vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
vllm/v1/engine/core.py ADDED
@@ -0,0 +1,1421 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import os
4
+ import queue
5
+ import signal
6
+ import threading
7
+ import time
8
+ from collections import deque
9
+ from collections.abc import Callable, Generator
10
+ from concurrent.futures import Future
11
+ from contextlib import ExitStack, contextmanager
12
+ from inspect import isclass, signature
13
+ from logging import DEBUG
14
+ from typing import Any, TypeVar, cast
15
+
16
+ import msgspec
17
+ import zmq
18
+
19
+ from vllm.config import ParallelConfig, VllmConfig
20
+ from vllm.distributed import stateless_destroy_torch_distributed_process_group
21
+ from vllm.envs import enable_envs_cache
22
+ from vllm.logger import init_logger
23
+ from vllm.logging_utils.dump_input import dump_engine_exception
24
+ from vllm.lora.request import LoRARequest
25
+ from vllm.multimodal import MULTIMODAL_REGISTRY
26
+ from vllm.multimodal.cache import engine_receiver_cache_from_config
27
+ from vllm.tasks import POOLING_TASKS, SupportedTask
28
+ from vllm.transformers_utils.config import maybe_register_config_serialize_by_value
29
+ from vllm.utils.gc_utils import (
30
+ freeze_gc_heap,
31
+ maybe_attach_gc_debug_callback,
32
+ )
33
+ from vllm.utils.hashing import get_hash_fn_by_name
34
+ from vllm.utils.network_utils import make_zmq_socket
35
+ from vllm.utils.system_utils import decorate_logs, set_process_title
36
+ from vllm.v1.core.kv_cache_utils import (
37
+ BlockHash,
38
+ generate_scheduler_kv_cache_config,
39
+ get_kv_cache_configs,
40
+ get_request_block_hasher,
41
+ init_none_hash,
42
+ )
43
+ from vllm.v1.core.sched.interface import SchedulerInterface
44
+ from vllm.v1.core.sched.output import SchedulerOutput
45
+ from vllm.v1.engine import (
46
+ EngineCoreOutputs,
47
+ EngineCoreRequest,
48
+ EngineCoreRequestType,
49
+ ReconfigureDistributedRequest,
50
+ ReconfigureRankType,
51
+ UtilityOutput,
52
+ UtilityResult,
53
+ )
54
+ from vllm.v1.engine.utils import (
55
+ EngineHandshakeMetadata,
56
+ EngineZmqAddresses,
57
+ get_device_indices,
58
+ )
59
+ from vllm.v1.executor import Executor
60
+ from vllm.v1.kv_cache_interface import KVCacheConfig
61
+ from vllm.v1.metrics.stats import SchedulerStats
62
+ from vllm.v1.outputs import ModelRunnerOutput
63
+ from vllm.v1.request import Request, RequestStatus
64
+ from vllm.v1.serial_utils import MsgpackDecoder, MsgpackEncoder
65
+ from vllm.v1.structured_output import StructuredOutputManager
66
+ from vllm.version import __version__ as VLLM_VERSION
67
+
68
+ logger = init_logger(__name__)
69
+
70
+ POLLING_TIMEOUT_S = 2.5
71
+ HANDSHAKE_TIMEOUT_MINS = 5
72
+
73
+ _R = TypeVar("_R") # Return type for collective_rpc
74
+
75
+
76
+ class EngineCore:
77
+ """Inner loop of vLLM's Engine."""
78
+
79
+ def __init__(
80
+ self,
81
+ vllm_config: VllmConfig,
82
+ executor_class: type[Executor],
83
+ log_stats: bool,
84
+ executor_fail_callback: Callable | None = None,
85
+ ):
86
+ # plugins need to be loaded at the engine/scheduler level too
87
+ from vllm.plugins import load_general_plugins
88
+
89
+ load_general_plugins()
90
+
91
+ self.vllm_config = vllm_config
92
+ if vllm_config.parallel_config.data_parallel_rank == 0:
93
+ logger.info(
94
+ "Initializing a V1 LLM engine (v%s) with config: %s",
95
+ VLLM_VERSION,
96
+ vllm_config,
97
+ )
98
+
99
+ self.log_stats = log_stats
100
+
101
+ # Setup Model.
102
+ self.model_executor = executor_class(vllm_config)
103
+ if executor_fail_callback is not None:
104
+ self.model_executor.register_failure_callback(executor_fail_callback)
105
+
106
+ self.available_gpu_memory_for_kv_cache = -1
107
+
108
+ # Setup KV Caches and update CacheConfig after profiling.
109
+ num_gpu_blocks, num_cpu_blocks, kv_cache_config = self._initialize_kv_caches(
110
+ vllm_config
111
+ )
112
+
113
+ vllm_config.cache_config.num_gpu_blocks = num_gpu_blocks
114
+ vllm_config.cache_config.num_cpu_blocks = num_cpu_blocks
115
+ self.collective_rpc("initialize_cache", args=(num_gpu_blocks, num_cpu_blocks))
116
+
117
+ self.structured_output_manager = StructuredOutputManager(vllm_config)
118
+
119
+ # Setup scheduler.
120
+ Scheduler = vllm_config.scheduler_config.get_scheduler_cls()
121
+
122
+ if len(kv_cache_config.kv_cache_groups) == 0: # noqa: SIM102
123
+ # Encoder models without KV cache don't support
124
+ # chunked prefill. But do SSM models?
125
+ if vllm_config.scheduler_config.enable_chunked_prefill:
126
+ logger.warning("Disabling chunked prefill for model without KVCache")
127
+ vllm_config.scheduler_config.enable_chunked_prefill = False
128
+
129
+ scheduler_block_size = (
130
+ vllm_config.cache_config.block_size
131
+ * vllm_config.parallel_config.decode_context_parallel_size
132
+ * vllm_config.parallel_config.prefill_context_parallel_size
133
+ )
134
+
135
+ self.scheduler: SchedulerInterface = Scheduler(
136
+ vllm_config=vllm_config,
137
+ kv_cache_config=kv_cache_config,
138
+ structured_output_manager=self.structured_output_manager,
139
+ include_finished_set=vllm_config.parallel_config.data_parallel_size > 1,
140
+ log_stats=self.log_stats,
141
+ block_size=scheduler_block_size,
142
+ )
143
+ self.use_spec_decode = vllm_config.speculative_config is not None
144
+ if self.scheduler.connector is not None: # type: ignore
145
+ self.model_executor.init_kv_output_aggregator(self.scheduler.connector) # type: ignore
146
+
147
+ self.mm_registry = mm_registry = MULTIMODAL_REGISTRY
148
+ self.mm_receiver_cache = engine_receiver_cache_from_config(
149
+ vllm_config, mm_registry
150
+ )
151
+
152
+ # If a KV connector is initialized for scheduler, we want to collect
153
+ # handshake metadata from all workers so the connector in the scheduler
154
+ # will have the full context
155
+ kv_connector = self.scheduler.get_kv_connector()
156
+ if kv_connector is not None:
157
+ # Collect and store KV connector xfer metadata from workers
158
+ # (after KV cache registration)
159
+ xfer_handshake_metadata = (
160
+ self.model_executor.get_kv_connector_handshake_metadata()
161
+ )
162
+
163
+ if xfer_handshake_metadata:
164
+ # xfer_handshake_metadata is list of dicts from workers
165
+ # Each dict already has structure {tp_rank: metadata}
166
+ # Merge all worker dicts into a single dict
167
+ content: dict[int, Any] = {}
168
+ for worker_dict in xfer_handshake_metadata:
169
+ if worker_dict is not None:
170
+ content.update(worker_dict)
171
+ kv_connector.set_xfer_handshake_metadata(content)
172
+
173
+ # Setup batch queue for pipeline parallelism.
174
+ # Batch queue for scheduled batches. This enables us to asynchronously
175
+ # schedule and execute batches, and is required by pipeline parallelism
176
+ # to eliminate pipeline bubbles.
177
+ self.batch_queue_size = self.model_executor.max_concurrent_batches
178
+ self.batch_queue: (
179
+ deque[tuple[Future[ModelRunnerOutput], SchedulerOutput]] | None
180
+ ) = None
181
+ if self.batch_queue_size > 1:
182
+ logger.info("Batch queue is enabled with size %d", self.batch_queue_size)
183
+ self.batch_queue = deque(maxlen=self.batch_queue_size)
184
+
185
+ self.is_ec_producer = (
186
+ vllm_config.ec_transfer_config is not None
187
+ and vllm_config.ec_transfer_config.is_ec_producer
188
+ )
189
+ self.is_pooling_model = vllm_config.model_config.runner_type == "pooling"
190
+
191
+ self.request_block_hasher: Callable[[Request], list[BlockHash]] | None = None
192
+ if vllm_config.cache_config.enable_prefix_caching or kv_connector is not None:
193
+ caching_hash_fn = get_hash_fn_by_name(
194
+ vllm_config.cache_config.prefix_caching_hash_algo
195
+ )
196
+ init_none_hash(caching_hash_fn)
197
+
198
+ self.request_block_hasher = get_request_block_hasher(
199
+ scheduler_block_size, caching_hash_fn
200
+ )
201
+
202
+ self.step_fn = (
203
+ self.step if self.batch_queue is None else self.step_with_batch_queue
204
+ )
205
+ self.async_scheduling = vllm_config.scheduler_config.async_scheduling
206
+
207
+ # Mark the startup heap as static so that it's ignored by GC.
208
+ # Reduces pause times of oldest generation collections.
209
+ freeze_gc_heap()
210
+ # If enable, attach GC debugger after static variable freeze.
211
+ maybe_attach_gc_debug_callback()
212
+
213
+ def _initialize_kv_caches(
214
+ self, vllm_config: VllmConfig
215
+ ) -> tuple[int, int, KVCacheConfig]:
216
+ start = time.time()
217
+
218
+ # Get all kv cache needed by the model
219
+ kv_cache_specs = self.model_executor.get_kv_cache_specs()
220
+
221
+ has_kv_cache = any(kv_cache_spec for kv_cache_spec in kv_cache_specs)
222
+ if has_kv_cache:
223
+ if os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1":
224
+ dp_group = getattr(self, "dp_group", None)
225
+ assert dp_group is not None
226
+ self.available_gpu_memory_for_kv_cache = (
227
+ ParallelConfig.sync_kv_cache_memory_size(dp_group, -1)
228
+ )
229
+ available_gpu_memory = [self.available_gpu_memory_for_kv_cache] * len(
230
+ kv_cache_specs
231
+ )
232
+ else:
233
+ # Profiles the peak memory usage of the model to determine how
234
+ # much memory can be allocated for kv cache.
235
+ available_gpu_memory = self.model_executor.determine_available_memory()
236
+ self.available_gpu_memory_for_kv_cache = available_gpu_memory[0]
237
+ else:
238
+ # Attention free models don't need memory for kv cache
239
+ available_gpu_memory = [0] * len(kv_cache_specs)
240
+
241
+ assert len(kv_cache_specs) == len(available_gpu_memory)
242
+
243
+ kv_cache_configs = get_kv_cache_configs(
244
+ vllm_config, kv_cache_specs, available_gpu_memory
245
+ )
246
+ scheduler_kv_cache_config = generate_scheduler_kv_cache_config(kv_cache_configs)
247
+ num_gpu_blocks = scheduler_kv_cache_config.num_blocks
248
+ num_cpu_blocks = 0
249
+
250
+ # Initialize kv cache and warmup the execution
251
+ self.model_executor.initialize_from_config(kv_cache_configs)
252
+
253
+ elapsed = time.time() - start
254
+ logger.info_once(
255
+ "init engine (profile, create kv cache, warmup model) took %.2f seconds",
256
+ elapsed,
257
+ scope="local",
258
+ )
259
+ return num_gpu_blocks, num_cpu_blocks, scheduler_kv_cache_config
260
+
261
+ def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
262
+ return self.model_executor.supported_tasks
263
+
264
+ def add_request(self, request: Request, request_wave: int = 0):
265
+ """Add request to the scheduler.
266
+
267
+ `request_wave`: indicate which wave of requests this is expected to
268
+ belong to in DP case
269
+ """
270
+ # Validate the request_id type.
271
+ if not isinstance(request.request_id, str):
272
+ raise TypeError(
273
+ f"request_id must be a string, got {type(request.request_id)}"
274
+ )
275
+
276
+ if pooling_params := request.pooling_params:
277
+ supported_pooling_tasks = [
278
+ task for task in self.get_supported_tasks() if task in POOLING_TASKS
279
+ ]
280
+
281
+ if pooling_params.task not in supported_pooling_tasks:
282
+ raise ValueError(
283
+ f"Unsupported task: {pooling_params.task!r} "
284
+ f"Supported tasks: {supported_pooling_tasks}"
285
+ )
286
+
287
+ if request.kv_transfer_params is not None and (
288
+ not self.scheduler.get_kv_connector()
289
+ ):
290
+ logger.warning(
291
+ "Got kv_transfer_params, but no KVConnector found. "
292
+ "Disabling KVTransfer for this request."
293
+ )
294
+
295
+ self.scheduler.add_request(request)
296
+
297
+ def abort_requests(self, request_ids: list[str]):
298
+ """Abort requests from the scheduler."""
299
+
300
+ # TODO: The scheduler doesn't really need to know the
301
+ # specific finish reason, TBD whether we propagate that
302
+ # (i.e. client-aborted vs stop criteria met).
303
+ self.scheduler.finish_requests(request_ids, RequestStatus.FINISHED_ABORTED)
304
+
305
+ @contextmanager
306
+ def log_error_detail(self, scheduler_output: SchedulerOutput):
307
+ """Execute the model and log detailed info on failure."""
308
+ try:
309
+ yield
310
+ except Exception as err:
311
+ # We do not want to catch BaseException here since we're only
312
+ # interested in dumping info when the exception is due to an
313
+ # error from execute_model itself.
314
+
315
+ # NOTE: This method is exception-free
316
+ dump_engine_exception(
317
+ self.vllm_config, scheduler_output, self.scheduler.make_stats()
318
+ )
319
+ raise err
320
+
321
+ def _log_err_callback(self, scheduler_output: SchedulerOutput):
322
+ """Log error details of a future that's not expected to return a result."""
323
+
324
+ def callback(f, sched_output=scheduler_output):
325
+ with self.log_error_detail(sched_output):
326
+ result = f.result()
327
+ assert result is None
328
+
329
+ return callback
330
+
331
+ def step(self) -> tuple[dict[int, EngineCoreOutputs], bool]:
332
+ """Schedule, execute, and make output.
333
+
334
+ Returns tuple of outputs and a flag indicating whether the model
335
+ was executed.
336
+ """
337
+
338
+ # Check for any requests remaining in the scheduler - unfinished,
339
+ # or finished and not yet removed from the batch.
340
+ if not self.scheduler.has_requests():
341
+ return {}, False
342
+ scheduler_output = self.scheduler.schedule()
343
+ future = self.model_executor.execute_model(scheduler_output, non_block=True)
344
+ grammar_output = self.scheduler.get_grammar_bitmask(scheduler_output)
345
+ with self.log_error_detail(scheduler_output):
346
+ model_output = future.result()
347
+ if model_output is None:
348
+ model_output = self.model_executor.sample_tokens(grammar_output)
349
+
350
+ engine_core_outputs = self.scheduler.update_from_output(
351
+ scheduler_output, model_output
352
+ )
353
+
354
+ return engine_core_outputs, scheduler_output.total_num_scheduled_tokens > 0
355
+
356
+ def post_step(self, model_executed: bool) -> None:
357
+ # When using async scheduling we can't get draft token ids in advance,
358
+ # so we update draft token ids in the worker process and don't
359
+ # need to update draft token ids here.
360
+ if not self.async_scheduling and self.use_spec_decode and model_executed:
361
+ # Take the draft token ids.
362
+ draft_token_ids = self.model_executor.take_draft_token_ids()
363
+ if draft_token_ids is not None:
364
+ self.scheduler.update_draft_token_ids(draft_token_ids)
365
+
366
+ def step_with_batch_queue(
367
+ self,
368
+ ) -> tuple[dict[int, EngineCoreOutputs] | None, bool]:
369
+ """Schedule and execute batches with the batch queue.
370
+ Note that if nothing to output in this step, None is returned.
371
+
372
+ The execution flow is as follows:
373
+ 1. Try to schedule a new batch if the batch queue is not full.
374
+ If a new batch is scheduled, directly return an empty engine core
375
+ output. In other words, fulfilling the batch queue has a higher priority
376
+ than getting model outputs.
377
+ 2. If there is no new scheduled batch, meaning that the batch queue
378
+ is full or no other requests can be scheduled, we block until the first
379
+ batch in the job queue is finished.
380
+ 3. Update the scheduler from the output.
381
+ """
382
+ batch_queue = self.batch_queue
383
+ assert batch_queue is not None
384
+
385
+ # Try to schedule a new batch if the batch queue is not full, but
386
+ # the scheduler may return an empty batch if all requests are scheduled.
387
+ # Note that this is not blocking.
388
+ assert len(batch_queue) < self.batch_queue_size
389
+
390
+ model_executed = False
391
+ deferred_scheduler_output = None
392
+ if self.scheduler.has_requests():
393
+ scheduler_output = self.scheduler.schedule()
394
+ exec_future = self.model_executor.execute_model(
395
+ scheduler_output, non_block=True
396
+ )
397
+ if not self.is_ec_producer:
398
+ model_executed = scheduler_output.total_num_scheduled_tokens > 0
399
+
400
+ if self.is_pooling_model or not model_executed:
401
+ # No sampling required (no requests scheduled).
402
+ future = cast(Future[ModelRunnerOutput], exec_future)
403
+ else:
404
+ exec_future.add_done_callback(self._log_err_callback(scheduler_output))
405
+
406
+ if not scheduler_output.pending_structured_output_tokens:
407
+ # We aren't waiting for any tokens, get any grammar output
408
+ # and sample immediately.
409
+ grammar_output = self.scheduler.get_grammar_bitmask(
410
+ scheduler_output
411
+ )
412
+ future = self.model_executor.sample_tokens(
413
+ grammar_output, non_block=True
414
+ )
415
+ else:
416
+ # We need to defer sampling until we have processed the model output
417
+ # from the prior step.
418
+ deferred_scheduler_output = scheduler_output
419
+
420
+ if not deferred_scheduler_output:
421
+ # Add this step's future to the queue.
422
+ batch_queue.appendleft((future, scheduler_output))
423
+ if (
424
+ model_executed
425
+ and len(batch_queue) < self.batch_queue_size
426
+ and not batch_queue[-1][0].done()
427
+ ):
428
+ # Don't block on next worker response unless the queue is full
429
+ # or there are no more requests to schedule.
430
+ return None, True
431
+
432
+ elif not batch_queue:
433
+ # Queue is empty. We should not reach here since this method should
434
+ # only be called when the scheduler contains requests or the queue
435
+ # is non-empty.
436
+ return None, False
437
+
438
+ # Block until the next result is available.
439
+ future, scheduler_output = batch_queue.pop()
440
+ with self.log_error_detail(scheduler_output):
441
+ model_output = future.result()
442
+
443
+ engine_core_outputs = self.scheduler.update_from_output(
444
+ scheduler_output, model_output
445
+ )
446
+
447
+ # NOTE(nick): We can either handle the deferred tasks here or save
448
+ # in a field and do it immediately once step_with_batch_queue is
449
+ # re-called. The latter slightly favors TTFT over TPOT/throughput.
450
+ if deferred_scheduler_output:
451
+ # We now have the tokens needed to compute the bitmask for the
452
+ # deferred request. Get the bitmask and call sample tokens.
453
+ grammar_output = self.scheduler.get_grammar_bitmask(
454
+ deferred_scheduler_output
455
+ )
456
+ future = self.model_executor.sample_tokens(grammar_output, non_block=True)
457
+ batch_queue.appendleft((future, deferred_scheduler_output))
458
+
459
+ return engine_core_outputs, model_executed
460
+
461
+ def shutdown(self):
462
+ self.structured_output_manager.clear_backend()
463
+ if self.model_executor:
464
+ self.model_executor.shutdown()
465
+ if self.scheduler:
466
+ self.scheduler.shutdown()
467
+
468
+ def profile(self, is_start: bool = True):
469
+ self.model_executor.profile(is_start)
470
+
471
+ def reset_mm_cache(self):
472
+ # NOTE: Since this is mainly for debugging, we don't attempt to
473
+ # re-sync the internal caches (P0 sender, P1 receiver)
474
+ if self.scheduler.has_unfinished_requests():
475
+ logger.warning(
476
+ "Resetting the multi-modal cache when requests are "
477
+ "in progress may lead to desynced internal caches."
478
+ )
479
+
480
+ # The cache either exists in EngineCore or WorkerWrapperBase
481
+ if self.mm_receiver_cache is not None:
482
+ self.mm_receiver_cache.clear_cache()
483
+
484
+ self.model_executor.reset_mm_cache()
485
+
486
+ def reset_prefix_cache(self, reset_running_requests: bool = False) -> bool:
487
+ return self.scheduler.reset_prefix_cache(reset_running_requests)
488
+
489
+ def sleep(self, level: int = 1):
490
+ self.model_executor.sleep(level)
491
+
492
+ def wake_up(self, tags: list[str] | None = None):
493
+ self.model_executor.wake_up(tags)
494
+
495
+ def is_sleeping(self) -> bool:
496
+ return self.model_executor.is_sleeping
497
+
498
+ def execute_dummy_batch(self):
499
+ self.model_executor.execute_dummy_batch()
500
+
501
+ def add_lora(self, lora_request: LoRARequest) -> bool:
502
+ return self.model_executor.add_lora(lora_request)
503
+
504
+ def remove_lora(self, lora_id: int) -> bool:
505
+ return self.model_executor.remove_lora(lora_id)
506
+
507
+ def list_loras(self) -> set[int]:
508
+ return self.model_executor.list_loras()
509
+
510
+ def pin_lora(self, lora_id: int) -> bool:
511
+ return self.model_executor.pin_lora(lora_id)
512
+
513
+ def save_sharded_state(
514
+ self,
515
+ path: str,
516
+ pattern: str | None = None,
517
+ max_size: int | None = None,
518
+ ) -> None:
519
+ self.model_executor.save_sharded_state(
520
+ path=path, pattern=pattern, max_size=max_size
521
+ )
522
+
523
+ def collective_rpc(
524
+ self,
525
+ method: str | Callable[..., _R],
526
+ timeout: float | None = None,
527
+ args: tuple = (),
528
+ kwargs: dict[str, Any] | None = None,
529
+ ) -> list[_R]:
530
+ return self.model_executor.collective_rpc(method, timeout, args, kwargs)
531
+
532
+ def preprocess_add_request(self, request: EngineCoreRequest) -> tuple[Request, int]:
533
+ """Preprocess the request.
534
+
535
+ This function could be directly used in input processing thread to allow
536
+ request initialization running in parallel with Model forward
537
+ """
538
+ # Note on thread safety: no race condition.
539
+ # `mm_receiver_cache` is reset at the end of LLMEngine init,
540
+ # and will only be accessed in the input processing thread afterwards.
541
+ if self.mm_receiver_cache is not None and request.mm_features:
542
+ request.mm_features = self.mm_receiver_cache.get_and_update_features(
543
+ request.mm_features
544
+ )
545
+
546
+ req = Request.from_engine_core_request(request, self.request_block_hasher)
547
+ if req.use_structured_output:
548
+ # Note on thread safety: no race condition.
549
+ # `grammar_init` is only invoked in input processing thread. For
550
+ # `structured_output_manager`, each request is independent and
551
+ # grammar compilation is async. Scheduler always checks grammar
552
+ # compilation status before scheduling request.
553
+ self.structured_output_manager.grammar_init(req)
554
+ return req, request.current_wave
555
+
556
+
557
+ class EngineCoreProc(EngineCore):
558
+ """ZMQ-wrapper for running EngineCore in background process."""
559
+
560
+ ENGINE_CORE_DEAD = b"ENGINE_CORE_DEAD"
561
+
562
+ def __init__(
563
+ self,
564
+ vllm_config: VllmConfig,
565
+ local_client: bool,
566
+ handshake_address: str,
567
+ executor_class: type[Executor],
568
+ log_stats: bool,
569
+ client_handshake_address: str | None = None,
570
+ engine_index: int = 0,
571
+ ):
572
+ self.input_queue = queue.Queue[tuple[EngineCoreRequestType, Any]]()
573
+ self.output_queue = queue.Queue[tuple[int, EngineCoreOutputs] | bytes]()
574
+ executor_fail_callback = lambda: self.input_queue.put_nowait(
575
+ (EngineCoreRequestType.EXECUTOR_FAILED, b"")
576
+ )
577
+
578
+ self.engine_index = engine_index
579
+ identity = self.engine_index.to_bytes(length=2, byteorder="little")
580
+ self.engines_running = False
581
+
582
+ with self._perform_handshakes(
583
+ handshake_address,
584
+ identity,
585
+ local_client,
586
+ vllm_config,
587
+ client_handshake_address,
588
+ ) as addresses:
589
+ self.client_count = len(addresses.outputs)
590
+
591
+ # Set up data parallel environment.
592
+ self.has_coordinator = addresses.coordinator_output is not None
593
+ self.frontend_stats_publish_address = (
594
+ addresses.frontend_stats_publish_address
595
+ )
596
+ logger.debug(
597
+ "Has DP Coordinator: %s, stats publish address: %s",
598
+ self.has_coordinator,
599
+ self.frontend_stats_publish_address,
600
+ )
601
+ # Only publish request queue stats to coordinator for "internal"
602
+ # and "hybrid" LB modes .
603
+ self.publish_dp_lb_stats = (
604
+ self.has_coordinator
605
+ and not vllm_config.parallel_config.data_parallel_external_lb
606
+ )
607
+
608
+ self._init_data_parallel(vllm_config)
609
+
610
+ super().__init__(
611
+ vllm_config, executor_class, log_stats, executor_fail_callback
612
+ )
613
+
614
+ # Background Threads and Queues for IO. These enable us to
615
+ # overlap ZMQ socket IO with GPU since they release the GIL,
616
+ # and to overlap some serialization/deserialization with the
617
+ # model forward pass.
618
+ # Threads handle Socket <-> Queues and core_busy_loop uses Queue.
619
+ ready_event = threading.Event()
620
+ input_thread = threading.Thread(
621
+ target=self.process_input_sockets,
622
+ args=(
623
+ addresses.inputs,
624
+ addresses.coordinator_input,
625
+ identity,
626
+ ready_event,
627
+ ),
628
+ daemon=True,
629
+ )
630
+ input_thread.start()
631
+
632
+ self.output_thread = threading.Thread(
633
+ target=self.process_output_sockets,
634
+ args=(
635
+ addresses.outputs,
636
+ addresses.coordinator_output,
637
+ self.engine_index,
638
+ ),
639
+ daemon=True,
640
+ )
641
+ self.output_thread.start()
642
+
643
+ # Don't complete handshake until DP coordinator ready message is
644
+ # received.
645
+ while not ready_event.wait(timeout=10):
646
+ if not input_thread.is_alive():
647
+ raise RuntimeError("Input socket thread died during startup")
648
+ assert addresses.coordinator_input is not None
649
+ logger.info("Waiting for READY message from DP Coordinator...")
650
+
651
+ # Enable environment variable cache (e.g. assume no more
652
+ # environment variable overrides after this point)
653
+ enable_envs_cache()
654
+
655
+ @contextmanager
656
+ def _perform_handshakes(
657
+ self,
658
+ handshake_address: str,
659
+ identity: bytes,
660
+ local_client: bool,
661
+ vllm_config: VllmConfig,
662
+ client_handshake_address: str | None,
663
+ ) -> Generator[EngineZmqAddresses, None, None]:
664
+ """
665
+ Perform startup handshakes.
666
+
667
+ For DP=1 or offline mode, this is with the colocated front-end process.
668
+
669
+ For DP>1 with internal load-balancing this is with the shared front-end
670
+ process which may reside on a different node.
671
+
672
+ For DP>1 with external or hybrid load-balancing, two handshakes are
673
+ performed:
674
+ - With the rank 0 front-end process which retrieves the
675
+ DP Coordinator ZMQ addresses and DP process group address.
676
+ - With the colocated front-end process which retrieves the
677
+ client input/output socket addresses.
678
+ with the exception of the rank 0 and colocated engines themselves which
679
+ don't require the second handshake.
680
+
681
+ Here, "front-end" process can mean the process containing the engine
682
+ core client (which is the API server process in the case the API
683
+ server is not scaled out), OR the launcher process running the
684
+ run_multi_api_server() function in serve.py.
685
+ """
686
+ input_ctx = zmq.Context()
687
+ is_local = local_client and client_handshake_address is None
688
+ headless = not local_client
689
+ handshake = self._perform_handshake(
690
+ input_ctx,
691
+ handshake_address,
692
+ identity,
693
+ is_local,
694
+ headless,
695
+ vllm_config,
696
+ vllm_config.parallel_config,
697
+ )
698
+ if client_handshake_address is None:
699
+ with handshake as addresses:
700
+ yield addresses
701
+ else:
702
+ assert local_client
703
+ local_handshake = self._perform_handshake(
704
+ input_ctx, client_handshake_address, identity, True, False, vllm_config
705
+ )
706
+ with handshake as addresses, local_handshake as client_addresses:
707
+ addresses.inputs = client_addresses.inputs
708
+ addresses.outputs = client_addresses.outputs
709
+ yield addresses
710
+
711
+ # Update config which may have changed from the handshake
712
+ vllm_config.__post_init__()
713
+
714
+ @contextmanager
715
+ def _perform_handshake(
716
+ self,
717
+ ctx: zmq.Context,
718
+ handshake_address: str,
719
+ identity: bytes,
720
+ local_client: bool,
721
+ headless: bool,
722
+ vllm_config: VllmConfig,
723
+ parallel_config_to_update: ParallelConfig | None = None,
724
+ ) -> Generator[EngineZmqAddresses, None, None]:
725
+ with make_zmq_socket(
726
+ ctx,
727
+ handshake_address,
728
+ zmq.DEALER,
729
+ identity=identity,
730
+ linger=5000,
731
+ bind=False,
732
+ ) as handshake_socket:
733
+ # Register engine with front-end.
734
+ addresses = self.startup_handshake(
735
+ handshake_socket, local_client, headless, parallel_config_to_update
736
+ )
737
+ yield addresses
738
+
739
+ # Send ready message.
740
+ num_gpu_blocks = vllm_config.cache_config.num_gpu_blocks
741
+ # We pass back the coordinator stats update address here for the
742
+ # external LB case for our colocated front-end to use (coordinator
743
+ # only runs with rank 0).
744
+ dp_stats_address = self.frontend_stats_publish_address
745
+
746
+ # Include config hash for DP configuration validation
747
+ ready_msg = {
748
+ "status": "READY",
749
+ "local": local_client,
750
+ "headless": headless,
751
+ "num_gpu_blocks": num_gpu_blocks,
752
+ "dp_stats_address": dp_stats_address,
753
+ }
754
+ if vllm_config.parallel_config.data_parallel_size > 1:
755
+ ready_msg["parallel_config_hash"] = (
756
+ vllm_config.parallel_config.compute_hash()
757
+ )
758
+
759
+ handshake_socket.send(msgspec.msgpack.encode(ready_msg))
760
+
761
+ @staticmethod
762
+ def startup_handshake(
763
+ handshake_socket: zmq.Socket,
764
+ local_client: bool,
765
+ headless: bool,
766
+ parallel_config: ParallelConfig | None = None,
767
+ ) -> EngineZmqAddresses:
768
+ # Send registration message.
769
+ handshake_socket.send(
770
+ msgspec.msgpack.encode(
771
+ {
772
+ "status": "HELLO",
773
+ "local": local_client,
774
+ "headless": headless,
775
+ }
776
+ )
777
+ )
778
+
779
+ # Receive initialization message.
780
+ logger.debug("Waiting for init message from front-end.")
781
+ if not handshake_socket.poll(timeout=HANDSHAKE_TIMEOUT_MINS * 60_000):
782
+ raise RuntimeError(
783
+ "Did not receive response from front-end "
784
+ f"process within {HANDSHAKE_TIMEOUT_MINS} "
785
+ f"minutes"
786
+ )
787
+ init_bytes = handshake_socket.recv()
788
+ init_message: EngineHandshakeMetadata = msgspec.msgpack.decode(
789
+ init_bytes, type=EngineHandshakeMetadata
790
+ )
791
+ logger.debug("Received init message: %s", init_message)
792
+
793
+ if parallel_config is not None:
794
+ for key, value in init_message.parallel_config.items():
795
+ setattr(parallel_config, key, value)
796
+
797
+ return init_message.addresses
798
+
799
+ @staticmethod
800
+ def run_engine_core(*args, dp_rank: int = 0, local_dp_rank: int = 0, **kwargs):
801
+ """Launch EngineCore busy loop in background process."""
802
+
803
+ # Signal handler used for graceful termination.
804
+ # SystemExit exception is only raised once to allow this and worker
805
+ # processes to terminate without error
806
+ shutdown_requested = False
807
+
808
+ # Ensure we can serialize transformer config after spawning
809
+ maybe_register_config_serialize_by_value()
810
+
811
+ def signal_handler(signum, frame):
812
+ nonlocal shutdown_requested
813
+ if not shutdown_requested:
814
+ shutdown_requested = True
815
+ raise SystemExit()
816
+
817
+ # Either SIGTERM or SIGINT will terminate the engine_core
818
+ signal.signal(signal.SIGTERM, signal_handler)
819
+ signal.signal(signal.SIGINT, signal_handler)
820
+
821
+ engine_core: EngineCoreProc | None = None
822
+ try:
823
+ parallel_config: ParallelConfig = kwargs["vllm_config"].parallel_config
824
+ if parallel_config.data_parallel_size > 1 or dp_rank > 0:
825
+ set_process_title("EngineCore", f"DP{dp_rank}")
826
+ decorate_logs()
827
+ # Set data parallel rank for this engine process.
828
+ parallel_config.data_parallel_rank = dp_rank
829
+ parallel_config.data_parallel_rank_local = local_dp_rank
830
+ engine_core = DPEngineCoreProc(*args, **kwargs)
831
+ else:
832
+ set_process_title("EngineCore")
833
+ decorate_logs()
834
+ engine_core = EngineCoreProc(*args, **kwargs)
835
+
836
+ engine_core.run_busy_loop()
837
+
838
+ except SystemExit:
839
+ logger.debug("EngineCore exiting.")
840
+ raise
841
+ except Exception as e:
842
+ if engine_core is None:
843
+ logger.exception("EngineCore failed to start.")
844
+ else:
845
+ logger.exception("EngineCore encountered a fatal error.")
846
+ engine_core._send_engine_dead()
847
+ raise e
848
+ finally:
849
+ if engine_core is not None:
850
+ engine_core.shutdown()
851
+
852
+ def _init_data_parallel(self, vllm_config: VllmConfig):
853
+ pass
854
+
855
+ def run_busy_loop(self):
856
+ """Core busy loop of the EngineCore."""
857
+
858
+ # Loop until process is sent a SIGINT or SIGTERM
859
+ while True:
860
+ # 1) Poll the input queue until there is work to do.
861
+ self._process_input_queue()
862
+ # 2) Step the engine core and return the outputs.
863
+ self._process_engine_step()
864
+
865
+ def _process_input_queue(self):
866
+ """Exits when an engine step needs to be performed."""
867
+
868
+ waited = False
869
+ while (
870
+ not self.engines_running
871
+ and not self.scheduler.has_requests()
872
+ and not self.batch_queue
873
+ ):
874
+ if logger.isEnabledFor(DEBUG) and self.input_queue.empty():
875
+ logger.debug("EngineCore waiting for work.")
876
+ waited = True
877
+ req = self.input_queue.get()
878
+ self._handle_client_request(*req)
879
+
880
+ if waited:
881
+ logger.debug("EngineCore loop active.")
882
+
883
+ # Handle any more client requests.
884
+ while not self.input_queue.empty():
885
+ req = self.input_queue.get_nowait()
886
+ self._handle_client_request(*req)
887
+
888
+ def _process_engine_step(self) -> bool:
889
+ """Called only when there are unfinished local requests."""
890
+
891
+ # Step the engine core.
892
+ outputs, model_executed = self.step_fn()
893
+ # Put EngineCoreOutputs into the output queue.
894
+ for output in outputs.items() if outputs else ():
895
+ self.output_queue.put_nowait(output)
896
+ # Post-step hook.
897
+ self.post_step(model_executed)
898
+
899
+ return model_executed
900
+
901
+ def _handle_client_request(
902
+ self, request_type: EngineCoreRequestType, request: Any
903
+ ) -> None:
904
+ """Dispatch request from client."""
905
+
906
+ if request_type == EngineCoreRequestType.ADD:
907
+ req, request_wave = request
908
+ self.add_request(req, request_wave)
909
+ elif request_type == EngineCoreRequestType.ABORT:
910
+ self.abort_requests(request)
911
+ elif request_type == EngineCoreRequestType.UTILITY:
912
+ client_idx, call_id, method_name, args = request
913
+ output = UtilityOutput(call_id)
914
+ try:
915
+ method = getattr(self, method_name)
916
+ result = method(*self._convert_msgspec_args(method, args))
917
+ output.result = UtilityResult(result)
918
+ except BaseException as e:
919
+ logger.exception("Invocation of %s method failed", method_name)
920
+ output.failure_message = (
921
+ f"Call to {method_name} method failed: {str(e)}"
922
+ )
923
+ self.output_queue.put_nowait(
924
+ (client_idx, EngineCoreOutputs(utility_output=output))
925
+ )
926
+ elif request_type == EngineCoreRequestType.EXECUTOR_FAILED:
927
+ raise RuntimeError("Executor failed.")
928
+ else:
929
+ logger.error(
930
+ "Unrecognized input request type encountered: %s", request_type
931
+ )
932
+
933
+ @staticmethod
934
+ def _convert_msgspec_args(method, args):
935
+ """If a provided arg type doesn't match corresponding target method
936
+ arg type, try converting to msgspec object."""
937
+ if not args:
938
+ return args
939
+ arg_types = signature(method).parameters.values()
940
+ assert len(args) <= len(arg_types)
941
+ return tuple(
942
+ msgspec.convert(v, type=p.annotation)
943
+ if isclass(p.annotation)
944
+ and issubclass(p.annotation, msgspec.Struct)
945
+ and not isinstance(v, p.annotation)
946
+ else v
947
+ for v, p in zip(args, arg_types)
948
+ )
949
+
950
+ def _send_engine_dead(self):
951
+ """Send EngineDead status to the EngineCoreClient."""
952
+
953
+ # Put ENGINE_CORE_DEAD in the queue.
954
+ self.output_queue.put_nowait(EngineCoreProc.ENGINE_CORE_DEAD)
955
+
956
+ # Wait until msg sent by the daemon before shutdown.
957
+ self.output_thread.join(timeout=5.0)
958
+ if self.output_thread.is_alive():
959
+ logger.fatal(
960
+ "vLLM shutdown signal from EngineCore failed "
961
+ "to send. Please report this issue."
962
+ )
963
+
964
+ def process_input_sockets(
965
+ self,
966
+ input_addresses: list[str],
967
+ coord_input_address: str | None,
968
+ identity: bytes,
969
+ ready_event: threading.Event,
970
+ ):
971
+ """Input socket IO thread."""
972
+
973
+ # Msgpack serialization decoding.
974
+ add_request_decoder = MsgpackDecoder(EngineCoreRequest)
975
+ generic_decoder = MsgpackDecoder()
976
+
977
+ with ExitStack() as stack, zmq.Context() as ctx:
978
+ input_sockets = [
979
+ stack.enter_context(
980
+ make_zmq_socket(
981
+ ctx, input_address, zmq.DEALER, identity=identity, bind=False
982
+ )
983
+ )
984
+ for input_address in input_addresses
985
+ ]
986
+ if coord_input_address is None:
987
+ coord_socket = None
988
+ else:
989
+ coord_socket = stack.enter_context(
990
+ make_zmq_socket(
991
+ ctx,
992
+ coord_input_address,
993
+ zmq.XSUB,
994
+ identity=identity,
995
+ bind=False,
996
+ )
997
+ )
998
+ # Send subscription message to coordinator.
999
+ coord_socket.send(b"\x01")
1000
+
1001
+ # Register sockets with poller.
1002
+ poller = zmq.Poller()
1003
+ for input_socket in input_sockets:
1004
+ # Send initial message to each input socket - this is required
1005
+ # before the front-end ROUTER socket can send input messages
1006
+ # back to us.
1007
+ input_socket.send(b"")
1008
+ poller.register(input_socket, zmq.POLLIN)
1009
+
1010
+ if coord_socket is not None:
1011
+ # Wait for ready message from coordinator.
1012
+ assert coord_socket.recv() == b"READY"
1013
+ poller.register(coord_socket, zmq.POLLIN)
1014
+
1015
+ ready_event.set()
1016
+ del ready_event
1017
+ while True:
1018
+ for input_socket, _ in poller.poll():
1019
+ # (RequestType, RequestData)
1020
+ type_frame, *data_frames = input_socket.recv_multipart(copy=False)
1021
+ request_type = EngineCoreRequestType(bytes(type_frame.buffer))
1022
+
1023
+ # Deserialize the request data.
1024
+ if request_type == EngineCoreRequestType.ADD:
1025
+ request = add_request_decoder.decode(data_frames)
1026
+ request = self.preprocess_add_request(request)
1027
+ else:
1028
+ request = generic_decoder.decode(data_frames)
1029
+
1030
+ # Push to input queue for core busy loop.
1031
+ self.input_queue.put_nowait((request_type, request))
1032
+
1033
+ def process_output_sockets(
1034
+ self,
1035
+ output_paths: list[str],
1036
+ coord_output_path: str | None,
1037
+ engine_index: int,
1038
+ ):
1039
+ """Output socket IO thread."""
1040
+
1041
+ # Msgpack serialization encoding.
1042
+ encoder = MsgpackEncoder()
1043
+ # Send buffers to reuse.
1044
+ reuse_buffers: list[bytearray] = []
1045
+ # Keep references to outputs and buffers until zmq is finished
1046
+ # with them (outputs may contain tensors/np arrays whose
1047
+ # backing buffers were extracted for zero-copy send).
1048
+ pending = deque[tuple[zmq.MessageTracker, Any, bytearray]]()
1049
+
1050
+ # We must set linger to ensure the ENGINE_CORE_DEAD
1051
+ # message is sent prior to closing the socket.
1052
+ with ExitStack() as stack, zmq.Context() as ctx:
1053
+ sockets = [
1054
+ stack.enter_context(
1055
+ make_zmq_socket(ctx, output_path, zmq.PUSH, linger=4000)
1056
+ )
1057
+ for output_path in output_paths
1058
+ ]
1059
+ coord_socket = (
1060
+ stack.enter_context(
1061
+ make_zmq_socket(
1062
+ ctx, coord_output_path, zmq.PUSH, bind=False, linger=4000
1063
+ )
1064
+ )
1065
+ if coord_output_path is not None
1066
+ else None
1067
+ )
1068
+ max_reuse_bufs = len(sockets) + 1
1069
+
1070
+ while True:
1071
+ output = self.output_queue.get()
1072
+ if output == EngineCoreProc.ENGINE_CORE_DEAD:
1073
+ for socket in sockets:
1074
+ socket.send(output)
1075
+ break
1076
+ assert not isinstance(output, bytes)
1077
+ client_index, outputs = output
1078
+ outputs.engine_index = engine_index
1079
+
1080
+ if client_index == -1:
1081
+ # Don't reuse buffer for coordinator message
1082
+ # which will be very small.
1083
+ assert coord_socket is not None
1084
+ coord_socket.send_multipart(encoder.encode(outputs))
1085
+ continue
1086
+
1087
+ # Reclaim buffers that zmq is finished with.
1088
+ while pending and pending[-1][0].done:
1089
+ reuse_buffers.append(pending.pop()[2])
1090
+
1091
+ buffer = reuse_buffers.pop() if reuse_buffers else bytearray()
1092
+ buffers = encoder.encode_into(outputs, buffer)
1093
+ tracker = sockets[client_index].send_multipart(
1094
+ buffers, copy=False, track=True
1095
+ )
1096
+ if not tracker.done:
1097
+ ref = outputs if len(buffers) > 1 else None
1098
+ pending.appendleft((tracker, ref, buffer))
1099
+ elif len(reuse_buffers) < max_reuse_bufs:
1100
+ # Limit the number of buffers to reuse.
1101
+ reuse_buffers.append(buffer)
1102
+
1103
+
1104
+ class DPEngineCoreProc(EngineCoreProc):
1105
+ """ZMQ-wrapper for running EngineCore in background process
1106
+ in a data parallel context."""
1107
+
1108
+ def __init__(
1109
+ self,
1110
+ vllm_config: VllmConfig,
1111
+ local_client: bool,
1112
+ handshake_address: str,
1113
+ executor_class: type[Executor],
1114
+ log_stats: bool,
1115
+ client_handshake_address: str | None = None,
1116
+ ):
1117
+ # Counts forward-passes of the model so that we can synchronize
1118
+ # finished with DP peers every N steps.
1119
+ self.step_counter = 0
1120
+ self.current_wave = 0
1121
+ self.last_counts = (0, 0)
1122
+
1123
+ # Initialize the engine.
1124
+ dp_rank = vllm_config.parallel_config.data_parallel_rank
1125
+ super().__init__(
1126
+ vllm_config,
1127
+ local_client,
1128
+ handshake_address,
1129
+ executor_class,
1130
+ log_stats,
1131
+ client_handshake_address,
1132
+ dp_rank,
1133
+ )
1134
+
1135
+ def _init_data_parallel(self, vllm_config: VllmConfig):
1136
+ # Configure GPUs and stateless process group for data parallel.
1137
+ dp_rank = vllm_config.parallel_config.data_parallel_rank
1138
+ dp_size = vllm_config.parallel_config.data_parallel_size
1139
+ local_dp_rank = vllm_config.parallel_config.data_parallel_rank_local
1140
+
1141
+ assert dp_size > 1
1142
+ assert local_dp_rank is not None
1143
+ assert 0 <= local_dp_rank <= dp_rank < dp_size
1144
+
1145
+ if vllm_config.kv_transfer_config is not None:
1146
+ # modify the engine_id and append the local_dp_rank to it to ensure
1147
+ # that the kv_transfer_config is unique for each DP rank.
1148
+ vllm_config.kv_transfer_config.engine_id = (
1149
+ f"{vllm_config.kv_transfer_config.engine_id}_dp{local_dp_rank}"
1150
+ )
1151
+ logger.debug(
1152
+ "Setting kv_transfer_config.engine_id to %s",
1153
+ vllm_config.kv_transfer_config.engine_id,
1154
+ )
1155
+
1156
+ self.dp_rank = dp_rank
1157
+ self.dp_group = vllm_config.parallel_config.stateless_init_dp_group()
1158
+
1159
+ def shutdown(self):
1160
+ super().shutdown()
1161
+ if dp_group := getattr(self, "dp_group", None):
1162
+ stateless_destroy_torch_distributed_process_group(dp_group)
1163
+
1164
+ def add_request(self, request: Request, request_wave: int = 0):
1165
+ if self.has_coordinator and request_wave != self.current_wave:
1166
+ if request_wave > self.current_wave:
1167
+ self.current_wave = request_wave
1168
+ elif not self.engines_running:
1169
+ # Request received for an already-completed wave, notify
1170
+ # front-end that we need to start the next one.
1171
+ self.output_queue.put_nowait(
1172
+ (-1, EngineCoreOutputs(start_wave=self.current_wave))
1173
+ )
1174
+
1175
+ super().add_request(request, request_wave)
1176
+
1177
+ def _handle_client_request(
1178
+ self, request_type: EngineCoreRequestType, request: Any
1179
+ ) -> None:
1180
+ if request_type == EngineCoreRequestType.START_DP_WAVE:
1181
+ new_wave, exclude_eng_index = request
1182
+ if exclude_eng_index != self.engine_index and (
1183
+ new_wave >= self.current_wave
1184
+ ):
1185
+ self.current_wave = new_wave
1186
+ if not self.engines_running:
1187
+ logger.debug("EngineCore starting idle loop for wave %d.", new_wave)
1188
+ self.engines_running = True
1189
+ else:
1190
+ super()._handle_client_request(request_type, request)
1191
+
1192
+ def _maybe_publish_request_counts(self):
1193
+ if not self.publish_dp_lb_stats:
1194
+ return
1195
+
1196
+ # Publish our request counts (if they've changed).
1197
+ counts = self.scheduler.get_request_counts()
1198
+ if counts != self.last_counts:
1199
+ self.last_counts = counts
1200
+ stats = SchedulerStats(
1201
+ *counts, step_counter=self.step_counter, current_wave=self.current_wave
1202
+ )
1203
+ self.output_queue.put_nowait((-1, EngineCoreOutputs(scheduler_stats=stats)))
1204
+
1205
+ def run_busy_loop(self):
1206
+ """Core busy loop of the EngineCore for data parallel case."""
1207
+
1208
+ # Loop until process is sent a SIGINT or SIGTERM
1209
+ while True:
1210
+ # 1) Poll the input queue until there is work to do.
1211
+ self._process_input_queue()
1212
+
1213
+ # 2) Step the engine core.
1214
+ executed = self._process_engine_step()
1215
+ self._maybe_publish_request_counts()
1216
+
1217
+ local_unfinished_reqs = self.scheduler.has_unfinished_requests()
1218
+ if not executed:
1219
+ if not local_unfinished_reqs and not self.engines_running:
1220
+ # All engines are idle.
1221
+ continue
1222
+
1223
+ # We are in a running state and so must execute a dummy pass
1224
+ # if the model didn't execute any ready requests.
1225
+ self.execute_dummy_batch()
1226
+
1227
+ # 3) All-reduce operation to determine global unfinished reqs.
1228
+ self.engines_running = self._has_global_unfinished_reqs(
1229
+ local_unfinished_reqs
1230
+ )
1231
+
1232
+ if not self.engines_running:
1233
+ if self.dp_rank == 0 or not self.has_coordinator:
1234
+ # Notify client that we are pausing the loop.
1235
+ logger.debug(
1236
+ "Wave %d finished, pausing engine loop.", self.current_wave
1237
+ )
1238
+ # In the coordinator case, dp rank 0 sends updates to the
1239
+ # coordinator. Otherwise (offline spmd case), each rank
1240
+ # sends the update to its colocated front-end process.
1241
+ client_index = -1 if self.has_coordinator else 0
1242
+ self.output_queue.put_nowait(
1243
+ (
1244
+ client_index,
1245
+ EngineCoreOutputs(wave_complete=self.current_wave),
1246
+ )
1247
+ )
1248
+ # Increment wave count and reset step counter.
1249
+ self.current_wave += 1
1250
+ self.step_counter = 0
1251
+
1252
+ def _has_global_unfinished_reqs(self, local_unfinished: bool) -> bool:
1253
+ # Optimization - only perform finish-sync all-reduce every 32 steps.
1254
+ self.step_counter += 1
1255
+ if self.step_counter % 32 != 0:
1256
+ return True
1257
+
1258
+ return ParallelConfig.has_unfinished_dp(self.dp_group, local_unfinished)
1259
+
1260
+ def reinitialize_distributed(
1261
+ self, reconfig_request: ReconfigureDistributedRequest
1262
+ ) -> None:
1263
+ stateless_destroy_torch_distributed_process_group(self.dp_group)
1264
+ self.shutdown()
1265
+
1266
+ parallel_config = self.vllm_config.parallel_config
1267
+ old_dp_size = parallel_config.data_parallel_size
1268
+ parallel_config.data_parallel_size = reconfig_request.new_data_parallel_size
1269
+ if reconfig_request.new_data_parallel_rank != -1:
1270
+ parallel_config.data_parallel_rank = reconfig_request.new_data_parallel_rank
1271
+ # local rank specifies device visibility, it should not be changed
1272
+ assert (
1273
+ reconfig_request.new_data_parallel_rank_local
1274
+ == ReconfigureRankType.KEEP_CURRENT_RANK
1275
+ )
1276
+ parallel_config.data_parallel_master_ip = (
1277
+ reconfig_request.new_data_parallel_master_ip
1278
+ )
1279
+ parallel_config.data_parallel_master_port = (
1280
+ reconfig_request.new_data_parallel_master_port
1281
+ )
1282
+ if reconfig_request.new_data_parallel_rank != -2:
1283
+ self.dp_rank = parallel_config.data_parallel_rank
1284
+ self.dp_group = parallel_config.stateless_init_dp_group()
1285
+ reconfig_request.new_data_parallel_master_port = (
1286
+ parallel_config.data_parallel_master_port
1287
+ )
1288
+
1289
+ self.model_executor.reinitialize_distributed(reconfig_request)
1290
+ if reconfig_request.new_data_parallel_size > old_dp_size:
1291
+ assert self.available_gpu_memory_for_kv_cache > 0
1292
+ # pass available_gpu_memory_for_kv_cache from existing
1293
+ # engine-cores to new engine-cores so they can directly
1294
+ # use it in _initialize_kv_caches() rather than profiling.
1295
+ ParallelConfig.sync_kv_cache_memory_size(
1296
+ self.dp_group, self.available_gpu_memory_for_kv_cache
1297
+ )
1298
+ # NOTE(yongji): newly joined workers require dummy_run even
1299
+ # CUDA graph is not used
1300
+ self.model_executor.collective_rpc("compile_or_warm_up_model")
1301
+ if (
1302
+ reconfig_request.new_data_parallel_rank
1303
+ == ReconfigureRankType.SHUTDOWN_CURRENT_RANK
1304
+ ):
1305
+ self.shutdown()
1306
+ logger.info("DPEngineCoreProc %s shutdown", self.dp_rank)
1307
+ else:
1308
+ logger.info(
1309
+ "Distributed environment reinitialized for DP rank %s", self.dp_rank
1310
+ )
1311
+
1312
+
1313
+ class DPEngineCoreActor(DPEngineCoreProc):
1314
+ """
1315
+ Ray actor for running EngineCore in a data parallel context
1316
+ """
1317
+
1318
+ def __init__(
1319
+ self,
1320
+ vllm_config: VllmConfig,
1321
+ local_client: bool,
1322
+ addresses: EngineZmqAddresses,
1323
+ executor_class: type[Executor],
1324
+ log_stats: bool,
1325
+ dp_rank: int = 0,
1326
+ local_dp_rank: int = 0,
1327
+ ):
1328
+ self.addresses = addresses
1329
+ vllm_config.parallel_config.data_parallel_rank = dp_rank
1330
+ vllm_config.parallel_config.data_parallel_rank_local = local_dp_rank
1331
+
1332
+ # Set CUDA_VISIBLE_DEVICES as early as possible in actor life cycle
1333
+ # NOTE: in MP we set CUDA_VISIBLE_DEVICES at process creation time,
1334
+ # and this cannot be done in the same way for Ray because:
1335
+ # 1) Ray manages life cycle of all ray workers (including
1336
+ # DPEngineCoreActor)
1337
+ # 2) Ray sets CUDA_VISIBLE_DEVICES based on num_gpus configuration
1338
+ # To bypass 2, we need to also set
1339
+ # RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES, but vLLM workers created
1340
+ # thereafter would have CUDA_VISIBLE_DEVICES set, which is sticky:
1341
+ # https://github.com/ray-project/ray/blob/e752fc319ddedd9779a0989b6d3613909bad75c9/python/ray/_private/worker.py#L456 # noqa: E501
1342
+ # This is problematic because when the vLLM worker (a Ray actor)
1343
+ # executes a task, it indexes into the sticky CUDA_VISIBLE_DEVICES
1344
+ # rather than directly using the GPU ID, potentially resulting in
1345
+ # index out of bounds error. See:
1346
+ # https://github.com/ray-project/ray/pull/40461/files#diff-31e8159767361e4bc259b6d9883d9c0d5e5db780fcea4a52ead4ee3ee4a59a78R1860 # noqa: E501
1347
+ # and get_accelerator_ids_for_accelerator_resource() in worker.py
1348
+ # of ray.
1349
+ self._set_visible_devices(vllm_config, local_dp_rank)
1350
+
1351
+ super().__init__(vllm_config, local_client, "", executor_class, log_stats)
1352
+
1353
+ def _set_visible_devices(self, vllm_config: VllmConfig, local_dp_rank: int):
1354
+ from vllm.platforms import current_platform
1355
+
1356
+ if current_platform.is_xpu():
1357
+ pass
1358
+ else:
1359
+ device_control_env_var = current_platform.device_control_env_var
1360
+ self._set_cuda_visible_devices(
1361
+ vllm_config, local_dp_rank, device_control_env_var
1362
+ )
1363
+
1364
+ def _set_cuda_visible_devices(
1365
+ self, vllm_config: VllmConfig, local_dp_rank: int, device_control_env_var: str
1366
+ ):
1367
+ world_size = vllm_config.parallel_config.world_size
1368
+ # Set CUDA_VISIBLE_DEVICES or equivalent.
1369
+ try:
1370
+ value = get_device_indices(
1371
+ device_control_env_var, local_dp_rank, world_size
1372
+ )
1373
+ os.environ[device_control_env_var] = value
1374
+ except IndexError as e:
1375
+ raise Exception(
1376
+ f"Error setting {device_control_env_var}: "
1377
+ f"local range: [{local_dp_rank * world_size}, "
1378
+ f"{(local_dp_rank + 1) * world_size}) "
1379
+ f'base value: "{os.getenv(device_control_env_var)}"'
1380
+ ) from e
1381
+
1382
+ @contextmanager
1383
+ def _perform_handshakes(
1384
+ self,
1385
+ handshake_address: str,
1386
+ identity: bytes,
1387
+ local_client: bool,
1388
+ vllm_config: VllmConfig,
1389
+ client_handshake_address: str | None,
1390
+ ):
1391
+ """
1392
+ For Ray, we don't need to actually perform handshake.
1393
+ All addresses information is known before the actor creation.
1394
+ Therefore, we simply yield these addresses.
1395
+ """
1396
+ yield self.addresses
1397
+
1398
+ def wait_for_init(self):
1399
+ """
1400
+ Wait until the engine core is initialized.
1401
+
1402
+ This is just an empty method. When ray.get() on this method
1403
+ (or any other method of the actor) returns, it is guaranteed
1404
+ that actor creation (i.e., __init__) is complete.
1405
+ """
1406
+ pass
1407
+
1408
+ def run(self):
1409
+ """
1410
+ Run the engine core busy loop.
1411
+ """
1412
+ try:
1413
+ self.run_busy_loop()
1414
+ except SystemExit:
1415
+ logger.debug("EngineCore exiting.")
1416
+ raise
1417
+ except Exception:
1418
+ logger.exception("EngineCore encountered a fatal error.")
1419
+ raise
1420
+ finally:
1421
+ self.shutdown()