|
|
1789
|
+
|
|
1790
|
+
def _get_new_notifs(self) -> set[str]:
|
|
1791
|
+
"""
|
|
1792
|
+
Get req_ids which got a remote xfer message. When multiple consumers
|
|
1793
|
+
are reading from the same producer (heterogeneous TP scenario), wait
|
|
1794
|
+
for all consumers to be done pulling.
|
|
1795
|
+
"""
|
|
1796
|
+
notified_req_ids: set[str] = set()
|
|
1797
|
+
for notifs in self.nixl_wrapper.get_new_notifs().values():
|
|
1798
|
+
for notif in notifs:
|
|
1799
|
+
req_id, tp_ratio = notif.decode("utf-8").rsplit(":", 1)
|
|
1800
|
+
if (
|
|
1801
|
+
req_id not in self._reqs_to_send
|
|
1802
|
+
and req_id not in self._reqs_to_process
|
|
1803
|
+
):
|
|
1804
|
+
logger.error(
|
|
1805
|
+
"Potentially invalid KV blocks for "
|
|
1806
|
+
"unrecognized request %s were retrieved by "
|
|
1807
|
+
"a decode worker. They may have expired.",
|
|
1808
|
+
req_id,
|
|
1809
|
+
)
|
|
1810
|
+
continue
|
|
1811
|
+
|
|
1812
|
+
self.consumer_notification_counts_by_req[req_id] += 1
|
|
1813
|
+
# Wait all consumers (D) to be done reading before freeing.
|
|
1814
|
+
if self.consumer_notification_counts_by_req[req_id] == int(tp_ratio):
|
|
1815
|
+
notified_req_ids.add(req_id)
|
|
1816
|
+
del self.consumer_notification_counts_by_req[req_id]
|
|
1817
|
+
self._reqs_to_process.remove(req_id)
|
|
1818
|
+
self._reqs_to_send.pop(req_id, None)
|
|
1819
|
+
return notified_req_ids
|
|
1820
|
+
|
|
1821
|
+
def _pop_done_transfers(
|
|
1822
|
+
self, transfers: dict[str, list[tuple[int, float]]]
|
|
1823
|
+
) -> set[str]:
|
|
1824
|
+
"""
|
|
1825
|
+
Pop completed xfers by checking for DONE state.
|
|
1826
|
+
Args:
|
|
1827
|
+
transfers: dict of req_id -> list[running_xfer]
|
|
1828
|
+
Returns:
|
|
1829
|
+
set of req_ids that have all done xfers
|
|
1830
|
+
"""
|
|
1831
|
+
done_req_ids: set[str] = set()
|
|
1832
|
+
for req_id, handles in list(transfers.items()):
|
|
1833
|
+
in_progress = False
|
|
1834
|
+
for handle, xfer_start_time in handles:
|
|
1835
|
+
try:
|
|
1836
|
+
xfer_state = self.nixl_wrapper.check_xfer_state(handle)
|
|
1837
|
+
if xfer_state == "DONE":
|
|
1838
|
+
# Get telemetry from NIXL
|
|
1839
|
+
res = self.nixl_wrapper.get_xfer_telemetry(handle)
|
|
1840
|
+
self.xfer_stats.record_transfer(res)
|
|
1841
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
1842
|
+
elif xfer_state == "PROC":
|
|
1843
|
+
in_progress = True
|
|
1844
|
+
continue
|
|
1845
|
+
else:
|
|
1846
|
+
logger.error(
|
|
1847
|
+
"NIXL transfer failed for request %s with state "
|
|
1848
|
+
"%s. Marking blocks as invalid.",
|
|
1849
|
+
req_id,
|
|
1850
|
+
xfer_state,
|
|
1851
|
+
)
|
|
1852
|
+
self._handle_failed_transfer(req_id, handle)
|
|
1853
|
+
in_progress = False
|
|
1854
|
+
except Exception:
|
|
1855
|
+
logger.exception(
|
|
1856
|
+
"NIXL transfer exception for request %s. "
|
|
1857
|
+
"Marking blocks as invalid.",
|
|
1858
|
+
req_id,
|
|
1859
|
+
)
|
|
1860
|
+
self._handle_failed_transfer(req_id, handle)
|
|
1861
|
+
in_progress = False
|
|
1862
|
+
|
|
1863
|
+
if not in_progress:
|
|
1864
|
+
done_req_ids.add(req_id)
|
|
1865
|
+
del transfers[req_id]
|
|
1866
|
+
return done_req_ids
|
|
1867
|
+
|
|
1868
|
+
def _handle_failed_transfer(self, req_id: str, handle: int):
|
|
1869
|
+
"""
|
|
1870
|
+
Handle a failed transfer by marking all (logical) blocks as invalid and
|
|
1871
|
+
recording the failure.
|
|
1872
|
+
|
|
1873
|
+
Args:
|
|
1874
|
+
req_id: The request ID.
|
|
1875
|
+
handle: The transfer handle.
|
|
1876
|
+
"""
|
|
1877
|
+
if meta := self._recving_metadata.pop(req_id, None):
|
|
1878
|
+
self._invalid_block_ids.update(meta.local_block_ids)
|
|
1879
|
+
self._recving_metadata.pop(req_id, None)
|
|
1880
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
1881
|
+
self.xfer_stats.record_failed_transfer()
|
|
1882
|
+
|
|
1883
|
+
def start_load_kv(self, metadata: NixlConnectorMetadata):
|
|
1884
|
+
"""
|
|
1885
|
+
Start loading by triggering non-blocking nixl_xfer.
|
|
1886
|
+
We check for these trnxs to complete in each step().
|
|
1887
|
+
"""
|
|
1888
|
+
for req_id, meta in metadata.reqs_to_recv.items():
|
|
1889
|
+
meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
|
|
1890
|
+
meta.local_block_ids
|
|
1891
|
+
)
|
|
1892
|
+
meta.remote_block_ids = self._logical_to_kernel_block_ids(
|
|
1893
|
+
meta.remote_block_ids
|
|
1894
|
+
)
|
|
1895
|
+
remote_engine_id = meta.remote_engine_id
|
|
1896
|
+
logger.debug(
|
|
1897
|
+
"start_load_kv for request %s from remote engine %s. "
|
|
1898
|
+
"Num local_block_ids: %s. Num remote_block_ids: %s. ",
|
|
1899
|
+
req_id,
|
|
1900
|
+
remote_engine_id,
|
|
1901
|
+
len(meta.local_physical_block_ids),
|
|
1902
|
+
len(meta.remote_block_ids),
|
|
1903
|
+
)
|
|
1904
|
+
# always store metadata for failure recovery
|
|
1905
|
+
self._recving_metadata[req_id] = meta
|
|
1906
|
+
if remote_engine_id not in self._remote_agents:
|
|
1907
|
+
# Initiate handshake with remote engine to exchange metadata.
|
|
1908
|
+
with self._handshake_lock:
|
|
1909
|
+
if remote_engine_id not in self._remote_agents:
|
|
1910
|
+
self._background_nixl_handshake(req_id, remote_engine_id, meta)
|
|
1911
|
+
continue
|
|
1912
|
+
|
|
1913
|
+
# Handshake already completed, start async read xfer.
|
|
1914
|
+
self._read_blocks_for_req(req_id, meta)
|
|
1915
|
+
|
|
1916
|
+
# Start transfers for requests whose handshakes have now finished.
|
|
1917
|
+
while not self._ready_requests.empty():
|
|
1918
|
+
self._read_blocks_for_req(*self._ready_requests.get_nowait())
|
|
1919
|
+
|
|
1920
|
+
# Keep around the requests that have been part of a batch. This is
|
|
1921
|
+
# needed because async scheduling pushes the misalignment between the
|
|
1922
|
+
# moment in which requests expiration is set (P side) and the moment in
|
|
1923
|
+
# which blocks are read from D. As P can now more easily lag behind D
|
|
1924
|
+
# while processing the next batch, we make sure to only set an
|
|
1925
|
+
# expiration for requests that have not been read from D yet.
|
|
1926
|
+
for req_id in metadata.reqs_in_batch:
|
|
1927
|
+
self._reqs_to_process.add(req_id)
|
|
1928
|
+
|
|
1929
|
+
# Remove all requests that are not to be processed (eg aborted).
|
|
1930
|
+
for req_id in metadata.reqs_not_processed:
|
|
1931
|
+
self._reqs_to_process.discard(req_id)
|
|
1932
|
+
# We should never get an abort after setting an expiry timer
|
|
1933
|
+
assert req_id not in self._reqs_to_send
|
|
1934
|
+
|
|
1935
|
+
# Add to requests that are waiting to be read and track expiration.
|
|
1936
|
+
for req_id, expiration_time in metadata.reqs_to_send.items():
|
|
1937
|
+
if req_id in self._reqs_to_process:
|
|
1938
|
+
self._reqs_to_send[req_id] = expiration_time
|
|
1939
|
+
|
|
1940
|
+
def _read_blocks_for_req(self, req_id: str, meta: ReqMeta):
|
|
1941
|
+
logger.debug(
|
|
1942
|
+
"Remote agent %s available, calling _read_blocks for req %s",
|
|
1943
|
+
meta.remote_engine_id,
|
|
1944
|
+
req_id,
|
|
1945
|
+
)
|
|
1946
|
+
self._read_blocks(
|
|
1947
|
+
request_id=req_id,
|
|
1948
|
+
dst_engine_id=meta.remote_engine_id,
|
|
1949
|
+
local_block_ids=meta.local_physical_block_ids,
|
|
1950
|
+
remote_block_ids=meta.remote_block_ids,
|
|
1951
|
+
)
|
|
1952
|
+
|
|
1953
|
+
def _read_blocks(
|
|
1954
|
+
self,
|
|
1955
|
+
local_block_ids: list[int],
|
|
1956
|
+
remote_block_ids: list[int],
|
|
1957
|
+
dst_engine_id: str,
|
|
1958
|
+
request_id: str,
|
|
1959
|
+
):
|
|
1960
|
+
block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(dst_engine_id)
|
|
1961
|
+
if block_size_ratio > 1:
|
|
1962
|
+
local_block_ids = self.get_mapped_blocks(
|
|
1963
|
+
np.asarray(local_block_ids), block_size_ratio
|
|
1964
|
+
)
|
|
1965
|
+
if len(local_block_ids) > len(remote_block_ids):
|
|
1966
|
+
# NOTE:
|
|
1967
|
+
# get_mapped_blocks will always expand block_ids for n times.
|
|
1968
|
+
# ex:
|
|
1969
|
+
# prefill block_ids with block_size as 4:
|
|
1970
|
+
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
1971
|
+
# Local decode block_ids with block_size as 16: [1, 2, 3]
|
|
1972
|
+
# expland ecode block_ids with get_mapped_blocks from [1, 2, 3] to
|
|
1973
|
+
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
|
|
1974
|
+
# Then we clip local to align with prefill
|
|
1975
|
+
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] to
|
|
1976
|
+
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
1977
|
+
local_block_ids = local_block_ids[: len(remote_block_ids)]
|
|
1978
|
+
# NOTE(rob): having the staging blocks be on the READER side is
|
|
1979
|
+
# not going to work well (since we will have to call rearrange tensors).
|
|
1980
|
+
# after we detect the txn is complete (which means we cannot make the
|
|
1981
|
+
# read trxn async easily). If we want to make "READ" happen cleanly,
|
|
1982
|
+
# then we will need to have the staging blocks on the remote side.
|
|
1983
|
+
|
|
1984
|
+
# NOTE(rob): according to nvidia the staging blocks are used to
|
|
1985
|
+
# saturate IB with heterogeneous TP sizes. We should remove the staging
|
|
1986
|
+
# blocks until we are ready.
|
|
1987
|
+
|
|
1988
|
+
# Number of D TP workers that will read from dst P. Propagate tp_ratio
|
|
1989
|
+
# on notification so that dst worker can wait before freeing blocks.
|
|
1990
|
+
tp_ratio = self.kv_topo.tp_ratio_from_engine_id(dst_engine_id)
|
|
1991
|
+
notif_id = f"{request_id}:{tp_ratio}".encode()
|
|
1992
|
+
|
|
1993
|
+
# Full prefix cache hit: do not need to read remote blocks,
|
|
1994
|
+
# just notify P worker that we have the blocks we need.
|
|
1995
|
+
num_local_blocks = len(local_block_ids)
|
|
1996
|
+
if num_local_blocks == 0:
|
|
1997
|
+
remote_rank = self.kv_topo.get_target_remote_rank_from_engine_id(
|
|
1998
|
+
dst_engine_id
|
|
1999
|
+
)
|
|
2000
|
+
agent_name = self._remote_agents[dst_engine_id][remote_rank]
|
|
2001
|
+
try:
|
|
2002
|
+
self.nixl_wrapper.send_notif(agent_name, notif_msg=notif_id)
|
|
2003
|
+
except Exception:
|
|
2004
|
+
logger.exception(
|
|
2005
|
+
"NIXL send_notif failed for request %s: "
|
|
2006
|
+
"P worker blocks will be freed after timeout. "
|
|
2007
|
+
"This may indicate network issues.",
|
|
2008
|
+
request_id,
|
|
2009
|
+
)
|
|
2010
|
+
self.xfer_stats.record_failed_notification()
|
|
2011
|
+
return
|
|
2012
|
+
|
|
2013
|
+
# Partial prefix cache hit: just read uncomputed blocks.
|
|
2014
|
+
num_remote_blocks = len(remote_block_ids)
|
|
2015
|
+
assert num_local_blocks <= num_remote_blocks
|
|
2016
|
+
if num_local_blocks < num_remote_blocks:
|
|
2017
|
+
remote_block_ids = remote_block_ids[-num_local_blocks:]
|
|
2018
|
+
|
|
2019
|
+
# Get side handles.
|
|
2020
|
+
remote_block_size = self.kv_topo.remote_block_size[dst_engine_id]
|
|
2021
|
+
local_xfer_side_handle = self.src_xfer_side_handles.get(
|
|
2022
|
+
remote_block_size, self.src_xfer_side_handle
|
|
2023
|
+
)
|
|
2024
|
+
remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
|
|
2025
|
+
|
|
2026
|
+
# NOTE (nicolo) With homogeneous TP, each TP worker loads KV from
|
|
2027
|
+
# corresponding rank. With heterogeneous TP, fixing D>P, the D tp
|
|
2028
|
+
# workers will issue xfers to parts of the P worker remote kv caches.
|
|
2029
|
+
|
|
2030
|
+
# Get descs ids.
|
|
2031
|
+
local_block_descs_ids: np.ndarray
|
|
2032
|
+
remote_block_descs_ids: np.ndarray
|
|
2033
|
+
|
|
2034
|
+
if not self.block_window_per_layer:
|
|
2035
|
+
# Default case: assume global attention
|
|
2036
|
+
remote_block_descs_ids = self._get_block_descs_ids(
|
|
2037
|
+
dst_engine_id,
|
|
2038
|
+
remote_block_ids,
|
|
2039
|
+
)
|
|
2040
|
+
local_block_descs_ids = self._get_block_descs_ids(
|
|
2041
|
+
self.engine_id,
|
|
2042
|
+
local_block_ids,
|
|
2043
|
+
block_size_ratio=block_size_ratio,
|
|
2044
|
+
)
|
|
2045
|
+
else:
|
|
2046
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
2047
|
+
# Optimization for models with local attention (Llama 4)
|
|
2048
|
+
local_descs_list = []
|
|
2049
|
+
remote_descs_list = []
|
|
2050
|
+
for layer_idx, block_window in enumerate(self.block_window_per_layer):
|
|
2051
|
+
# For each layer:
|
|
2052
|
+
if block_window is None:
|
|
2053
|
+
# If not chunked, we just use the
|
|
2054
|
+
# full block lists (global attention)
|
|
2055
|
+
layer_local_block_ids = local_block_ids
|
|
2056
|
+
layer_remote_block_ids = remote_block_ids
|
|
2057
|
+
else:
|
|
2058
|
+
# If chunked, get the last block_window blocks
|
|
2059
|
+
layer_local_block_ids = local_block_ids[-block_window:]
|
|
2060
|
+
layer_remote_block_ids = remote_block_ids[-block_window:]
|
|
2061
|
+
|
|
2062
|
+
# Get descs ids for the layer.
|
|
2063
|
+
layer_local_desc_ids = self._get_block_descs_ids(
|
|
2064
|
+
dst_engine_id,
|
|
2065
|
+
layer_local_block_ids,
|
|
2066
|
+
layer_idx,
|
|
2067
|
+
)
|
|
2068
|
+
layer_remote_desc_ids = self._get_block_descs_ids(
|
|
2069
|
+
self.engine_id,
|
|
2070
|
+
layer_remote_block_ids,
|
|
2071
|
+
layer_idx,
|
|
2072
|
+
block_size_ratio=block_size_ratio,
|
|
2073
|
+
)
|
|
2074
|
+
|
|
2075
|
+
local_descs_list.append(layer_local_desc_ids)
|
|
2076
|
+
remote_descs_list.append(layer_remote_desc_ids)
|
|
2077
|
+
|
|
2078
|
+
local_block_descs_ids = np.concatenate(local_descs_list)
|
|
2079
|
+
remote_block_descs_ids = np.concatenate(remote_descs_list)
|
|
2080
|
+
|
|
2081
|
+
assert len(local_block_descs_ids) == len(remote_block_descs_ids)
|
|
2082
|
+
|
|
2083
|
+
# Prepare transfer with Nixl.
|
|
2084
|
+
handle = None
|
|
2085
|
+
try:
|
|
2086
|
+
handle = self.nixl_wrapper.make_prepped_xfer(
|
|
2087
|
+
"READ",
|
|
2088
|
+
local_xfer_side_handle,
|
|
2089
|
+
local_block_descs_ids,
|
|
2090
|
+
remote_xfer_side_handle,
|
|
2091
|
+
remote_block_descs_ids,
|
|
2092
|
+
notif_msg=notif_id,
|
|
2093
|
+
)
|
|
2094
|
+
|
|
2095
|
+
# Begin async xfer.
|
|
2096
|
+
self.nixl_wrapper.transfer(handle)
|
|
2097
|
+
|
|
2098
|
+
# Use handle to check completion in future step().
|
|
2099
|
+
self._recving_transfers[request_id].append((handle, time.perf_counter()))
|
|
2100
|
+
except Exception:
|
|
2101
|
+
logger.exception(
|
|
2102
|
+
"NIXL transfer setup/initiation failed for request %s. "
|
|
2103
|
+
"Marking blocks as invalid.",
|
|
2104
|
+
request_id,
|
|
2105
|
+
)
|
|
2106
|
+
# mark all (logical) blocks for this request as invalid
|
|
2107
|
+
if meta := self._recving_metadata.get(request_id):
|
|
2108
|
+
self._invalid_block_ids.update(meta.local_block_ids)
|
|
2109
|
+
self.xfer_stats.record_failed_transfer()
|
|
2110
|
+
if handle is not None:
|
|
2111
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
2112
|
+
self._failed_recv_reqs.add(request_id)
|
|
2113
|
+
|
|
2114
|
+
def get_mapped_blocks(self, block_ids, block_size_ratio):
|
|
2115
|
+
"""
|
|
2116
|
+
Calculates the new set of block IDs by mapping every element
|
|
2117
|
+
in the (potentially sparse) input array.
|
|
2118
|
+
Example: block_ids=[0, 2], block_size_ratio=2
|
|
2119
|
+
get_mapped_blocks 0 1 [2 3] 4 5
|
|
2120
|
+
# remote is |h0-b0|h1-b0||h0-b1|h1-b1||h0-b1|h1-b1||
|
|
2121
|
+
# local is |h0-b0......||h1-b0......||h2-b0........
|
|
2122
|
+
local_block_ids 0 [1] 2
|
|
2123
|
+
"""
|
|
2124
|
+
if block_ids.size == 0:
|
|
2125
|
+
return np.array([], dtype=np.int64)
|
|
2126
|
+
|
|
2127
|
+
start_ids = block_ids * block_size_ratio
|
|
2128
|
+
offsets = np.arange(block_size_ratio)
|
|
2129
|
+
mapped_2d = start_ids[:, None] + offsets[None, :]
|
|
2130
|
+
|
|
2131
|
+
return mapped_2d.flatten().astype(np.int64)
|
|
2132
|
+
|
|
2133
|
+
def _get_block_descs_ids(
|
|
2134
|
+
self,
|
|
2135
|
+
engine_id: str,
|
|
2136
|
+
block_ids: list[int],
|
|
2137
|
+
layer_idx: int | None = None,
|
|
2138
|
+
block_size_ratio: float | None = None,
|
|
2139
|
+
) -> np.ndarray:
|
|
2140
|
+
"""
|
|
2141
|
+
Get the descs ids for a set of block ids.
|
|
2142
|
+
If layer_idx is provided, we use the region_ids for the given layer.
|
|
2143
|
+
Otherwise, we use all regions.
|
|
2144
|
+
"""
|
|
2145
|
+
if layer_idx is None:
|
|
2146
|
+
region_ids = np.arange(self.num_regions)
|
|
2147
|
+
else:
|
|
2148
|
+
assert layer_idx < self.num_layers
|
|
2149
|
+
if self.num_layers < self.num_regions:
|
|
2150
|
+
# If we have more regions than layers, we assume that
|
|
2151
|
+
# the regions are organized as [K0, V0, K1, V1, ...]
|
|
2152
|
+
# and we select K_i and V_i
|
|
2153
|
+
assert 2 * self.num_layers == self.num_regions
|
|
2154
|
+
region_ids = np.arange(2 * layer_idx, 2 * layer_idx + 2)
|
|
2155
|
+
else:
|
|
2156
|
+
# Otherwise, we assume we have MLA and select i-th layer
|
|
2157
|
+
assert self.num_layers == self.num_regions
|
|
2158
|
+
region_ids = np.arange(layer_idx, layer_idx + 1)
|
|
2159
|
+
|
|
2160
|
+
num_blocks = self.dst_num_blocks[engine_id]
|
|
2161
|
+
if block_size_ratio is not None:
|
|
2162
|
+
num_blocks = int(num_blocks * block_size_ratio)
|
|
2163
|
+
|
|
2164
|
+
# Compute the desc ids for each block.
|
|
2165
|
+
region_ids = region_ids[:, None]
|
|
2166
|
+
block_ids = np.array(block_ids)[None, :]
|
|
2167
|
+
descs_ids = region_ids * num_blocks + block_ids
|
|
2168
|
+
return descs_ids.flatten()
|
|
2169
|
+
|
|
2170
|
+
def _logical_to_kernel_block_ids(self, block_ids: list[int]) -> list[int]:
|
|
2171
|
+
"""
|
|
2172
|
+
Convert logical block ids to kernel physical block ids.
|
|
2173
|
+
This is required when the logical block size (the one set by the user)
|
|
2174
|
+
does not match the one required by the attn backend.
|
|
2175
|
+
"""
|
|
2176
|
+
if self._physical_blocks_per_logical_kv_block == 1:
|
|
2177
|
+
# Noop when physical and logical block sizes are the same
|
|
2178
|
+
return block_ids
|
|
2179
|
+
block_ids_np = np.array(block_ids)
|
|
2180
|
+
block_arange = np.arange(0, self._physical_blocks_per_logical_kv_block).reshape(
|
|
2181
|
+
1, -1
|
|
2182
|
+
)
|
|
2183
|
+
return BlockTable.map_to_kernel_blocks(
|
|
2184
|
+
block_ids_np, self._physical_blocks_per_logical_kv_block, block_arange
|
|
2185
|
+
).tolist()
|
|
2186
|
+
|
|
2187
|
+
def get_backend_aware_kv_block_len(self, layer_idx: int):
|
|
2188
|
+
"""
|
|
2189
|
+
Get the block length for one K/V element (K and V have the same size).
|
|
2190
|
+
|
|
2191
|
+
For FA and other backends, this is equal to the length of the whole
|
|
2192
|
+
block, as K and V are in separate regions.
|
|
2193
|
+
For FlashInfer, this is half the length of the whole block, as K and V
|
|
2194
|
+
share the same region.
|
|
2195
|
+
"""
|
|
2196
|
+
if self.kv_topo.is_kv_layout_blocks_first:
|
|
2197
|
+
# For indexing only half (either just the K or V part).
|
|
2198
|
+
block_len = self.block_len_per_layer[layer_idx] // 2
|
|
2199
|
+
else:
|
|
2200
|
+
block_len = self.block_len_per_layer[layer_idx]
|
|
2201
|
+
return block_len
|
|
2202
|
+
|
|
2203
|
+
def get_kv_connector_stats(self) -> KVConnectorStats | None:
|
|
2204
|
+
"""
|
|
2205
|
+
Get the KV transfer stats for the connector.
|
|
2206
|
+
"""
|
|
2207
|
+
# Clear stats for next iteration
|
|
2208
|
+
if not self.xfer_stats.is_empty():
|
|
2209
|
+
return self.xfer_stats.clone_and_reset()
|
|
2210
|
+
return None
|
|
2211
|
+
|
|
2212
|
+
def get_block_ids_with_load_errors(self) -> set[int]:
|
|
2213
|
+
"""
|
|
2214
|
+
Return and clear the set of block IDs that failed to load.
|
|
2215
|
+
|
|
2216
|
+
This is called by the scheduler to identify blocks that need
|
|
2217
|
+
to be retried after a NIXL transfer failure.
|
|
2218
|
+
"""
|
|
2219
|
+
result = self._invalid_block_ids
|
|
2220
|
+
self._invalid_block_ids = set()
|
|
2221
|
+
return result
|
|
2222
|
+
|
|
2223
|
+
def __del__(self):
|
|
2224
|
+
self.shutdown()
|
|
2225
|
+
|
|
2226
|
+
def shutdown(self):
|
|
2227
|
+
"""Shutdown the connector worker."""
|
|
2228
|
+
self._handshake_initiation_executor.shutdown(wait=False)
|
|
2229
|
+
for handles in self._recving_transfers.values():
|
|
2230
|
+
for handle, _ in handles:
|
|
2231
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
2232
|
+
self._recving_transfers.clear()
|
|
2233
|
+
if self.src_xfer_side_handle:
|
|
2234
|
+
self.nixl_wrapper.release_dlist_handle(self.src_xfer_side_handle)
|
|
2235
|
+
self.src_xfer_side_handle = 0
|
|
2236
|
+
for dst_xfer_side_handle in self.dst_xfer_side_handles.values():
|
|
2237
|
+
self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
|
|
2238
|
+
self.dst_xfer_side_handles.clear()
|
|
2239
|
+
for remote_agents in self._remote_agents.values():
|
|
2240
|
+
for agent_name in remote_agents.values():
|
|
2241
|
+
self.nixl_wrapper.remove_remote_agent(agent_name)
|
|
2242
|
+
self._remote_agents.clear()
|
|
2243
|
+
for desc in self._registered_descs:
|
|
2244
|
+
self.nixl_wrapper.deregister_memory(desc)
|
|
2245
|
+
self._registered_descs.clear()
|
|
2246
|
+
|
|
2247
|
+
|
|
2248
|
+
@contextlib.contextmanager
|
|
2249
|
+
def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
|
|
2250
|
+
"""Context manager for a ZMQ socket"""
|
|
2251
|
+
|
|
2252
|
+
if socket_type not in (zmq.ROUTER, zmq.REQ):
|
|
2253
|
+
raise ValueError(f"Unexpected socket type: {socket_type}")
|
|
2254
|
+
|
|
2255
|
+
ctx: zmq.Context | None = None
|
|
2256
|
+
try:
|
|
2257
|
+
ctx = zmq.Context() # type: ignore[attr-defined]
|
|
2258
|
+
yield make_zmq_socket(
|
|
2259
|
+
ctx=ctx, path=addr, socket_type=socket_type, bind=socket_type == zmq.ROUTER
|
|
2260
|
+
)
|
|
2261
|
+
finally:
|
|
2262
|
+
if ctx is not None:
|
|
2263
|
+
ctx.destroy(linger=0)
|
|
2264
|
+
|
|
2265
|
+
|
|
2266
|
+
@dataclass
|
|
2267
|
+
class NixlKVConnectorStats(KVConnectorStats):
|
|
2268
|
+
"""Container for transfer performance metrics"""
|
|
2269
|
+
|
|
2270
|
+
def __post_init__(self):
|
|
2271
|
+
if not self.data:
|
|
2272
|
+
# Empty container init, no data is passed in.
|
|
2273
|
+
self.reset()
|
|
2274
|
+
|
|
2275
|
+
def reset(self):
|
|
2276
|
+
# Must be serializable
|
|
2277
|
+
self.data: dict[str, list[float]] = {
|
|
2278
|
+
"transfer_duration": [],
|
|
2279
|
+
"post_duration": [],
|
|
2280
|
+
"bytes_transferred": [],
|
|
2281
|
+
"num_descriptors": [],
|
|
2282
|
+
"num_failed_transfers": [],
|
|
2283
|
+
"num_failed_notifications": [],
|
|
2284
|
+
}
|
|
2285
|
+
|
|
2286
|
+
def record_transfer(self, res: nixlXferTelemetry):
|
|
2287
|
+
# Keep metrics units consistent with rest of the code: time us->s
|
|
2288
|
+
self.data["transfer_duration"].append(res.xferDuration / 1e6)
|
|
2289
|
+
self.data["post_duration"].append(res.postDuration / 1e6)
|
|
2290
|
+
self.data["bytes_transferred"].append(res.totalBytes)
|
|
2291
|
+
self.data["num_descriptors"].append(res.descCount)
|
|
2292
|
+
|
|
2293
|
+
def record_failed_transfer(self):
|
|
2294
|
+
"""Record a failed NIXL transfer operation."""
|
|
2295
|
+
self.data["num_failed_transfers"].append(1.0)
|
|
2296
|
+
|
|
2297
|
+
def record_failed_notification(self):
|
|
2298
|
+
"""Record a failed NIXL notification (send_notif)."""
|
|
2299
|
+
self.data["num_failed_notifications"].append(1.0)
|
|
2300
|
+
|
|
2301
|
+
def clone_and_reset(self) -> "NixlKVConnectorStats":
|
|
2302
|
+
old = copy.copy(self)
|
|
2303
|
+
self.reset()
|
|
2304
|
+
return old
|
|
2305
|
+
|
|
2306
|
+
def is_empty(self) -> bool:
|
|
2307
|
+
return self.num_successful_transfers == 0
|
|
2308
|
+
|
|
2309
|
+
def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
|
|
2310
|
+
if not other.is_empty():
|
|
2311
|
+
for k, v in other.data.items():
|
|
2312
|
+
accumulator = self.data[k]
|
|
2313
|
+
assert isinstance(accumulator, list)
|
|
2314
|
+
accumulator.extend(v)
|
|
2315
|
+
return self
|
|
2316
|
+
|
|
2317
|
+
def reduce(self) -> dict[str, int | float]:
|
|
2318
|
+
# Compute compact representative stats suitable for CLI logging
|
|
2319
|
+
if self.is_empty():
|
|
2320
|
+
return {
|
|
2321
|
+
"Num successful transfers": 0,
|
|
2322
|
+
"Avg xfer time (ms)": 0,
|
|
2323
|
+
"P90 xfer time (ms)": 0,
|
|
2324
|
+
"Avg post time (ms)": 0,
|
|
2325
|
+
"P90 post time (ms)": 0,
|
|
2326
|
+
"Avg MB per transfer": 0,
|
|
2327
|
+
"Throughput (MB/s)": 0,
|
|
2328
|
+
"Avg number of descriptors": 0,
|
|
2329
|
+
}
|
|
2330
|
+
|
|
2331
|
+
xfer_time = np.asarray(self.data["transfer_duration"])
|
|
2332
|
+
post_time = np.asarray(self.data["post_duration"])
|
|
2333
|
+
# Convert to MB for CLI logging.
|
|
2334
|
+
mb = np.asarray(self.data["bytes_transferred"]) / 2**20
|
|
2335
|
+
descs = np.asarray(self.data["num_descriptors"], dtype=np.uint32)
|
|
2336
|
+
n = len(descs)
|
|
2337
|
+
assert n == self.num_successful_transfers
|
|
2338
|
+
|
|
2339
|
+
total_mb = mb.sum()
|
|
2340
|
+
avg_mb = total_mb / n
|
|
2341
|
+
|
|
2342
|
+
total_time_seconds = xfer_time.sum()
|
|
2343
|
+
throughput_mb_s = total_mb / total_time_seconds
|
|
2344
|
+
|
|
2345
|
+
return {
|
|
2346
|
+
"Num successful transfers": n,
|
|
2347
|
+
"Avg xfer time (ms)": round(xfer_time.mean() * 1e3, 3),
|
|
2348
|
+
"P90 xfer time (ms)": round(np.percentile(xfer_time, 90).item() * 1e3, 3),
|
|
2349
|
+
"Avg post time (ms)": round(post_time.mean() * 1e3, 3),
|
|
2350
|
+
"P90 post time (ms)": round(np.percentile(post_time, 90).item() * 1e3, 3),
|
|
2351
|
+
"Avg MB per transfer": round(avg_mb, 3),
|
|
2352
|
+
"Throughput (MB/s)": round(throughput_mb_s, 3),
|
|
2353
|
+
"Avg number of descriptors": round(descs.mean(), 1),
|
|
2354
|
+
}
|
|
2355
|
+
|
|
2356
|
+
@property
|
|
2357
|
+
def num_successful_transfers(self) -> int:
|
|
2358
|
+
return len(self.data["transfer_duration"])
|
|
2359
|
+
|
|
2360
|
+
|
|
2361
|
+
class NixlPromMetrics(KVConnectorPromMetrics):
|
|
2362
|
+
def __init__(
|
|
2363
|
+
self,
|
|
2364
|
+
vllm_config: VllmConfig,
|
|
2365
|
+
metric_types: dict[type[PromMetric], type[PromMetricT]],
|
|
2366
|
+
labelnames: list[str],
|
|
2367
|
+
per_engine_labelvalues: dict[int, list[object]],
|
|
2368
|
+
):
|
|
2369
|
+
super().__init__(vllm_config, metric_types, labelnames, per_engine_labelvalues)
|
|
2370
|
+
|
|
2371
|
+
buckets = [
|
|
2372
|
+
0.001,
|
|
2373
|
+
0.005,
|
|
2374
|
+
0.01,
|
|
2375
|
+
0.025,
|
|
2376
|
+
0.05,
|
|
2377
|
+
0.075,
|
|
2378
|
+
0.1,
|
|
2379
|
+
0.2,
|
|
2380
|
+
0.3,
|
|
2381
|
+
0.5,
|
|
2382
|
+
0.75,
|
|
2383
|
+
1.0,
|
|
2384
|
+
5.0,
|
|
2385
|
+
]
|
|
2386
|
+
nixl_histogram_xfer_time = self._histogram_cls(
|
|
2387
|
+
name="vllm:nixl_xfer_time_seconds",
|
|
2388
|
+
documentation="Histogram of transfer duration for NIXL KV Cache transfers.",
|
|
2389
|
+
buckets=buckets[1:],
|
|
2390
|
+
labelnames=labelnames,
|
|
2391
|
+
)
|
|
2392
|
+
self.nixl_histogram_xfer_time = self.make_per_engine(nixl_histogram_xfer_time)
|
|
2393
|
+
nixl_histogram_post_time = self._histogram_cls(
|
|
2394
|
+
name="vllm:nixl_post_time_seconds",
|
|
2395
|
+
documentation="Histogram of transfer post time for NIXL KV"
|
|
2396
|
+
" Cache transfers.",
|
|
2397
|
+
buckets=buckets,
|
|
2398
|
+
labelnames=labelnames,
|
|
2399
|
+
)
|
|
2400
|
+
self.nixl_histogram_post_time = self.make_per_engine(nixl_histogram_post_time)
|
|
2401
|
+
# uniform 2kb to 16gb range
|
|
2402
|
+
buckets = [2 ** (10 + i) for i in range(1, 25, 2)]
|
|
2403
|
+
nixl_histogram_bytes_transferred = self._histogram_cls(
|
|
2404
|
+
name="vllm:nixl_bytes_transferred",
|
|
2405
|
+
documentation="Histogram of bytes transferred per NIXL KV Cache transfers.",
|
|
2406
|
+
buckets=buckets,
|
|
2407
|
+
labelnames=labelnames,
|
|
2408
|
+
)
|
|
2409
|
+
self.nixl_histogram_bytes_transferred = self.make_per_engine(
|
|
2410
|
+
nixl_histogram_bytes_transferred
|
|
2411
|
+
)
|
|
2412
|
+
buckets = [
|
|
2413
|
+
10,
|
|
2414
|
+
20,
|
|
2415
|
+
30,
|
|
2416
|
+
50,
|
|
2417
|
+
75,
|
|
2418
|
+
100,
|
|
2419
|
+
200,
|
|
2420
|
+
400,
|
|
2421
|
+
1000,
|
|
2422
|
+
2000,
|
|
2423
|
+
4000,
|
|
2424
|
+
10000,
|
|
2425
|
+
20000,
|
|
2426
|
+
50000,
|
|
2427
|
+
]
|
|
2428
|
+
nixl_histogram_num_descriptors = self._histogram_cls(
|
|
2429
|
+
name="vllm:nixl_num_descriptors",
|
|
2430
|
+
documentation="Histogram of number of descriptors per NIXL"
|
|
2431
|
+
" KV Cache transfers.",
|
|
2432
|
+
buckets=buckets,
|
|
2433
|
+
labelnames=labelnames,
|
|
2434
|
+
)
|
|
2435
|
+
self.nixl_histogram_num_descriptors = self.make_per_engine(
|
|
2436
|
+
nixl_histogram_num_descriptors
|
|
2437
|
+
)
|
|
2438
|
+
counter_nixl_num_failed_transfers = self._counter_cls(
|
|
2439
|
+
name="vllm:nixl_num_failed_transfers",
|
|
2440
|
+
documentation="Number of failed NIXL KV Cache transfers.",
|
|
2441
|
+
labelnames=labelnames,
|
|
2442
|
+
)
|
|
2443
|
+
self.counter_nixl_num_failed_transfers = self.make_per_engine(
|
|
2444
|
+
counter_nixl_num_failed_transfers
|
|
2445
|
+
)
|
|
2446
|
+
counter_nixl_num_failed_notifications = self._counter_cls(
|
|
2447
|
+
name="vllm:nixl_num_failed_notifications",
|
|
2448
|
+
documentation="Number of failed NIXL KV Cache notifications.",
|
|
2449
|
+
labelnames=labelnames,
|
|
2450
|
+
)
|
|
2451
|
+
self.counter_nixl_num_failed_notifications = self.make_per_engine(
|
|
2452
|
+
counter_nixl_num_failed_notifications
|
|
2453
|
+
)
|
|
2454
|
+
|
|
2455
|
+
def observe(self, transfer_stats_data: dict[str, Any], engine_idx: int = 0):
|
|
2456
|
+
for prom_obj, list_item_key in zip(
|
|
2457
|
+
[
|
|
2458
|
+
self.nixl_histogram_xfer_time,
|
|
2459
|
+
self.nixl_histogram_post_time,
|
|
2460
|
+
self.nixl_histogram_bytes_transferred,
|
|
2461
|
+
self.nixl_histogram_num_descriptors,
|
|
2462
|
+
],
|
|
2463
|
+
[
|
|
2464
|
+
"transfer_duration",
|
|
2465
|
+
"post_duration",
|
|
2466
|
+
"bytes_transferred",
|
|
2467
|
+
"num_descriptors",
|
|
2468
|
+
],
|
|
2469
|
+
):
|
|
2470
|
+
for list_item in transfer_stats_data[list_item_key]:
|
|
2471
|
+
prom_obj[engine_idx].observe(list_item)
|
|
2472
|
+
for counter_obj, counter_item_key in zip(
|
|
2473
|
+
[
|
|
2474
|
+
self.counter_nixl_num_failed_transfers,
|
|
2475
|
+
self.counter_nixl_num_failed_notifications,
|
|
2476
|
+
],
|
|
2477
|
+
["num_failed_transfers", "num_failed_notifications"],
|
|
2478
|
+
):
|
|
2479
|
+
for list_item in transfer_stats_data[counter_item_key]:
|
|
2480
|
+
counter_obj[engine_idx].inc(list_item)
|