vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +107 -0
- vllm/_aiter_ops.py +1018 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2925 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +434 -0
- vllm/attention/backends/registry.py +286 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +975 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +120 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +469 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +51 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +136 -0
- vllm/attention/selector.py +268 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +117 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +448 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +827 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +180 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +614 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +315 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +136 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +260 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +1154 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +96 -0
- vllm/config/model.py +2274 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +131 -0
- vllm/config/parallel.py +653 -0
- vllm/config/pooler.py +124 -0
- vllm/config/scheduler.py +297 -0
- vllm/config/speculative.py +643 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +94 -0
- vllm/config/utils.py +324 -0
- vllm/config/vllm.py +1353 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +99 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1154 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +532 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1790 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2106 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +188 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1837 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1762 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1891 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +2465 -0
- vllm/entrypoints/openai/run_batch.py +631 -0
- vllm/entrypoints/openai/serving_chat.py +1782 -0
- vllm/entrypoints/openai/serving_completion.py +716 -0
- vllm/entrypoints/openai/serving_engine.py +1478 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_responses.py +2032 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +281 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +559 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +50 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +237 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +67 -0
- vllm/entrypoints/pooling/embed/protocol.py +208 -0
- vllm/entrypoints/pooling/embed/serving.py +697 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +63 -0
- vllm/entrypoints/pooling/pooling/protocol.py +148 -0
- vllm/entrypoints/pooling/pooling/serving.py +348 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +149 -0
- vllm/entrypoints/pooling/score/protocol.py +145 -0
- vllm/entrypoints/pooling/score/serving.py +505 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +148 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +240 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1710 -0
- vllm/forward_context.py +358 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +298 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +42 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +165 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +747 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +74 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/models.py +903 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +412 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +358 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +306 -0
- vllm/lora/worker_manager.py +268 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +595 -0
- vllm/model_executor/layers/attention_layer_base.py +32 -0
- vllm/model_executor/layers/batch_invariant.py +1058 -0
- vllm/model_executor/layers/conv.py +256 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +110 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +938 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
- vllm/model_executor/layers/fused_moe/layer.py +2152 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +388 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +255 -0
- vllm/model_executor/layers/mla.py +176 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +179 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +225 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1348 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +687 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1637 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +527 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +639 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
- vllm/model_executor/layers/rotary_embedding/base.py +240 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +321 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +349 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +296 -0
- vllm/model_executor/model_loader/weight_utils.py +1147 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +569 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +634 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +494 -0
- vllm/model_executor/models/bailing_moe.py +645 -0
- vllm/model_executor/models/bamba.py +516 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1098 -0
- vllm/model_executor/models/chatglm.py +499 -0
- vllm/model_executor/models/clip.py +1005 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +470 -0
- vllm/model_executor/models/config.py +510 -0
- vllm/model_executor/models/dbrx.py +485 -0
- vllm/model_executor/models/deepencoder.py +676 -0
- vllm/model_executor/models/deepseek_eagle.py +252 -0
- vllm/model_executor/models/deepseek_mtp.py +446 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1715 -0
- vllm/model_executor/models/deepseek_vl2.py +644 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +874 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1710 -0
- vllm/model_executor/models/ernie45_vl_moe.py +800 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +525 -0
- vllm/model_executor/models/exaone4.py +517 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +544 -0
- vllm/model_executor/models/falcon_h1.py +680 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +436 -0
- vllm/model_executor/models/gemma3.py +577 -0
- vllm/model_executor/models/gemma3_mm.py +665 -0
- vllm/model_executor/models/gemma3n.py +1167 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +298 -0
- vllm/model_executor/models/glm4_1v.py +1854 -0
- vllm/model_executor/models/glm4_moe.py +738 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +785 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +345 -0
- vllm/model_executor/models/gpt_neox.py +343 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +476 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +704 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +555 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1028 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +718 -0
- vllm/model_executor/models/interfaces.py +1148 -0
- vllm/model_executor/models/interfaces_base.py +243 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +454 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +609 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1765 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +658 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +516 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +704 -0
- vllm/model_executor/models/llama4.py +857 -0
- vllm/model_executor/models/llama4_eagle.py +216 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +743 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +828 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +657 -0
- vllm/model_executor/models/minicpm3.py +234 -0
- vllm/model_executor/models/minicpm_eagle.py +385 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1744 -0
- vllm/model_executor/models/minimax_m2.py +546 -0
- vllm/model_executor/models/minimax_text_01.py +1010 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1151 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +452 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1553 -0
- vllm/model_executor/models/moonvit.py +686 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
- vllm/model_executor/models/nemotron.py +502 -0
- vllm/model_executor/models/nemotron_h.py +850 -0
- vllm/model_executor/models/nemotron_nas.py +473 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +413 -0
- vllm/model_executor/models/olmo2.py +455 -0
- vllm/model_executor/models/olmoe.py +494 -0
- vllm/model_executor/models/opencua.py +271 -0
- vllm/model_executor/models/openpangu.py +1051 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +366 -0
- vllm/model_executor/models/ouro.py +508 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1380 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +376 -0
- vllm/model_executor/models/phi.py +370 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +670 -0
- vllm/model_executor/models/pixtral.py +1380 -0
- vllm/model_executor/models/plamo2.py +966 -0
- vllm/model_executor/models/plamo3.py +441 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +569 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
- vllm/model_executor/models/qwen2_5_vl.py +1594 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +590 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1593 -0
- vllm/model_executor/models/qwen3.py +332 -0
- vllm/model_executor/models/qwen3_moe.py +738 -0
- vllm/model_executor/models/qwen3_next.py +1390 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
- vllm/model_executor/models/qwen3_vl.py +1686 -0
- vllm/model_executor/models/qwen3_vl_moe.py +470 -0
- vllm/model_executor/models/qwen_vl.py +803 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1183 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +493 -0
- vllm/model_executor/models/siglip.py +1245 -0
- vllm/model_executor/models/siglip2navit.py +723 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +485 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +366 -0
- vllm/model_executor/models/step3_text.py +555 -0
- vllm/model_executor/models/step3_vl.py +1149 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +325 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +213 -0
- vllm/model_executor/models/ultravox.py +686 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +842 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +980 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +142 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +830 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2240 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +357 -0
- vllm/multimodal/utils.py +523 -0
- vllm/multimodal/video.py +333 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +410 -0
- vllm/platforms/cuda.py +642 -0
- vllm/platforms/interface.py +656 -0
- vllm/platforms/rocm.py +513 -0
- vllm/platforms/tpu.py +275 -0
- vllm/platforms/xpu.py +261 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +230 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +216 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +597 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +24 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/hf.py +124 -0
- vllm/tokenizers/mistral.py +554 -0
- vllm/tokenizers/protocol.py +111 -0
- vllm/tokenizers/registry.py +233 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1081 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +84 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +235 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +214 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/gguf_utils.py +209 -0
- vllm/transformers_utils/processor.py +423 -0
- vllm/transformers_utils/processors/__init__.py +23 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +127 -0
- vllm/transformers_utils/tokenizer_base.py +33 -0
- vllm/transformers_utils/utils.py +184 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +66 -0
- vllm/utils/argparse_utils.py +504 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +399 -0
- vllm/utils/flashinfer.py +532 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +81 -0
- vllm/utils/import_utils.py +449 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +265 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +647 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +497 -0
- vllm/v1/attention/backends/flash_attn.py +1050 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +945 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +117 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
- vllm/v1/attention/backends/mla/common.py +2069 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
- vllm/v1/attention/backends/mla/flashmla.py +317 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
- vllm/v1/attention/backends/mla/indexer.py +369 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +359 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +428 -0
- vllm/v1/attention/backends/triton_attn.py +377 -0
- vllm/v1/attention/backends/utils.py +1149 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +466 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +570 -0
- vllm/v1/core/kv_cache_manager.py +408 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1471 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +68 -0
- vllm/v1/core/sched/interface.py +187 -0
- vllm/v1/core/sched/output.py +230 -0
- vllm/v1/core/sched/request_queue.py +217 -0
- vllm/v1/core/sched/scheduler.py +1726 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +801 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +214 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1421 -0
- vllm/v1/engine/core_client.py +1406 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +636 -0
- vllm/v1/engine/llm_engine.py +416 -0
- vllm/v1/engine/logprobs.py +189 -0
- vllm/v1/engine/output_processor.py +658 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +20 -0
- vllm/v1/engine/utils.py +1068 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +404 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +86 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +66 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1268 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +431 -0
- vllm/v1/outputs.py +237 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +280 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
- vllm/v1/sample/rejection_sampler.py +805 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1325 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +101 -0
- vllm/v1/spec_decode/utils.py +121 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +210 -0
- vllm/v1/worker/dp_utils.py +250 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +97 -0
- vllm/v1/worker/gpu/attn_utils.py +189 -0
- vllm/v1/worker/gpu/block_table.py +314 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +430 -0
- vllm/v1/worker/gpu/model_runner.py +1007 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +101 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +179 -0
- vllm/v1/worker/gpu/sample/penalties.py +154 -0
- vllm/v1/worker/gpu/sample/sampler.py +75 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
- vllm/v1/worker/gpu/states.py +309 -0
- vllm/v1/worker/gpu/structured_outputs.py +76 -0
- vllm/v1/worker/gpu_input_batch.py +971 -0
- vllm/v1/worker/gpu_model_runner.py +5360 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
- vllm/v1/worker/gpu_worker.py +922 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
- vllm/v1/worker/lora_model_runner_mixin.py +212 -0
- vllm/v1/worker/tpu_input_batch.py +583 -0
- vllm/v1/worker/tpu_model_runner.py +2196 -0
- vllm/v1/worker/tpu_worker.py +351 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +365 -0
- vllm/v1/worker/worker_base.py +377 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +198 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu-0.12.0.dist-info/METADATA +300 -0
- vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
- vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
- vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1572 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
"""Attention layer with FlashInfer."""
|
|
4
|
+
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from typing import ClassVar
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
from flashinfer import (
|
|
11
|
+
BatchDecodeWithPagedKVCacheWrapper,
|
|
12
|
+
BatchPrefillWithPagedKVCacheWrapper,
|
|
13
|
+
BatchPrefillWithRaggedKVCacheWrapper,
|
|
14
|
+
MultiLevelCascadeAttentionWrapper,
|
|
15
|
+
)
|
|
16
|
+
from flashinfer.decode import _get_range_buf, trtllm_batch_decode_with_kv_cache
|
|
17
|
+
from flashinfer.prefill import trtllm_batch_context_with_kv_cache
|
|
18
|
+
from flashinfer.utils import FP4Tensor
|
|
19
|
+
|
|
20
|
+
from vllm import envs
|
|
21
|
+
from vllm.attention.backends.abstract import (
|
|
22
|
+
AttentionBackend,
|
|
23
|
+
AttentionImpl,
|
|
24
|
+
AttentionType,
|
|
25
|
+
MultipleOf,
|
|
26
|
+
)
|
|
27
|
+
from vllm.attention.ops.common import cp_lse_ag_out_rs
|
|
28
|
+
from vllm.attention.ops.merge_attn_states import merge_attn_states
|
|
29
|
+
from vllm.config import CUDAGraphMode, VllmConfig
|
|
30
|
+
from vllm.config.cache import CacheDType
|
|
31
|
+
from vllm.distributed.parallel_state import get_dcp_group
|
|
32
|
+
from vllm.logger import init_logger
|
|
33
|
+
from vllm.model_executor.layers.batch_invariant import (
|
|
34
|
+
vllm_is_batch_invariant,
|
|
35
|
+
)
|
|
36
|
+
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
37
|
+
QuantKey,
|
|
38
|
+
kFp8StaticTensorSym,
|
|
39
|
+
kNvfp4Quant,
|
|
40
|
+
)
|
|
41
|
+
from vllm.platforms import current_platform
|
|
42
|
+
from vllm.platforms.interface import DeviceCapability
|
|
43
|
+
from vllm.triton_utils import tl, triton
|
|
44
|
+
from vllm.utils.flashinfer import (
|
|
45
|
+
can_use_trtllm_attention,
|
|
46
|
+
flashinfer_disable_q_quantization,
|
|
47
|
+
use_trtllm_attention,
|
|
48
|
+
)
|
|
49
|
+
from vllm.utils.math_utils import cdiv
|
|
50
|
+
from vllm.utils.platform_utils import is_pin_memory_available
|
|
51
|
+
from vllm.v1.attention.backends.utils import (
|
|
52
|
+
AttentionCGSupport,
|
|
53
|
+
AttentionMetadataBuilder,
|
|
54
|
+
CommonAttentionMetadata,
|
|
55
|
+
KVCacheLayoutType,
|
|
56
|
+
get_dcp_local_seq_lens,
|
|
57
|
+
get_kv_cache_layout,
|
|
58
|
+
get_per_layer_parameters,
|
|
59
|
+
infer_global_hyperparameters,
|
|
60
|
+
split_decodes_and_prefills,
|
|
61
|
+
)
|
|
62
|
+
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
63
|
+
|
|
64
|
+
FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT = 2048 * 1024 * 1024
|
|
65
|
+
|
|
66
|
+
FP8_DTYPE = current_platform.fp8_dtype()
|
|
67
|
+
FP4_DTYPE = torch.uint8
|
|
68
|
+
|
|
69
|
+
logger = init_logger(__name__)
|
|
70
|
+
|
|
71
|
+
trtllm_gen_workspace_buffer = None
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _get_trtllm_gen_workspace_buffer():
|
|
75
|
+
global trtllm_gen_workspace_buffer
|
|
76
|
+
if trtllm_gen_workspace_buffer is None:
|
|
77
|
+
trtllm_gen_workspace_buffer = torch.zeros(
|
|
78
|
+
envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device="cuda"
|
|
79
|
+
)
|
|
80
|
+
return trtllm_gen_workspace_buffer
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
@triton.jit
|
|
84
|
+
def _trtllm_prefill_attn_kvfp8_dequant(
|
|
85
|
+
kv_cache_ptr,
|
|
86
|
+
block_tables_prefill_ptr,
|
|
87
|
+
block_table_stride,
|
|
88
|
+
mock_kv_cache_ptr,
|
|
89
|
+
k_scale_ptr,
|
|
90
|
+
v_scale_ptr,
|
|
91
|
+
K_CACHE_STRIDE: tl.constexpr,
|
|
92
|
+
KV_CACHE_STRIDE: tl.constexpr,
|
|
93
|
+
):
|
|
94
|
+
batch_idx = tl.program_id(0).to(tl.int64)
|
|
95
|
+
mock_block_table_idx = tl.program_id(1).to(tl.int64)
|
|
96
|
+
orig_page_num = tl.load(
|
|
97
|
+
block_tables_prefill_ptr + batch_idx * block_table_stride + mock_block_table_idx
|
|
98
|
+
).to(tl.int64)
|
|
99
|
+
if orig_page_num <= 0:
|
|
100
|
+
return
|
|
101
|
+
dequant_dtype = mock_kv_cache_ptr.dtype.element_ty
|
|
102
|
+
|
|
103
|
+
# Dequantize K
|
|
104
|
+
k_scale_val = tl.load(k_scale_ptr)
|
|
105
|
+
offset = orig_page_num * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
|
|
106
|
+
fp8_vals = tl.load(kv_cache_ptr + offset)
|
|
107
|
+
dequantized_vals = fp8_vals.to(tl.float32) * k_scale_val
|
|
108
|
+
mock_cache_offset = (
|
|
109
|
+
batch_idx * block_table_stride + mock_block_table_idx + 1
|
|
110
|
+
) * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
|
|
111
|
+
dequantized_vals = dequantized_vals.to(dequant_dtype)
|
|
112
|
+
tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)
|
|
113
|
+
|
|
114
|
+
# Dequantize V
|
|
115
|
+
v_scale_val = tl.load(v_scale_ptr)
|
|
116
|
+
offset = (
|
|
117
|
+
orig_page_num * KV_CACHE_STRIDE + K_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
|
|
118
|
+
)
|
|
119
|
+
fp8_vals = tl.load(kv_cache_ptr + offset)
|
|
120
|
+
dequantized_vals = fp8_vals.to(tl.float32) * v_scale_val
|
|
121
|
+
mock_cache_offset = (
|
|
122
|
+
(batch_idx * block_table_stride + mock_block_table_idx + 1) * KV_CACHE_STRIDE
|
|
123
|
+
+ K_CACHE_STRIDE
|
|
124
|
+
+ tl.arange(0, K_CACHE_STRIDE)
|
|
125
|
+
)
|
|
126
|
+
dequantized_vals = dequantized_vals.to(dequant_dtype)
|
|
127
|
+
tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def trtllm_prefill_attn_kvfp8_dequant(
|
|
131
|
+
kv_cache: torch.Tensor,
|
|
132
|
+
block_tables_prefill: torch.Tensor,
|
|
133
|
+
k_scale: torch.Tensor,
|
|
134
|
+
v_scale: torch.Tensor,
|
|
135
|
+
dequant_dtype: torch.dtype,
|
|
136
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
137
|
+
batch_size, num_of_page_per_token = block_tables_prefill.shape
|
|
138
|
+
s = kv_cache.shape
|
|
139
|
+
assert s[1] == 2
|
|
140
|
+
assert dequant_dtype in (torch.bfloat16, torch.float16)
|
|
141
|
+
k_cache_stride = s[2] * s[3] * s[4]
|
|
142
|
+
kv_cache_stride = k_cache_stride * s[1]
|
|
143
|
+
new_s = (batch_size * num_of_page_per_token + 1, s[1], s[2], s[3], s[4])
|
|
144
|
+
# mock kv cache contains just the pages needed by this prefill
|
|
145
|
+
mock_kv_cache = torch.empty(new_s, dtype=dequant_dtype, device=kv_cache.device)
|
|
146
|
+
# we simply sequentially index the pages needed by this prefill
|
|
147
|
+
mock_block_table = torch.arange(
|
|
148
|
+
start=1,
|
|
149
|
+
end=batch_size * num_of_page_per_token + 1,
|
|
150
|
+
dtype=torch.int32,
|
|
151
|
+
device=block_tables_prefill.device,
|
|
152
|
+
).reshape(batch_size, num_of_page_per_token)
|
|
153
|
+
grid = (batch_size, num_of_page_per_token)
|
|
154
|
+
_trtllm_prefill_attn_kvfp8_dequant[grid](
|
|
155
|
+
kv_cache,
|
|
156
|
+
block_tables_prefill,
|
|
157
|
+
num_of_page_per_token,
|
|
158
|
+
mock_kv_cache,
|
|
159
|
+
k_scale,
|
|
160
|
+
v_scale,
|
|
161
|
+
k_cache_stride,
|
|
162
|
+
kv_cache_stride,
|
|
163
|
+
)
|
|
164
|
+
return mock_kv_cache, mock_block_table
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class BatchDCPPrefillWrapper:
|
|
168
|
+
def __init__(
|
|
169
|
+
self,
|
|
170
|
+
workspace_buffer: torch.Tensor | None = None,
|
|
171
|
+
):
|
|
172
|
+
self._context = BatchPrefillWithPagedKVCacheWrapper(
|
|
173
|
+
workspace_buffer, get_kv_cache_layout()
|
|
174
|
+
)
|
|
175
|
+
self._new_tokens = BatchPrefillWithRaggedKVCacheWrapper(
|
|
176
|
+
workspace_buffer, get_kv_cache_layout()
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
def plan(
|
|
180
|
+
self,
|
|
181
|
+
qo_indptr_cpu: torch.Tensor,
|
|
182
|
+
paged_kv_indptr_cpu: torch.Tensor,
|
|
183
|
+
paged_kv_indices: torch.Tensor,
|
|
184
|
+
paged_kv_last_page_len_cpu: torch.Tensor,
|
|
185
|
+
prefill_start: int,
|
|
186
|
+
page_size: int,
|
|
187
|
+
num_qo_heads: int,
|
|
188
|
+
dcp_world_size: int,
|
|
189
|
+
num_kv_heads: int,
|
|
190
|
+
head_dim: int,
|
|
191
|
+
sm_scale: float,
|
|
192
|
+
window_left: int,
|
|
193
|
+
logits_soft_cap: float | None,
|
|
194
|
+
q_data_type: torch.dtype,
|
|
195
|
+
kv_cache_dtype: torch.dtype,
|
|
196
|
+
prefill_fixed_split_size: int,
|
|
197
|
+
disable_split_kv: bool,
|
|
198
|
+
):
|
|
199
|
+
"""Plan the prefill operation with given parameters."""
|
|
200
|
+
self._context.plan(
|
|
201
|
+
qo_indptr_cpu,
|
|
202
|
+
paged_kv_indptr_cpu,
|
|
203
|
+
paged_kv_indices,
|
|
204
|
+
paged_kv_last_page_len_cpu[prefill_start:],
|
|
205
|
+
num_qo_heads * dcp_world_size,
|
|
206
|
+
num_kv_heads,
|
|
207
|
+
head_dim,
|
|
208
|
+
page_size,
|
|
209
|
+
causal=False, # This is context run
|
|
210
|
+
sm_scale=sm_scale,
|
|
211
|
+
window_left=window_left,
|
|
212
|
+
logits_soft_cap=logits_soft_cap,
|
|
213
|
+
q_data_type=q_data_type,
|
|
214
|
+
kv_data_type=kv_cache_dtype,
|
|
215
|
+
fixed_split_size=prefill_fixed_split_size,
|
|
216
|
+
disable_split_kv=disable_split_kv,
|
|
217
|
+
)
|
|
218
|
+
self._new_tokens.plan(
|
|
219
|
+
qo_indptr=qo_indptr_cpu,
|
|
220
|
+
kv_indptr=qo_indptr_cpu,
|
|
221
|
+
num_qo_heads=num_qo_heads,
|
|
222
|
+
num_kv_heads=num_kv_heads,
|
|
223
|
+
head_dim_qk=head_dim,
|
|
224
|
+
head_dim_vo=head_dim,
|
|
225
|
+
causal=True, # This is newtokens run
|
|
226
|
+
sm_scale=sm_scale,
|
|
227
|
+
window_left=window_left,
|
|
228
|
+
logits_soft_cap=logits_soft_cap,
|
|
229
|
+
q_data_type=q_data_type,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
def run(
|
|
233
|
+
self,
|
|
234
|
+
layer: torch.nn.Module,
|
|
235
|
+
prefill_query: torch.Tensor,
|
|
236
|
+
kv_cache_permute: torch.Tensor,
|
|
237
|
+
key: torch.Tensor,
|
|
238
|
+
value: torch.Tensor,
|
|
239
|
+
out: torch.Tensor,
|
|
240
|
+
):
|
|
241
|
+
prefill_query_across_dcp = get_dcp_group().all_gather(
|
|
242
|
+
prefill_query.contiguous(), dim=1
|
|
243
|
+
)
|
|
244
|
+
output_context_tmp, lse_context_tmp = self._context.run(
|
|
245
|
+
prefill_query_across_dcp,
|
|
246
|
+
kv_cache_permute,
|
|
247
|
+
k_scale=layer._k_scale_float,
|
|
248
|
+
v_scale=layer._v_scale_float,
|
|
249
|
+
return_lse=True,
|
|
250
|
+
)
|
|
251
|
+
output_context, lse_context = cp_lse_ag_out_rs(
|
|
252
|
+
output_context_tmp,
|
|
253
|
+
lse_context_tmp,
|
|
254
|
+
get_dcp_group(),
|
|
255
|
+
return_lse=True,
|
|
256
|
+
is_lse_base_on_e=False,
|
|
257
|
+
)
|
|
258
|
+
lse_context = lse_context.transpose(0, 1).contiguous()
|
|
259
|
+
|
|
260
|
+
output_query, lse_query = self._new_tokens.run(
|
|
261
|
+
prefill_query,
|
|
262
|
+
key,
|
|
263
|
+
value,
|
|
264
|
+
return_lse=True,
|
|
265
|
+
)
|
|
266
|
+
lse_query = lse_query.transpose(0, 1).contiguous()
|
|
267
|
+
|
|
268
|
+
merge_attn_states(
|
|
269
|
+
out,
|
|
270
|
+
output_context,
|
|
271
|
+
lse_context,
|
|
272
|
+
output_query,
|
|
273
|
+
lse_query,
|
|
274
|
+
)
|
|
275
|
+
return out
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
class FlashInferBackend(AttentionBackend):
|
|
279
|
+
accept_output_buffer: bool = True
|
|
280
|
+
supported_dtypes: ClassVar[list[torch.dtype]] = [torch.float16, torch.bfloat16]
|
|
281
|
+
supported_kv_cache_dtypes: ClassVar[list[CacheDType]] = [
|
|
282
|
+
"auto",
|
|
283
|
+
"fp8",
|
|
284
|
+
"fp8_e4m3",
|
|
285
|
+
"fp8_e5m2",
|
|
286
|
+
]
|
|
287
|
+
|
|
288
|
+
@staticmethod
|
|
289
|
+
def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
|
|
290
|
+
# Note: Not sure for all platforms, but on Blackwell,
|
|
291
|
+
# only support a page size of 16, 32, 64.
|
|
292
|
+
return [16, 32, 64]
|
|
293
|
+
|
|
294
|
+
@staticmethod
|
|
295
|
+
def get_name() -> str:
|
|
296
|
+
return "FLASHINFER"
|
|
297
|
+
|
|
298
|
+
@staticmethod
|
|
299
|
+
def get_impl_cls() -> type["FlashInferImpl"]:
|
|
300
|
+
return FlashInferImpl
|
|
301
|
+
|
|
302
|
+
@staticmethod
|
|
303
|
+
def get_builder_cls() -> type["FlashInferMetadataBuilder"]:
|
|
304
|
+
return FlashInferMetadataBuilder
|
|
305
|
+
|
|
306
|
+
@staticmethod
|
|
307
|
+
def get_kv_cache_shape(
|
|
308
|
+
num_blocks: int,
|
|
309
|
+
block_size: int,
|
|
310
|
+
num_kv_heads: int,
|
|
311
|
+
head_size: int,
|
|
312
|
+
cache_dtype_str: str = "auto",
|
|
313
|
+
) -> tuple[int, ...]:
|
|
314
|
+
return (num_blocks, 2, block_size, num_kv_heads, head_size)
|
|
315
|
+
|
|
316
|
+
@staticmethod
|
|
317
|
+
def get_kv_cache_stride_order(
|
|
318
|
+
include_num_layers_dimension: bool = False,
|
|
319
|
+
) -> tuple[int, ...]:
|
|
320
|
+
# `stride_order` indicates the permutation that gets us from
|
|
321
|
+
# `get_kv_cache_shape` to the actual memory layout we want.
|
|
322
|
+
cache_layout = get_kv_cache_layout()
|
|
323
|
+
if cache_layout == "NHD" and include_num_layers_dimension:
|
|
324
|
+
# (num_blocks, num_layers, 2, block_size, num_kv_heads, head_size)
|
|
325
|
+
return (1, 0, 2, 3, 4, 5)
|
|
326
|
+
elif cache_layout == "NHD":
|
|
327
|
+
stride_order = (0, 1, 2, 3, 4)
|
|
328
|
+
elif cache_layout == "HND" and include_num_layers_dimension:
|
|
329
|
+
# (num_blocks, 2, num_kv_heads, num_layers, block_size, head_size)
|
|
330
|
+
return (1, 2, 4, 0, 3, 5)
|
|
331
|
+
elif cache_layout == "HND":
|
|
332
|
+
stride_order = (0, 1, 3, 2, 4)
|
|
333
|
+
else:
|
|
334
|
+
raise ValueError(f"Unknown cache layout format {cache_layout}.")
|
|
335
|
+
return stride_order
|
|
336
|
+
|
|
337
|
+
@staticmethod
|
|
338
|
+
def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
|
|
339
|
+
if kv_cache_dtype in ("fp8", "fp8_e4m3"):
|
|
340
|
+
return torch.float8_e4m3fn
|
|
341
|
+
elif kv_cache_dtype == "fp8_e5m2":
|
|
342
|
+
return torch.float8_e5m2
|
|
343
|
+
else:
|
|
344
|
+
raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")
|
|
345
|
+
|
|
346
|
+
@classmethod
|
|
347
|
+
def get_supported_head_sizes(cls) -> list[int]:
|
|
348
|
+
# https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
|
|
349
|
+
return [64, 128, 256]
|
|
350
|
+
|
|
351
|
+
@classmethod
|
|
352
|
+
def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
|
|
353
|
+
return capability >= DeviceCapability(7, 5) and capability <= DeviceCapability(
|
|
354
|
+
12, 1
|
|
355
|
+
)
|
|
356
|
+
|
|
357
|
+
@classmethod
|
|
358
|
+
def supports_sink(cls) -> bool:
|
|
359
|
+
"""FlashInfer supports sinks when TRTLLM attention is available (SM100)."""
|
|
360
|
+
from vllm.utils.flashinfer import (
|
|
361
|
+
force_use_trtllm_attention,
|
|
362
|
+
supports_trtllm_attention,
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
# Respect explicit disable flag (e.g., VLLM_USE_TRTLLM_ATTENTION=0)
|
|
366
|
+
if force_use_trtllm_attention() is False:
|
|
367
|
+
return False
|
|
368
|
+
|
|
369
|
+
# Check if TRTLLM is supported on this platform
|
|
370
|
+
return supports_trtllm_attention()
|
|
371
|
+
|
|
372
|
+
@classmethod
|
|
373
|
+
def get_required_kv_cache_layout(cls) -> KVCacheLayoutType | None:
|
|
374
|
+
from vllm.platforms import current_platform
|
|
375
|
+
|
|
376
|
+
capability = current_platform.get_device_capability()
|
|
377
|
+
if capability is not None and capability.major == 10:
|
|
378
|
+
return "HND"
|
|
379
|
+
return None
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
@dataclass
|
|
383
|
+
class FlashInferMetadata:
|
|
384
|
+
num_actual_tokens: int # Number of tokens excluding padding.
|
|
385
|
+
|
|
386
|
+
# The data type of the query
|
|
387
|
+
q_data_type: torch.dtype
|
|
388
|
+
|
|
389
|
+
slot_mapping: torch.Tensor
|
|
390
|
+
|
|
391
|
+
# For flashinfer trtllm batch decode
|
|
392
|
+
max_q_len: int
|
|
393
|
+
max_q_len_prefill: int
|
|
394
|
+
max_seq_len: int
|
|
395
|
+
seq_lens: torch.Tensor
|
|
396
|
+
block_table_tensor: torch.Tensor
|
|
397
|
+
prefill_use_trtllm: bool
|
|
398
|
+
decode_use_trtllm: bool
|
|
399
|
+
|
|
400
|
+
# For handling prefill decode split
|
|
401
|
+
num_decodes: int
|
|
402
|
+
num_decode_tokens: int
|
|
403
|
+
num_prefills: int
|
|
404
|
+
num_prefill_tokens: int
|
|
405
|
+
|
|
406
|
+
# For cascade attention (CPU for planning).
|
|
407
|
+
use_cascade: bool
|
|
408
|
+
|
|
409
|
+
prefill_wrapper: (
|
|
410
|
+
BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper | None
|
|
411
|
+
) = None
|
|
412
|
+
decode_wrapper: BatchDecodeWithPagedKVCacheWrapper | None = None
|
|
413
|
+
cascade_wrapper: MultiLevelCascadeAttentionWrapper | None = None
|
|
414
|
+
|
|
415
|
+
qo_indptr_gpu: torch.Tensor | None = None
|
|
416
|
+
paged_kv_indptr_gpu: torch.Tensor | None = None
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
|
|
420
|
+
reorder_batch_threshold: int = 1
|
|
421
|
+
|
|
422
|
+
def __init__(
|
|
423
|
+
self,
|
|
424
|
+
kv_cache_spec: AttentionSpec,
|
|
425
|
+
layer_names: list[str],
|
|
426
|
+
vllm_config: VllmConfig,
|
|
427
|
+
device: torch.device,
|
|
428
|
+
):
|
|
429
|
+
super().__init__(kv_cache_spec, layer_names, vllm_config, device)
|
|
430
|
+
self.cache_config = vllm_config.cache_config
|
|
431
|
+
self.model_config = vllm_config.model_config
|
|
432
|
+
self._workspace_buffer = None
|
|
433
|
+
self._prefill_wrapper: (
|
|
434
|
+
BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper | None
|
|
435
|
+
) = None # Wrapper for prefill/append
|
|
436
|
+
self._decode_wrapper = None # Wrapper for decode (general shape)
|
|
437
|
+
|
|
438
|
+
if vllm_is_batch_invariant():
|
|
439
|
+
self.decode_fixed_split_size = 2048
|
|
440
|
+
self.prefill_fixed_split_size = 4096
|
|
441
|
+
self.disable_split_kv = True
|
|
442
|
+
else:
|
|
443
|
+
self.decode_fixed_split_size = -1
|
|
444
|
+
self.prefill_fixed_split_size = -1
|
|
445
|
+
self.disable_split_kv = False
|
|
446
|
+
|
|
447
|
+
self.compilation_config = vllm_config.compilation_config
|
|
448
|
+
max_num_pages_per_req = cdiv(
|
|
449
|
+
self.model_config.max_model_len, self.kv_cache_spec.block_size
|
|
450
|
+
)
|
|
451
|
+
max_num_reqs = vllm_config.scheduler_config.max_num_seqs
|
|
452
|
+
max_num_pages = max_num_reqs * max_num_pages_per_req
|
|
453
|
+
speculative_config = vllm_config.speculative_config
|
|
454
|
+
num_spec_tokens = (
|
|
455
|
+
speculative_config.num_speculative_tokens
|
|
456
|
+
if speculative_config is not None
|
|
457
|
+
else 0
|
|
458
|
+
)
|
|
459
|
+
self.enable_cuda_graph = (
|
|
460
|
+
self.compilation_config.cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
|
|
461
|
+
)
|
|
462
|
+
if self.enable_cuda_graph:
|
|
463
|
+
# For full cudagraph capture, one `decode_wrapper` for each batch
|
|
464
|
+
# size is needed for FlashInfer.
|
|
465
|
+
self._decode_wrappers_cudagraph: dict[
|
|
466
|
+
int, BatchDecodeWithPagedKVCacheWrapper
|
|
467
|
+
] = {}
|
|
468
|
+
self._decode_cudagraph_max_bs = min(
|
|
469
|
+
(1 + num_spec_tokens) * max_num_reqs,
|
|
470
|
+
self.compilation_config.max_cudagraph_capture_size,
|
|
471
|
+
)
|
|
472
|
+
|
|
473
|
+
try:
|
|
474
|
+
self.dcp_world_size = get_dcp_group().world_size
|
|
475
|
+
self.dcp_rank = get_dcp_group().rank_in_group
|
|
476
|
+
self.dcp_kv_cache_interleave_size = (
|
|
477
|
+
vllm_config.parallel_config.dcp_kv_cache_interleave_size
|
|
478
|
+
)
|
|
479
|
+
except AssertionError:
|
|
480
|
+
# DCP might not be initialized in testing
|
|
481
|
+
self.dcp_world_size = 1
|
|
482
|
+
self.dcp_rank = 0
|
|
483
|
+
self.dcp_kv_cache_interleave_size = 1
|
|
484
|
+
|
|
485
|
+
self.num_qo_heads = (
|
|
486
|
+
self.model_config.get_num_attention_heads(self.vllm_config.parallel_config)
|
|
487
|
+
* self.dcp_world_size
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
self.num_kv_heads = self.kv_cache_spec.num_kv_heads
|
|
491
|
+
self.head_dim = self.kv_cache_spec.head_size
|
|
492
|
+
self.page_size = self.kv_cache_spec.block_size
|
|
493
|
+
|
|
494
|
+
self.cache_dtype = self.cache_config.cache_dtype
|
|
495
|
+
if self.cache_dtype.startswith("fp8"):
|
|
496
|
+
self.kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
|
|
497
|
+
self.cache_dtype
|
|
498
|
+
)
|
|
499
|
+
else:
|
|
500
|
+
assert self.kv_cache_spec.dtype == self.model_config.dtype
|
|
501
|
+
self.kv_cache_dtype = self.kv_cache_spec.dtype
|
|
502
|
+
|
|
503
|
+
# Use model dtype as q dtype when TRTLLM attn is not supported, or
|
|
504
|
+
# VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION is set to 1. Otherwise, try to
|
|
505
|
+
# use fp8 q if kv cache is fp8, and will fall back to model dtype
|
|
506
|
+
# if TRTLLM attention kernel is not used when building attn metadata
|
|
507
|
+
can_use_trtllm = can_use_trtllm_attention(self.num_qo_heads, self.num_kv_heads)
|
|
508
|
+
if can_use_trtllm and not flashinfer_disable_q_quantization():
|
|
509
|
+
self.q_data_type = self.kv_cache_dtype
|
|
510
|
+
else:
|
|
511
|
+
self.q_data_type = self.model_config.dtype
|
|
512
|
+
|
|
513
|
+
# Prefer TRTLLM attention for decoding in all cases.
|
|
514
|
+
# This allows us to use AttentionCGSupport.UNIFORM_BATCH mode.
|
|
515
|
+
self.use_trtllm_decode_attention = can_use_trtllm
|
|
516
|
+
self._init_reorder_batch_threshold(1, supports_spec_as_decode=can_use_trtllm)
|
|
517
|
+
|
|
518
|
+
self._cascade_wrapper = None # Wrapper for cascade attention
|
|
519
|
+
|
|
520
|
+
# Global hyperparameters shared by all attention layers
|
|
521
|
+
# TODO: discard this for trtllm-gen backend
|
|
522
|
+
self.global_hyperparameters = infer_global_hyperparameters(
|
|
523
|
+
get_per_layer_parameters(vllm_config, layer_names, FlashInferImpl)
|
|
524
|
+
)
|
|
525
|
+
self.sm_scale = self.global_hyperparameters.sm_scale
|
|
526
|
+
self.window_left = self.global_hyperparameters.window_left
|
|
527
|
+
self.logits_soft_cap = self.global_hyperparameters.logits_soft_cap
|
|
528
|
+
self.has_sinks = self.global_hyperparameters.has_sinks
|
|
529
|
+
if self.has_sinks and not can_use_trtllm:
|
|
530
|
+
raise NotImplementedError(
|
|
531
|
+
"FlashInfer backend currently does not support attention "
|
|
532
|
+
"sinks, please use trtllm on blackwell or flash attention on "
|
|
533
|
+
"earlier GPUs."
|
|
534
|
+
)
|
|
535
|
+
# Preparing persistent buffers (device-side)
|
|
536
|
+
self.paged_kv_indptr = torch.zeros(
|
|
537
|
+
max_num_reqs + 1, dtype=torch.int32, device=self.device
|
|
538
|
+
)
|
|
539
|
+
self.paged_kv_indices = torch.zeros(
|
|
540
|
+
max_num_pages, # max num pages possible
|
|
541
|
+
dtype=torch.int32,
|
|
542
|
+
device=self.device,
|
|
543
|
+
)
|
|
544
|
+
self.paged_kv_last_page_len = torch.zeros(
|
|
545
|
+
max_num_reqs, dtype=torch.int32, device=self.device
|
|
546
|
+
)
|
|
547
|
+
# host-side buffer
|
|
548
|
+
pin_memory = is_pin_memory_available()
|
|
549
|
+
self.paged_kv_indptr_cpu = torch.zeros(
|
|
550
|
+
max_num_reqs + 1, dtype=torch.int32, device="cpu", pin_memory=pin_memory
|
|
551
|
+
)
|
|
552
|
+
self.paged_kv_indptr_np = self.paged_kv_indptr_cpu.numpy()
|
|
553
|
+
self.paged_kv_indptr_buffer = torch.zeros_like(
|
|
554
|
+
self.paged_kv_indptr_cpu, pin_memory=pin_memory
|
|
555
|
+
)
|
|
556
|
+
self.paged_kv_indices_cpu = torch.zeros(
|
|
557
|
+
max_num_pages, dtype=torch.int32, device="cpu", pin_memory=pin_memory
|
|
558
|
+
)
|
|
559
|
+
self.paged_kv_last_page_len_cpu = torch.zeros(
|
|
560
|
+
max_num_reqs, dtype=torch.int32, device="cpu", pin_memory=pin_memory
|
|
561
|
+
)
|
|
562
|
+
self.paged_kv_last_page_len_np = self.paged_kv_last_page_len_cpu.numpy()
|
|
563
|
+
|
|
564
|
+
if self.head_dim == 256 and current_platform.is_device_capability(100):
|
|
565
|
+
# https://github.com/flashinfer-ai/flashinfer/issues/1993 reports that
|
|
566
|
+
# head size 256 and block size 16 is not supported on blackwell.
|
|
567
|
+
assert kv_cache_spec.block_size != 16, (
|
|
568
|
+
"There is a bug in FlashInfer "
|
|
569
|
+
"block_size 16 head size 256 support. Please avoid this combination by "
|
|
570
|
+
"passing --block-size 32 or --block-size 64."
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
@classmethod
|
|
574
|
+
def get_cudagraph_support(
|
|
575
|
+
cls: type["FlashInferMetadataBuilder"],
|
|
576
|
+
vllm_config: VllmConfig,
|
|
577
|
+
kv_cache_spec: AttentionSpec,
|
|
578
|
+
) -> AttentionCGSupport:
|
|
579
|
+
has_trtllm_support = can_use_trtllm_attention(
|
|
580
|
+
num_qo_heads=vllm_config.model_config.get_num_attention_heads(
|
|
581
|
+
vllm_config.parallel_config
|
|
582
|
+
),
|
|
583
|
+
num_kv_heads=kv_cache_spec.num_kv_heads,
|
|
584
|
+
)
|
|
585
|
+
if has_trtllm_support:
|
|
586
|
+
return AttentionCGSupport.UNIFORM_BATCH
|
|
587
|
+
else:
|
|
588
|
+
return AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
|
|
589
|
+
|
|
590
|
+
def _get_workspace_buffer(self):
|
|
591
|
+
if self._workspace_buffer is None:
|
|
592
|
+
buffer_size = envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE
|
|
593
|
+
if vllm_is_batch_invariant():
|
|
594
|
+
buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT
|
|
595
|
+
self._workspace_buffer = torch.zeros(
|
|
596
|
+
buffer_size, dtype=torch.uint8, device=self.device
|
|
597
|
+
)
|
|
598
|
+
return self._workspace_buffer
|
|
599
|
+
|
|
600
|
+
def set_workspace_buffer(self, workspace_buffer: torch.Tensor):
|
|
601
|
+
self._workspace_buffer = workspace_buffer
|
|
602
|
+
|
|
603
|
+
def _get_prefill_wrapper(
|
|
604
|
+
self,
|
|
605
|
+
) -> BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper:
|
|
606
|
+
if self._prefill_wrapper is None:
|
|
607
|
+
if self.dcp_world_size > 1:
|
|
608
|
+
self._prefill_wrapper = BatchDCPPrefillWrapper(
|
|
609
|
+
workspace_buffer=self._get_workspace_buffer(),
|
|
610
|
+
)
|
|
611
|
+
else:
|
|
612
|
+
self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
|
|
613
|
+
self._get_workspace_buffer(), get_kv_cache_layout()
|
|
614
|
+
)
|
|
615
|
+
assert self._prefill_wrapper is not None
|
|
616
|
+
return self._prefill_wrapper
|
|
617
|
+
|
|
618
|
+
def _get_decode_wrapper(self, batch_size: int, use_cudagraph: bool = False):
|
|
619
|
+
if use_cudagraph:
|
|
620
|
+
decode_wrapper = self._decode_wrappers_cudagraph.get(batch_size, None)
|
|
621
|
+
else:
|
|
622
|
+
decode_wrapper = self._decode_wrapper
|
|
623
|
+
|
|
624
|
+
if decode_wrapper is None:
|
|
625
|
+
if use_cudagraph:
|
|
626
|
+
paged_kv_indptr = self.paged_kv_indptr[: batch_size + 1]
|
|
627
|
+
paged_kv_indices = self.paged_kv_indices
|
|
628
|
+
paged_kv_last_page_len = self.paged_kv_last_page_len[:batch_size]
|
|
629
|
+
else:
|
|
630
|
+
paged_kv_indptr = None
|
|
631
|
+
paged_kv_indices = None
|
|
632
|
+
paged_kv_last_page_len = None
|
|
633
|
+
decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
|
|
634
|
+
self._get_workspace_buffer(),
|
|
635
|
+
get_kv_cache_layout(),
|
|
636
|
+
use_cuda_graph=use_cudagraph,
|
|
637
|
+
paged_kv_indptr_buffer=paged_kv_indptr,
|
|
638
|
+
paged_kv_indices_buffer=paged_kv_indices,
|
|
639
|
+
paged_kv_last_page_len_buffer=paged_kv_last_page_len,
|
|
640
|
+
# Tensor cores are enabled by default because the perf would be
|
|
641
|
+
# at least as good as cuda cores for all attention ops in latest
|
|
642
|
+
# gpus.
|
|
643
|
+
use_tensor_cores=True,
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
# save the decode wrapper
|
|
647
|
+
if use_cudagraph:
|
|
648
|
+
self._decode_wrappers_cudagraph[batch_size] = decode_wrapper
|
|
649
|
+
else:
|
|
650
|
+
self._decode_wrapper = decode_wrapper
|
|
651
|
+
|
|
652
|
+
return decode_wrapper
|
|
653
|
+
|
|
654
|
+
def _get_cascade_wrapper(self):
|
|
655
|
+
if self._cascade_wrapper is None:
|
|
656
|
+
self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
|
|
657
|
+
2, self._get_workspace_buffer(), get_kv_cache_layout()
|
|
658
|
+
)
|
|
659
|
+
return self._cascade_wrapper
|
|
660
|
+
|
|
661
|
+
def build(
|
|
662
|
+
self,
|
|
663
|
+
common_prefix_len: int,
|
|
664
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
665
|
+
fast_build: bool = False,
|
|
666
|
+
) -> FlashInferMetadata:
|
|
667
|
+
num_reqs = common_attn_metadata.num_reqs
|
|
668
|
+
num_actual_tokens = common_attn_metadata.num_actual_tokens
|
|
669
|
+
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
|
|
670
|
+
split_decodes_and_prefills(
|
|
671
|
+
common_attn_metadata,
|
|
672
|
+
decode_threshold=self.reorder_batch_threshold,
|
|
673
|
+
require_uniform=True,
|
|
674
|
+
)
|
|
675
|
+
)
|
|
676
|
+
|
|
677
|
+
page_size = self.page_size
|
|
678
|
+
max_q_len = common_attn_metadata.max_query_len
|
|
679
|
+
max_seq_len = common_attn_metadata.max_seq_len
|
|
680
|
+
seq_lens = common_attn_metadata.seq_lens
|
|
681
|
+
seq_lens_cpu = common_attn_metadata.seq_lens_cpu
|
|
682
|
+
block_table_tensor = common_attn_metadata.block_table_tensor
|
|
683
|
+
qo_indptr_cpu = common_attn_metadata.query_start_loc_cpu
|
|
684
|
+
|
|
685
|
+
if self.dcp_world_size > 1:
|
|
686
|
+
if num_prefills > 0:
|
|
687
|
+
qo_indptr_prefill_cpu = (
|
|
688
|
+
qo_indptr_cpu[num_decodes:] - qo_indptr_cpu[num_decodes]
|
|
689
|
+
)
|
|
690
|
+
query_lens_prefill_cpu = (
|
|
691
|
+
qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
|
|
692
|
+
)
|
|
693
|
+
seq_lens_cpu[num_decodes:] = (
|
|
694
|
+
seq_lens_cpu[num_decodes:] - query_lens_prefill_cpu
|
|
695
|
+
)
|
|
696
|
+
|
|
697
|
+
seq_lens_cpu = get_dcp_local_seq_lens(
|
|
698
|
+
seq_lens_cpu,
|
|
699
|
+
self.dcp_world_size,
|
|
700
|
+
self.dcp_rank,
|
|
701
|
+
self.dcp_kv_cache_interleave_size,
|
|
702
|
+
)
|
|
703
|
+
|
|
704
|
+
seq_lens_np = seq_lens_cpu.numpy()
|
|
705
|
+
num_blocks_np = (seq_lens_np + (page_size - 1)) // page_size
|
|
706
|
+
|
|
707
|
+
use_cascade = common_prefix_len > 0
|
|
708
|
+
if use_cascade:
|
|
709
|
+
# Grab the blocks of the shared prefix from the first request.
|
|
710
|
+
assert common_prefix_len % page_size == 0
|
|
711
|
+
num_common_kv_blocks = common_prefix_len // page_size
|
|
712
|
+
|
|
713
|
+
# Create CPU versions directly for cascade (no GPU versions needed)
|
|
714
|
+
shared_qo_indptr_cpu = torch.tensor(
|
|
715
|
+
[0, num_actual_tokens], dtype=torch.int32, device="cpu"
|
|
716
|
+
)
|
|
717
|
+
shared_kv_page_indptr_cpu = torch.tensor(
|
|
718
|
+
[0, num_common_kv_blocks], dtype=torch.int32, device="cpu"
|
|
719
|
+
)
|
|
720
|
+
shared_kv_page_indices_cpu = block_table_tensor[0, :num_common_kv_blocks]
|
|
721
|
+
shared_kv_last_page_len_cpu = torch.tensor(
|
|
722
|
+
[page_size], dtype=torch.int32, device="cpu"
|
|
723
|
+
)
|
|
724
|
+
|
|
725
|
+
# Remove the blocks of the shared prefix from all requests.
|
|
726
|
+
block_table_tensor = block_table_tensor[:, num_common_kv_blocks:]
|
|
727
|
+
num_blocks_np -= num_common_kv_blocks
|
|
728
|
+
else:
|
|
729
|
+
shared_qo_indptr_cpu = None
|
|
730
|
+
shared_kv_page_indptr_cpu = None
|
|
731
|
+
shared_kv_page_indices_cpu = None
|
|
732
|
+
shared_kv_last_page_len_cpu = None
|
|
733
|
+
|
|
734
|
+
# write self.paged_kv_indptr_cpu inplace (0-index is always 0)
|
|
735
|
+
np.cumsum(
|
|
736
|
+
num_blocks_np,
|
|
737
|
+
dtype=np.int32,
|
|
738
|
+
out=self.paged_kv_indptr_np[1 : num_reqs + 1],
|
|
739
|
+
)
|
|
740
|
+
# NOTE(woosuk): Because self.paged_kv_indptr_cpu can be modified
|
|
741
|
+
# after this line (e.g., for cuda graphs), we need to copy the data to
|
|
742
|
+
# self.paged_kv_indptr_buffer to avoid race condition.
|
|
743
|
+
self.paged_kv_indptr_buffer[: num_reqs + 1] = self.paged_kv_indptr_cpu[
|
|
744
|
+
: num_reqs + 1
|
|
745
|
+
]
|
|
746
|
+
paged_kv_indptr = self.paged_kv_indptr[: num_reqs + 1]
|
|
747
|
+
paged_kv_indptr.copy_(
|
|
748
|
+
self.paged_kv_indptr_buffer[: num_reqs + 1], non_blocking=True
|
|
749
|
+
)
|
|
750
|
+
|
|
751
|
+
# write self.paged_kv_indices inplace
|
|
752
|
+
num_actual_pages = self.paged_kv_indptr_np[num_reqs]
|
|
753
|
+
paged_kv_indices = self.paged_kv_indices[:num_actual_pages]
|
|
754
|
+
_copy_page_indices_kernel[(num_reqs,)](
|
|
755
|
+
paged_kv_indices,
|
|
756
|
+
block_table_tensor,
|
|
757
|
+
block_table_tensor.stride(0),
|
|
758
|
+
paged_kv_indptr,
|
|
759
|
+
BLOCK_SIZE=1024,
|
|
760
|
+
)
|
|
761
|
+
|
|
762
|
+
# write self.paged_kv_last_page_len_cpu inplace
|
|
763
|
+
paged_kv_last_page_len_np = seq_lens_np % page_size
|
|
764
|
+
self.paged_kv_last_page_len_np[:num_reqs] = np.where(
|
|
765
|
+
(paged_kv_last_page_len_np == 0) & (seq_lens_np != 0),
|
|
766
|
+
page_size,
|
|
767
|
+
paged_kv_last_page_len_np,
|
|
768
|
+
)
|
|
769
|
+
|
|
770
|
+
uses_spec_reorder = self.reorder_batch_threshold > 1
|
|
771
|
+
prefill_use_trtllm = use_trtllm_attention(
|
|
772
|
+
self.num_qo_heads,
|
|
773
|
+
self.num_kv_heads,
|
|
774
|
+
num_prefill_tokens,
|
|
775
|
+
max_seq_len,
|
|
776
|
+
self.dcp_world_size,
|
|
777
|
+
self.cache_dtype,
|
|
778
|
+
self.q_data_type,
|
|
779
|
+
is_prefill=True,
|
|
780
|
+
has_sinks=self.has_sinks,
|
|
781
|
+
has_spec=uses_spec_reorder,
|
|
782
|
+
)
|
|
783
|
+
decode_use_trtllm = (
|
|
784
|
+
self.use_trtllm_decode_attention and self.dcp_world_size <= 1
|
|
785
|
+
)
|
|
786
|
+
|
|
787
|
+
if not (prefill_use_trtllm and decode_use_trtllm):
|
|
788
|
+
if self.has_sinks:
|
|
789
|
+
raise NotImplementedError(
|
|
790
|
+
"FlashInfer backend currently does not support attention "
|
|
791
|
+
"sinks, please use trtllm on blackwell or flash attention "
|
|
792
|
+
"on earlier GPUs."
|
|
793
|
+
)
|
|
794
|
+
|
|
795
|
+
if not self.global_hyperparameters.has_same_window_lefts:
|
|
796
|
+
raise ValueError(
|
|
797
|
+
"Window left is not the same for all layers. "
|
|
798
|
+
"One potential fix is to set disable_sliding_window=True"
|
|
799
|
+
)
|
|
800
|
+
|
|
801
|
+
assert self.global_hyperparameters.has_same_all_params, (
|
|
802
|
+
"FlashInfer backend currently only supports models in which "
|
|
803
|
+
"all layers share the same values for the following "
|
|
804
|
+
"hyperparameters: `window_left`, `logits_soft_cap`, "
|
|
805
|
+
"`sm_scale`."
|
|
806
|
+
)
|
|
807
|
+
|
|
808
|
+
# The q quantization is not supported for non-trtllm attention,
|
|
809
|
+
# fall back to model dtype.
|
|
810
|
+
self.q_data_type = self.model_config.dtype
|
|
811
|
+
|
|
812
|
+
attn_metadata = FlashInferMetadata(
|
|
813
|
+
num_actual_tokens=num_actual_tokens,
|
|
814
|
+
q_data_type=self.q_data_type,
|
|
815
|
+
slot_mapping=common_attn_metadata.slot_mapping,
|
|
816
|
+
max_q_len=max_q_len,
|
|
817
|
+
max_q_len_prefill=max_q_len,
|
|
818
|
+
max_seq_len=max_seq_len,
|
|
819
|
+
seq_lens=seq_lens,
|
|
820
|
+
block_table_tensor=block_table_tensor,
|
|
821
|
+
prefill_use_trtllm=prefill_use_trtllm,
|
|
822
|
+
decode_use_trtllm=decode_use_trtllm,
|
|
823
|
+
num_decodes=num_decodes,
|
|
824
|
+
num_decode_tokens=num_decode_tokens,
|
|
825
|
+
num_prefills=num_prefills,
|
|
826
|
+
num_prefill_tokens=num_prefill_tokens,
|
|
827
|
+
use_cascade=use_cascade,
|
|
828
|
+
)
|
|
829
|
+
|
|
830
|
+
paged_kv_indptr_cpu = self.paged_kv_indptr_cpu[: 1 + num_reqs]
|
|
831
|
+
paged_kv_last_page_len_cpu = self.paged_kv_last_page_len_cpu[:num_reqs]
|
|
832
|
+
|
|
833
|
+
if attn_metadata.use_cascade:
|
|
834
|
+
attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
|
|
835
|
+
attn_metadata.cascade_wrapper.plan(
|
|
836
|
+
[shared_qo_indptr_cpu, qo_indptr_cpu],
|
|
837
|
+
[shared_kv_page_indptr_cpu, paged_kv_indptr_cpu],
|
|
838
|
+
[shared_kv_page_indices_cpu, paged_kv_indices],
|
|
839
|
+
[shared_kv_last_page_len_cpu, paged_kv_last_page_len_cpu],
|
|
840
|
+
self.num_qo_heads,
|
|
841
|
+
self.num_kv_heads,
|
|
842
|
+
self.head_dim,
|
|
843
|
+
self.page_size,
|
|
844
|
+
causal=True,
|
|
845
|
+
sm_scale=self.sm_scale,
|
|
846
|
+
window_left=self.window_left,
|
|
847
|
+
logits_soft_cap=self.logits_soft_cap,
|
|
848
|
+
q_data_type=self.q_data_type,
|
|
849
|
+
kv_data_type=self.kv_cache_dtype,
|
|
850
|
+
)
|
|
851
|
+
else:
|
|
852
|
+
# Regular attention (common case).
|
|
853
|
+
# Decodes are at the front and prefills are at the back.
|
|
854
|
+
num_prefills = attn_metadata.num_prefills
|
|
855
|
+
num_decodes = attn_metadata.num_decodes
|
|
856
|
+
if num_prefills > 0:
|
|
857
|
+
# Decodes are first so prefills start after the last decode
|
|
858
|
+
prefill_start = num_decodes
|
|
859
|
+
attn_metadata.prefill_wrapper = self._get_prefill_wrapper()
|
|
860
|
+
assert qo_indptr_cpu[prefill_start:].shape[0] == num_prefills + 1
|
|
861
|
+
assert paged_kv_indptr_cpu[prefill_start:].shape[0] == num_prefills + 1
|
|
862
|
+
assert (
|
|
863
|
+
paged_kv_last_page_len_cpu[prefill_start:].shape[0] == num_prefills
|
|
864
|
+
)
|
|
865
|
+
# Since prefill_wrapper.run() will be called with
|
|
866
|
+
# query[num_decode_tokens:] we need to adjust the qo_indptr
|
|
867
|
+
# to be relative to the start of the prefill queries.
|
|
868
|
+
qo_indptr_cpu = (
|
|
869
|
+
qo_indptr_cpu[prefill_start:] - qo_indptr_cpu[prefill_start]
|
|
870
|
+
)
|
|
871
|
+
paged_kv_indptr_cpu = paged_kv_indptr_cpu[prefill_start:]
|
|
872
|
+
|
|
873
|
+
# Recompute max_q_len for the slice of requests we are using
|
|
874
|
+
# for prefills. This can be different from max_q_len when
|
|
875
|
+
# we have a non-uniform batch with some short decodes offloaded
|
|
876
|
+
# to the prefill pathway
|
|
877
|
+
query_lens_prefill = qo_indptr_cpu[1:] - qo_indptr_cpu[:-1]
|
|
878
|
+
attn_metadata.max_q_len_prefill = int(query_lens_prefill.max().item())
|
|
879
|
+
|
|
880
|
+
if not attn_metadata.prefill_use_trtllm:
|
|
881
|
+
if self.dcp_world_size > 1:
|
|
882
|
+
assert isinstance(
|
|
883
|
+
attn_metadata.prefill_wrapper, BatchDCPPrefillWrapper
|
|
884
|
+
)
|
|
885
|
+
attn_metadata.prefill_wrapper.plan(
|
|
886
|
+
qo_indptr_cpu=qo_indptr_cpu,
|
|
887
|
+
paged_kv_indptr_cpu=paged_kv_indptr_cpu,
|
|
888
|
+
paged_kv_indices=paged_kv_indices,
|
|
889
|
+
paged_kv_last_page_len_cpu=paged_kv_last_page_len_cpu,
|
|
890
|
+
prefill_start=prefill_start,
|
|
891
|
+
page_size=self.page_size,
|
|
892
|
+
num_qo_heads=self.num_qo_heads,
|
|
893
|
+
dcp_world_size=self.dcp_world_size,
|
|
894
|
+
num_kv_heads=self.num_kv_heads,
|
|
895
|
+
head_dim=self.head_dim,
|
|
896
|
+
sm_scale=self.sm_scale,
|
|
897
|
+
window_left=self.window_left,
|
|
898
|
+
logits_soft_cap=self.logits_soft_cap,
|
|
899
|
+
q_data_type=self.q_data_type,
|
|
900
|
+
kv_cache_dtype=self.kv_cache_dtype,
|
|
901
|
+
prefill_fixed_split_size=self.prefill_fixed_split_size,
|
|
902
|
+
disable_split_kv=self.disable_split_kv,
|
|
903
|
+
)
|
|
904
|
+
else:
|
|
905
|
+
assert isinstance(
|
|
906
|
+
attn_metadata.prefill_wrapper,
|
|
907
|
+
BatchPrefillWithPagedKVCacheWrapper,
|
|
908
|
+
)
|
|
909
|
+
attn_metadata.prefill_wrapper.plan(
|
|
910
|
+
qo_indptr_cpu,
|
|
911
|
+
paged_kv_indptr_cpu,
|
|
912
|
+
paged_kv_indices,
|
|
913
|
+
paged_kv_last_page_len_cpu[prefill_start:],
|
|
914
|
+
self.num_qo_heads,
|
|
915
|
+
self.num_kv_heads,
|
|
916
|
+
self.head_dim,
|
|
917
|
+
self.page_size,
|
|
918
|
+
causal=True,
|
|
919
|
+
sm_scale=self.sm_scale,
|
|
920
|
+
window_left=self.window_left,
|
|
921
|
+
logits_soft_cap=self.logits_soft_cap,
|
|
922
|
+
q_data_type=self.q_data_type,
|
|
923
|
+
kv_data_type=self.kv_cache_dtype,
|
|
924
|
+
fixed_split_size=self.prefill_fixed_split_size,
|
|
925
|
+
disable_split_kv=self.disable_split_kv,
|
|
926
|
+
)
|
|
927
|
+
else:
|
|
928
|
+
attn_metadata.qo_indptr_gpu = qo_indptr_cpu.to(
|
|
929
|
+
self.device, non_blocking=True
|
|
930
|
+
)
|
|
931
|
+
attn_metadata.paged_kv_indptr_gpu = paged_kv_indptr_cpu.to(
|
|
932
|
+
self.device, non_blocking=True
|
|
933
|
+
)
|
|
934
|
+
|
|
935
|
+
if num_decodes > 0:
|
|
936
|
+
pure_decode = num_prefills == 0
|
|
937
|
+
use_cudagraph = (
|
|
938
|
+
self.enable_cuda_graph
|
|
939
|
+
and pure_decode
|
|
940
|
+
and num_decode_tokens <= self._decode_cudagraph_max_bs
|
|
941
|
+
)
|
|
942
|
+
num_input_tokens = num_decode_tokens
|
|
943
|
+
|
|
944
|
+
attn_metadata.decode_wrapper = self._get_decode_wrapper(
|
|
945
|
+
num_input_tokens, use_cudagraph
|
|
946
|
+
)
|
|
947
|
+
if not attn_metadata.decode_use_trtllm:
|
|
948
|
+
# Use the persistent buffer with padding length,
|
|
949
|
+
# instead of the same address but chunked version
|
|
950
|
+
# in atten_metadata when using cudagraph.
|
|
951
|
+
fast_plan_decode(
|
|
952
|
+
attn_metadata.decode_wrapper,
|
|
953
|
+
self.paged_kv_indptr_cpu[: num_input_tokens + 1],
|
|
954
|
+
paged_kv_indices,
|
|
955
|
+
self.paged_kv_last_page_len_cpu[:num_input_tokens],
|
|
956
|
+
seq_lens_cpu[:num_input_tokens],
|
|
957
|
+
self.num_qo_heads * self.dcp_world_size,
|
|
958
|
+
self.num_kv_heads,
|
|
959
|
+
self.head_dim,
|
|
960
|
+
self.page_size,
|
|
961
|
+
# Disable flashinfer's pos encoding and use vllm's rope.
|
|
962
|
+
pos_encoding_mode="NONE",
|
|
963
|
+
sm_scale=self.sm_scale,
|
|
964
|
+
window_left=self.window_left,
|
|
965
|
+
logits_soft_cap=self.logits_soft_cap,
|
|
966
|
+
q_data_type=self.q_data_type,
|
|
967
|
+
kv_data_type=self.kv_cache_dtype,
|
|
968
|
+
fixed_split_size=self.decode_fixed_split_size,
|
|
969
|
+
disable_split_kv=self.disable_split_kv,
|
|
970
|
+
)
|
|
971
|
+
return attn_metadata
|
|
972
|
+
|
|
973
|
+
def use_cascade_attention(self, *args, **kwargs) -> bool:
|
|
974
|
+
if self.kv_cache_spec.dtype != self.vllm_config.model_config.dtype:
|
|
975
|
+
# TODO: The cascade wrapper currently does not support setting
|
|
976
|
+
# kv cache dtype to something different from query dtype.
|
|
977
|
+
return False
|
|
978
|
+
# TODO: Cascade attention doesn't work, disable it for now
|
|
979
|
+
# return use_cascade_attention(*args, **kwargs)
|
|
980
|
+
return False
|
|
981
|
+
|
|
982
|
+
|
|
983
|
+
class FlashInferImpl(AttentionImpl):
|
|
984
|
+
can_return_lse_for_decode: bool = True
|
|
985
|
+
|
|
986
|
+
def __init__(
|
|
987
|
+
self,
|
|
988
|
+
num_heads: int,
|
|
989
|
+
head_size: int,
|
|
990
|
+
scale: float,
|
|
991
|
+
num_kv_heads: int,
|
|
992
|
+
alibi_slopes: list[float] | None,
|
|
993
|
+
sliding_window: int | None,
|
|
994
|
+
kv_cache_dtype: str,
|
|
995
|
+
logits_soft_cap: float | None = None,
|
|
996
|
+
attn_type: AttentionType = AttentionType.DECODER,
|
|
997
|
+
kv_sharing_target_layer_name: int | None = None,
|
|
998
|
+
sinks: torch.Tensor | None = None,
|
|
999
|
+
) -> None:
|
|
1000
|
+
self.num_heads = num_heads
|
|
1001
|
+
self.head_size = head_size
|
|
1002
|
+
self.scale = float(scale)
|
|
1003
|
+
self.num_kv_heads = num_kv_heads
|
|
1004
|
+
if alibi_slopes is not None:
|
|
1005
|
+
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
1006
|
+
self.alibi_slopes = alibi_slopes
|
|
1007
|
+
if sliding_window is None:
|
|
1008
|
+
self.sliding_window = (-1, -1)
|
|
1009
|
+
else:
|
|
1010
|
+
self.sliding_window = (sliding_window - 1, 0)
|
|
1011
|
+
self.window_left = (
|
|
1012
|
+
self.sliding_window[0] if self.sliding_window is not None else -1
|
|
1013
|
+
)
|
|
1014
|
+
self.kv_cache_dtype = kv_cache_dtype
|
|
1015
|
+
self.logits_soft_cap = logits_soft_cap
|
|
1016
|
+
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
1017
|
+
|
|
1018
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
1019
|
+
|
|
1020
|
+
if attn_type != AttentionType.DECODER:
|
|
1021
|
+
raise NotImplementedError(
|
|
1022
|
+
"Encoder self-attention and "
|
|
1023
|
+
"encoder/decoder cross-attention "
|
|
1024
|
+
"are not implemented for "
|
|
1025
|
+
"FlashInferImpl"
|
|
1026
|
+
)
|
|
1027
|
+
|
|
1028
|
+
self.sinks: torch.Tensor | None = None
|
|
1029
|
+
if sinks is not None:
|
|
1030
|
+
if sinks.shape[0] != num_heads:
|
|
1031
|
+
raise ValueError(
|
|
1032
|
+
"Sinks must have the same number of heads as the number of "
|
|
1033
|
+
f"heads in the layer. Expected {num_heads}, but got "
|
|
1034
|
+
f"{sinks.shape[0]}."
|
|
1035
|
+
)
|
|
1036
|
+
self.sinks = sinks
|
|
1037
|
+
|
|
1038
|
+
self.support_trtllm_attn = can_use_trtllm_attention(num_heads, num_kv_heads)
|
|
1039
|
+
self.bmm1_scale: float | None = None
|
|
1040
|
+
self.bmm2_scale: float | None = None
|
|
1041
|
+
self.o_sf_scale: float | None = None
|
|
1042
|
+
|
|
1043
|
+
def fused_output_quant_supported(self, quant_key: QuantKey):
|
|
1044
|
+
return (
|
|
1045
|
+
self.support_trtllm_attn
|
|
1046
|
+
and self.kv_cache_dtype.startswith("fp8")
|
|
1047
|
+
and quant_key in (kFp8StaticTensorSym, kNvfp4Quant)
|
|
1048
|
+
)
|
|
1049
|
+
|
|
1050
|
+
def supports_quant_query_input(self) -> bool:
|
|
1051
|
+
if flashinfer_disable_q_quantization():
|
|
1052
|
+
return False
|
|
1053
|
+
|
|
1054
|
+
return self.support_trtllm_attn
|
|
1055
|
+
|
|
1056
|
+
# FlashInfer requires attention sinks to be float32
|
|
1057
|
+
def process_weights_after_loading(self, act_dtype: torch.dtype):
|
|
1058
|
+
if self.sinks is not None and self.sinks.dtype != torch.float32:
|
|
1059
|
+
self.sinks = self.sinks.to(torch.float32)
|
|
1060
|
+
|
|
1061
|
+
def forward(
|
|
1062
|
+
self,
|
|
1063
|
+
layer: torch.nn.Module,
|
|
1064
|
+
query: torch.Tensor,
|
|
1065
|
+
key: torch.Tensor,
|
|
1066
|
+
value: torch.Tensor,
|
|
1067
|
+
kv_cache: torch.Tensor,
|
|
1068
|
+
attn_metadata: FlashInferMetadata,
|
|
1069
|
+
output: torch.Tensor | None = None,
|
|
1070
|
+
output_scale: torch.Tensor | None = None,
|
|
1071
|
+
output_block_scale: torch.Tensor | None = None,
|
|
1072
|
+
) -> torch.Tensor:
|
|
1073
|
+
"""Forward pass with FlashInfer.
|
|
1074
|
+
|
|
1075
|
+
Args:
|
|
1076
|
+
query: shape = [num_tokens, num_heads, head_size]
|
|
1077
|
+
key: shape = [num_tokens, num_kv_heads, head_size]
|
|
1078
|
+
value: shape = [num_tokens, num_kv_heads, head_size]
|
|
1079
|
+
kv_cache: KV cache tensor with different possible shapes:
|
|
1080
|
+
- NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
|
|
1081
|
+
- HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
|
|
1082
|
+
attn_metadata: Metadata for attention.
|
|
1083
|
+
Returns:
|
|
1084
|
+
shape = [num_tokens, num_heads * head_size]
|
|
1085
|
+
"""
|
|
1086
|
+
assert output is not None, "Output tensor must be provided."
|
|
1087
|
+
|
|
1088
|
+
if attn_metadata is None:
|
|
1089
|
+
# Profiling run.
|
|
1090
|
+
return output.fill_(0)
|
|
1091
|
+
|
|
1092
|
+
# Ensure query dtype matches the expected dtype from attention metadata
|
|
1093
|
+
assert attn_metadata.q_data_type == query.dtype, (
|
|
1094
|
+
f"Query dtype mismatch: expected {attn_metadata.q_data_type}, "
|
|
1095
|
+
f"got {query.dtype}"
|
|
1096
|
+
)
|
|
1097
|
+
|
|
1098
|
+
if self.bmm1_scale is None:
|
|
1099
|
+
self.bmm1_scale = layer._q_scale_float * layer._k_scale_float * self.scale
|
|
1100
|
+
|
|
1101
|
+
if self.bmm2_scale is None:
|
|
1102
|
+
self.bmm2_scale = layer._v_scale_float
|
|
1103
|
+
|
|
1104
|
+
# The attn+quant fusion happens when output_scale is provided.
|
|
1105
|
+
if output_scale is None:
|
|
1106
|
+
assert output_block_scale is None, (
|
|
1107
|
+
"output_block_scale is not supported when fusion has not happened"
|
|
1108
|
+
)
|
|
1109
|
+
else:
|
|
1110
|
+
assert attn_metadata.q_data_type == FP8_DTYPE, (
|
|
1111
|
+
"Query must be FP8 when attn+quant fusion happened."
|
|
1112
|
+
)
|
|
1113
|
+
assert (
|
|
1114
|
+
attn_metadata.prefill_use_trtllm and attn_metadata.decode_use_trtllm
|
|
1115
|
+
), "Must use TRT-LLM attn"
|
|
1116
|
+
|
|
1117
|
+
if output.dtype == FP8_DTYPE:
|
|
1118
|
+
assert output_block_scale is None, (
|
|
1119
|
+
"output_block_scale should not be provided for fp8 output"
|
|
1120
|
+
)
|
|
1121
|
+
elif output.dtype == FP4_DTYPE:
|
|
1122
|
+
assert output_block_scale is not None, (
|
|
1123
|
+
"output_block_scale is required for nvfp4 output"
|
|
1124
|
+
)
|
|
1125
|
+
else:
|
|
1126
|
+
raise ValueError(f"Unsupported output dtype: {output.dtype}")
|
|
1127
|
+
|
|
1128
|
+
# TRTLLM attn kernel requires to scale to pass as a host scalar,
|
|
1129
|
+
# store the o scale as a host scalar in warmup run with cuda graph
|
|
1130
|
+
# not enabled
|
|
1131
|
+
if layer._o_scale_float is None:
|
|
1132
|
+
layer._o_scale_float = output_scale.cpu().item()
|
|
1133
|
+
if output.dtype == FP8_DTYPE:
|
|
1134
|
+
self.bmm2_scale = self.bmm2_scale / layer._o_scale_float
|
|
1135
|
+
elif output.dtype == FP4_DTYPE:
|
|
1136
|
+
self.o_sf_scale = layer._o_scale_float
|
|
1137
|
+
|
|
1138
|
+
# IMPORTANT!
|
|
1139
|
+
# NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
|
|
1140
|
+
# eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
|
|
1141
|
+
# in this method. For example, `view` and `slice` (or `[:n]`) operations
|
|
1142
|
+
# are surprisingly slow even in the case they do not invoke any GPU ops.
|
|
1143
|
+
# Minimize the PyTorch ops in this method as much as possible.
|
|
1144
|
+
# Whenever making a change in this method, please benchmark the
|
|
1145
|
+
# performance to make sure it does not introduce any overhead.
|
|
1146
|
+
|
|
1147
|
+
num_actual_tokens = attn_metadata.num_actual_tokens
|
|
1148
|
+
|
|
1149
|
+
if self.kv_sharing_target_layer_name is None:
|
|
1150
|
+
# Reshape the input keys and values and store them in the cache.
|
|
1151
|
+
# Skip this if sharing KV cache with an earlier attention layer.
|
|
1152
|
+
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
|
|
1153
|
+
# not padded. However, we don't need to do key[:num_actual_tokens]
|
|
1154
|
+
# and value[:num_actual_tokens] because the reshape_and_cache_flash
|
|
1155
|
+
# op uses the slot_mapping's shape to determine the number of
|
|
1156
|
+
# actual tokens.
|
|
1157
|
+
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
1158
|
+
key,
|
|
1159
|
+
value,
|
|
1160
|
+
kv_cache[:, 0],
|
|
1161
|
+
kv_cache[:, 1],
|
|
1162
|
+
attn_metadata.slot_mapping,
|
|
1163
|
+
self.kv_cache_dtype,
|
|
1164
|
+
layer._k_scale,
|
|
1165
|
+
layer._v_scale,
|
|
1166
|
+
)
|
|
1167
|
+
|
|
1168
|
+
# The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
|
|
1169
|
+
# to process the cache when the kv_cache_dtype is fp8
|
|
1170
|
+
if self.kv_cache_dtype.startswith("fp8"):
|
|
1171
|
+
torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
|
|
1172
|
+
self.kv_cache_dtype
|
|
1173
|
+
)
|
|
1174
|
+
kv_cache = kv_cache.view(torch_dtype)
|
|
1175
|
+
|
|
1176
|
+
# Inputs and outputs may be padded for CUDA graphs
|
|
1177
|
+
query = query[:num_actual_tokens]
|
|
1178
|
+
key = key[:num_actual_tokens]
|
|
1179
|
+
value = value[:num_actual_tokens]
|
|
1180
|
+
output_padded = output
|
|
1181
|
+
output = output[:num_actual_tokens]
|
|
1182
|
+
|
|
1183
|
+
if attn_metadata.use_cascade:
|
|
1184
|
+
# Cascade attention (rare case).
|
|
1185
|
+
assert attn_metadata.cascade_wrapper is not None
|
|
1186
|
+
output.copy_(attn_metadata.cascade_wrapper.run(query, kv_cache))
|
|
1187
|
+
return output
|
|
1188
|
+
|
|
1189
|
+
# When using spec decoding, num_decodes can be < num_decode_tokens
|
|
1190
|
+
# because some decode requests may have more than one query token.
|
|
1191
|
+
num_decodes = attn_metadata.num_decodes
|
|
1192
|
+
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
1193
|
+
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
1194
|
+
|
|
1195
|
+
stride_order = FlashInferBackend.get_kv_cache_stride_order()
|
|
1196
|
+
kv_cache_permute = kv_cache.permute(*stride_order)
|
|
1197
|
+
# Regular attention (common case).
|
|
1198
|
+
# Decodes are at the front and prefills are at the back.
|
|
1199
|
+
if num_prefill_tokens > 0:
|
|
1200
|
+
prefill_wrapper = attn_metadata.prefill_wrapper
|
|
1201
|
+
prefill_query = query[num_decode_tokens:]
|
|
1202
|
+
assert prefill_query.shape[0] == num_prefill_tokens
|
|
1203
|
+
assert prefill_wrapper is not None
|
|
1204
|
+
|
|
1205
|
+
if not attn_metadata.prefill_use_trtllm:
|
|
1206
|
+
if self.dcp_world_size > 1:
|
|
1207
|
+
assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
|
|
1208
|
+
assert prefill_wrapper._context._window_left == self.window_left
|
|
1209
|
+
assert prefill_wrapper._context._logits_soft_cap == (
|
|
1210
|
+
self.logits_soft_cap or 0.0
|
|
1211
|
+
)
|
|
1212
|
+
assert prefill_wrapper._context._sm_scale == self.scale
|
|
1213
|
+
assert not prefill_wrapper._context._causal
|
|
1214
|
+
assert prefill_wrapper._new_tokens._window_left == self.window_left
|
|
1215
|
+
assert prefill_wrapper._new_tokens._logits_soft_cap == (
|
|
1216
|
+
self.logits_soft_cap or 0.0
|
|
1217
|
+
)
|
|
1218
|
+
assert prefill_wrapper._new_tokens._sm_scale == self.scale
|
|
1219
|
+
assert prefill_wrapper._new_tokens._causal
|
|
1220
|
+
|
|
1221
|
+
prefill_wrapper.run(
|
|
1222
|
+
layer,
|
|
1223
|
+
prefill_query,
|
|
1224
|
+
kv_cache_permute,
|
|
1225
|
+
key[num_decode_tokens:],
|
|
1226
|
+
value[num_decode_tokens:],
|
|
1227
|
+
out=output[num_decode_tokens:],
|
|
1228
|
+
)
|
|
1229
|
+
else:
|
|
1230
|
+
assert isinstance(
|
|
1231
|
+
prefill_wrapper, BatchPrefillWithPagedKVCacheWrapper
|
|
1232
|
+
)
|
|
1233
|
+
assert prefill_wrapper._window_left == self.window_left
|
|
1234
|
+
assert prefill_wrapper._logits_soft_cap == (
|
|
1235
|
+
self.logits_soft_cap or 0.0
|
|
1236
|
+
)
|
|
1237
|
+
assert prefill_wrapper._sm_scale == self.scale
|
|
1238
|
+
assert prefill_wrapper._causal
|
|
1239
|
+
prefill_wrapper.run(
|
|
1240
|
+
prefill_query,
|
|
1241
|
+
kv_cache_permute,
|
|
1242
|
+
k_scale=layer._k_scale_float,
|
|
1243
|
+
v_scale=layer._v_scale_float,
|
|
1244
|
+
out=output[num_decode_tokens:],
|
|
1245
|
+
)
|
|
1246
|
+
else:
|
|
1247
|
+
# prefill_query may be non-contiguous
|
|
1248
|
+
prefill_query = prefill_query.contiguous()
|
|
1249
|
+
workspace_buffer = _get_trtllm_gen_workspace_buffer()
|
|
1250
|
+
block_tables_prefill = attn_metadata.block_table_tensor[num_decodes:]
|
|
1251
|
+
seq_lens_prefill = attn_metadata.seq_lens[num_decodes:]
|
|
1252
|
+
|
|
1253
|
+
# This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
|
|
1254
|
+
assert get_kv_cache_layout() == "HND"
|
|
1255
|
+
assert prefill_query.is_contiguous()
|
|
1256
|
+
assert kv_cache_permute.is_contiguous()
|
|
1257
|
+
assert workspace_buffer.is_contiguous()
|
|
1258
|
+
assert block_tables_prefill.is_contiguous()
|
|
1259
|
+
assert seq_lens_prefill.is_contiguous()
|
|
1260
|
+
|
|
1261
|
+
if output.dtype == FP4_DTYPE:
|
|
1262
|
+
assert self.o_sf_scale is not None
|
|
1263
|
+
out = FP4Tensor(
|
|
1264
|
+
data=output[num_decode_tokens:],
|
|
1265
|
+
scale=output_block_scale,
|
|
1266
|
+
scale_start_index=num_decode_tokens,
|
|
1267
|
+
original_shape=prefill_query.shape,
|
|
1268
|
+
)
|
|
1269
|
+
else:
|
|
1270
|
+
assert self.o_sf_scale is None
|
|
1271
|
+
out = output[num_decode_tokens:]
|
|
1272
|
+
|
|
1273
|
+
if (
|
|
1274
|
+
attn_metadata.q_data_type != FP8_DTYPE
|
|
1275
|
+
and self.kv_cache_dtype.startswith("fp8")
|
|
1276
|
+
):
|
|
1277
|
+
# TRTLLM prefill attention does not support BF16 Q
|
|
1278
|
+
# and fp8 kv cache. So to enable prefill attention
|
|
1279
|
+
# with fp8 kv cache, we can construct a mock block
|
|
1280
|
+
# and mock kv cache with BF16 KV involved in the prefill
|
|
1281
|
+
mock_kv_cache, mock_block_table = trtllm_prefill_attn_kvfp8_dequant(
|
|
1282
|
+
kv_cache_permute,
|
|
1283
|
+
block_tables_prefill,
|
|
1284
|
+
layer._k_scale,
|
|
1285
|
+
layer._v_scale,
|
|
1286
|
+
attn_metadata.q_data_type,
|
|
1287
|
+
)
|
|
1288
|
+
else:
|
|
1289
|
+
mock_kv_cache = kv_cache_permute
|
|
1290
|
+
mock_block_table = block_tables_prefill
|
|
1291
|
+
|
|
1292
|
+
trtllm_batch_context_with_kv_cache(
|
|
1293
|
+
query=prefill_query,
|
|
1294
|
+
kv_cache=mock_kv_cache,
|
|
1295
|
+
workspace_buffer=workspace_buffer,
|
|
1296
|
+
block_tables=mock_block_table,
|
|
1297
|
+
seq_lens=seq_lens_prefill,
|
|
1298
|
+
max_q_len=attn_metadata.max_q_len_prefill,
|
|
1299
|
+
max_kv_len=attn_metadata.max_seq_len,
|
|
1300
|
+
bmm1_scale=self.bmm1_scale,
|
|
1301
|
+
bmm2_scale=self.bmm2_scale,
|
|
1302
|
+
batch_size=attn_metadata.num_prefills,
|
|
1303
|
+
cum_seq_lens_q=attn_metadata.qo_indptr_gpu,
|
|
1304
|
+
cum_seq_lens_kv=attn_metadata.paged_kv_indptr_gpu,
|
|
1305
|
+
window_left=self.window_left,
|
|
1306
|
+
sinks=self.sinks,
|
|
1307
|
+
o_sf_scale=self.o_sf_scale,
|
|
1308
|
+
out=out,
|
|
1309
|
+
)
|
|
1310
|
+
|
|
1311
|
+
if num_decode_tokens > 0:
|
|
1312
|
+
decode_wrapper = attn_metadata.decode_wrapper
|
|
1313
|
+
decode_query = query[:num_decode_tokens]
|
|
1314
|
+
assert decode_query.shape[0] == num_decode_tokens
|
|
1315
|
+
assert decode_wrapper is not None
|
|
1316
|
+
|
|
1317
|
+
if not attn_metadata.decode_use_trtllm:
|
|
1318
|
+
assert decode_wrapper._window_left == self.window_left
|
|
1319
|
+
assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap or 0.0)
|
|
1320
|
+
assert decode_wrapper._sm_scale == self.scale
|
|
1321
|
+
|
|
1322
|
+
if self.dcp_world_size > 1:
|
|
1323
|
+
decode_query = get_dcp_group().all_gather(
|
|
1324
|
+
decode_query.contiguous(), dim=-2
|
|
1325
|
+
)
|
|
1326
|
+
output_tmp = torch.empty_like(decode_query)
|
|
1327
|
+
lse = torch.empty(
|
|
1328
|
+
(decode_query.size(0), decode_query.size(1)),
|
|
1329
|
+
dtype=torch.float32,
|
|
1330
|
+
device=decode_query.device,
|
|
1331
|
+
)
|
|
1332
|
+
decode_wrapper.run(
|
|
1333
|
+
decode_query,
|
|
1334
|
+
kv_cache_permute,
|
|
1335
|
+
k_scale=layer._k_scale_float,
|
|
1336
|
+
v_scale=layer._v_scale_float,
|
|
1337
|
+
out=output_tmp,
|
|
1338
|
+
lse=lse,
|
|
1339
|
+
return_lse=True,
|
|
1340
|
+
)
|
|
1341
|
+
output[:num_decode_tokens] = cp_lse_ag_out_rs(
|
|
1342
|
+
output_tmp,
|
|
1343
|
+
lse,
|
|
1344
|
+
get_dcp_group(),
|
|
1345
|
+
is_lse_base_on_e=False,
|
|
1346
|
+
)
|
|
1347
|
+
else:
|
|
1348
|
+
decode_wrapper.run(
|
|
1349
|
+
decode_query,
|
|
1350
|
+
kv_cache_permute,
|
|
1351
|
+
k_scale=layer._k_scale_float,
|
|
1352
|
+
v_scale=layer._v_scale_float,
|
|
1353
|
+
out=output[:num_decode_tokens],
|
|
1354
|
+
)
|
|
1355
|
+
else:
|
|
1356
|
+
# decode_query may be non-contiguous
|
|
1357
|
+
decode_query = decode_query.contiguous()
|
|
1358
|
+
workspace_buffer = _get_trtllm_gen_workspace_buffer()
|
|
1359
|
+
block_tables_decode = attn_metadata.block_table_tensor[
|
|
1360
|
+
:num_decode_tokens
|
|
1361
|
+
]
|
|
1362
|
+
seq_lens_decode = attn_metadata.seq_lens[:num_decode_tokens]
|
|
1363
|
+
|
|
1364
|
+
# This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
|
|
1365
|
+
assert get_kv_cache_layout() == "HND"
|
|
1366
|
+
assert decode_query.is_contiguous()
|
|
1367
|
+
assert kv_cache_permute.is_contiguous()
|
|
1368
|
+
assert workspace_buffer.is_contiguous()
|
|
1369
|
+
assert block_tables_decode.is_contiguous()
|
|
1370
|
+
assert seq_lens_decode.is_contiguous()
|
|
1371
|
+
|
|
1372
|
+
if output.dtype == FP4_DTYPE:
|
|
1373
|
+
assert self.o_sf_scale is not None
|
|
1374
|
+
out = FP4Tensor(
|
|
1375
|
+
data=output[:num_decode_tokens],
|
|
1376
|
+
scale=output_block_scale,
|
|
1377
|
+
scale_start_index=0,
|
|
1378
|
+
original_shape=decode_query.shape,
|
|
1379
|
+
)
|
|
1380
|
+
else:
|
|
1381
|
+
assert self.o_sf_scale is None
|
|
1382
|
+
out = output[:num_decode_tokens]
|
|
1383
|
+
|
|
1384
|
+
if num_decode_tokens % attn_metadata.num_decodes != 0:
|
|
1385
|
+
# This gets triggered when the dummy_run forces
|
|
1386
|
+
# attention to be initialized with q_len = 0
|
|
1387
|
+
q_len_per_req = 1
|
|
1388
|
+
else:
|
|
1389
|
+
q_len_per_req = num_decode_tokens // attn_metadata.num_decodes
|
|
1390
|
+
|
|
1391
|
+
trtllm_batch_decode_with_kv_cache(
|
|
1392
|
+
query=decode_query,
|
|
1393
|
+
kv_cache=kv_cache_permute,
|
|
1394
|
+
workspace_buffer=workspace_buffer,
|
|
1395
|
+
block_tables=block_tables_decode,
|
|
1396
|
+
seq_lens=seq_lens_decode,
|
|
1397
|
+
max_seq_len=attn_metadata.max_seq_len,
|
|
1398
|
+
bmm1_scale=self.bmm1_scale,
|
|
1399
|
+
bmm2_scale=self.bmm2_scale,
|
|
1400
|
+
window_left=self.window_left,
|
|
1401
|
+
sinks=self.sinks,
|
|
1402
|
+
o_sf_scale=self.o_sf_scale,
|
|
1403
|
+
out=out,
|
|
1404
|
+
q_len_per_req=q_len_per_req,
|
|
1405
|
+
)
|
|
1406
|
+
return output_padded
|
|
1407
|
+
|
|
1408
|
+
|
|
1409
|
+
def fast_plan_decode(
|
|
1410
|
+
self, # decode wrapper
|
|
1411
|
+
indptr_cpu: torch.Tensor,
|
|
1412
|
+
indices: torch.Tensor,
|
|
1413
|
+
last_page_len_cpu: torch.Tensor,
|
|
1414
|
+
seq_lens_cpu: torch.Tensor,
|
|
1415
|
+
num_qo_heads: int,
|
|
1416
|
+
num_kv_heads: int,
|
|
1417
|
+
head_dim: int,
|
|
1418
|
+
page_size: int,
|
|
1419
|
+
pos_encoding_mode: str = "NONE",
|
|
1420
|
+
window_left: int = -1,
|
|
1421
|
+
logits_soft_cap: float | None = None,
|
|
1422
|
+
q_data_type: str | torch.dtype | None = "float16",
|
|
1423
|
+
kv_data_type: str | torch.dtype | None = None,
|
|
1424
|
+
data_type: str | torch.dtype | None = None,
|
|
1425
|
+
sm_scale: float | None = None,
|
|
1426
|
+
rope_scale: float | None = None,
|
|
1427
|
+
rope_theta: float | None = None,
|
|
1428
|
+
non_blocking: bool = True,
|
|
1429
|
+
fixed_split_size: int = -1,
|
|
1430
|
+
disable_split_kv: bool = False,
|
|
1431
|
+
) -> None:
|
|
1432
|
+
"""
|
|
1433
|
+
A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for
|
|
1434
|
+
cudagraph capture/replay, while the no cudagraph version turns back
|
|
1435
|
+
to the original plan.
|
|
1436
|
+
using original plan after passing host-side buffers:
|
|
1437
|
+
- only host-to-device copy of indptr and last_page_len buffers
|
|
1438
|
+
Modifications for cudagraph:
|
|
1439
|
+
- only host-to-device copy of indptr and last_page_len buffers.
|
|
1440
|
+
- avoid device-to-device copy of indices buffer.
|
|
1441
|
+
|
|
1442
|
+
Part of the code get inspiration from the original plan from FlashInfer repo
|
|
1443
|
+
and the implementation of fast_decode_plan for FlashInfer in SGlang repo.
|
|
1444
|
+
"""
|
|
1445
|
+
# Warm up with the original plan if it is first call, and always run the
|
|
1446
|
+
# original plan if we run for dynamic shape. For fixed shape (cudagraph),
|
|
1447
|
+
# this warm up is to generate the _cached_module for the decode wrapper.
|
|
1448
|
+
if not self.is_cuda_graph_enabled or getattr(self, "vllm_first_call", True):
|
|
1449
|
+
self.plan(
|
|
1450
|
+
indptr_cpu,
|
|
1451
|
+
indices,
|
|
1452
|
+
last_page_len_cpu,
|
|
1453
|
+
num_qo_heads,
|
|
1454
|
+
num_kv_heads,
|
|
1455
|
+
head_dim,
|
|
1456
|
+
page_size,
|
|
1457
|
+
pos_encoding_mode,
|
|
1458
|
+
window_left,
|
|
1459
|
+
logits_soft_cap,
|
|
1460
|
+
q_data_type,
|
|
1461
|
+
kv_data_type,
|
|
1462
|
+
data_type,
|
|
1463
|
+
sm_scale,
|
|
1464
|
+
rope_scale,
|
|
1465
|
+
rope_theta,
|
|
1466
|
+
non_blocking,
|
|
1467
|
+
None, # block_tables
|
|
1468
|
+
None, # seq_lens
|
|
1469
|
+
fixed_split_size,
|
|
1470
|
+
disable_split_kv,
|
|
1471
|
+
)
|
|
1472
|
+
self.vllm_first_call = False
|
|
1473
|
+
return
|
|
1474
|
+
|
|
1475
|
+
assert self.is_cuda_graph_enabled, "Should be cudagraph only here"
|
|
1476
|
+
|
|
1477
|
+
batch_size = len(last_page_len_cpu)
|
|
1478
|
+
if logits_soft_cap is None:
|
|
1479
|
+
logits_soft_cap = 0.0
|
|
1480
|
+
|
|
1481
|
+
# Handle data types consistently
|
|
1482
|
+
if data_type is not None:
|
|
1483
|
+
if q_data_type is None:
|
|
1484
|
+
q_data_type = data_type
|
|
1485
|
+
if kv_data_type is None:
|
|
1486
|
+
kv_data_type = data_type
|
|
1487
|
+
elif q_data_type is None:
|
|
1488
|
+
q_data_type = "float16"
|
|
1489
|
+
|
|
1490
|
+
if kv_data_type is None:
|
|
1491
|
+
kv_data_type = q_data_type
|
|
1492
|
+
q_data_type = (
|
|
1493
|
+
getattr(torch, q_data_type) if isinstance(q_data_type, str) else q_data_type
|
|
1494
|
+
)
|
|
1495
|
+
kv_data_type = (
|
|
1496
|
+
getattr(torch, kv_data_type) if isinstance(kv_data_type, str) else kv_data_type
|
|
1497
|
+
)
|
|
1498
|
+
|
|
1499
|
+
if batch_size != self._fixed_batch_size:
|
|
1500
|
+
raise ValueError(
|
|
1501
|
+
"The batch size should be fixed in cudagraph mode, the runtime "
|
|
1502
|
+
"batch size {} mismatches the batch size set during "
|
|
1503
|
+
"initialization {}".format(batch_size, self._fixed_batch_size)
|
|
1504
|
+
)
|
|
1505
|
+
if len(indices) > len(self._paged_kv_indices_buf):
|
|
1506
|
+
raise ValueError(
|
|
1507
|
+
"The size of indices should be less than or equal to the allocated buffer"
|
|
1508
|
+
)
|
|
1509
|
+
|
|
1510
|
+
# host-to-device copy for the indptr buffer
|
|
1511
|
+
self._paged_kv_indptr_buf.copy_(indptr_cpu, non_blocking=True)
|
|
1512
|
+
# host-to-device copy for the last_page_len buffer
|
|
1513
|
+
self._paged_kv_last_page_len_buf.copy_(last_page_len_cpu, non_blocking=True)
|
|
1514
|
+
|
|
1515
|
+
qo_indptr_host = _get_range_buf(batch_size + 1, "cpu")
|
|
1516
|
+
|
|
1517
|
+
try:
|
|
1518
|
+
# Make sure we pass exactly 19 arguments for tensor core version
|
|
1519
|
+
self._plan_info = self._cached_module.plan(
|
|
1520
|
+
self._float_workspace_buffer,
|
|
1521
|
+
self._int_workspace_buffer,
|
|
1522
|
+
self._pin_memory_int_workspace_buffer,
|
|
1523
|
+
qo_indptr_host,
|
|
1524
|
+
indptr_cpu,
|
|
1525
|
+
seq_lens_cpu,
|
|
1526
|
+
batch_size, # total_num_rows
|
|
1527
|
+
batch_size,
|
|
1528
|
+
num_qo_heads,
|
|
1529
|
+
num_kv_heads,
|
|
1530
|
+
page_size,
|
|
1531
|
+
self.is_cuda_graph_enabled,
|
|
1532
|
+
head_dim,
|
|
1533
|
+
head_dim,
|
|
1534
|
+
False, # causal
|
|
1535
|
+
window_left,
|
|
1536
|
+
fixed_split_size,
|
|
1537
|
+
disable_split_kv,
|
|
1538
|
+
0,
|
|
1539
|
+
)
|
|
1540
|
+
except Exception as e:
|
|
1541
|
+
raise RuntimeError(f"Error in tensor core plan: {e}") from e
|
|
1542
|
+
|
|
1543
|
+
self._pos_encoding_mode = pos_encoding_mode
|
|
1544
|
+
self._window_left = window_left
|
|
1545
|
+
self._logits_soft_cap = logits_soft_cap
|
|
1546
|
+
self._sm_scale = sm_scale
|
|
1547
|
+
self._rope_scale = rope_scale
|
|
1548
|
+
self._rope_theta = rope_theta
|
|
1549
|
+
|
|
1550
|
+
|
|
1551
|
+
@triton.jit
|
|
1552
|
+
def _copy_page_indices_kernel(
|
|
1553
|
+
page_indices,
|
|
1554
|
+
block_table,
|
|
1555
|
+
block_table_stride,
|
|
1556
|
+
cu_num_blocks,
|
|
1557
|
+
BLOCK_SIZE: tl.constexpr,
|
|
1558
|
+
):
|
|
1559
|
+
req_idx = tl.program_id(0)
|
|
1560
|
+
row_ptr = block_table + req_idx * block_table_stride
|
|
1561
|
+
start_idx = tl.load(cu_num_blocks + req_idx)
|
|
1562
|
+
end_idx = tl.load(cu_num_blocks + req_idx + 1)
|
|
1563
|
+
num_blocks = end_idx - start_idx
|
|
1564
|
+
|
|
1565
|
+
offset = tl.arange(0, BLOCK_SIZE)
|
|
1566
|
+
for i in tl.range(0, num_blocks, BLOCK_SIZE):
|
|
1567
|
+
block_ids = tl.load(row_ptr + i + offset, mask=i + offset < num_blocks)
|
|
1568
|
+
tl.store(
|
|
1569
|
+
page_indices + start_idx + i + offset,
|
|
1570
|
+
block_ids,
|
|
1571
|
+
mask=i + offset < num_blocks,
|
|
1572
|
+
)
|