vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +107 -0
- vllm/_aiter_ops.py +1018 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2925 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +434 -0
- vllm/attention/backends/registry.py +286 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +975 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +120 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +469 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +51 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +136 -0
- vllm/attention/selector.py +268 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +117 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +448 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +827 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +180 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +614 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +315 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +136 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +260 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +1154 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +96 -0
- vllm/config/model.py +2274 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +131 -0
- vllm/config/parallel.py +653 -0
- vllm/config/pooler.py +124 -0
- vllm/config/scheduler.py +297 -0
- vllm/config/speculative.py +643 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +94 -0
- vllm/config/utils.py +324 -0
- vllm/config/vllm.py +1353 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +99 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1154 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +532 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1790 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2106 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +188 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1837 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1762 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1891 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +2465 -0
- vllm/entrypoints/openai/run_batch.py +631 -0
- vllm/entrypoints/openai/serving_chat.py +1782 -0
- vllm/entrypoints/openai/serving_completion.py +716 -0
- vllm/entrypoints/openai/serving_engine.py +1478 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_responses.py +2032 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +281 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +559 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +50 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +237 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +67 -0
- vllm/entrypoints/pooling/embed/protocol.py +208 -0
- vllm/entrypoints/pooling/embed/serving.py +697 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +63 -0
- vllm/entrypoints/pooling/pooling/protocol.py +148 -0
- vllm/entrypoints/pooling/pooling/serving.py +348 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +149 -0
- vllm/entrypoints/pooling/score/protocol.py +145 -0
- vllm/entrypoints/pooling/score/serving.py +505 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +148 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +240 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1710 -0
- vllm/forward_context.py +358 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +298 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +42 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +165 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +747 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +74 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/models.py +903 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +412 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +358 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +306 -0
- vllm/lora/worker_manager.py +268 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +595 -0
- vllm/model_executor/layers/attention_layer_base.py +32 -0
- vllm/model_executor/layers/batch_invariant.py +1058 -0
- vllm/model_executor/layers/conv.py +256 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +110 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +938 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
- vllm/model_executor/layers/fused_moe/layer.py +2152 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +388 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +255 -0
- vllm/model_executor/layers/mla.py +176 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +179 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +225 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1348 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +687 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1637 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +527 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +639 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
- vllm/model_executor/layers/rotary_embedding/base.py +240 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +321 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +349 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +296 -0
- vllm/model_executor/model_loader/weight_utils.py +1147 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +569 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +634 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +494 -0
- vllm/model_executor/models/bailing_moe.py +645 -0
- vllm/model_executor/models/bamba.py +516 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1098 -0
- vllm/model_executor/models/chatglm.py +499 -0
- vllm/model_executor/models/clip.py +1005 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +470 -0
- vllm/model_executor/models/config.py +510 -0
- vllm/model_executor/models/dbrx.py +485 -0
- vllm/model_executor/models/deepencoder.py +676 -0
- vllm/model_executor/models/deepseek_eagle.py +252 -0
- vllm/model_executor/models/deepseek_mtp.py +446 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1715 -0
- vllm/model_executor/models/deepseek_vl2.py +644 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +874 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1710 -0
- vllm/model_executor/models/ernie45_vl_moe.py +800 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +525 -0
- vllm/model_executor/models/exaone4.py +517 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +544 -0
- vllm/model_executor/models/falcon_h1.py +680 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +436 -0
- vllm/model_executor/models/gemma3.py +577 -0
- vllm/model_executor/models/gemma3_mm.py +665 -0
- vllm/model_executor/models/gemma3n.py +1167 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +298 -0
- vllm/model_executor/models/glm4_1v.py +1854 -0
- vllm/model_executor/models/glm4_moe.py +738 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +785 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +345 -0
- vllm/model_executor/models/gpt_neox.py +343 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +476 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +704 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +555 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1028 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +718 -0
- vllm/model_executor/models/interfaces.py +1148 -0
- vllm/model_executor/models/interfaces_base.py +243 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +454 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +609 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1765 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +658 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +516 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +704 -0
- vllm/model_executor/models/llama4.py +857 -0
- vllm/model_executor/models/llama4_eagle.py +216 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +743 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +828 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +657 -0
- vllm/model_executor/models/minicpm3.py +234 -0
- vllm/model_executor/models/minicpm_eagle.py +385 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1744 -0
- vllm/model_executor/models/minimax_m2.py +546 -0
- vllm/model_executor/models/minimax_text_01.py +1010 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1151 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +452 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1553 -0
- vllm/model_executor/models/moonvit.py +686 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
- vllm/model_executor/models/nemotron.py +502 -0
- vllm/model_executor/models/nemotron_h.py +850 -0
- vllm/model_executor/models/nemotron_nas.py +473 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +413 -0
- vllm/model_executor/models/olmo2.py +455 -0
- vllm/model_executor/models/olmoe.py +494 -0
- vllm/model_executor/models/opencua.py +271 -0
- vllm/model_executor/models/openpangu.py +1051 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +366 -0
- vllm/model_executor/models/ouro.py +508 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1380 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +376 -0
- vllm/model_executor/models/phi.py +370 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +670 -0
- vllm/model_executor/models/pixtral.py +1380 -0
- vllm/model_executor/models/plamo2.py +966 -0
- vllm/model_executor/models/plamo3.py +441 -0
- vllm/model_executor/models/qwen.py +363 -0
- vllm/model_executor/models/qwen2.py +569 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
- vllm/model_executor/models/qwen2_5_vl.py +1594 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +590 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1593 -0
- vllm/model_executor/models/qwen3.py +332 -0
- vllm/model_executor/models/qwen3_moe.py +738 -0
- vllm/model_executor/models/qwen3_next.py +1390 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
- vllm/model_executor/models/qwen3_vl.py +1686 -0
- vllm/model_executor/models/qwen3_vl_moe.py +470 -0
- vllm/model_executor/models/qwen_vl.py +803 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1183 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +493 -0
- vllm/model_executor/models/siglip.py +1245 -0
- vllm/model_executor/models/siglip2navit.py +723 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +485 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +366 -0
- vllm/model_executor/models/step3_text.py +555 -0
- vllm/model_executor/models/step3_vl.py +1149 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +325 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +213 -0
- vllm/model_executor/models/ultravox.py +686 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +842 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +980 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +142 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +830 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2240 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +357 -0
- vllm/multimodal/utils.py +523 -0
- vllm/multimodal/video.py +333 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +410 -0
- vllm/platforms/cuda.py +642 -0
- vllm/platforms/interface.py +656 -0
- vllm/platforms/rocm.py +513 -0
- vllm/platforms/tpu.py +275 -0
- vllm/platforms/xpu.py +261 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +230 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +216 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +597 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +24 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/hf.py +124 -0
- vllm/tokenizers/mistral.py +554 -0
- vllm/tokenizers/protocol.py +111 -0
- vllm/tokenizers/registry.py +233 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1081 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +84 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +235 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +214 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/gguf_utils.py +209 -0
- vllm/transformers_utils/processor.py +423 -0
- vllm/transformers_utils/processors/__init__.py +23 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +127 -0
- vllm/transformers_utils/tokenizer_base.py +33 -0
- vllm/transformers_utils/utils.py +184 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +66 -0
- vllm/utils/argparse_utils.py +504 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +399 -0
- vllm/utils/flashinfer.py +532 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +81 -0
- vllm/utils/import_utils.py +449 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +265 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +647 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +497 -0
- vllm/v1/attention/backends/flash_attn.py +1050 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +945 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +117 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
- vllm/v1/attention/backends/mla/common.py +2069 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
- vllm/v1/attention/backends/mla/flashmla.py +317 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
- vllm/v1/attention/backends/mla/indexer.py +369 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +359 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +428 -0
- vllm/v1/attention/backends/triton_attn.py +377 -0
- vllm/v1/attention/backends/utils.py +1149 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +466 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +570 -0
- vllm/v1/core/kv_cache_manager.py +408 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1471 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +68 -0
- vllm/v1/core/sched/interface.py +187 -0
- vllm/v1/core/sched/output.py +230 -0
- vllm/v1/core/sched/request_queue.py +217 -0
- vllm/v1/core/sched/scheduler.py +1726 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +801 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +214 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1421 -0
- vllm/v1/engine/core_client.py +1406 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +636 -0
- vllm/v1/engine/llm_engine.py +416 -0
- vllm/v1/engine/logprobs.py +189 -0
- vllm/v1/engine/output_processor.py +658 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +20 -0
- vllm/v1/engine/utils.py +1068 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +404 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +86 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +66 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1268 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +431 -0
- vllm/v1/outputs.py +237 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +280 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
- vllm/v1/sample/rejection_sampler.py +805 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1325 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +101 -0
- vllm/v1/spec_decode/utils.py +121 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +210 -0
- vllm/v1/worker/dp_utils.py +250 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +97 -0
- vllm/v1/worker/gpu/attn_utils.py +189 -0
- vllm/v1/worker/gpu/block_table.py +314 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +430 -0
- vllm/v1/worker/gpu/model_runner.py +1007 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +101 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +179 -0
- vllm/v1/worker/gpu/sample/penalties.py +154 -0
- vllm/v1/worker/gpu/sample/sampler.py +75 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
- vllm/v1/worker/gpu/states.py +309 -0
- vllm/v1/worker/gpu/structured_outputs.py +76 -0
- vllm/v1/worker/gpu_input_batch.py +971 -0
- vllm/v1/worker/gpu_model_runner.py +5360 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
- vllm/v1/worker/gpu_worker.py +922 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
- vllm/v1/worker/lora_model_runner_mixin.py +212 -0
- vllm/v1/worker/tpu_input_batch.py +583 -0
- vllm/v1/worker/tpu_model_runner.py +2196 -0
- vllm/v1/worker/tpu_worker.py +351 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +365 -0
- vllm/v1/worker/worker_base.py +377 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +198 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu-0.12.0.dist-info/METADATA +300 -0
- vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
- vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
- vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py
ADDED
|
@@ -0,0 +1,2925 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from typing import TYPE_CHECKING, Literal
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
import vllm.envs as envs
|
|
9
|
+
from vllm.logger import init_logger
|
|
10
|
+
from vllm.platforms import current_platform
|
|
11
|
+
from vllm.scalar_type import ScalarType
|
|
12
|
+
|
|
13
|
+
logger = init_logger(__name__)
|
|
14
|
+
|
|
15
|
+
current_platform.import_kernels()
|
|
16
|
+
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
|
|
19
|
+
def register_fake(fn):
|
|
20
|
+
return lambda name: fn
|
|
21
|
+
else:
|
|
22
|
+
try:
|
|
23
|
+
from torch.library import register_fake
|
|
24
|
+
except ImportError:
|
|
25
|
+
from torch.library import impl_abstract as register_fake
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
# page attention ops
|
|
29
|
+
def paged_attention_v1(
|
|
30
|
+
out: torch.Tensor,
|
|
31
|
+
query: torch.Tensor,
|
|
32
|
+
key_cache: torch.Tensor,
|
|
33
|
+
value_cache: torch.Tensor,
|
|
34
|
+
num_kv_heads: int,
|
|
35
|
+
scale: float,
|
|
36
|
+
block_tables: torch.Tensor,
|
|
37
|
+
seq_lens: torch.Tensor,
|
|
38
|
+
block_size: int,
|
|
39
|
+
max_seq_len: int,
|
|
40
|
+
alibi_slopes: torch.Tensor | None,
|
|
41
|
+
kv_cache_dtype: str,
|
|
42
|
+
k_scale: torch.Tensor,
|
|
43
|
+
v_scale: torch.Tensor,
|
|
44
|
+
tp_rank: int = 0,
|
|
45
|
+
blocksparse_local_blocks: int = 0,
|
|
46
|
+
blocksparse_vert_stride: int = 0,
|
|
47
|
+
blocksparse_block_size: int = 64,
|
|
48
|
+
blocksparse_head_sliding_step: int = 0,
|
|
49
|
+
) -> None:
|
|
50
|
+
torch.ops._C.paged_attention_v1(
|
|
51
|
+
out,
|
|
52
|
+
query,
|
|
53
|
+
key_cache,
|
|
54
|
+
value_cache,
|
|
55
|
+
num_kv_heads,
|
|
56
|
+
scale,
|
|
57
|
+
block_tables,
|
|
58
|
+
seq_lens,
|
|
59
|
+
block_size,
|
|
60
|
+
max_seq_len,
|
|
61
|
+
alibi_slopes,
|
|
62
|
+
kv_cache_dtype,
|
|
63
|
+
k_scale,
|
|
64
|
+
v_scale,
|
|
65
|
+
tp_rank,
|
|
66
|
+
blocksparse_local_blocks,
|
|
67
|
+
blocksparse_vert_stride,
|
|
68
|
+
blocksparse_block_size,
|
|
69
|
+
blocksparse_head_sliding_step,
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def paged_attention_v2(
|
|
74
|
+
out: torch.Tensor,
|
|
75
|
+
exp_sum: torch.Tensor,
|
|
76
|
+
max_logits: torch.Tensor,
|
|
77
|
+
tmp_out: torch.Tensor,
|
|
78
|
+
query: torch.Tensor,
|
|
79
|
+
key_cache: torch.Tensor,
|
|
80
|
+
value_cache: torch.Tensor,
|
|
81
|
+
num_kv_heads: int,
|
|
82
|
+
scale: float,
|
|
83
|
+
block_tables: torch.Tensor,
|
|
84
|
+
seq_lens: torch.Tensor,
|
|
85
|
+
block_size: int,
|
|
86
|
+
max_seq_len: int,
|
|
87
|
+
alibi_slopes: torch.Tensor | None,
|
|
88
|
+
kv_cache_dtype: str,
|
|
89
|
+
k_scale: torch.Tensor,
|
|
90
|
+
v_scale: torch.Tensor,
|
|
91
|
+
tp_rank: int = 0,
|
|
92
|
+
blocksparse_local_blocks: int = 0,
|
|
93
|
+
blocksparse_vert_stride: int = 0,
|
|
94
|
+
blocksparse_block_size: int = 64,
|
|
95
|
+
blocksparse_head_sliding_step: int = 0,
|
|
96
|
+
) -> None:
|
|
97
|
+
torch.ops._C.paged_attention_v2(
|
|
98
|
+
out,
|
|
99
|
+
exp_sum,
|
|
100
|
+
max_logits,
|
|
101
|
+
tmp_out,
|
|
102
|
+
query,
|
|
103
|
+
key_cache,
|
|
104
|
+
value_cache,
|
|
105
|
+
num_kv_heads,
|
|
106
|
+
scale,
|
|
107
|
+
block_tables,
|
|
108
|
+
seq_lens,
|
|
109
|
+
block_size,
|
|
110
|
+
max_seq_len,
|
|
111
|
+
alibi_slopes,
|
|
112
|
+
kv_cache_dtype,
|
|
113
|
+
k_scale,
|
|
114
|
+
v_scale,
|
|
115
|
+
tp_rank,
|
|
116
|
+
blocksparse_local_blocks,
|
|
117
|
+
blocksparse_vert_stride,
|
|
118
|
+
blocksparse_block_size,
|
|
119
|
+
blocksparse_head_sliding_step,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def paged_attention_rocm(
|
|
124
|
+
out: torch.Tensor,
|
|
125
|
+
exp_sum: torch.Tensor,
|
|
126
|
+
max_logits: torch.Tensor,
|
|
127
|
+
tmp_out: torch.Tensor,
|
|
128
|
+
query: torch.Tensor,
|
|
129
|
+
key_cache: torch.Tensor,
|
|
130
|
+
value_cache: torch.Tensor,
|
|
131
|
+
num_kv_heads: int,
|
|
132
|
+
scale: float,
|
|
133
|
+
block_tables: torch.Tensor,
|
|
134
|
+
seq_lens: torch.Tensor,
|
|
135
|
+
query_start_loc: torch.Tensor | None,
|
|
136
|
+
block_size: int,
|
|
137
|
+
max_seq_len: int,
|
|
138
|
+
alibi_slopes: torch.Tensor | None,
|
|
139
|
+
kv_cache_dtype: str,
|
|
140
|
+
k_scale: torch.Tensor,
|
|
141
|
+
v_scale: torch.Tensor,
|
|
142
|
+
fp8_out_scale: torch.Tensor | None = None,
|
|
143
|
+
mfma_type: str = "fp8" if envs.VLLM_ROCM_FP8_MFMA_PAGE_ATTN else "f16",
|
|
144
|
+
) -> None:
|
|
145
|
+
torch.ops._rocm_C.paged_attention(
|
|
146
|
+
out,
|
|
147
|
+
exp_sum,
|
|
148
|
+
max_logits,
|
|
149
|
+
tmp_out,
|
|
150
|
+
query,
|
|
151
|
+
key_cache,
|
|
152
|
+
value_cache,
|
|
153
|
+
num_kv_heads,
|
|
154
|
+
scale,
|
|
155
|
+
block_tables,
|
|
156
|
+
seq_lens,
|
|
157
|
+
query_start_loc,
|
|
158
|
+
block_size,
|
|
159
|
+
max_seq_len,
|
|
160
|
+
alibi_slopes,
|
|
161
|
+
kv_cache_dtype,
|
|
162
|
+
k_scale,
|
|
163
|
+
v_scale,
|
|
164
|
+
fp8_out_scale,
|
|
165
|
+
mfma_type,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def mla_decode_kvcache_cpu(
|
|
170
|
+
out: torch.Tensor,
|
|
171
|
+
query: torch.Tensor,
|
|
172
|
+
kv_cache: torch.Tensor,
|
|
173
|
+
scale: float,
|
|
174
|
+
block_tables: torch.Tensor,
|
|
175
|
+
seq_lens: torch.Tensor,
|
|
176
|
+
) -> None:
|
|
177
|
+
torch.ops._C_cpu.mla_decode_kvcache(
|
|
178
|
+
out, query, kv_cache, scale, block_tables, seq_lens
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
# merge attn states ops
|
|
183
|
+
def merge_attn_states(
|
|
184
|
+
output: torch.Tensor,
|
|
185
|
+
prefix_output: torch.Tensor,
|
|
186
|
+
prefix_lse: torch.Tensor,
|
|
187
|
+
suffix_output: torch.Tensor,
|
|
188
|
+
suffix_lse: torch.Tensor,
|
|
189
|
+
output_lse: torch.Tensor | None = None,
|
|
190
|
+
) -> None:
|
|
191
|
+
torch.ops._C.merge_attn_states(
|
|
192
|
+
output, output_lse, prefix_output, prefix_lse, suffix_output, suffix_lse
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def convert_vertical_slash_indexes(
|
|
197
|
+
q_seqlens: torch.Tensor, # [BATCH, ]
|
|
198
|
+
kv_seqlens: torch.Tensor, # [BATCH, ]
|
|
199
|
+
vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
|
|
200
|
+
slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
|
|
201
|
+
context_size: int,
|
|
202
|
+
block_size_M: int,
|
|
203
|
+
block_size_N: int,
|
|
204
|
+
causal: bool = True,
|
|
205
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
206
|
+
batch_size = slash_indexes.size(0)
|
|
207
|
+
num_heads = slash_indexes.size(1)
|
|
208
|
+
nnz_slash = slash_indexes.size(2)
|
|
209
|
+
nnz_vertical = vertical_indexes.size(2)
|
|
210
|
+
num_rows = (context_size + block_size_M - 1) // block_size_M
|
|
211
|
+
|
|
212
|
+
block_count = torch.zeros(
|
|
213
|
+
batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
|
|
214
|
+
)
|
|
215
|
+
block_offset = torch.zeros(
|
|
216
|
+
batch_size,
|
|
217
|
+
num_heads,
|
|
218
|
+
num_rows,
|
|
219
|
+
nnz_slash,
|
|
220
|
+
dtype=q_seqlens.dtype,
|
|
221
|
+
device=q_seqlens.device,
|
|
222
|
+
)
|
|
223
|
+
column_count = torch.zeros(
|
|
224
|
+
batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
|
|
225
|
+
)
|
|
226
|
+
column_index = torch.zeros(
|
|
227
|
+
batch_size,
|
|
228
|
+
num_heads,
|
|
229
|
+
num_rows,
|
|
230
|
+
nnz_vertical,
|
|
231
|
+
dtype=q_seqlens.dtype,
|
|
232
|
+
device=q_seqlens.device,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
torch.ops._C.convert_vertical_slash_indexes(
|
|
236
|
+
block_count,
|
|
237
|
+
block_offset,
|
|
238
|
+
column_count,
|
|
239
|
+
column_index,
|
|
240
|
+
q_seqlens,
|
|
241
|
+
kv_seqlens,
|
|
242
|
+
vertical_indexes,
|
|
243
|
+
slash_indexes,
|
|
244
|
+
context_size,
|
|
245
|
+
block_size_M,
|
|
246
|
+
block_size_N,
|
|
247
|
+
causal,
|
|
248
|
+
)
|
|
249
|
+
return block_count, block_offset, column_count, column_index
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def convert_vertical_slash_indexes_mergehead(
|
|
253
|
+
q_seqlens: torch.Tensor, # [BATCH, ]
|
|
254
|
+
kv_seqlens: torch.Tensor, # [BATCH, ]
|
|
255
|
+
vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
|
|
256
|
+
slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
|
|
257
|
+
# [N_HEADS] : different head use different number of indices
|
|
258
|
+
vertical_indices_count: torch.Tensor,
|
|
259
|
+
slash_indices_count: torch.Tensor,
|
|
260
|
+
context_size: int,
|
|
261
|
+
block_size_M: int,
|
|
262
|
+
block_size_N: int,
|
|
263
|
+
causal: bool = True,
|
|
264
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
265
|
+
batch_size = slash_indexes.size(0)
|
|
266
|
+
num_heads = slash_indexes.size(1)
|
|
267
|
+
nnz_slash = slash_indexes.size(2)
|
|
268
|
+
nnz_vertical = vertical_indexes.size(2)
|
|
269
|
+
num_rows = (context_size + block_size_M - 1) // block_size_M
|
|
270
|
+
|
|
271
|
+
block_count = torch.empty(
|
|
272
|
+
batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
|
|
273
|
+
)
|
|
274
|
+
block_offset = torch.empty(
|
|
275
|
+
batch_size,
|
|
276
|
+
num_heads,
|
|
277
|
+
num_rows,
|
|
278
|
+
nnz_slash,
|
|
279
|
+
dtype=q_seqlens.dtype,
|
|
280
|
+
device=q_seqlens.device,
|
|
281
|
+
)
|
|
282
|
+
column_count = torch.empty(
|
|
283
|
+
batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
|
|
284
|
+
)
|
|
285
|
+
column_index = torch.empty(
|
|
286
|
+
batch_size,
|
|
287
|
+
num_heads,
|
|
288
|
+
num_rows,
|
|
289
|
+
nnz_vertical,
|
|
290
|
+
dtype=q_seqlens.dtype,
|
|
291
|
+
device=q_seqlens.device,
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
torch.ops._C.convert_vertical_slash_indexes_mergehead(
|
|
295
|
+
block_count,
|
|
296
|
+
block_offset,
|
|
297
|
+
column_count,
|
|
298
|
+
column_index,
|
|
299
|
+
q_seqlens,
|
|
300
|
+
kv_seqlens,
|
|
301
|
+
vertical_indexes,
|
|
302
|
+
slash_indexes,
|
|
303
|
+
vertical_indices_count,
|
|
304
|
+
slash_indices_count,
|
|
305
|
+
context_size,
|
|
306
|
+
block_size_M,
|
|
307
|
+
block_size_N,
|
|
308
|
+
causal,
|
|
309
|
+
)
|
|
310
|
+
return block_count, block_offset, column_count, column_index
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
# pos encoding ops
|
|
314
|
+
def rotary_embedding(
|
|
315
|
+
positions: torch.Tensor,
|
|
316
|
+
query: torch.Tensor,
|
|
317
|
+
key: torch.Tensor | None,
|
|
318
|
+
head_size: int,
|
|
319
|
+
cos_sin_cache: torch.Tensor,
|
|
320
|
+
is_neox: bool,
|
|
321
|
+
) -> None:
|
|
322
|
+
torch.ops._C.rotary_embedding(
|
|
323
|
+
positions, query, key, head_size, cos_sin_cache, is_neox
|
|
324
|
+
)
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
# layer norm ops
|
|
328
|
+
def rms_norm(
|
|
329
|
+
out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, epsilon: float
|
|
330
|
+
) -> None:
|
|
331
|
+
torch.ops._C.rms_norm(out, input, weight, epsilon)
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def fused_add_rms_norm(
|
|
335
|
+
input: torch.Tensor, residual: torch.Tensor, weight: torch.Tensor, epsilon: float
|
|
336
|
+
) -> None:
|
|
337
|
+
torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
def fused_qk_norm_rope(
|
|
341
|
+
qkv: torch.Tensor,
|
|
342
|
+
num_heads_q: int,
|
|
343
|
+
num_heads_k: int,
|
|
344
|
+
num_heads_v: int,
|
|
345
|
+
head_dim: int,
|
|
346
|
+
eps: float,
|
|
347
|
+
q_weight: torch.Tensor,
|
|
348
|
+
k_weight: torch.Tensor,
|
|
349
|
+
cos_sin_cache: torch.Tensor,
|
|
350
|
+
is_neox: bool,
|
|
351
|
+
position_ids: torch.Tensor,
|
|
352
|
+
) -> None:
|
|
353
|
+
torch.ops._C.fused_qk_norm_rope(
|
|
354
|
+
qkv,
|
|
355
|
+
num_heads_q,
|
|
356
|
+
num_heads_k,
|
|
357
|
+
num_heads_v,
|
|
358
|
+
head_dim,
|
|
359
|
+
eps,
|
|
360
|
+
q_weight,
|
|
361
|
+
k_weight,
|
|
362
|
+
cos_sin_cache,
|
|
363
|
+
is_neox,
|
|
364
|
+
position_ids,
|
|
365
|
+
)
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def apply_repetition_penalties_torch(
|
|
369
|
+
logits: torch.Tensor,
|
|
370
|
+
prompt_mask: torch.Tensor,
|
|
371
|
+
output_mask: torch.Tensor,
|
|
372
|
+
repetition_penalties: torch.Tensor,
|
|
373
|
+
) -> None:
|
|
374
|
+
repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
|
|
375
|
+
1, logits.size(1)
|
|
376
|
+
)
|
|
377
|
+
# If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
|
|
378
|
+
penalties = torch.where(prompt_mask | output_mask, repetition_penalties, 1.0)
|
|
379
|
+
# If logits are positive, divide by penalty, otherwise multiply by penalty.
|
|
380
|
+
scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
|
|
381
|
+
logits *= scaling
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
def apply_repetition_penalties_cuda(
|
|
385
|
+
logits: torch.Tensor,
|
|
386
|
+
prompt_mask: torch.Tensor,
|
|
387
|
+
output_mask: torch.Tensor,
|
|
388
|
+
repetition_penalties: torch.Tensor,
|
|
389
|
+
) -> None:
|
|
390
|
+
torch.ops._C.apply_repetition_penalties_(
|
|
391
|
+
logits, prompt_mask, output_mask, repetition_penalties
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
def apply_repetition_penalties(
|
|
396
|
+
logits: torch.Tensor,
|
|
397
|
+
prompt_mask: torch.Tensor,
|
|
398
|
+
output_mask: torch.Tensor,
|
|
399
|
+
repetition_penalties: torch.Tensor,
|
|
400
|
+
) -> None:
|
|
401
|
+
"""Apply repetition penalties to logits in-place.
|
|
402
|
+
|
|
403
|
+
Args:
|
|
404
|
+
logits: The logits tensor of shape [num_seqs, vocab_size].
|
|
405
|
+
prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
|
|
406
|
+
output_mask: A boolean tensor indicating which tokens appear in the output.
|
|
407
|
+
repetition_penalties: The repetition penalties of shape (num_seqs, ).
|
|
408
|
+
"""
|
|
409
|
+
if logits.is_cuda and logits.is_contiguous():
|
|
410
|
+
apply_repetition_penalties_cuda(
|
|
411
|
+
logits, prompt_mask, output_mask, repetition_penalties
|
|
412
|
+
)
|
|
413
|
+
else:
|
|
414
|
+
apply_repetition_penalties_torch(
|
|
415
|
+
logits, prompt_mask, output_mask, repetition_penalties
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
# fused quant layer norm ops
|
|
420
|
+
def rms_norm_dynamic_per_token_quant(
|
|
421
|
+
input: torch.Tensor,
|
|
422
|
+
weight: torch.Tensor,
|
|
423
|
+
epsilon: float,
|
|
424
|
+
quant_dtype: torch.dtype,
|
|
425
|
+
scale_ub: torch.Tensor | None = None,
|
|
426
|
+
residual: torch.Tensor | None = None,
|
|
427
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
428
|
+
output = torch.empty_like(input, dtype=quant_dtype)
|
|
429
|
+
scales = torch.empty(
|
|
430
|
+
(input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
torch.ops._C.rms_norm_dynamic_per_token_quant(
|
|
434
|
+
output, input, weight, scales, epsilon, scale_ub, residual
|
|
435
|
+
)
|
|
436
|
+
return output, scales
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
# quantization ops
|
|
440
|
+
# awq
|
|
441
|
+
def awq_dequantize(
|
|
442
|
+
qweight: torch.Tensor,
|
|
443
|
+
scales: torch.Tensor,
|
|
444
|
+
zeros: torch.Tensor,
|
|
445
|
+
split_k_iters: int,
|
|
446
|
+
thx: int,
|
|
447
|
+
thy: int,
|
|
448
|
+
) -> torch.Tensor:
|
|
449
|
+
if envs.VLLM_USE_TRITON_AWQ:
|
|
450
|
+
from vllm.model_executor.layers.quantization.awq_triton import (
|
|
451
|
+
awq_dequantize_triton,
|
|
452
|
+
)
|
|
453
|
+
|
|
454
|
+
return awq_dequantize_triton(qweight, scales, zeros)
|
|
455
|
+
return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters, thx, thy)
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+
def awq_gemm(
|
|
459
|
+
input: torch.Tensor,
|
|
460
|
+
qweight: torch.Tensor,
|
|
461
|
+
qzeros: torch.Tensor,
|
|
462
|
+
scales: torch.Tensor,
|
|
463
|
+
split_k_iters: int,
|
|
464
|
+
) -> torch.Tensor:
|
|
465
|
+
if envs.VLLM_USE_TRITON_AWQ:
|
|
466
|
+
from vllm.model_executor.layers.quantization.awq_triton import awq_gemm_triton
|
|
467
|
+
|
|
468
|
+
return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
|
|
469
|
+
return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
# gptq
|
|
473
|
+
def gptq_gemm(
|
|
474
|
+
a: torch.Tensor,
|
|
475
|
+
b_q_weight: torch.Tensor,
|
|
476
|
+
b_gptq_qzeros: torch.Tensor,
|
|
477
|
+
b_gptq_scales: torch.Tensor,
|
|
478
|
+
b_g_idx: torch.Tensor,
|
|
479
|
+
use_exllama: bool,
|
|
480
|
+
use_v2_format: bool,
|
|
481
|
+
bit: int,
|
|
482
|
+
) -> torch.Tensor:
|
|
483
|
+
return torch.ops._C.gptq_gemm(
|
|
484
|
+
a,
|
|
485
|
+
b_q_weight,
|
|
486
|
+
b_gptq_qzeros,
|
|
487
|
+
b_gptq_scales,
|
|
488
|
+
b_g_idx,
|
|
489
|
+
use_exllama,
|
|
490
|
+
use_v2_format,
|
|
491
|
+
bit,
|
|
492
|
+
)
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
if hasattr(torch.ops._C, "gptq_gemm"):
|
|
496
|
+
|
|
497
|
+
@register_fake("_C::gptq_gemm")
|
|
498
|
+
def _gptq_gemm_fake(
|
|
499
|
+
a: torch.Tensor,
|
|
500
|
+
b_q_weight: torch.Tensor,
|
|
501
|
+
b_gptq_qzeros: torch.Tensor,
|
|
502
|
+
b_gptq_scales: torch.Tensor,
|
|
503
|
+
b_g_idx: torch.Tensor,
|
|
504
|
+
use_exllama: bool,
|
|
505
|
+
use_v2_format: bool,
|
|
506
|
+
bit: int,
|
|
507
|
+
) -> torch.Tensor:
|
|
508
|
+
return torch.empty(
|
|
509
|
+
(a.size(0), b_q_weight.size(1)), dtype=a.dtype, device=a.device
|
|
510
|
+
)
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None:
|
|
514
|
+
torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
|
|
515
|
+
|
|
516
|
+
|
|
517
|
+
# marlin_24
|
|
518
|
+
def gptq_marlin_24_gemm(
|
|
519
|
+
a: torch.Tensor,
|
|
520
|
+
b_q_weight: torch.Tensor,
|
|
521
|
+
b_meta: torch.Tensor,
|
|
522
|
+
b_scales: torch.Tensor,
|
|
523
|
+
workspace: torch.Tensor,
|
|
524
|
+
b_q_type: ScalarType,
|
|
525
|
+
size_m: int,
|
|
526
|
+
size_n: int,
|
|
527
|
+
size_k: int,
|
|
528
|
+
) -> torch.Tensor:
|
|
529
|
+
return torch.ops._C.gptq_marlin_24_gemm(
|
|
530
|
+
a, b_q_weight, b_meta, b_scales, workspace, b_q_type.id, size_m, size_n, size_k
|
|
531
|
+
)
|
|
532
|
+
|
|
533
|
+
|
|
534
|
+
if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
|
|
535
|
+
|
|
536
|
+
@register_fake("_C::gptq_marlin_24_gemm")
|
|
537
|
+
def _gptq_marlin_24_gemm_fake(
|
|
538
|
+
a: torch.Tensor,
|
|
539
|
+
b_q_weight: torch.Tensor,
|
|
540
|
+
b_meta: torch.Tensor,
|
|
541
|
+
b_scales: torch.Tensor,
|
|
542
|
+
workspace: torch.Tensor,
|
|
543
|
+
b_q_type: ScalarType,
|
|
544
|
+
size_m: torch.SymInt,
|
|
545
|
+
size_n: torch.SymInt,
|
|
546
|
+
size_k: torch.SymInt,
|
|
547
|
+
) -> torch.Tensor:
|
|
548
|
+
return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
|
|
549
|
+
|
|
550
|
+
@register_fake("_C::gptq_marlin_gemm")
|
|
551
|
+
def _gptq_marlin_gemm_fake(
|
|
552
|
+
a: torch.Tensor,
|
|
553
|
+
c: torch.Tensor | None,
|
|
554
|
+
b_q_weight: torch.Tensor,
|
|
555
|
+
b_bias: torch.Tensor | None,
|
|
556
|
+
b_scales: torch.Tensor,
|
|
557
|
+
a_scales: torch.Tensor | None,
|
|
558
|
+
global_scale: torch.Tensor | None,
|
|
559
|
+
b_zeros: torch.Tensor | None,
|
|
560
|
+
g_idx: torch.Tensor | None,
|
|
561
|
+
perm: torch.Tensor | None,
|
|
562
|
+
workspace: torch.Tensor,
|
|
563
|
+
b_q_type_id: int,
|
|
564
|
+
size_m: torch.SymInt,
|
|
565
|
+
size_n: torch.SymInt,
|
|
566
|
+
size_k: torch.SymInt,
|
|
567
|
+
is_k_full: bool = True,
|
|
568
|
+
use_atomic_add: bool = False,
|
|
569
|
+
use_fp32_reduce: bool = False,
|
|
570
|
+
is_zp_float: bool = False,
|
|
571
|
+
) -> torch.Tensor:
|
|
572
|
+
dtype = a.dtype
|
|
573
|
+
if dtype not in [torch.half, torch.bfloat16]:
|
|
574
|
+
dtype = b_scales.dtype
|
|
575
|
+
return torch.empty((size_m, size_n), device=a.device, dtype=dtype)
|
|
576
|
+
|
|
577
|
+
@register_fake("_C::awq_dequantize")
|
|
578
|
+
def _awq_dequantize_fake(
|
|
579
|
+
qweight: torch.Tensor,
|
|
580
|
+
scales: torch.Tensor,
|
|
581
|
+
zeros: torch.Tensor,
|
|
582
|
+
split_k_iters: torch.SymInt,
|
|
583
|
+
thx: int,
|
|
584
|
+
thy: int,
|
|
585
|
+
) -> torch.Tensor:
|
|
586
|
+
in_c = qweight.size(0)
|
|
587
|
+
qout_c = qweight.size(1)
|
|
588
|
+
out_c = qout_c * 8
|
|
589
|
+
return torch.empty((in_c, out_c), dtype=scales.dtype, device=scales.device)
|
|
590
|
+
|
|
591
|
+
@register_fake("_C::awq_gemm")
|
|
592
|
+
def _awq_gemm_fake(
|
|
593
|
+
input: torch.Tensor,
|
|
594
|
+
qweight: torch.Tensor,
|
|
595
|
+
qzeros: torch.Tensor,
|
|
596
|
+
scales: torch.Tensor,
|
|
597
|
+
split_k_iters: torch.SymInt,
|
|
598
|
+
) -> torch.Tensor:
|
|
599
|
+
num_in_feats = input.size(0)
|
|
600
|
+
return torch.empty(
|
|
601
|
+
(split_k_iters, num_in_feats, qweight.size(1) * 8),
|
|
602
|
+
dtype=input.dtype,
|
|
603
|
+
device=input.device,
|
|
604
|
+
).sum(0)
|
|
605
|
+
|
|
606
|
+
@register_fake("_C::machete_mm")
|
|
607
|
+
def machete_mm_fake(
|
|
608
|
+
a: torch.Tensor,
|
|
609
|
+
# b_q Should be the tensor returned by machete_prepack_B
|
|
610
|
+
b_q: torch.Tensor,
|
|
611
|
+
b_type: ScalarType,
|
|
612
|
+
out_type: torch.dtype | None = None,
|
|
613
|
+
b_group_scales: torch.Tensor | None = None,
|
|
614
|
+
b_group_zeros: torch.Tensor | None = None,
|
|
615
|
+
b_group_size: int | None = None,
|
|
616
|
+
b_channel_scales: torch.Tensor | None = None,
|
|
617
|
+
a_token_scales: torch.Tensor | None = None,
|
|
618
|
+
schedule: str | None = None,
|
|
619
|
+
) -> torch.Tensor:
|
|
620
|
+
m = a.size(0)
|
|
621
|
+
n = b_q.size(1)
|
|
622
|
+
return torch.empty((m, n), device=a.device, dtype=a.dtype)
|
|
623
|
+
|
|
624
|
+
@register_fake("_C::machete_prepack_B")
|
|
625
|
+
def machete_prepack_B_fake(
|
|
626
|
+
b_q_weight: torch.Tensor,
|
|
627
|
+
a_type: torch.dtype,
|
|
628
|
+
b_type: ScalarType,
|
|
629
|
+
group_scales_type: torch.dtype | None,
|
|
630
|
+
) -> torch.Tensor:
|
|
631
|
+
return torch.empty_like(b_q_weight, memory_format=torch.contiguous_format)
|
|
632
|
+
|
|
633
|
+
@register_fake("_C::cutlass_w4a8_mm")
|
|
634
|
+
def cutlass_w4a8_mm_fake(
|
|
635
|
+
a: torch.Tensor,
|
|
636
|
+
# b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
|
|
637
|
+
b_q: torch.Tensor,
|
|
638
|
+
b_group_scales: torch.Tensor,
|
|
639
|
+
b_group_size: int,
|
|
640
|
+
b_channel_scales: torch.Tensor,
|
|
641
|
+
a_token_scales: torch.Tensor,
|
|
642
|
+
out_type: torch.dtype | None = None,
|
|
643
|
+
maybe_schedule: str | None = None,
|
|
644
|
+
) -> torch.Tensor:
|
|
645
|
+
m = a.size(0)
|
|
646
|
+
n = b_q.size(1)
|
|
647
|
+
out_dtype = out_type if out_type is not None else torch.bfloat16
|
|
648
|
+
return torch.empty((m, n), device=a.device, dtype=out_dtype)
|
|
649
|
+
|
|
650
|
+
@register_fake("_C::cutlass_pack_scale_fp8")
|
|
651
|
+
def cutlass_pack_scale_fp8_fake(scales: torch.Tensor) -> torch.Tensor:
|
|
652
|
+
return torch.empty_like(scales, memory_format=torch.contiguous_format)
|
|
653
|
+
|
|
654
|
+
@register_fake("_C::cutlass_encode_and_reorder_int4b")
|
|
655
|
+
def cutlass_encode_and_reorder_int4b_fake(b: torch.Tensor) -> torch.Tensor:
|
|
656
|
+
return torch.empty_like(b, memory_format=torch.contiguous_format)
|
|
657
|
+
|
|
658
|
+
|
|
659
|
+
if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
|
|
660
|
+
|
|
661
|
+
@register_fake("_C::allspark_w8a16_gemm")
|
|
662
|
+
def _allspark_w8a16_gemm_fake(
|
|
663
|
+
a: torch.Tensor,
|
|
664
|
+
b_qweight: torch.Tensor,
|
|
665
|
+
b_scales: torch.Tensor,
|
|
666
|
+
b_qzeros: torch.Tensor | None,
|
|
667
|
+
n: torch.SymInt,
|
|
668
|
+
group_size: torch.SymInt,
|
|
669
|
+
sm_count: torch.SymInt,
|
|
670
|
+
sm_version: torch.SymInt,
|
|
671
|
+
CUBLAS_M_THRESHOLD: torch.SymInt,
|
|
672
|
+
has_zp: bool,
|
|
673
|
+
n32k16_reorder: bool,
|
|
674
|
+
) -> torch.Tensor:
|
|
675
|
+
m = a.size(0)
|
|
676
|
+
return torch.empty((m, n), device=a.device, dtype=a.dtype)
|
|
677
|
+
|
|
678
|
+
|
|
679
|
+
if hasattr(torch.ops._C, "ggml_dequantize"):
|
|
680
|
+
|
|
681
|
+
@register_fake("_C::ggml_dequantize")
|
|
682
|
+
def _ggml_dequantize_fake(
|
|
683
|
+
W: torch.Tensor,
|
|
684
|
+
quant_type: int,
|
|
685
|
+
m: torch.SymInt,
|
|
686
|
+
n: torch.SymInt,
|
|
687
|
+
dtype: torch.dtype | None = None,
|
|
688
|
+
) -> torch.Tensor:
|
|
689
|
+
return torch.empty((m, n), dtype=torch.float16, device=W.device)
|
|
690
|
+
|
|
691
|
+
@register_fake("_C::ggml_mul_mat_vec_a8")
|
|
692
|
+
def _ggml_mul_mat_vec_a8_fake(
|
|
693
|
+
W: torch.Tensor,
|
|
694
|
+
X: torch.Tensor,
|
|
695
|
+
quant_type: int,
|
|
696
|
+
row: torch.SymInt,
|
|
697
|
+
) -> torch.Tensor:
|
|
698
|
+
return torch.empty((X.shape[0], row), dtype=X.dtype, device=W.device)
|
|
699
|
+
|
|
700
|
+
@register_fake("_C::ggml_mul_mat_a8")
|
|
701
|
+
def _ggml_mul_mat_a8_fake(
|
|
702
|
+
W: torch.Tensor,
|
|
703
|
+
X: torch.Tensor,
|
|
704
|
+
quant_type: int,
|
|
705
|
+
row: torch.SymInt,
|
|
706
|
+
) -> torch.Tensor:
|
|
707
|
+
batch = X.size(0)
|
|
708
|
+
return torch.empty((batch, row), dtype=X.dtype, device=W.device)
|
|
709
|
+
|
|
710
|
+
@register_fake("_C::ggml_moe_a8")
|
|
711
|
+
def _ggml_moe_a8_fake(
|
|
712
|
+
X: torch.Tensor,
|
|
713
|
+
W: torch.Tensor,
|
|
714
|
+
sorted_token_ids: torch.Tensor,
|
|
715
|
+
expert_ids: torch.Tensor,
|
|
716
|
+
num_tokens_post_padded: torch.Tensor,
|
|
717
|
+
quant_type: int,
|
|
718
|
+
row: torch.SymInt,
|
|
719
|
+
top_k: torch.SymInt,
|
|
720
|
+
tokens: torch.SymInt,
|
|
721
|
+
) -> torch.Tensor:
|
|
722
|
+
tokens = X.size(0)
|
|
723
|
+
return torch.empty((tokens * top_k, row), dtype=torch.float16, device=W.device)
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
|
|
727
|
+
|
|
728
|
+
@register_fake("_C::ggml_moe_a8_vec")
|
|
729
|
+
def _ggml_moe_a8_vec_fake(
|
|
730
|
+
X: torch.Tensor,
|
|
731
|
+
W: torch.Tensor,
|
|
732
|
+
topk_ids: torch.Tensor,
|
|
733
|
+
top_k: int,
|
|
734
|
+
quant_type: int,
|
|
735
|
+
row: torch.SymInt,
|
|
736
|
+
tokens: torch.SymInt,
|
|
737
|
+
) -> torch.Tensor:
|
|
738
|
+
tokens = X.size(0)
|
|
739
|
+
return torch.empty((tokens * top_k, row), dtype=X.dtype, device=W.device)
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
# cutlass
|
|
743
|
+
def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
|
|
744
|
+
return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
|
|
745
|
+
|
|
746
|
+
|
|
747
|
+
def cutlass_blockwise_scaled_grouped_mm(
|
|
748
|
+
output: torch.Tensor,
|
|
749
|
+
a: torch.Tensor,
|
|
750
|
+
b: torch.Tensor,
|
|
751
|
+
scales_a: torch.Tensor,
|
|
752
|
+
scales_b: torch.Tensor,
|
|
753
|
+
problem_sizes: torch.Tensor,
|
|
754
|
+
expert_offsets: torch.Tensor,
|
|
755
|
+
):
|
|
756
|
+
torch.ops._C.cutlass_blockwise_scaled_grouped_mm(
|
|
757
|
+
output, a, b, scales_a, scales_b, problem_sizes, expert_offsets
|
|
758
|
+
)
|
|
759
|
+
|
|
760
|
+
|
|
761
|
+
def cutlass_scaled_fp4_mm(
|
|
762
|
+
a: torch.Tensor,
|
|
763
|
+
b: torch.Tensor,
|
|
764
|
+
block_scale_a: torch.Tensor,
|
|
765
|
+
block_scale_b: torch.Tensor,
|
|
766
|
+
alpha: torch.Tensor,
|
|
767
|
+
out_dtype: torch.dtype,
|
|
768
|
+
) -> torch.Tensor:
|
|
769
|
+
assert a.ndim == 2 and b.ndim == 2
|
|
770
|
+
m, n = a.shape[0], b.shape[0]
|
|
771
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
772
|
+
torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b, alpha)
|
|
773
|
+
return out
|
|
774
|
+
|
|
775
|
+
|
|
776
|
+
def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
|
|
777
|
+
return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
|
|
778
|
+
|
|
779
|
+
|
|
780
|
+
def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
|
|
781
|
+
return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(cuda_device_capability)
|
|
782
|
+
|
|
783
|
+
|
|
784
|
+
def cutlass_scaled_mm(
|
|
785
|
+
a: torch.Tensor,
|
|
786
|
+
b: torch.Tensor,
|
|
787
|
+
scale_a: torch.Tensor,
|
|
788
|
+
scale_b: torch.Tensor,
|
|
789
|
+
out_dtype: torch.dtype,
|
|
790
|
+
bias: torch.Tensor | None = None,
|
|
791
|
+
) -> torch.Tensor:
|
|
792
|
+
"""
|
|
793
|
+
`cutlass_scaled_mm` implements a fused version of
|
|
794
|
+
`output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
|
|
795
|
+
where scale_a * a and scale_b * b are implemented using numpy-style
|
|
796
|
+
broadcasting.
|
|
797
|
+
|
|
798
|
+
In order to support blockwise scaling like found in DeepSeek V3 we also
|
|
799
|
+
support extended "group" broadcast rules. We extend the numpy-style
|
|
800
|
+
broadcasting rules with the following rule:
|
|
801
|
+
"if the extent of a dimension in the source shape is between 1 and
|
|
802
|
+
corresponding extent in the target shape we repeat each element along
|
|
803
|
+
that dimension src_shape[dim] // target_shape[dim] times consecutively"
|
|
804
|
+
example if we have:
|
|
805
|
+
a = [[1, 2], and target_shape = (2, 4)
|
|
806
|
+
[3, 4]]
|
|
807
|
+
then we would expand a to:
|
|
808
|
+
a = [[1, 1, 2, 2],
|
|
809
|
+
[3, 3, 4, 4]]
|
|
810
|
+
currently we only support the case:
|
|
811
|
+
scale_a.shape * [1, 128] == a.shape
|
|
812
|
+
scale_b.shape * [128, 128] == b.shape
|
|
813
|
+
"""
|
|
814
|
+
assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
|
|
815
|
+
assert bias is None or bias.numel() == b.shape[1] and bias.dtype == out_dtype
|
|
816
|
+
|
|
817
|
+
# Massage the input to be 2D
|
|
818
|
+
target_shape = (*a.shape[:-1], b.shape[1])
|
|
819
|
+
a = a.view(-1, a.shape[-1])
|
|
820
|
+
|
|
821
|
+
cutlass_compatible_b = b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
|
|
822
|
+
if current_platform.is_rocm() or not cutlass_compatible_b:
|
|
823
|
+
from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
|
|
824
|
+
triton_scaled_mm,
|
|
825
|
+
)
|
|
826
|
+
|
|
827
|
+
out = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
828
|
+
else:
|
|
829
|
+
out = torch.empty((a.shape[0], b.shape[1]), dtype=out_dtype, device=a.device)
|
|
830
|
+
torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
|
|
831
|
+
|
|
832
|
+
return out.view(*target_shape)
|
|
833
|
+
|
|
834
|
+
|
|
835
|
+
def cutlass_scaled_mm_azp(
|
|
836
|
+
a: torch.Tensor,
|
|
837
|
+
b: torch.Tensor,
|
|
838
|
+
scale_a: torch.Tensor,
|
|
839
|
+
scale_b: torch.Tensor,
|
|
840
|
+
out_dtype: torch.dtype,
|
|
841
|
+
azp_adj: torch.Tensor,
|
|
842
|
+
azp: torch.Tensor | None = None,
|
|
843
|
+
bias: torch.Tensor | None = None,
|
|
844
|
+
) -> torch.Tensor:
|
|
845
|
+
"""
|
|
846
|
+
:param azp_adj: In the per-tensor case, this should include the azp.
|
|
847
|
+
Always per-channel.
|
|
848
|
+
:param azp: Only set in the per-token case. Per-token if set.
|
|
849
|
+
"""
|
|
850
|
+
assert b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
|
|
851
|
+
assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
|
|
852
|
+
assert bias is None or bias.numel() == b.shape[1] and bias.dtype == out_dtype
|
|
853
|
+
|
|
854
|
+
# Massage the input to be 2D
|
|
855
|
+
target_shape = (*a.shape[:-1], b.shape[1])
|
|
856
|
+
a = a.view(-1, a.shape[-1])
|
|
857
|
+
assert azp is None or azp.numel() == a.shape[0]
|
|
858
|
+
|
|
859
|
+
out = torch.empty((a.shape[0], b.shape[1]), dtype=out_dtype, device=a.device)
|
|
860
|
+
torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj, azp, bias)
|
|
861
|
+
return out.view(*target_shape)
|
|
862
|
+
|
|
863
|
+
|
|
864
|
+
def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
|
|
865
|
+
return torch.ops._C.cutlass_sparse_scaled_mm_supported(cuda_device_capability)
|
|
866
|
+
|
|
867
|
+
|
|
868
|
+
def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
|
|
869
|
+
try:
|
|
870
|
+
return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
|
|
871
|
+
except AttributeError:
|
|
872
|
+
# Return False on non-CUDA platforms where it is not available
|
|
873
|
+
return False
|
|
874
|
+
|
|
875
|
+
|
|
876
|
+
def cutlass_sparse_compress(a: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
877
|
+
"""
|
|
878
|
+
Compresses a sparse matrix for use with Cutlass sparse operations.
|
|
879
|
+
|
|
880
|
+
This function takes a dense tensor and compresses it into two components:
|
|
881
|
+
non-zero elements and metadata. The compressed representation is compatible
|
|
882
|
+
with Cutlass sparse kernels.
|
|
883
|
+
|
|
884
|
+
Args:
|
|
885
|
+
a (torch.Tensor):
|
|
886
|
+
The input tensor to be compressed. Must have one of the following data types:
|
|
887
|
+
- `torch.int8`
|
|
888
|
+
- `torch.float8_e4m3fn`
|
|
889
|
+
- `torch.bfloat16`
|
|
890
|
+
- `torch.float16`
|
|
891
|
+
|
|
892
|
+
Returns:
|
|
893
|
+
tuple[torch.Tensor, torch.Tensor]:
|
|
894
|
+
A tuple containing:
|
|
895
|
+
- `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
|
|
896
|
+
- `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
|
|
897
|
+
|
|
898
|
+
Raises:
|
|
899
|
+
ValueError: If the compression operation fails.
|
|
900
|
+
|
|
901
|
+
Notes:
|
|
902
|
+
- The `a_meta` tensor has a data type of `torch.uint8`.
|
|
903
|
+
- Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
|
|
904
|
+
- The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
|
|
905
|
+
- The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
|
|
906
|
+
"""
|
|
907
|
+
assert a.dtype in [torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16]
|
|
908
|
+
assert a.is_contiguous()
|
|
909
|
+
|
|
910
|
+
# a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
|
|
911
|
+
elemsPerMetaElem = 4
|
|
912
|
+
assert a.shape[1] % (2 * elemsPerMetaElem) == 0
|
|
913
|
+
|
|
914
|
+
return torch.ops._C.cutlass_sparse_compress(a)
|
|
915
|
+
|
|
916
|
+
|
|
917
|
+
def cutlass_scaled_sparse_mm(
|
|
918
|
+
a: torch.Tensor,
|
|
919
|
+
bt_nzs: torch.Tensor,
|
|
920
|
+
bt_meta: torch.Tensor,
|
|
921
|
+
scale_a: torch.Tensor,
|
|
922
|
+
scale_b: torch.Tensor,
|
|
923
|
+
out_dtype: torch.dtype,
|
|
924
|
+
bias: torch.Tensor | None = None,
|
|
925
|
+
) -> torch.Tensor:
|
|
926
|
+
"""
|
|
927
|
+
Performs a scaled sparse matrix multiplication using Cutlass.
|
|
928
|
+
|
|
929
|
+
Steps:
|
|
930
|
+
1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
|
|
931
|
+
`a = torch.randn((m, k), device='cuda')`.
|
|
932
|
+
|
|
933
|
+
2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
|
|
934
|
+
`b = torch.randn((k, n), device='cuda')`.
|
|
935
|
+
|
|
936
|
+
3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
|
|
937
|
+
`b = prune_to_2_4(b, dim=0)`.
|
|
938
|
+
|
|
939
|
+
4. Compress the transposed sparse matrix `b.t()`:
|
|
940
|
+
`bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
|
|
941
|
+
|
|
942
|
+
5. Perform sparse matrix multiplication using the compressed matrix,
|
|
943
|
+
applying scaling factors for `a` and `b`, and the output data type:
|
|
944
|
+
`out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
|
|
945
|
+
|
|
946
|
+
Returns:
|
|
947
|
+
- The result of the scaled sparse matrix multiplication.
|
|
948
|
+
"""
|
|
949
|
+
assert bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0
|
|
950
|
+
assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
|
|
951
|
+
assert bias is None or bias.shape[0] == bt_nzs.shape[0] and bias.dtype == out_dtype
|
|
952
|
+
|
|
953
|
+
m = a.shape[0]
|
|
954
|
+
n = bt_nzs.shape[0]
|
|
955
|
+
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
|
|
956
|
+
|
|
957
|
+
torch.ops._C.cutlass_scaled_sparse_mm(
|
|
958
|
+
out, a, bt_nzs, bt_meta, scale_a, scale_b, bias
|
|
959
|
+
)
|
|
960
|
+
|
|
961
|
+
return out
|
|
962
|
+
|
|
963
|
+
|
|
964
|
+
def get_cutlass_moe_mm_data(
|
|
965
|
+
topk_ids: torch.Tensor,
|
|
966
|
+
expert_offsets: torch.Tensor,
|
|
967
|
+
problem_sizes1: torch.Tensor,
|
|
968
|
+
problem_sizes2: torch.Tensor,
|
|
969
|
+
input_permutation: torch.Tensor,
|
|
970
|
+
output_permutation: torch.Tensor,
|
|
971
|
+
num_experts: int,
|
|
972
|
+
n: int,
|
|
973
|
+
k: int,
|
|
974
|
+
blockscale_offsets: torch.Tensor | None = None,
|
|
975
|
+
):
|
|
976
|
+
"""
|
|
977
|
+
Prepare data necessary to perform CUTLASS grouped matrix multiplications
|
|
978
|
+
used in CUTLASS-based fused MoE.
|
|
979
|
+
|
|
980
|
+
The function takes in topk_ids (token-expert mapping) and uses it to
|
|
981
|
+
compute:
|
|
982
|
+
- expert_offsets: Indices that mark at which token index each expert begins
|
|
983
|
+
its computation after the input is sorted with
|
|
984
|
+
input_permutation. The number of tokens computed with
|
|
985
|
+
expert E is expert_offsets[E + 1] - expert_offsets[E]
|
|
986
|
+
- problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
|
|
987
|
+
multiplication in two grouped MMs used in
|
|
988
|
+
the fused MoE operation.
|
|
989
|
+
- input_permutation: Permutation that must be used to shuffle the input
|
|
990
|
+
before executing the MMs.
|
|
991
|
+
- output_permutation: Permutation that must be used to shuffle the output
|
|
992
|
+
after executing the MMs.
|
|
993
|
+
- blockscale_offsets: Optional argument passed for fp4 moe. Indices that
|
|
994
|
+
mark at which block scale index each expert begins
|
|
995
|
+
its computation. The number of block scale rows
|
|
996
|
+
computed with expert E is blockscale_offsets[E + 1] -
|
|
997
|
+
blockscale_offsets[E]
|
|
998
|
+
"""
|
|
999
|
+
return torch.ops._C.get_cutlass_moe_mm_data(
|
|
1000
|
+
topk_ids,
|
|
1001
|
+
expert_offsets,
|
|
1002
|
+
problem_sizes1,
|
|
1003
|
+
problem_sizes2,
|
|
1004
|
+
input_permutation,
|
|
1005
|
+
output_permutation,
|
|
1006
|
+
num_experts,
|
|
1007
|
+
n,
|
|
1008
|
+
k,
|
|
1009
|
+
blockscale_offsets,
|
|
1010
|
+
)
|
|
1011
|
+
|
|
1012
|
+
|
|
1013
|
+
def get_cutlass_moe_mm_problem_sizes(
|
|
1014
|
+
topk_ids: torch.Tensor,
|
|
1015
|
+
problem_sizes1: torch.Tensor,
|
|
1016
|
+
problem_sizes2: torch.Tensor,
|
|
1017
|
+
num_experts: int,
|
|
1018
|
+
n: int,
|
|
1019
|
+
k: int,
|
|
1020
|
+
blockscale_offsets: torch.Tensor | None = None,
|
|
1021
|
+
):
|
|
1022
|
+
"""
|
|
1023
|
+
Compute only the per-expert problem sizes needed by the two grouped matrix
|
|
1024
|
+
multiplications used in CUTLASS-based fused MoE.
|
|
1025
|
+
|
|
1026
|
+
The function takes in topk_ids (token→expert mapping) and computes:
|
|
1027
|
+
- problem_sizes1, problem_sizes2: M×N×K sizes of each expert's
|
|
1028
|
+
multiplication for the two grouped MMs
|
|
1029
|
+
used in the fused MoE operation.
|
|
1030
|
+
"""
|
|
1031
|
+
return torch.ops._C.get_cutlass_moe_mm_problem_sizes(
|
|
1032
|
+
topk_ids, problem_sizes1, problem_sizes2, num_experts, n, k, blockscale_offsets
|
|
1033
|
+
)
|
|
1034
|
+
|
|
1035
|
+
|
|
1036
|
+
def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
|
|
1037
|
+
"""
|
|
1038
|
+
Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
|
|
1039
|
+
This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
|
|
1040
|
+
"""
|
|
1041
|
+
num_tokens_permuted = dst2src_map.shape[0]
|
|
1042
|
+
output_tensor = torch.empty(
|
|
1043
|
+
(num_tokens_permuted, input_tensor.shape[1]),
|
|
1044
|
+
device=input_tensor.device,
|
|
1045
|
+
dtype=input_tensor.dtype,
|
|
1046
|
+
)
|
|
1047
|
+
torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
|
|
1048
|
+
return output_tensor
|
|
1049
|
+
|
|
1050
|
+
|
|
1051
|
+
def get_cutlass_pplx_moe_mm_data(
|
|
1052
|
+
expert_offsets: torch.Tensor,
|
|
1053
|
+
problem_sizes1: torch.Tensor,
|
|
1054
|
+
problem_sizes2: torch.Tensor,
|
|
1055
|
+
expert_num_tokens: torch.Tensor,
|
|
1056
|
+
num_local_experts: int,
|
|
1057
|
+
padded_m: int,
|
|
1058
|
+
n: int,
|
|
1059
|
+
k: int,
|
|
1060
|
+
):
|
|
1061
|
+
"""
|
|
1062
|
+
Prepare data necessary to perform CUTLASS grouped matrix multiplications
|
|
1063
|
+
used in CUTLASS-based fused MoE.
|
|
1064
|
+
|
|
1065
|
+
The function takes in expert_num_tokens (token count per expert) and
|
|
1066
|
+
non_zero_expert_idxs (consecutive indices of experts with non-zero token
|
|
1067
|
+
counts) and uses them to compute:
|
|
1068
|
+
- expert_offsets: Indices that mark at which token index each expert begins
|
|
1069
|
+
its computation.
|
|
1070
|
+
- problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
|
|
1071
|
+
multiplication in two grouped MMs used in
|
|
1072
|
+
the fused MoE operation.
|
|
1073
|
+
"""
|
|
1074
|
+
return torch.ops._C.get_cutlass_pplx_moe_mm_data(
|
|
1075
|
+
expert_offsets,
|
|
1076
|
+
problem_sizes1,
|
|
1077
|
+
problem_sizes2,
|
|
1078
|
+
expert_num_tokens,
|
|
1079
|
+
num_local_experts,
|
|
1080
|
+
padded_m,
|
|
1081
|
+
n,
|
|
1082
|
+
k,
|
|
1083
|
+
)
|
|
1084
|
+
|
|
1085
|
+
|
|
1086
|
+
def cutlass_moe_mm(
|
|
1087
|
+
out_tensors: torch.Tensor,
|
|
1088
|
+
a_tensors: torch.Tensor,
|
|
1089
|
+
b_tensors: torch.Tensor,
|
|
1090
|
+
a_scales: torch.Tensor,
|
|
1091
|
+
b_scales: torch.Tensor,
|
|
1092
|
+
expert_offsets: torch.Tensor,
|
|
1093
|
+
problem_sizes: torch.Tensor,
|
|
1094
|
+
a_strides: torch.Tensor,
|
|
1095
|
+
b_strides: torch.Tensor,
|
|
1096
|
+
c_strides: torch.Tensor,
|
|
1097
|
+
per_act_token: bool,
|
|
1098
|
+
per_out_ch: bool,
|
|
1099
|
+
):
|
|
1100
|
+
"""
|
|
1101
|
+
A single grouped matrix multiplication used in CUTLASS-based fused MoE.
|
|
1102
|
+
The function executes fp8-quantized OUT = AB matrix multiplication.
|
|
1103
|
+
|
|
1104
|
+
- expert_offsets: Indices that mark at which token index each expert begins
|
|
1105
|
+
its computation. The number of tokens computed with
|
|
1106
|
+
expert E is expert_offsets[E + 1] - expert_offsets[E]
|
|
1107
|
+
- problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
|
|
1108
|
+
MMs used in the fused MoE operation.
|
|
1109
|
+
- a/b/c_strides: The data strides passed to grouped matrix multiplication.
|
|
1110
|
+
"""
|
|
1111
|
+
return torch.ops._C.cutlass_moe_mm(
|
|
1112
|
+
out_tensors,
|
|
1113
|
+
a_tensors,
|
|
1114
|
+
b_tensors,
|
|
1115
|
+
a_scales,
|
|
1116
|
+
b_scales,
|
|
1117
|
+
expert_offsets,
|
|
1118
|
+
problem_sizes,
|
|
1119
|
+
a_strides,
|
|
1120
|
+
b_strides,
|
|
1121
|
+
c_strides,
|
|
1122
|
+
per_act_token,
|
|
1123
|
+
per_out_ch,
|
|
1124
|
+
)
|
|
1125
|
+
|
|
1126
|
+
|
|
1127
|
+
def cutlass_fp4_moe_mm(
|
|
1128
|
+
out_tensors: torch.Tensor,
|
|
1129
|
+
a_tensors: torch.Tensor,
|
|
1130
|
+
b_tensors: torch.Tensor,
|
|
1131
|
+
a_scales: torch.Tensor,
|
|
1132
|
+
b_scales: torch.Tensor,
|
|
1133
|
+
alphas: torch.Tensor,
|
|
1134
|
+
problem_sizes: torch.Tensor,
|
|
1135
|
+
expert_offsets: torch.Tensor,
|
|
1136
|
+
sf_offsets: torch.Tensor,
|
|
1137
|
+
):
|
|
1138
|
+
"""
|
|
1139
|
+
An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
|
|
1140
|
+
the gemms for each combination based on the specified problem sizes.
|
|
1141
|
+
|
|
1142
|
+
This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
|
|
1143
|
+
- a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
|
|
1144
|
+
input and expert weights.
|
|
1145
|
+
- a_/b_scales: The blockscales in FP8-E4M3 precision
|
|
1146
|
+
- expert_offsets/sf_offsets: Indices that mark at which token index
|
|
1147
|
+
each expert begins its computation. The number of tokens
|
|
1148
|
+
computed with expert E is expert_offsets[E + 1] -
|
|
1149
|
+
expert_offsets[E] And the sf_size per expert is
|
|
1150
|
+
sf_offset[E+1] - sf_offset[E]
|
|
1151
|
+
- problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
|
|
1152
|
+
MMs used in the fused MoE operation.
|
|
1153
|
+
"""
|
|
1154
|
+
return torch.ops._C.cutlass_fp4_group_mm(
|
|
1155
|
+
out_tensors,
|
|
1156
|
+
a_tensors,
|
|
1157
|
+
b_tensors,
|
|
1158
|
+
a_scales,
|
|
1159
|
+
b_scales,
|
|
1160
|
+
alphas,
|
|
1161
|
+
problem_sizes,
|
|
1162
|
+
expert_offsets,
|
|
1163
|
+
sf_offsets,
|
|
1164
|
+
)
|
|
1165
|
+
|
|
1166
|
+
|
|
1167
|
+
# gptq_marlin
|
|
1168
|
+
def gptq_marlin_repack(
|
|
1169
|
+
b_q_weight: torch.Tensor,
|
|
1170
|
+
perm: torch.Tensor,
|
|
1171
|
+
size_k: int,
|
|
1172
|
+
size_n: int,
|
|
1173
|
+
num_bits: int,
|
|
1174
|
+
is_a_8bit: bool = False,
|
|
1175
|
+
) -> torch.Tensor:
|
|
1176
|
+
return torch.ops._C.gptq_marlin_repack(
|
|
1177
|
+
b_q_weight, perm, size_k, size_n, num_bits, is_a_8bit
|
|
1178
|
+
)
|
|
1179
|
+
|
|
1180
|
+
|
|
1181
|
+
if hasattr(torch.ops._C, "gptq_marlin_repack"):
|
|
1182
|
+
|
|
1183
|
+
@register_fake("_C::gptq_marlin_repack")
|
|
1184
|
+
def _gptq_marlin_repack_fake(
|
|
1185
|
+
b_q_weight: torch.Tensor,
|
|
1186
|
+
perm: torch.Tensor,
|
|
1187
|
+
size_k: torch.SymInt,
|
|
1188
|
+
size_n: torch.SymInt,
|
|
1189
|
+
num_bits: int,
|
|
1190
|
+
is_a_8bit: bool = False,
|
|
1191
|
+
) -> torch.Tensor:
|
|
1192
|
+
pack_factor = 32 // num_bits
|
|
1193
|
+
marlin_tile_size = 16
|
|
1194
|
+
return torch.empty(
|
|
1195
|
+
(size_k // marlin_tile_size, size_n * marlin_tile_size // pack_factor),
|
|
1196
|
+
dtype=b_q_weight.dtype,
|
|
1197
|
+
device=b_q_weight.device,
|
|
1198
|
+
)
|
|
1199
|
+
|
|
1200
|
+
|
|
1201
|
+
# awq_marlin
|
|
1202
|
+
def awq_marlin_repack(
|
|
1203
|
+
b_q_weight: torch.Tensor,
|
|
1204
|
+
size_k: int,
|
|
1205
|
+
size_n: int,
|
|
1206
|
+
num_bits: int,
|
|
1207
|
+
is_a_8bit: bool = False,
|
|
1208
|
+
) -> torch.Tensor:
|
|
1209
|
+
return torch.ops._C.awq_marlin_repack(
|
|
1210
|
+
b_q_weight, size_k, size_n, num_bits, is_a_8bit
|
|
1211
|
+
)
|
|
1212
|
+
|
|
1213
|
+
|
|
1214
|
+
if hasattr(torch.ops._C, "awq_marlin_repack"):
|
|
1215
|
+
|
|
1216
|
+
@register_fake("_C::awq_marlin_repack")
|
|
1217
|
+
def _awq_marlin_repack_fake(
|
|
1218
|
+
b_q_weight: torch.Tensor,
|
|
1219
|
+
size_k: torch.SymInt,
|
|
1220
|
+
size_n: torch.SymInt,
|
|
1221
|
+
num_bits: int,
|
|
1222
|
+
is_a_8bit: bool = False,
|
|
1223
|
+
) -> torch.Tensor:
|
|
1224
|
+
pack_factor = 32 // num_bits
|
|
1225
|
+
marlin_tile_size = 16
|
|
1226
|
+
return torch.empty(
|
|
1227
|
+
(size_k // marlin_tile_size, size_n * marlin_tile_size // pack_factor),
|
|
1228
|
+
dtype=b_q_weight.dtype,
|
|
1229
|
+
device=b_q_weight.device,
|
|
1230
|
+
)
|
|
1231
|
+
|
|
1232
|
+
|
|
1233
|
+
def gptq_marlin_moe_repack(
|
|
1234
|
+
b_q_weight: torch.Tensor,
|
|
1235
|
+
perm: torch.Tensor,
|
|
1236
|
+
size_k: int,
|
|
1237
|
+
size_n: int,
|
|
1238
|
+
num_bits: int,
|
|
1239
|
+
is_a_8bit: bool = False,
|
|
1240
|
+
) -> torch.Tensor:
|
|
1241
|
+
num_experts = b_q_weight.shape[0]
|
|
1242
|
+
assert size_k % 16 == 0
|
|
1243
|
+
output = torch.empty(
|
|
1244
|
+
(num_experts, size_k // 16, size_n * (num_bits // 2)),
|
|
1245
|
+
device=b_q_weight.device,
|
|
1246
|
+
dtype=b_q_weight.dtype,
|
|
1247
|
+
)
|
|
1248
|
+
for e in range(num_experts):
|
|
1249
|
+
output[e] = torch.ops._C.gptq_marlin_repack(
|
|
1250
|
+
b_q_weight[e], perm[e], size_k, size_n, num_bits, is_a_8bit
|
|
1251
|
+
)
|
|
1252
|
+
return output
|
|
1253
|
+
|
|
1254
|
+
|
|
1255
|
+
def awq_marlin_moe_repack(
|
|
1256
|
+
b_q_weight: torch.Tensor,
|
|
1257
|
+
perm: torch.Tensor,
|
|
1258
|
+
size_k: int,
|
|
1259
|
+
size_n: int,
|
|
1260
|
+
num_bits: int,
|
|
1261
|
+
is_a_8bit: bool = False,
|
|
1262
|
+
) -> torch.Tensor:
|
|
1263
|
+
num_experts = b_q_weight.shape[0]
|
|
1264
|
+
assert size_k % 16 == 0
|
|
1265
|
+
output = torch.empty(
|
|
1266
|
+
(num_experts, size_k // 16, size_n * (num_bits // 2)),
|
|
1267
|
+
device=b_q_weight.device,
|
|
1268
|
+
dtype=b_q_weight.dtype,
|
|
1269
|
+
)
|
|
1270
|
+
for e in range(num_experts):
|
|
1271
|
+
output[e] = torch.ops._C.awq_marlin_repack(
|
|
1272
|
+
b_q_weight[e], size_k, size_n, num_bits, is_a_8bit
|
|
1273
|
+
)
|
|
1274
|
+
return output
|
|
1275
|
+
|
|
1276
|
+
|
|
1277
|
+
def marlin_int4_fp8_preprocess(
|
|
1278
|
+
qweight: torch.Tensor,
|
|
1279
|
+
qzeros_or_none: torch.Tensor | None = None,
|
|
1280
|
+
inplace: bool = False,
|
|
1281
|
+
):
|
|
1282
|
+
return torch.ops._C.marlin_int4_fp8_preprocess(qweight, qzeros_or_none, inplace)
|
|
1283
|
+
|
|
1284
|
+
|
|
1285
|
+
def gptq_marlin_gemm(
|
|
1286
|
+
a: torch.Tensor,
|
|
1287
|
+
c: torch.Tensor | None,
|
|
1288
|
+
b_q_weight: torch.Tensor,
|
|
1289
|
+
b_bias: torch.Tensor | None,
|
|
1290
|
+
b_scales: torch.Tensor,
|
|
1291
|
+
a_scales: torch.Tensor | None,
|
|
1292
|
+
global_scale: torch.Tensor | None,
|
|
1293
|
+
b_zeros: torch.Tensor | None,
|
|
1294
|
+
g_idx: torch.Tensor | None,
|
|
1295
|
+
perm: torch.Tensor | None,
|
|
1296
|
+
workspace: torch.Tensor,
|
|
1297
|
+
b_q_type: ScalarType,
|
|
1298
|
+
size_m: int,
|
|
1299
|
+
size_n: int,
|
|
1300
|
+
size_k: int,
|
|
1301
|
+
is_k_full: bool = True,
|
|
1302
|
+
use_atomic_add: bool = False,
|
|
1303
|
+
use_fp32_reduce: bool = False,
|
|
1304
|
+
is_zp_float: bool = False,
|
|
1305
|
+
) -> torch.Tensor:
|
|
1306
|
+
return torch.ops._C.gptq_marlin_gemm(
|
|
1307
|
+
a,
|
|
1308
|
+
c,
|
|
1309
|
+
b_q_weight,
|
|
1310
|
+
b_bias,
|
|
1311
|
+
b_scales,
|
|
1312
|
+
a_scales,
|
|
1313
|
+
global_scale,
|
|
1314
|
+
b_zeros,
|
|
1315
|
+
g_idx,
|
|
1316
|
+
perm,
|
|
1317
|
+
workspace,
|
|
1318
|
+
b_q_type.id,
|
|
1319
|
+
size_m,
|
|
1320
|
+
size_n,
|
|
1321
|
+
size_k,
|
|
1322
|
+
is_k_full,
|
|
1323
|
+
use_atomic_add,
|
|
1324
|
+
use_fp32_reduce,
|
|
1325
|
+
is_zp_float,
|
|
1326
|
+
)
|
|
1327
|
+
|
|
1328
|
+
|
|
1329
|
+
# machete
|
|
1330
|
+
def machete_supported_schedules(
|
|
1331
|
+
a_type: torch.dtype,
|
|
1332
|
+
b_type: ScalarType,
|
|
1333
|
+
group_scales_type: torch.dtype | None,
|
|
1334
|
+
group_zeros_type: torch.dtype | None = None,
|
|
1335
|
+
channel_scales_type: torch.dtype | None = None,
|
|
1336
|
+
token_scales_type: torch.dtype | None = None,
|
|
1337
|
+
out_type: torch.dtype | None = None,
|
|
1338
|
+
) -> list[str]:
|
|
1339
|
+
return torch.ops._C.machete_supported_schedules(
|
|
1340
|
+
a_type,
|
|
1341
|
+
b_type.id,
|
|
1342
|
+
group_scales_type,
|
|
1343
|
+
group_zeros_type,
|
|
1344
|
+
channel_scales_type,
|
|
1345
|
+
token_scales_type,
|
|
1346
|
+
out_type,
|
|
1347
|
+
)
|
|
1348
|
+
|
|
1349
|
+
|
|
1350
|
+
def machete_mm(
|
|
1351
|
+
a: torch.Tensor,
|
|
1352
|
+
# b_q Should be the tensor returned by machete_prepack_B
|
|
1353
|
+
b_q: torch.Tensor,
|
|
1354
|
+
b_type: ScalarType,
|
|
1355
|
+
out_type: torch.dtype | None = None,
|
|
1356
|
+
b_group_scales: torch.Tensor | None = None,
|
|
1357
|
+
b_group_zeros: torch.Tensor | None = None,
|
|
1358
|
+
b_group_size: int | None = None,
|
|
1359
|
+
b_channel_scales: torch.Tensor | None = None,
|
|
1360
|
+
a_token_scales: torch.Tensor | None = None,
|
|
1361
|
+
schedule: str | None = None,
|
|
1362
|
+
) -> torch.Tensor:
|
|
1363
|
+
return torch.ops._C.machete_mm(
|
|
1364
|
+
a,
|
|
1365
|
+
b_q,
|
|
1366
|
+
b_type.id,
|
|
1367
|
+
out_type,
|
|
1368
|
+
b_group_scales,
|
|
1369
|
+
b_group_zeros,
|
|
1370
|
+
b_group_size,
|
|
1371
|
+
b_channel_scales,
|
|
1372
|
+
a_token_scales,
|
|
1373
|
+
schedule,
|
|
1374
|
+
)
|
|
1375
|
+
|
|
1376
|
+
|
|
1377
|
+
def machete_prepack_B(
|
|
1378
|
+
b_q_weight: torch.Tensor,
|
|
1379
|
+
a_type: torch.dtype,
|
|
1380
|
+
b_type: ScalarType,
|
|
1381
|
+
group_scales_type: torch.dtype | None,
|
|
1382
|
+
) -> torch.Tensor:
|
|
1383
|
+
return torch.ops._C.machete_prepack_B(
|
|
1384
|
+
b_q_weight, a_type, b_type.id, group_scales_type
|
|
1385
|
+
)
|
|
1386
|
+
|
|
1387
|
+
|
|
1388
|
+
# CUTLASS W4A8
|
|
1389
|
+
def cutlass_w4a8_mm(
|
|
1390
|
+
a: torch.Tensor,
|
|
1391
|
+
# b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
|
|
1392
|
+
b_q: torch.Tensor,
|
|
1393
|
+
b_group_scales: torch.Tensor,
|
|
1394
|
+
b_group_size: int,
|
|
1395
|
+
b_channel_scales: torch.Tensor,
|
|
1396
|
+
a_token_scales: torch.Tensor,
|
|
1397
|
+
out_type: torch.dtype | None = None,
|
|
1398
|
+
maybe_schedule: str | None = None,
|
|
1399
|
+
) -> torch.Tensor:
|
|
1400
|
+
return torch.ops._C.cutlass_w4a8_mm(
|
|
1401
|
+
a,
|
|
1402
|
+
b_q,
|
|
1403
|
+
b_group_scales,
|
|
1404
|
+
b_group_size,
|
|
1405
|
+
b_channel_scales,
|
|
1406
|
+
a_token_scales,
|
|
1407
|
+
out_type,
|
|
1408
|
+
maybe_schedule,
|
|
1409
|
+
)
|
|
1410
|
+
|
|
1411
|
+
|
|
1412
|
+
def cutlass_pack_scale_fp8(scales: torch.Tensor) -> torch.Tensor:
|
|
1413
|
+
return torch.ops._C.cutlass_pack_scale_fp8(scales)
|
|
1414
|
+
|
|
1415
|
+
|
|
1416
|
+
def cutlass_encode_and_reorder_int4b(b: torch.Tensor) -> torch.Tensor:
|
|
1417
|
+
return torch.ops._C.cutlass_encode_and_reorder_int4b(b)
|
|
1418
|
+
|
|
1419
|
+
|
|
1420
|
+
if hasattr(torch.ops._C, "permute_cols"):
|
|
1421
|
+
|
|
1422
|
+
@register_fake("_C::permute_cols")
|
|
1423
|
+
def _permute_cols_fake(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
|
|
1424
|
+
return torch.empty_like(a)
|
|
1425
|
+
|
|
1426
|
+
|
|
1427
|
+
def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
|
|
1428
|
+
return torch.ops._C.permute_cols(a, perm)
|
|
1429
|
+
|
|
1430
|
+
|
|
1431
|
+
# fp4
|
|
1432
|
+
def scaled_fp4_quant(
|
|
1433
|
+
input: torch.Tensor, input_global_scale: torch.Tensor
|
|
1434
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1435
|
+
"""
|
|
1436
|
+
Quantize input tensor to FP4 and return quantized tensor and scale.
|
|
1437
|
+
|
|
1438
|
+
This function quantizes the last dimension of the given tensor `input`. For
|
|
1439
|
+
every 16 consecutive elements, a single dynamically computed scaling factor
|
|
1440
|
+
is shared. This scaling factor is quantized using the `input_global_scale`
|
|
1441
|
+
and is stored in a swizzled layout (see
|
|
1442
|
+
https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
|
|
1443
|
+
|
|
1444
|
+
Args:
|
|
1445
|
+
input: The input tensor to be quantized to FP4
|
|
1446
|
+
input_global_scale: A scalar scaling factor for the entire tensor.
|
|
1447
|
+
|
|
1448
|
+
Returns:
|
|
1449
|
+
tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
|
|
1450
|
+
two values are packed into a uint8 and float8_e4m3 scaling factors
|
|
1451
|
+
in the sizzled layout.
|
|
1452
|
+
"""
|
|
1453
|
+
assert not current_platform.is_rocm()
|
|
1454
|
+
assert input.ndim >= 1, f"input.ndim needs to be >= 1, but got {input.ndim}."
|
|
1455
|
+
other_dims = 1 if input.ndim == 1 else -1
|
|
1456
|
+
input = input.reshape(other_dims, input.shape[-1])
|
|
1457
|
+
m, n = input.shape
|
|
1458
|
+
block_size = 16
|
|
1459
|
+
device = input.device
|
|
1460
|
+
|
|
1461
|
+
assert n % block_size == 0, f"last dim has to be multiple of 16, but got {n}."
|
|
1462
|
+
assert input.dtype in (torch.float16, torch.bfloat16), (
|
|
1463
|
+
f"input.dtype needs to be fp16 or bf16 but got {input.dtype}."
|
|
1464
|
+
)
|
|
1465
|
+
|
|
1466
|
+
# Two fp4 values will be packed into an uint8.
|
|
1467
|
+
output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
|
|
1468
|
+
|
|
1469
|
+
# We use the rounded values to store the swizzled values. Due to the
|
|
1470
|
+
# requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
|
|
1471
|
+
# So, we first pad the scales to multiples of 128 and 4. Then, the scales
|
|
1472
|
+
# (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
|
|
1473
|
+
# https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
|
|
1474
|
+
round_up = lambda x, y: (x + y - 1) // y * y
|
|
1475
|
+
rounded_m = round_up(m, 128)
|
|
1476
|
+
scale_n = n // block_size
|
|
1477
|
+
rounded_n = round_up(scale_n, 4)
|
|
1478
|
+
output_scale = torch.empty(
|
|
1479
|
+
(rounded_m, rounded_n // 4), device=device, dtype=torch.int32
|
|
1480
|
+
)
|
|
1481
|
+
|
|
1482
|
+
torch.ops._C.scaled_fp4_quant(output, input, output_scale, input_global_scale)
|
|
1483
|
+
output_scale = output_scale.view(torch.float8_e4m3fn)
|
|
1484
|
+
return output, output_scale
|
|
1485
|
+
|
|
1486
|
+
|
|
1487
|
+
def scaled_fp4_experts_quant(
|
|
1488
|
+
input_tensor: torch.Tensor,
|
|
1489
|
+
input_global_scale: torch.Tensor,
|
|
1490
|
+
expert_offsets: torch.Tensor,
|
|
1491
|
+
blockscale_offsets: torch.Tensor,
|
|
1492
|
+
topk: int,
|
|
1493
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1494
|
+
"""
|
|
1495
|
+
Quantize input tensor to FP4 and return quantized tensor and scale, for
|
|
1496
|
+
packed MoE Inputs.
|
|
1497
|
+
Args:
|
|
1498
|
+
input_tensor: The input tensor to be quantized to FP4
|
|
1499
|
+
input_global_scale: A scalar scaling factor for the entire tensor.
|
|
1500
|
+
expert_offsets: The expert offsets tensor
|
|
1501
|
+
blockscale_offsets: The blockscale offsets tensor
|
|
1502
|
+
Outputs:
|
|
1503
|
+
output: The quantized tensor in FP4
|
|
1504
|
+
output_scales: The blockscale tensor in FP8-E4M3
|
|
1505
|
+
"""
|
|
1506
|
+
assert not current_platform.is_rocm()
|
|
1507
|
+
assert input_tensor.ndim == 2, (
|
|
1508
|
+
f"input.ndim needs to be == 2, but got {input_tensor.ndim}."
|
|
1509
|
+
)
|
|
1510
|
+
|
|
1511
|
+
# Control the maximum number of tokens per expert supported by the
|
|
1512
|
+
# NVFP4 MoE Expert Quantization. This is used to prevent the kernel
|
|
1513
|
+
# from running out of memory. This value can also be increased to support
|
|
1514
|
+
# larger models.
|
|
1515
|
+
MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
|
|
1516
|
+
m_numtopk, k = input_tensor.shape
|
|
1517
|
+
|
|
1518
|
+
assert m_numtopk <= MAX_TOKENS_PER_EXPERT * topk, (
|
|
1519
|
+
f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
|
|
1520
|
+
f"{MAX_TOKENS_PER_EXPERT})"
|
|
1521
|
+
f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
|
|
1522
|
+
f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value."
|
|
1523
|
+
)
|
|
1524
|
+
scales_k = k // 16
|
|
1525
|
+
padded_k = (scales_k + (4 - 1)) // 4
|
|
1526
|
+
|
|
1527
|
+
# output is uint8 and packed fp4 values
|
|
1528
|
+
output = torch.empty(
|
|
1529
|
+
m_numtopk, k // 2, device=input_tensor.device, dtype=torch.uint8
|
|
1530
|
+
)
|
|
1531
|
+
output_scales = torch.empty(
|
|
1532
|
+
MAX_TOKENS_PER_EXPERT * topk,
|
|
1533
|
+
padded_k,
|
|
1534
|
+
dtype=torch.int32,
|
|
1535
|
+
device=input_tensor.device,
|
|
1536
|
+
)
|
|
1537
|
+
torch.ops._C.scaled_fp4_experts_quant(
|
|
1538
|
+
output,
|
|
1539
|
+
output_scales,
|
|
1540
|
+
input_tensor,
|
|
1541
|
+
input_global_scale,
|
|
1542
|
+
expert_offsets,
|
|
1543
|
+
blockscale_offsets,
|
|
1544
|
+
)
|
|
1545
|
+
output_scales = output_scales.view(torch.float8_e4m3fn)
|
|
1546
|
+
return output, output_scales
|
|
1547
|
+
|
|
1548
|
+
|
|
1549
|
+
# fp8
|
|
1550
|
+
def scaled_fp8_quant(
|
|
1551
|
+
input: torch.Tensor,
|
|
1552
|
+
scale: torch.Tensor | None = None,
|
|
1553
|
+
num_token_padding: int | None = None,
|
|
1554
|
+
scale_ub: torch.Tensor | None = None,
|
|
1555
|
+
use_per_token_if_dynamic: bool = False,
|
|
1556
|
+
output: torch.Tensor | None = None,
|
|
1557
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1558
|
+
"""
|
|
1559
|
+
Quantize input tensor to FP8 and return quantized tensor and scale.
|
|
1560
|
+
|
|
1561
|
+
This function supports both static and dynamic quantization: If you
|
|
1562
|
+
provide the scale, it will use static scaling and if you omit it,
|
|
1563
|
+
the scale will be determined dynamically. The function also allows
|
|
1564
|
+
optional padding of the output tensors for downstream kernels that
|
|
1565
|
+
will benefit from padding.
|
|
1566
|
+
|
|
1567
|
+
Args:
|
|
1568
|
+
input: The input tensor to be quantized to FP8
|
|
1569
|
+
scale: Optional scaling factor for the FP8 quantization
|
|
1570
|
+
scale_ub: Optional upper bound for scaling factor in dynamic
|
|
1571
|
+
per token case
|
|
1572
|
+
num_token_padding: If specified, pad the first dimension
|
|
1573
|
+
of the output to at least this value.
|
|
1574
|
+
use_per_token_if_dynamic: Whether to do per_tensor or per_token
|
|
1575
|
+
in the dynamic quantization case.
|
|
1576
|
+
|
|
1577
|
+
Returns:
|
|
1578
|
+
tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
|
|
1579
|
+
scaling factor.
|
|
1580
|
+
"""
|
|
1581
|
+
# This code assumes batch_dim and num_tokens are flattened
|
|
1582
|
+
assert input.ndim == 2
|
|
1583
|
+
shape: tuple[int, int] | torch.Size = input.shape
|
|
1584
|
+
# For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
|
|
1585
|
+
out_dtype: torch.dtype = current_platform.fp8_dtype()
|
|
1586
|
+
if num_token_padding:
|
|
1587
|
+
shape = (max(num_token_padding, input.shape[0]), shape[1])
|
|
1588
|
+
if output is None:
|
|
1589
|
+
output = torch.empty(shape, device=input.device, dtype=out_dtype)
|
|
1590
|
+
else:
|
|
1591
|
+
assert num_token_padding is None, "padding not supported if output passed in"
|
|
1592
|
+
assert output.dtype == out_dtype
|
|
1593
|
+
|
|
1594
|
+
if scale is None:
|
|
1595
|
+
if use_per_token_if_dynamic:
|
|
1596
|
+
scale = torch.empty((shape[0], 1), device=input.device, dtype=torch.float32)
|
|
1597
|
+
torch.ops._C.dynamic_per_token_scaled_fp8_quant(
|
|
1598
|
+
output, input, scale, scale_ub
|
|
1599
|
+
)
|
|
1600
|
+
else:
|
|
1601
|
+
scale = torch.empty((1, 1), device=input.device, dtype=torch.float32)
|
|
1602
|
+
torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
|
|
1603
|
+
else:
|
|
1604
|
+
assert scale.numel() == 1, f"{scale.shape}"
|
|
1605
|
+
torch.ops._C.static_scaled_fp8_quant(output, input, scale)
|
|
1606
|
+
|
|
1607
|
+
return output, scale
|
|
1608
|
+
|
|
1609
|
+
|
|
1610
|
+
# gptq allspark
|
|
1611
|
+
def allspark_repack_weight(
|
|
1612
|
+
qweight: torch.Tensor,
|
|
1613
|
+
scale: torch.Tensor,
|
|
1614
|
+
zero_point: torch.Tensor | None = None,
|
|
1615
|
+
has_zp: bool = False,
|
|
1616
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
1617
|
+
"""
|
|
1618
|
+
Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
|
|
1619
|
+
for Ampere W8A16 Fused Gemm kernel
|
|
1620
|
+
|
|
1621
|
+
Args:
|
|
1622
|
+
qweight: uint8 weight tensor, original k x n format.
|
|
1623
|
+
scale: fp16/bf16 weight scale tensor, 1 x n format.
|
|
1624
|
+
zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
|
|
1625
|
+
Must be provided for asymmetric quantization.
|
|
1626
|
+
has_zp: if use symmetric quantization, has_zp = False.
|
|
1627
|
+
if use asymmetric quantization, has_zp = True.
|
|
1628
|
+
|
|
1629
|
+
Returns:
|
|
1630
|
+
tuple[torch.Tensor, torch.Tensor, torch.Tensor | None] :
|
|
1631
|
+
rearranged weight, scale, and optionally zero_point.
|
|
1632
|
+
"""
|
|
1633
|
+
K = qweight.shape[0]
|
|
1634
|
+
N = qweight.shape[1]
|
|
1635
|
+
N_32align = (N + 32 - 1) // 32 * 32
|
|
1636
|
+
|
|
1637
|
+
qweight_reorder = torch.empty(
|
|
1638
|
+
(N_32align, K), device=qweight.device, dtype=qweight.dtype
|
|
1639
|
+
)
|
|
1640
|
+
scale_reorder = torch.empty((1, N_32align), device=scale.device, dtype=scale.dtype)
|
|
1641
|
+
zero_point_reorder = None
|
|
1642
|
+
if has_zp:
|
|
1643
|
+
assert zero_point is not None, (
|
|
1644
|
+
"zero_point must be provided for asymmetric quantization."
|
|
1645
|
+
)
|
|
1646
|
+
zero_point_reorder = torch.empty(
|
|
1647
|
+
(1, N_32align), device=zero_point.device, dtype=zero_point.dtype
|
|
1648
|
+
)
|
|
1649
|
+
|
|
1650
|
+
torch.ops._C.rearrange_kn_weight_as_n32k16_order(
|
|
1651
|
+
qweight,
|
|
1652
|
+
scale,
|
|
1653
|
+
zero_point,
|
|
1654
|
+
has_zp,
|
|
1655
|
+
qweight_reorder,
|
|
1656
|
+
scale_reorder,
|
|
1657
|
+
zero_point_reorder,
|
|
1658
|
+
K,
|
|
1659
|
+
N,
|
|
1660
|
+
N_32align,
|
|
1661
|
+
)
|
|
1662
|
+
|
|
1663
|
+
return qweight_reorder, scale_reorder, zero_point_reorder
|
|
1664
|
+
|
|
1665
|
+
|
|
1666
|
+
def allspark_w8a16_gemm(
|
|
1667
|
+
a: torch.Tensor,
|
|
1668
|
+
b_qweight: torch.Tensor,
|
|
1669
|
+
b_scales: torch.Tensor,
|
|
1670
|
+
b_qzeros: torch.Tensor | None,
|
|
1671
|
+
n: int,
|
|
1672
|
+
group_size: int,
|
|
1673
|
+
sm_count: int,
|
|
1674
|
+
sm_version: int,
|
|
1675
|
+
CUBLAS_M_THRESHOLD: int,
|
|
1676
|
+
has_zp: bool,
|
|
1677
|
+
n32k16_reorder: bool,
|
|
1678
|
+
) -> torch.Tensor:
|
|
1679
|
+
return torch.ops._C.allspark_w8a16_gemm(
|
|
1680
|
+
a,
|
|
1681
|
+
b_qweight,
|
|
1682
|
+
b_scales,
|
|
1683
|
+
b_qzeros,
|
|
1684
|
+
n,
|
|
1685
|
+
group_size,
|
|
1686
|
+
sm_count,
|
|
1687
|
+
sm_version,
|
|
1688
|
+
CUBLAS_M_THRESHOLD,
|
|
1689
|
+
has_zp,
|
|
1690
|
+
n32k16_reorder,
|
|
1691
|
+
)
|
|
1692
|
+
|
|
1693
|
+
|
|
1694
|
+
# int8
|
|
1695
|
+
def scaled_int8_quant(
|
|
1696
|
+
input: torch.Tensor,
|
|
1697
|
+
scale: torch.Tensor | None = None,
|
|
1698
|
+
azp: torch.Tensor | None = None,
|
|
1699
|
+
symmetric: bool = True,
|
|
1700
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
|
|
1701
|
+
"""
|
|
1702
|
+
Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
|
|
1703
|
+
|
|
1704
|
+
Args:
|
|
1705
|
+
input: The input tensor to be quantized to int8.
|
|
1706
|
+
scale: Optional scaling factor for the int8 quantization.
|
|
1707
|
+
When not provided, we invoke dynamic-per-token quantization.
|
|
1708
|
+
azp: Optional zero-point for the int8 quantization.
|
|
1709
|
+
Must be provided for asymmetric quantization if `scale` is provided.
|
|
1710
|
+
symmetric: Whether to use symmetric quantization (scale only, azp ignored).
|
|
1711
|
+
|
|
1712
|
+
Returns:
|
|
1713
|
+
tuple[torch.Tensor, torch.Tensor, torch.Tensor | None] : Output int8 tensor, scales, and optionally azp.
|
|
1714
|
+
"""
|
|
1715
|
+
output = torch.empty_like(input, dtype=torch.int8)
|
|
1716
|
+
if scale is not None:
|
|
1717
|
+
# static-per-tensor quantization.
|
|
1718
|
+
assert symmetric == (azp is None), (
|
|
1719
|
+
"azp must only be provided for asymmetric quantization."
|
|
1720
|
+
)
|
|
1721
|
+
torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
|
|
1722
|
+
return output, scale, azp
|
|
1723
|
+
|
|
1724
|
+
# dynamic-per-token quantization.
|
|
1725
|
+
input_scales = torch.empty(
|
|
1726
|
+
(input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32
|
|
1727
|
+
)
|
|
1728
|
+
input_azp = None if symmetric else torch.empty_like(input_scales, dtype=torch.int32)
|
|
1729
|
+
torch.ops._C.dynamic_scaled_int8_quant(
|
|
1730
|
+
output, input.contiguous(), input_scales, input_azp
|
|
1731
|
+
)
|
|
1732
|
+
return output, input_scales, input_azp
|
|
1733
|
+
|
|
1734
|
+
|
|
1735
|
+
# gguf
|
|
1736
|
+
def ggml_dequantize(
|
|
1737
|
+
W: torch.Tensor, quant_type: int, m: int, n: int, dtype: torch.dtype | None
|
|
1738
|
+
) -> torch.Tensor:
|
|
1739
|
+
return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
|
|
1740
|
+
|
|
1741
|
+
|
|
1742
|
+
def ggml_mul_mat_vec_a8(
|
|
1743
|
+
W: torch.Tensor,
|
|
1744
|
+
X: torch.Tensor,
|
|
1745
|
+
quant_type: int,
|
|
1746
|
+
row: int,
|
|
1747
|
+
) -> torch.Tensor:
|
|
1748
|
+
return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
|
|
1749
|
+
|
|
1750
|
+
|
|
1751
|
+
def ggml_mul_mat_a8(
|
|
1752
|
+
W: torch.Tensor,
|
|
1753
|
+
X: torch.Tensor,
|
|
1754
|
+
quant_type: int,
|
|
1755
|
+
row: int,
|
|
1756
|
+
) -> torch.Tensor:
|
|
1757
|
+
return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
|
|
1758
|
+
|
|
1759
|
+
|
|
1760
|
+
def ggml_moe_a8(
|
|
1761
|
+
X: torch.Tensor,
|
|
1762
|
+
W: torch.Tensor,
|
|
1763
|
+
sorted_token_ids: torch.Tensor,
|
|
1764
|
+
expert_ids: torch.Tensor,
|
|
1765
|
+
num_tokens_post_padded: torch.Tensor,
|
|
1766
|
+
quant_type: int,
|
|
1767
|
+
row: int,
|
|
1768
|
+
top_k: int,
|
|
1769
|
+
tokens: int,
|
|
1770
|
+
) -> torch.Tensor:
|
|
1771
|
+
return torch.ops._C.ggml_moe_a8(
|
|
1772
|
+
X,
|
|
1773
|
+
W,
|
|
1774
|
+
sorted_token_ids,
|
|
1775
|
+
expert_ids,
|
|
1776
|
+
num_tokens_post_padded,
|
|
1777
|
+
quant_type,
|
|
1778
|
+
row,
|
|
1779
|
+
top_k,
|
|
1780
|
+
tokens,
|
|
1781
|
+
)
|
|
1782
|
+
|
|
1783
|
+
|
|
1784
|
+
def ggml_moe_a8_vec(
|
|
1785
|
+
X: torch.Tensor,
|
|
1786
|
+
W: torch.Tensor,
|
|
1787
|
+
topk_ids: torch.Tensor,
|
|
1788
|
+
top_k: int,
|
|
1789
|
+
quant_type: int,
|
|
1790
|
+
row: torch.SymInt,
|
|
1791
|
+
tokens: torch.SymInt,
|
|
1792
|
+
) -> torch.Tensor:
|
|
1793
|
+
return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row, tokens)
|
|
1794
|
+
|
|
1795
|
+
|
|
1796
|
+
def ggml_moe_get_block_size(quant_type: int) -> int:
|
|
1797
|
+
return torch.ops._C.ggml_moe_get_block_size(quant_type)
|
|
1798
|
+
|
|
1799
|
+
|
|
1800
|
+
# mamba
|
|
1801
|
+
def selective_scan_fwd(
|
|
1802
|
+
u: torch.Tensor,
|
|
1803
|
+
delta: torch.Tensor,
|
|
1804
|
+
A: torch.Tensor,
|
|
1805
|
+
B: torch.Tensor,
|
|
1806
|
+
C: torch.Tensor,
|
|
1807
|
+
D_: torch.Tensor | None,
|
|
1808
|
+
z_: torch.Tensor | None,
|
|
1809
|
+
delta_bias_: torch.Tensor | None,
|
|
1810
|
+
delta_softplus: bool,
|
|
1811
|
+
query_start_loc: torch.Tensor | None,
|
|
1812
|
+
cache_indices: torch.Tensor | None,
|
|
1813
|
+
has_initial_state: torch.Tensor | None,
|
|
1814
|
+
ssm_states: torch.Tensor,
|
|
1815
|
+
pad_slot_id: int,
|
|
1816
|
+
block_size: int = 1024,
|
|
1817
|
+
block_idx_first_scheduled_token: torch.Tensor | None = None,
|
|
1818
|
+
block_idx_last_scheduled_token: torch.Tensor | None = None,
|
|
1819
|
+
initial_state_idx: torch.Tensor | None = None,
|
|
1820
|
+
):
|
|
1821
|
+
torch.ops._C.selective_scan_fwd(
|
|
1822
|
+
u,
|
|
1823
|
+
delta,
|
|
1824
|
+
A,
|
|
1825
|
+
B,
|
|
1826
|
+
C,
|
|
1827
|
+
D_,
|
|
1828
|
+
z_,
|
|
1829
|
+
delta_bias_,
|
|
1830
|
+
delta_softplus,
|
|
1831
|
+
query_start_loc,
|
|
1832
|
+
cache_indices,
|
|
1833
|
+
has_initial_state,
|
|
1834
|
+
ssm_states,
|
|
1835
|
+
pad_slot_id,
|
|
1836
|
+
block_size,
|
|
1837
|
+
block_idx_first_scheduled_token,
|
|
1838
|
+
block_idx_last_scheduled_token,
|
|
1839
|
+
initial_state_idx,
|
|
1840
|
+
)
|
|
1841
|
+
|
|
1842
|
+
|
|
1843
|
+
# ROCm skinny gemms
|
|
1844
|
+
def LLMM1(a: torch.Tensor, b: torch.Tensor, rows_per_block: int) -> torch.Tensor:
|
|
1845
|
+
return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
|
|
1846
|
+
|
|
1847
|
+
|
|
1848
|
+
def wvSplitK(
|
|
1849
|
+
a: torch.Tensor, b: torch.Tensor, cu_count: int, bias: torch.Tensor = None
|
|
1850
|
+
) -> torch.Tensor:
|
|
1851
|
+
return torch.ops._rocm_C.wvSplitK(a, b, bias, cu_count)
|
|
1852
|
+
|
|
1853
|
+
|
|
1854
|
+
def wvSplitKQ(
|
|
1855
|
+
a: torch.Tensor,
|
|
1856
|
+
b: torch.Tensor,
|
|
1857
|
+
out_dtype: torch.dtype,
|
|
1858
|
+
scale_a: torch.Tensor,
|
|
1859
|
+
scale_b: torch.Tensor,
|
|
1860
|
+
cu_count: int,
|
|
1861
|
+
bias: torch.Tensor = None,
|
|
1862
|
+
) -> torch.Tensor:
|
|
1863
|
+
out = torch.empty((b.shape[0], a.shape[0]), dtype=out_dtype, device=b.device)
|
|
1864
|
+
torch.ops._rocm_C.wvSplitKQ(a, b, bias, out, scale_a, scale_b, cu_count)
|
|
1865
|
+
return out
|
|
1866
|
+
|
|
1867
|
+
|
|
1868
|
+
# moe
|
|
1869
|
+
def moe_sum(input: torch.Tensor, output: torch.Tensor):
|
|
1870
|
+
torch.ops._moe_C.moe_sum(input, output)
|
|
1871
|
+
|
|
1872
|
+
|
|
1873
|
+
def moe_align_block_size(
|
|
1874
|
+
topk_ids: torch.Tensor,
|
|
1875
|
+
num_experts: int,
|
|
1876
|
+
block_size: int,
|
|
1877
|
+
sorted_token_ids: torch.Tensor,
|
|
1878
|
+
experts_ids: torch.Tensor,
|
|
1879
|
+
num_tokens_post_pad: torch.Tensor,
|
|
1880
|
+
) -> None:
|
|
1881
|
+
torch.ops._moe_C.moe_align_block_size(
|
|
1882
|
+
topk_ids,
|
|
1883
|
+
num_experts,
|
|
1884
|
+
block_size,
|
|
1885
|
+
sorted_token_ids,
|
|
1886
|
+
experts_ids,
|
|
1887
|
+
num_tokens_post_pad,
|
|
1888
|
+
)
|
|
1889
|
+
|
|
1890
|
+
|
|
1891
|
+
def batched_moe_align_block_size(
|
|
1892
|
+
max_tokens_per_batch: int,
|
|
1893
|
+
block_size: int,
|
|
1894
|
+
expert_num_tokens: torch.Tensor,
|
|
1895
|
+
sorted_ids: torch.Tensor,
|
|
1896
|
+
expert_ids: torch.Tensor,
|
|
1897
|
+
num_tokens_post_pad: torch.Tensor,
|
|
1898
|
+
) -> None:
|
|
1899
|
+
torch.ops._moe_C.batched_moe_align_block_size(
|
|
1900
|
+
max_tokens_per_batch,
|
|
1901
|
+
block_size,
|
|
1902
|
+
expert_num_tokens,
|
|
1903
|
+
sorted_ids,
|
|
1904
|
+
expert_ids,
|
|
1905
|
+
num_tokens_post_pad,
|
|
1906
|
+
)
|
|
1907
|
+
|
|
1908
|
+
|
|
1909
|
+
def moe_lora_align_block_size(
|
|
1910
|
+
topk_ids: torch.Tensor,
|
|
1911
|
+
token_lora_mapping: torch.Tensor,
|
|
1912
|
+
num_experts: int,
|
|
1913
|
+
block_size: int,
|
|
1914
|
+
max_loras: int,
|
|
1915
|
+
max_num_tokens_padded: int,
|
|
1916
|
+
max_num_m_blocks: int,
|
|
1917
|
+
sorted_token_ids: torch.Tensor,
|
|
1918
|
+
experts_ids: torch.Tensor,
|
|
1919
|
+
num_tokens_post_pad: torch.Tensor,
|
|
1920
|
+
adapter_enabled: torch.Tensor,
|
|
1921
|
+
lora_ids: torch.Tensor,
|
|
1922
|
+
) -> None:
|
|
1923
|
+
torch.ops._moe_C.moe_lora_align_block_size(
|
|
1924
|
+
topk_ids,
|
|
1925
|
+
token_lora_mapping,
|
|
1926
|
+
num_experts,
|
|
1927
|
+
block_size,
|
|
1928
|
+
max_loras,
|
|
1929
|
+
max_num_tokens_padded,
|
|
1930
|
+
max_num_m_blocks,
|
|
1931
|
+
sorted_token_ids,
|
|
1932
|
+
experts_ids,
|
|
1933
|
+
num_tokens_post_pad,
|
|
1934
|
+
adapter_enabled,
|
|
1935
|
+
lora_ids,
|
|
1936
|
+
)
|
|
1937
|
+
|
|
1938
|
+
|
|
1939
|
+
def moe_wna16_gemm(
|
|
1940
|
+
input: torch.Tensor,
|
|
1941
|
+
output: torch.Tensor,
|
|
1942
|
+
b_qweight: torch.Tensor,
|
|
1943
|
+
b_scales: torch.Tensor,
|
|
1944
|
+
b_qzeros: torch.Tensor | None,
|
|
1945
|
+
topk_weights: torch.Tensor | None,
|
|
1946
|
+
sorted_token_ids: torch.Tensor,
|
|
1947
|
+
experts_ids: torch.Tensor,
|
|
1948
|
+
num_tokens_post_pad: torch.Tensor,
|
|
1949
|
+
top_k: int,
|
|
1950
|
+
BLOCK_SIZE_M: int,
|
|
1951
|
+
BLOCK_SIZE_N: int,
|
|
1952
|
+
BLOCK_SIZE_K: int,
|
|
1953
|
+
bit: int,
|
|
1954
|
+
) -> torch.Tensor:
|
|
1955
|
+
if not current_platform.is_cuda():
|
|
1956
|
+
raise NotImplementedError(
|
|
1957
|
+
"The optimized moe_wna16_gemm kernel is only available on CUDA platforms"
|
|
1958
|
+
)
|
|
1959
|
+
torch.ops._moe_C.moe_wna16_gemm(
|
|
1960
|
+
input,
|
|
1961
|
+
output,
|
|
1962
|
+
b_qweight,
|
|
1963
|
+
b_scales,
|
|
1964
|
+
b_qzeros,
|
|
1965
|
+
topk_weights,
|
|
1966
|
+
sorted_token_ids,
|
|
1967
|
+
experts_ids,
|
|
1968
|
+
num_tokens_post_pad,
|
|
1969
|
+
top_k,
|
|
1970
|
+
BLOCK_SIZE_M,
|
|
1971
|
+
BLOCK_SIZE_N,
|
|
1972
|
+
BLOCK_SIZE_K,
|
|
1973
|
+
bit,
|
|
1974
|
+
)
|
|
1975
|
+
|
|
1976
|
+
|
|
1977
|
+
def topk_softmax(
|
|
1978
|
+
topk_weights: torch.Tensor,
|
|
1979
|
+
topk_ids: torch.Tensor,
|
|
1980
|
+
token_expert_indices: torch.Tensor,
|
|
1981
|
+
gating_output: torch.Tensor,
|
|
1982
|
+
renormalize: bool = False,
|
|
1983
|
+
) -> None:
|
|
1984
|
+
torch.ops._moe_C.topk_softmax(
|
|
1985
|
+
topk_weights, topk_ids, token_expert_indices, gating_output, renormalize
|
|
1986
|
+
)
|
|
1987
|
+
|
|
1988
|
+
|
|
1989
|
+
def grouped_topk(
|
|
1990
|
+
scores: torch.Tensor,
|
|
1991
|
+
num_expert_group: int,
|
|
1992
|
+
topk_group: int,
|
|
1993
|
+
topk: int,
|
|
1994
|
+
renormalize: bool,
|
|
1995
|
+
routed_scaling_factor: float,
|
|
1996
|
+
bias: torch.Tensor,
|
|
1997
|
+
scoring_func: int = 0,
|
|
1998
|
+
):
|
|
1999
|
+
"""
|
|
2000
|
+
Perform grouped top-k routing for mixture of experts.
|
|
2001
|
+
|
|
2002
|
+
Args:
|
|
2003
|
+
scores: Raw inputs (logits if scoring_func=1, scores if scoring_func=0)
|
|
2004
|
+
num_expert_group: Number of expert groups
|
|
2005
|
+
topk_group: Number of groups to select
|
|
2006
|
+
topk: Number of experts to select per token
|
|
2007
|
+
renormalize: Whether to renormalize the output weights
|
|
2008
|
+
routed_scaling_factor: Scaling factor for routing weights
|
|
2009
|
+
bias: Bias tensor (e_score_correction_bias). Always fused in kernel.
|
|
2010
|
+
scoring_func: 0=none (no activation), 1=sigmoid
|
|
2011
|
+
"""
|
|
2012
|
+
if not current_platform.is_cuda():
|
|
2013
|
+
raise NotImplementedError(
|
|
2014
|
+
"The fused grouped_topk kernel is only available on CUDA platforms"
|
|
2015
|
+
)
|
|
2016
|
+
return torch.ops._moe_C.grouped_topk(
|
|
2017
|
+
scores,
|
|
2018
|
+
num_expert_group,
|
|
2019
|
+
topk_group,
|
|
2020
|
+
topk,
|
|
2021
|
+
renormalize,
|
|
2022
|
+
routed_scaling_factor,
|
|
2023
|
+
bias,
|
|
2024
|
+
scoring_func,
|
|
2025
|
+
)
|
|
2026
|
+
|
|
2027
|
+
|
|
2028
|
+
def moe_wna16_marlin_gemm(
|
|
2029
|
+
input: torch.Tensor,
|
|
2030
|
+
output: torch.Tensor | None,
|
|
2031
|
+
b_qweight: torch.Tensor,
|
|
2032
|
+
b_bias: torch.Tensor | None,
|
|
2033
|
+
b_scales: torch.Tensor,
|
|
2034
|
+
a_scales: torch.Tensor | None,
|
|
2035
|
+
global_scale: torch.Tensor | None,
|
|
2036
|
+
b_qzeros: torch.Tensor | None,
|
|
2037
|
+
g_idx: torch.Tensor | None,
|
|
2038
|
+
perm: torch.Tensor | None,
|
|
2039
|
+
workspace: torch.Tensor,
|
|
2040
|
+
sorted_token_ids: torch.Tensor,
|
|
2041
|
+
expert_ids: torch.Tensor,
|
|
2042
|
+
num_tokens_past_padded: torch.Tensor,
|
|
2043
|
+
topk_weights: torch.Tensor,
|
|
2044
|
+
moe_block_size: int,
|
|
2045
|
+
top_k: int,
|
|
2046
|
+
mul_topk_weights: bool,
|
|
2047
|
+
is_ep: bool,
|
|
2048
|
+
b_q_type: ScalarType,
|
|
2049
|
+
size_m: int,
|
|
2050
|
+
size_n: int,
|
|
2051
|
+
size_k: int,
|
|
2052
|
+
is_k_full: bool,
|
|
2053
|
+
use_atomic_add: bool,
|
|
2054
|
+
use_fp32_reduce: bool,
|
|
2055
|
+
is_zp_float: bool,
|
|
2056
|
+
thread_k: int = -1,
|
|
2057
|
+
thread_n: int = -1,
|
|
2058
|
+
blocks_per_sm: int = -1,
|
|
2059
|
+
) -> torch.Tensor:
|
|
2060
|
+
return torch.ops._moe_C.moe_wna16_marlin_gemm(
|
|
2061
|
+
input,
|
|
2062
|
+
output,
|
|
2063
|
+
b_qweight,
|
|
2064
|
+
b_bias,
|
|
2065
|
+
b_scales,
|
|
2066
|
+
a_scales,
|
|
2067
|
+
global_scale,
|
|
2068
|
+
b_qzeros,
|
|
2069
|
+
g_idx,
|
|
2070
|
+
perm,
|
|
2071
|
+
workspace,
|
|
2072
|
+
sorted_token_ids,
|
|
2073
|
+
expert_ids,
|
|
2074
|
+
num_tokens_past_padded,
|
|
2075
|
+
topk_weights,
|
|
2076
|
+
moe_block_size,
|
|
2077
|
+
top_k,
|
|
2078
|
+
mul_topk_weights,
|
|
2079
|
+
is_ep,
|
|
2080
|
+
b_q_type.id,
|
|
2081
|
+
size_m,
|
|
2082
|
+
size_n,
|
|
2083
|
+
size_k,
|
|
2084
|
+
is_k_full,
|
|
2085
|
+
use_atomic_add,
|
|
2086
|
+
use_fp32_reduce,
|
|
2087
|
+
is_zp_float,
|
|
2088
|
+
thread_k,
|
|
2089
|
+
thread_n,
|
|
2090
|
+
blocks_per_sm,
|
|
2091
|
+
)
|
|
2092
|
+
|
|
2093
|
+
|
|
2094
|
+
if hasattr(torch.ops, "_moe_C") and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
|
|
2095
|
+
|
|
2096
|
+
@register_fake("_moe_C::marlin_gemm_moe")
|
|
2097
|
+
def marlin_gemm_moe_fake(
|
|
2098
|
+
a: torch.Tensor,
|
|
2099
|
+
b_q_weights: torch.Tensor,
|
|
2100
|
+
sorted_ids: torch.Tensor,
|
|
2101
|
+
topk_weights: torch.Tensor,
|
|
2102
|
+
topk_ids: torch.Tensor,
|
|
2103
|
+
b_scales: torch.Tensor,
|
|
2104
|
+
b_zero_points: torch.Tensor,
|
|
2105
|
+
g_idx: torch.Tensor,
|
|
2106
|
+
perm: torch.Tensor,
|
|
2107
|
+
workspace: torch.Tensor,
|
|
2108
|
+
b_q_type: ScalarType,
|
|
2109
|
+
size_m: torch.SymInt,
|
|
2110
|
+
size_n: torch.SymInt,
|
|
2111
|
+
size_k: torch.SymInt,
|
|
2112
|
+
is_k_full: bool,
|
|
2113
|
+
num_experts: int,
|
|
2114
|
+
topk: int,
|
|
2115
|
+
moe_block_size: int,
|
|
2116
|
+
replicate_input: bool,
|
|
2117
|
+
apply_weights: bool,
|
|
2118
|
+
) -> torch.Tensor:
|
|
2119
|
+
return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
|
|
2120
|
+
|
|
2121
|
+
@register_fake("_moe_C::moe_wna16_marlin_gemm")
|
|
2122
|
+
def moe_wna16_marlin_gemm_fake(
|
|
2123
|
+
input: torch.Tensor,
|
|
2124
|
+
output: torch.Tensor | None,
|
|
2125
|
+
b_qweight: torch.Tensor,
|
|
2126
|
+
b_bias: torch.Tensor | None,
|
|
2127
|
+
b_scales: torch.Tensor,
|
|
2128
|
+
a_scales: torch.Tensor | None,
|
|
2129
|
+
global_scale: torch.Tensor | None,
|
|
2130
|
+
b_qzeros: torch.Tensor | None,
|
|
2131
|
+
g_idx: torch.Tensor | None,
|
|
2132
|
+
perm: torch.Tensor | None,
|
|
2133
|
+
workspace: torch.Tensor,
|
|
2134
|
+
sorted_token_ids: torch.Tensor,
|
|
2135
|
+
expert_ids: torch.Tensor,
|
|
2136
|
+
num_tokens_past_padded: torch.Tensor,
|
|
2137
|
+
topk_weights: torch.Tensor,
|
|
2138
|
+
moe_block_size: int,
|
|
2139
|
+
top_k: int,
|
|
2140
|
+
mul_topk_weights: bool,
|
|
2141
|
+
is_ep: bool,
|
|
2142
|
+
b_q_type: ScalarType,
|
|
2143
|
+
size_m: int,
|
|
2144
|
+
size_n: int,
|
|
2145
|
+
size_k: int,
|
|
2146
|
+
is_k_full: bool,
|
|
2147
|
+
use_atomic_add: bool,
|
|
2148
|
+
use_fp32_reduce: bool,
|
|
2149
|
+
is_zp_float: bool,
|
|
2150
|
+
):
|
|
2151
|
+
return torch.empty(
|
|
2152
|
+
(size_m * top_k, size_n), dtype=input.dtype, device=input.device
|
|
2153
|
+
)
|
|
2154
|
+
|
|
2155
|
+
|
|
2156
|
+
def reshape_and_cache(
|
|
2157
|
+
key: torch.Tensor,
|
|
2158
|
+
value: torch.Tensor,
|
|
2159
|
+
key_cache: torch.Tensor,
|
|
2160
|
+
value_cache: torch.Tensor,
|
|
2161
|
+
slot_mapping: torch.Tensor,
|
|
2162
|
+
kv_cache_dtype: str,
|
|
2163
|
+
k_scale: torch.Tensor,
|
|
2164
|
+
v_scale: torch.Tensor,
|
|
2165
|
+
) -> None:
|
|
2166
|
+
torch.ops._C_cache_ops.reshape_and_cache(
|
|
2167
|
+
key,
|
|
2168
|
+
value,
|
|
2169
|
+
key_cache,
|
|
2170
|
+
value_cache,
|
|
2171
|
+
slot_mapping,
|
|
2172
|
+
kv_cache_dtype,
|
|
2173
|
+
k_scale,
|
|
2174
|
+
v_scale,
|
|
2175
|
+
)
|
|
2176
|
+
|
|
2177
|
+
|
|
2178
|
+
def reshape_and_cache_flash(
|
|
2179
|
+
key: torch.Tensor,
|
|
2180
|
+
value: torch.Tensor,
|
|
2181
|
+
key_cache: torch.Tensor,
|
|
2182
|
+
value_cache: torch.Tensor,
|
|
2183
|
+
slot_mapping: torch.Tensor,
|
|
2184
|
+
kv_cache_dtype: str,
|
|
2185
|
+
k_scale: torch.Tensor,
|
|
2186
|
+
v_scale: torch.Tensor,
|
|
2187
|
+
) -> None:
|
|
2188
|
+
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
2189
|
+
key,
|
|
2190
|
+
value,
|
|
2191
|
+
key_cache,
|
|
2192
|
+
value_cache,
|
|
2193
|
+
slot_mapping,
|
|
2194
|
+
kv_cache_dtype,
|
|
2195
|
+
k_scale,
|
|
2196
|
+
v_scale,
|
|
2197
|
+
)
|
|
2198
|
+
|
|
2199
|
+
|
|
2200
|
+
def concat_and_cache_mla(
|
|
2201
|
+
kv_c: torch.Tensor,
|
|
2202
|
+
k_pe: torch.Tensor,
|
|
2203
|
+
kv_cache: torch.Tensor,
|
|
2204
|
+
slot_mapping: torch.Tensor,
|
|
2205
|
+
kv_cache_dtype: str,
|
|
2206
|
+
scale: torch.Tensor,
|
|
2207
|
+
) -> None:
|
|
2208
|
+
torch.ops._C_cache_ops.concat_and_cache_mla(
|
|
2209
|
+
kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale
|
|
2210
|
+
)
|
|
2211
|
+
|
|
2212
|
+
|
|
2213
|
+
def copy_blocks(
|
|
2214
|
+
key_caches: list[torch.Tensor],
|
|
2215
|
+
value_caches: list[torch.Tensor],
|
|
2216
|
+
block_mapping: torch.Tensor,
|
|
2217
|
+
) -> None:
|
|
2218
|
+
torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
|
|
2219
|
+
|
|
2220
|
+
|
|
2221
|
+
def copy_blocks_mla(kv_caches: list[torch.Tensor], block_mapping: torch.Tensor) -> None:
|
|
2222
|
+
torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
|
|
2223
|
+
|
|
2224
|
+
|
|
2225
|
+
def swap_blocks(
|
|
2226
|
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
|
2227
|
+
) -> None:
|
|
2228
|
+
torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
|
|
2229
|
+
|
|
2230
|
+
|
|
2231
|
+
def convert_fp8(
|
|
2232
|
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
|
2233
|
+
) -> None:
|
|
2234
|
+
torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
|
|
2235
|
+
|
|
2236
|
+
|
|
2237
|
+
def gather_and_maybe_dequant_cache(
|
|
2238
|
+
src_cache: torch.Tensor,
|
|
2239
|
+
dst: torch.Tensor,
|
|
2240
|
+
block_table: torch.Tensor,
|
|
2241
|
+
cu_seq_lens: torch.Tensor,
|
|
2242
|
+
token_to_seq: torch.Tensor,
|
|
2243
|
+
num_tokens: int,
|
|
2244
|
+
kv_cache_dtype: str,
|
|
2245
|
+
scale: torch.Tensor,
|
|
2246
|
+
seq_starts: torch.Tensor | None = None,
|
|
2247
|
+
) -> None:
|
|
2248
|
+
torch.ops._C_cache_ops.gather_and_maybe_dequant_cache(
|
|
2249
|
+
src_cache,
|
|
2250
|
+
dst,
|
|
2251
|
+
block_table,
|
|
2252
|
+
cu_seq_lens,
|
|
2253
|
+
token_to_seq,
|
|
2254
|
+
num_tokens,
|
|
2255
|
+
kv_cache_dtype,
|
|
2256
|
+
scale,
|
|
2257
|
+
seq_starts,
|
|
2258
|
+
)
|
|
2259
|
+
|
|
2260
|
+
|
|
2261
|
+
def cp_gather_cache(
|
|
2262
|
+
src_cache: torch.Tensor,
|
|
2263
|
+
dst: torch.Tensor,
|
|
2264
|
+
block_table: torch.Tensor,
|
|
2265
|
+
cu_seq_lens: torch.Tensor,
|
|
2266
|
+
batch_size: int,
|
|
2267
|
+
seq_starts: torch.Tensor | None = None,
|
|
2268
|
+
) -> None:
|
|
2269
|
+
torch.ops._C_cache_ops.cp_gather_cache(
|
|
2270
|
+
src_cache, dst, block_table, cu_seq_lens, batch_size, seq_starts
|
|
2271
|
+
)
|
|
2272
|
+
|
|
2273
|
+
|
|
2274
|
+
def indexer_k_quant_and_cache(
|
|
2275
|
+
k: torch.Tensor,
|
|
2276
|
+
kv_cache: torch.Tensor,
|
|
2277
|
+
slot_mapping: torch.Tensor,
|
|
2278
|
+
quant_block_size: int,
|
|
2279
|
+
kv_cache_dtype: str,
|
|
2280
|
+
) -> None:
|
|
2281
|
+
torch.ops._C_cache_ops.indexer_k_quant_and_cache(
|
|
2282
|
+
k, kv_cache, slot_mapping, quant_block_size, kv_cache_dtype
|
|
2283
|
+
)
|
|
2284
|
+
|
|
2285
|
+
|
|
2286
|
+
def cp_gather_indexer_k_quant_cache(
|
|
2287
|
+
kv_cache: torch.Tensor,
|
|
2288
|
+
dst_k: torch.Tensor,
|
|
2289
|
+
dst_scale: torch.Tensor,
|
|
2290
|
+
block_table: torch.Tensor,
|
|
2291
|
+
cu_seq_lens: torch.Tensor,
|
|
2292
|
+
) -> None:
|
|
2293
|
+
torch.ops._C_cache_ops.cp_gather_indexer_k_quant_cache(
|
|
2294
|
+
kv_cache, dst_k, dst_scale, block_table, cu_seq_lens
|
|
2295
|
+
)
|
|
2296
|
+
|
|
2297
|
+
|
|
2298
|
+
def get_device_attribute(attribute: int, device: int) -> int:
|
|
2299
|
+
return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
|
|
2300
|
+
|
|
2301
|
+
|
|
2302
|
+
def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
|
|
2303
|
+
# ruff: noqa: E501
|
|
2304
|
+
return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
|
|
2305
|
+
device
|
|
2306
|
+
)
|
|
2307
|
+
|
|
2308
|
+
|
|
2309
|
+
# custom ar
|
|
2310
|
+
def init_custom_ar(
|
|
2311
|
+
ipc_tensors: list[torch.Tensor],
|
|
2312
|
+
rank_data: torch.Tensor,
|
|
2313
|
+
rank: int,
|
|
2314
|
+
fully_connected: bool,
|
|
2315
|
+
) -> int:
|
|
2316
|
+
return torch.ops._C_custom_ar.init_custom_ar(
|
|
2317
|
+
ipc_tensors, rank_data, rank, fully_connected
|
|
2318
|
+
)
|
|
2319
|
+
|
|
2320
|
+
|
|
2321
|
+
def all_reduce(
|
|
2322
|
+
fa: int,
|
|
2323
|
+
inp: torch.Tensor,
|
|
2324
|
+
out: torch.Tensor,
|
|
2325
|
+
reg_buffer: int,
|
|
2326
|
+
reg_buffer_sz_bytes: int,
|
|
2327
|
+
) -> None:
|
|
2328
|
+
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
|
|
2329
|
+
|
|
2330
|
+
|
|
2331
|
+
def dispose(fa: int) -> None:
|
|
2332
|
+
torch.ops._C_custom_ar.dispose(fa)
|
|
2333
|
+
|
|
2334
|
+
|
|
2335
|
+
def meta_size() -> int:
|
|
2336
|
+
return torch.ops._C_custom_ar.meta_size()
|
|
2337
|
+
|
|
2338
|
+
|
|
2339
|
+
def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
|
|
2340
|
+
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
|
|
2341
|
+
|
|
2342
|
+
|
|
2343
|
+
def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
|
|
2344
|
+
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
|
|
2345
|
+
|
|
2346
|
+
|
|
2347
|
+
def register_graph_buffers(
|
|
2348
|
+
fa: int, handles: list[list[int]], offsets: list[list[int]]
|
|
2349
|
+
) -> None:
|
|
2350
|
+
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
|
|
2351
|
+
|
|
2352
|
+
|
|
2353
|
+
def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
|
|
2354
|
+
return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
|
|
2355
|
+
|
|
2356
|
+
|
|
2357
|
+
def open_mem_handle(mem_handle: torch.Tensor):
|
|
2358
|
+
return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
|
|
2359
|
+
|
|
2360
|
+
|
|
2361
|
+
def free_shared_buffer(ptr: int) -> None:
|
|
2362
|
+
torch.ops._C_custom_ar.free_shared_buffer(ptr)
|
|
2363
|
+
|
|
2364
|
+
|
|
2365
|
+
# quick all reduce
|
|
2366
|
+
def init_custom_qr(rank: int, world_size: int, qr_max_size: int | None = None) -> int:
|
|
2367
|
+
return torch.ops._C_custom_ar.init_custom_qr(rank, world_size, qr_max_size)
|
|
2368
|
+
|
|
2369
|
+
|
|
2370
|
+
def qr_destroy(fa: int) -> None:
|
|
2371
|
+
torch.ops._C_custom_ar.qr_destroy(fa)
|
|
2372
|
+
|
|
2373
|
+
|
|
2374
|
+
def qr_all_reduce(
|
|
2375
|
+
fa: int,
|
|
2376
|
+
inp: torch.Tensor,
|
|
2377
|
+
out: torch.Tensor,
|
|
2378
|
+
quant_level: int,
|
|
2379
|
+
cast_bf2half: bool = False,
|
|
2380
|
+
) -> None:
|
|
2381
|
+
torch.ops._C_custom_ar.qr_all_reduce(fa, inp, out, quant_level, cast_bf2half)
|
|
2382
|
+
|
|
2383
|
+
|
|
2384
|
+
def qr_get_handle(fa: int) -> torch.Tensor:
|
|
2385
|
+
return torch.ops._C_custom_ar.qr_get_handle(fa)
|
|
2386
|
+
|
|
2387
|
+
|
|
2388
|
+
def qr_open_handles(fa: int, handles: list[torch.Tensor]) -> None:
|
|
2389
|
+
return torch.ops._C_custom_ar.qr_open_handles(fa, handles)
|
|
2390
|
+
|
|
2391
|
+
|
|
2392
|
+
def qr_max_size() -> int:
|
|
2393
|
+
return torch.ops._C_custom_ar.qr_max_size()
|
|
2394
|
+
|
|
2395
|
+
|
|
2396
|
+
def get_flash_mla_metadata(
|
|
2397
|
+
cache_seqlens: torch.Tensor,
|
|
2398
|
+
num_heads_per_head_k: int,
|
|
2399
|
+
num_heads_k: int,
|
|
2400
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2401
|
+
"""
|
|
2402
|
+
Arguments:
|
|
2403
|
+
cache_seqlens: (batch_size), dtype torch.int32.
|
|
2404
|
+
num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
|
|
2405
|
+
num_heads_k: num_heads_k.
|
|
2406
|
+
|
|
2407
|
+
Return:
|
|
2408
|
+
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
|
|
2409
|
+
num_splits: (batch_size + 1), dtype torch.int32.
|
|
2410
|
+
"""
|
|
2411
|
+
return torch.ops._C.get_flash_mla_metadata(
|
|
2412
|
+
cache_seqlens, num_heads_per_head_k, num_heads_k
|
|
2413
|
+
)
|
|
2414
|
+
|
|
2415
|
+
|
|
2416
|
+
def flash_mla_with_kvcache(
|
|
2417
|
+
q: torch.Tensor,
|
|
2418
|
+
k_cache: torch.Tensor,
|
|
2419
|
+
block_table: torch.Tensor,
|
|
2420
|
+
cache_seqlens: torch.Tensor,
|
|
2421
|
+
head_dim_v: int,
|
|
2422
|
+
tile_scheduler_metadata: torch.Tensor,
|
|
2423
|
+
num_splits: torch.Tensor,
|
|
2424
|
+
softmax_scale: float | None = None,
|
|
2425
|
+
causal: bool = False,
|
|
2426
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2427
|
+
"""
|
|
2428
|
+
Arguments:
|
|
2429
|
+
q: (batch_size, seq_len_q, num_heads_q, head_dim).
|
|
2430
|
+
k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
|
|
2431
|
+
block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
|
|
2432
|
+
cache_seqlens: (batch_size), torch.int32.
|
|
2433
|
+
head_dim_v: Head_dim of v.
|
|
2434
|
+
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
|
|
2435
|
+
num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
|
|
2436
|
+
softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
|
|
2437
|
+
causal: bool. Whether to apply causal attention mask.
|
|
2438
|
+
|
|
2439
|
+
Return:
|
|
2440
|
+
out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
|
|
2441
|
+
softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
|
|
2442
|
+
"""
|
|
2443
|
+
if softmax_scale is None:
|
|
2444
|
+
softmax_scale = q.shape[-1] ** (-0.5)
|
|
2445
|
+
out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
|
|
2446
|
+
q,
|
|
2447
|
+
k_cache,
|
|
2448
|
+
None,
|
|
2449
|
+
head_dim_v,
|
|
2450
|
+
cache_seqlens,
|
|
2451
|
+
block_table,
|
|
2452
|
+
softmax_scale,
|
|
2453
|
+
causal,
|
|
2454
|
+
tile_scheduler_metadata,
|
|
2455
|
+
num_splits,
|
|
2456
|
+
)
|
|
2457
|
+
return out, softmax_lse
|
|
2458
|
+
|
|
2459
|
+
|
|
2460
|
+
def sm100_cutlass_mla_decode(
|
|
2461
|
+
out: torch.Tensor,
|
|
2462
|
+
lse: torch.Tensor,
|
|
2463
|
+
q_nope: torch.Tensor,
|
|
2464
|
+
q_pe: torch.Tensor,
|
|
2465
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
2466
|
+
seq_lens: torch.Tensor,
|
|
2467
|
+
page_table: torch.Tensor,
|
|
2468
|
+
workspace: torch.Tensor,
|
|
2469
|
+
scale: float,
|
|
2470
|
+
num_kv_splits: int,
|
|
2471
|
+
) -> torch.Tensor:
|
|
2472
|
+
torch.ops._C.sm100_cutlass_mla_decode(
|
|
2473
|
+
out,
|
|
2474
|
+
lse,
|
|
2475
|
+
q_nope,
|
|
2476
|
+
q_pe,
|
|
2477
|
+
kv_c_and_k_pe_cache,
|
|
2478
|
+
seq_lens,
|
|
2479
|
+
page_table,
|
|
2480
|
+
workspace,
|
|
2481
|
+
scale,
|
|
2482
|
+
num_kv_splits,
|
|
2483
|
+
)
|
|
2484
|
+
return out
|
|
2485
|
+
|
|
2486
|
+
|
|
2487
|
+
def sm100_cutlass_mla_get_workspace_size(
|
|
2488
|
+
max_seq_len: int, num_batches: int, sm_count: int, num_kv_splits: int
|
|
2489
|
+
) -> int:
|
|
2490
|
+
return torch.ops._C.sm100_cutlass_mla_get_workspace_size(
|
|
2491
|
+
max_seq_len, num_batches, sm_count, num_kv_splits
|
|
2492
|
+
)
|
|
2493
|
+
|
|
2494
|
+
|
|
2495
|
+
if hasattr(torch.ops._C, "weight_packed_linear"):
|
|
2496
|
+
|
|
2497
|
+
@register_fake("_C::weight_packed_linear")
|
|
2498
|
+
def weight_packed_linear_fake(
|
|
2499
|
+
mat1: torch.Tensor,
|
|
2500
|
+
mat2: torch.Tensor,
|
|
2501
|
+
bias: torch.Tensor | None,
|
|
2502
|
+
is_vnni: bool,
|
|
2503
|
+
) -> torch.Tensor:
|
|
2504
|
+
return torch.empty(
|
|
2505
|
+
(mat1.size(0), mat2.size(0)), dtype=mat1.dtype, device=mat2.device
|
|
2506
|
+
)
|
|
2507
|
+
|
|
2508
|
+
|
|
2509
|
+
if hasattr(torch.ops._C, "fused_experts_cpu"):
|
|
2510
|
+
|
|
2511
|
+
@register_fake("_C::fused_experts_cpu")
|
|
2512
|
+
def fused_experts_cpu_fake(
|
|
2513
|
+
hidden_states: torch.Tensor,
|
|
2514
|
+
w1: torch.Tensor,
|
|
2515
|
+
w2: torch.Tensor,
|
|
2516
|
+
topk_weights: torch.Tensor,
|
|
2517
|
+
topk_ids: torch.Tensor,
|
|
2518
|
+
inplace: bool,
|
|
2519
|
+
use_int8_w8a8: bool,
|
|
2520
|
+
use_fp8_w8a16: bool,
|
|
2521
|
+
w1_scale: torch.Tensor | None,
|
|
2522
|
+
w2_scale: torch.Tensor | None,
|
|
2523
|
+
block_size: list[int] | None,
|
|
2524
|
+
a1_scale: torch.Tensor | None,
|
|
2525
|
+
a2_scale: torch.Tensor | None,
|
|
2526
|
+
is_vnni: bool,
|
|
2527
|
+
) -> torch.Tensor:
|
|
2528
|
+
return torch.empty_like(hidden_states)
|
|
2529
|
+
|
|
2530
|
+
|
|
2531
|
+
if hasattr(torch.ops._C, "int8_scaled_mm_with_quant"):
|
|
2532
|
+
|
|
2533
|
+
@register_fake("_C::int8_scaled_mm_with_quant")
|
|
2534
|
+
def int8_scaled_mm_with_quant_fake(
|
|
2535
|
+
mat1: torch.Tensor,
|
|
2536
|
+
mat2: torch.Tensor,
|
|
2537
|
+
scales2: torch.Tensor,
|
|
2538
|
+
bias: torch.Tensor | None,
|
|
2539
|
+
out_dtype: torch.dtype,
|
|
2540
|
+
is_vnni: bool,
|
|
2541
|
+
) -> torch.Tensor:
|
|
2542
|
+
M = mat1.size(0)
|
|
2543
|
+
N = mat2.size(0)
|
|
2544
|
+
return torch.empty((M, N), dtype=out_dtype)
|
|
2545
|
+
|
|
2546
|
+
|
|
2547
|
+
class CPUDNNLGEMMHandler:
|
|
2548
|
+
def __init__(self) -> None:
|
|
2549
|
+
self.handler: int | None = None
|
|
2550
|
+
self.n = -1
|
|
2551
|
+
self.k = -1
|
|
2552
|
+
|
|
2553
|
+
def __del__(self):
|
|
2554
|
+
if self.handler is not None:
|
|
2555
|
+
torch.ops._C.release_dnnl_matmul_handler(self.handler)
|
|
2556
|
+
|
|
2557
|
+
|
|
2558
|
+
_supports_onednn = bool(hasattr(torch.ops._C, "create_onednn_mm_handler"))
|
|
2559
|
+
|
|
2560
|
+
|
|
2561
|
+
def is_onednn_acl_supported():
|
|
2562
|
+
return torch.ops._C.is_onednn_acl_supported()
|
|
2563
|
+
|
|
2564
|
+
|
|
2565
|
+
def create_onednn_mm(
|
|
2566
|
+
weight: torch.Tensor, # [K, N]
|
|
2567
|
+
primitive_cache_size: int = 128,
|
|
2568
|
+
) -> CPUDNNLGEMMHandler:
|
|
2569
|
+
handler = CPUDNNLGEMMHandler()
|
|
2570
|
+
handler.k, handler.n = weight.size()
|
|
2571
|
+
handler.handler = torch.ops._C.create_onednn_mm_handler(
|
|
2572
|
+
weight, primitive_cache_size
|
|
2573
|
+
)
|
|
2574
|
+
return handler
|
|
2575
|
+
|
|
2576
|
+
|
|
2577
|
+
def onednn_mm(
|
|
2578
|
+
dnnl_handler: CPUDNNLGEMMHandler,
|
|
2579
|
+
x: torch.Tensor,
|
|
2580
|
+
bias: torch.Tensor | None,
|
|
2581
|
+
) -> torch.Tensor:
|
|
2582
|
+
output = torch.empty((*x.shape[0:-1], dnnl_handler.n), dtype=x.dtype)
|
|
2583
|
+
torch.ops._C.onednn_mm(
|
|
2584
|
+
output, x.reshape(-1, dnnl_handler.k), bias, dnnl_handler.handler
|
|
2585
|
+
)
|
|
2586
|
+
|
|
2587
|
+
return output
|
|
2588
|
+
|
|
2589
|
+
|
|
2590
|
+
def create_onednn_scaled_mm(
|
|
2591
|
+
weight: torch.Tensor, # [K, N]
|
|
2592
|
+
weight_scales: torch.Tensor,
|
|
2593
|
+
output_type: torch.dtype,
|
|
2594
|
+
dynamic_quant: bool,
|
|
2595
|
+
use_azp: bool,
|
|
2596
|
+
primitive_cache_size: int = 128,
|
|
2597
|
+
) -> CPUDNNLGEMMHandler:
|
|
2598
|
+
handler = CPUDNNLGEMMHandler()
|
|
2599
|
+
handler.k, handler.n = weight.size()
|
|
2600
|
+
handler.handler = torch.ops._C.create_onednn_scaled_mm_handler(
|
|
2601
|
+
weight, weight_scales, output_type, dynamic_quant, use_azp, primitive_cache_size
|
|
2602
|
+
)
|
|
2603
|
+
return handler
|
|
2604
|
+
|
|
2605
|
+
|
|
2606
|
+
def onednn_scaled_int8_quant(
|
|
2607
|
+
input: torch.Tensor,
|
|
2608
|
+
scale: torch.Tensor | None = None,
|
|
2609
|
+
azp: torch.Tensor | None = None,
|
|
2610
|
+
symmetric: bool = True,
|
|
2611
|
+
):
|
|
2612
|
+
"""
|
|
2613
|
+
Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
|
|
2614
|
+
|
|
2615
|
+
Args:
|
|
2616
|
+
input: The input tensor to be quantized to int8.
|
|
2617
|
+
scale: Optional scaling factor for the int8 quantization.
|
|
2618
|
+
When not provided, we invoke dynamic-per-token quantization.
|
|
2619
|
+
azp: Optional zero-point for the int8 quantization.
|
|
2620
|
+
Must be provided for asymmetric quantization if `scale` is provided.
|
|
2621
|
+
symmetric: Whether to use symmetric quantization (scale only, azp ignored).
|
|
2622
|
+
|
|
2623
|
+
Returns:
|
|
2624
|
+
tuple[torch.Tensor, torch.Tensor, torch.Tensor | None] : Output int8 tensor, scales, and optionally azp.
|
|
2625
|
+
"""
|
|
2626
|
+
output = torch.empty_like(input, dtype=torch.int8)
|
|
2627
|
+
token_num = input.numel() // input.shape[-1]
|
|
2628
|
+
input = input.view((token_num, input.shape[-1]))
|
|
2629
|
+
if scale is not None:
|
|
2630
|
+
# static-per-tensor quantization.
|
|
2631
|
+
assert symmetric == (azp is None), (
|
|
2632
|
+
"azp must only be provided for asymmetric quantization."
|
|
2633
|
+
)
|
|
2634
|
+
torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
|
|
2635
|
+
return output, scale, azp
|
|
2636
|
+
|
|
2637
|
+
# dynamic-per-token quantization.
|
|
2638
|
+
input_scales = torch.empty((token_num, 1), device=input.device, dtype=torch.float32)
|
|
2639
|
+
input_azp = None if symmetric else torch.empty_like(input_scales, dtype=torch.int32)
|
|
2640
|
+
torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales, input_azp)
|
|
2641
|
+
return output, input_scales, input_azp
|
|
2642
|
+
|
|
2643
|
+
|
|
2644
|
+
def onednn_scaled_mm(
|
|
2645
|
+
dnnl_handler: CPUDNNLGEMMHandler,
|
|
2646
|
+
x: torch.Tensor,
|
|
2647
|
+
output: torch.Tensor,
|
|
2648
|
+
input_scale: torch.Tensor | None,
|
|
2649
|
+
input_zp: torch.Tensor | None,
|
|
2650
|
+
input_zp_adj: torch.Tensor | None,
|
|
2651
|
+
bias: torch.Tensor | None,
|
|
2652
|
+
) -> torch.Tensor:
|
|
2653
|
+
torch.ops._C.onednn_scaled_mm(
|
|
2654
|
+
output, x, input_scale, input_zp, input_zp_adj, bias, dnnl_handler.handler
|
|
2655
|
+
)
|
|
2656
|
+
|
|
2657
|
+
return output
|
|
2658
|
+
|
|
2659
|
+
|
|
2660
|
+
def cpu_attn_get_scheduler_metadata(
|
|
2661
|
+
num_reqs: int,
|
|
2662
|
+
num_heads: int,
|
|
2663
|
+
num_kv_heads: int,
|
|
2664
|
+
head_dim: int,
|
|
2665
|
+
seq_lens: torch.Tensor,
|
|
2666
|
+
dtype: torch.dtype,
|
|
2667
|
+
query_start_loc: torch.Tensor,
|
|
2668
|
+
causal: bool,
|
|
2669
|
+
sliding_window_size: int,
|
|
2670
|
+
isa: str,
|
|
2671
|
+
enable_kv_split: bool,
|
|
2672
|
+
) -> torch.Tensor:
|
|
2673
|
+
sheduler_metadata = torch.ops._C.get_scheduler_metadata(
|
|
2674
|
+
num_reqs,
|
|
2675
|
+
num_heads,
|
|
2676
|
+
num_kv_heads,
|
|
2677
|
+
head_dim,
|
|
2678
|
+
seq_lens,
|
|
2679
|
+
dtype,
|
|
2680
|
+
query_start_loc,
|
|
2681
|
+
causal,
|
|
2682
|
+
sliding_window_size,
|
|
2683
|
+
isa,
|
|
2684
|
+
enable_kv_split,
|
|
2685
|
+
)
|
|
2686
|
+
return sheduler_metadata
|
|
2687
|
+
|
|
2688
|
+
|
|
2689
|
+
def cpu_attn_reshape_and_cache(
|
|
2690
|
+
key: torch.Tensor,
|
|
2691
|
+
value: torch.Tensor,
|
|
2692
|
+
key_cache: torch.Tensor,
|
|
2693
|
+
value_cache: torch.Tensor,
|
|
2694
|
+
slot_mapping: torch.Tensor,
|
|
2695
|
+
isa: str,
|
|
2696
|
+
) -> None:
|
|
2697
|
+
torch.ops._C.cpu_attn_reshape_and_cache(
|
|
2698
|
+
key,
|
|
2699
|
+
value,
|
|
2700
|
+
key_cache,
|
|
2701
|
+
value_cache,
|
|
2702
|
+
slot_mapping,
|
|
2703
|
+
isa,
|
|
2704
|
+
)
|
|
2705
|
+
|
|
2706
|
+
|
|
2707
|
+
def cpu_attention_with_kv_cache(
|
|
2708
|
+
query: torch.Tensor,
|
|
2709
|
+
key_cache: torch.Tensor,
|
|
2710
|
+
value_cache: torch.Tensor,
|
|
2711
|
+
output: torch.Tensor,
|
|
2712
|
+
query_start_loc: torch.Tensor,
|
|
2713
|
+
seq_lens: torch.Tensor,
|
|
2714
|
+
scale: float,
|
|
2715
|
+
causal: bool,
|
|
2716
|
+
alibi_slopes: torch.Tensor | None,
|
|
2717
|
+
sliding_window: tuple[int, int],
|
|
2718
|
+
block_table: torch.Tensor,
|
|
2719
|
+
softcap: float,
|
|
2720
|
+
scheduler_metadata: torch.Tensor,
|
|
2721
|
+
s_aux: torch.Tensor | None,
|
|
2722
|
+
) -> None:
|
|
2723
|
+
torch.ops._C.cpu_attention_with_kv_cache(
|
|
2724
|
+
query,
|
|
2725
|
+
key_cache,
|
|
2726
|
+
value_cache,
|
|
2727
|
+
output,
|
|
2728
|
+
query_start_loc,
|
|
2729
|
+
seq_lens,
|
|
2730
|
+
scale,
|
|
2731
|
+
causal,
|
|
2732
|
+
alibi_slopes,
|
|
2733
|
+
sliding_window[0],
|
|
2734
|
+
sliding_window[1],
|
|
2735
|
+
block_table,
|
|
2736
|
+
softcap,
|
|
2737
|
+
scheduler_metadata,
|
|
2738
|
+
s_aux,
|
|
2739
|
+
)
|
|
2740
|
+
|
|
2741
|
+
|
|
2742
|
+
def cpu_gemm_wna16(
|
|
2743
|
+
input: torch.Tensor,
|
|
2744
|
+
q_weight: torch.Tensor,
|
|
2745
|
+
scales: torch.Tensor,
|
|
2746
|
+
zeros: torch.Tensor | None,
|
|
2747
|
+
g_idx: torch.Tensor | None,
|
|
2748
|
+
bias: torch.Tensor | None,
|
|
2749
|
+
pack_factor: int,
|
|
2750
|
+
isa_hint: str,
|
|
2751
|
+
) -> torch.Tensor:
|
|
2752
|
+
output = torch.empty((input.size(0), scales.size(1)), dtype=input.dtype)
|
|
2753
|
+
torch.ops._C.cpu_gemm_wna16(
|
|
2754
|
+
input,
|
|
2755
|
+
q_weight,
|
|
2756
|
+
output,
|
|
2757
|
+
scales,
|
|
2758
|
+
zeros,
|
|
2759
|
+
g_idx,
|
|
2760
|
+
bias,
|
|
2761
|
+
pack_factor,
|
|
2762
|
+
isa_hint,
|
|
2763
|
+
)
|
|
2764
|
+
return output
|
|
2765
|
+
|
|
2766
|
+
|
|
2767
|
+
if hasattr(torch.ops._qutlass_C, "matmul_mxf4_bf16_tn"):
|
|
2768
|
+
|
|
2769
|
+
@register_fake("_qutlass_C::matmul_mxf4_bf16_tn")
|
|
2770
|
+
def _fake_matmul_mxf4_bf16_tn(
|
|
2771
|
+
a: torch.Tensor,
|
|
2772
|
+
b: torch.Tensor,
|
|
2773
|
+
a_sf: torch.Tensor,
|
|
2774
|
+
b_sf: torch.Tensor,
|
|
2775
|
+
alpha: torch.Tensor,
|
|
2776
|
+
):
|
|
2777
|
+
return a.new_empty(*a.shape[:-1], b.shape[0], dtype=torch.bfloat16)
|
|
2778
|
+
|
|
2779
|
+
|
|
2780
|
+
def matmul_mxf4_bf16_tn(
|
|
2781
|
+
a: torch.Tensor,
|
|
2782
|
+
b: torch.Tensor,
|
|
2783
|
+
a_sf: torch.Tensor,
|
|
2784
|
+
b_sf: torch.Tensor,
|
|
2785
|
+
alpha: torch.Tensor,
|
|
2786
|
+
) -> torch.Tensor:
|
|
2787
|
+
return torch.ops._qutlass_C.matmul_mxf4_bf16_tn(a, b, a_sf, b_sf, alpha)
|
|
2788
|
+
|
|
2789
|
+
|
|
2790
|
+
if hasattr(torch.ops._qutlass_C, "matmul_ada_mxf4_bf16_tn"):
|
|
2791
|
+
|
|
2792
|
+
@register_fake("_qutlass_C::matmul_ada_mxf4_bf16_tn")
|
|
2793
|
+
def _fake_matmul_ada_mxf4_bf16_tn(
|
|
2794
|
+
a: torch.Tensor,
|
|
2795
|
+
b: torch.Tensor,
|
|
2796
|
+
a_sf: torch.Tensor,
|
|
2797
|
+
b_sf: torch.Tensor,
|
|
2798
|
+
alpha: torch.Tensor,
|
|
2799
|
+
):
|
|
2800
|
+
return a.new_empty(*a.shape[:-1], b.shape[0], dtype=torch.bfloat16)
|
|
2801
|
+
|
|
2802
|
+
|
|
2803
|
+
def matmul_ada_mxf4_bf16_tn(
|
|
2804
|
+
a: torch.Tensor,
|
|
2805
|
+
b: torch.Tensor,
|
|
2806
|
+
a_sf: torch.Tensor,
|
|
2807
|
+
b_sf: torch.Tensor,
|
|
2808
|
+
alpha: torch.Tensor,
|
|
2809
|
+
) -> torch.Tensor:
|
|
2810
|
+
return torch.ops._qutlass_C.matmul_ada_mxf4_bf16_tn(a, b, a_sf, b_sf, alpha)
|
|
2811
|
+
|
|
2812
|
+
|
|
2813
|
+
def ceil_div(a, b):
|
|
2814
|
+
return (a + b - 1) // b
|
|
2815
|
+
|
|
2816
|
+
|
|
2817
|
+
if hasattr(torch.ops._qutlass_C, "fusedQuantizeMxQuest"):
|
|
2818
|
+
|
|
2819
|
+
@register_fake("_qutlass_C::fusedQuantizeMxQuest")
|
|
2820
|
+
def _fake_fused_quantize_mx_quest(
|
|
2821
|
+
a: torch.Tensor, b: torch.Tensor, xh_e2m1: torch.Tensor, xh_e8m0: torch.Tensor
|
|
2822
|
+
):
|
|
2823
|
+
return xh_e2m1, xh_e8m0
|
|
2824
|
+
|
|
2825
|
+
|
|
2826
|
+
if hasattr(torch.ops._qutlass_C, "fusedQuantizeMxAbsMax"):
|
|
2827
|
+
|
|
2828
|
+
@register_fake("_qutlass_C::fusedQuantizeMxAbsMax")
|
|
2829
|
+
def _fake_fused_quantize_mx_absmax(
|
|
2830
|
+
a: torch.Tensor, b: torch.Tensor, xh_e2m1: torch.Tensor, xh_e8m0: torch.Tensor
|
|
2831
|
+
):
|
|
2832
|
+
return xh_e2m1, xh_e8m0
|
|
2833
|
+
|
|
2834
|
+
|
|
2835
|
+
def fusedQuantizeMx(
|
|
2836
|
+
a: torch.Tensor, b: torch.Tensor, *, method: Literal["quest", "abs_max"] = "quest"
|
|
2837
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2838
|
+
if a.dim() == 0:
|
|
2839
|
+
raise ValueError("`a` must have at least 1 dimension.")
|
|
2840
|
+
if a.size(-1) % 32 != 0:
|
|
2841
|
+
raise ValueError(f"last dim of `a` must be divisible by 32, got {a.size(-1)}.")
|
|
2842
|
+
if b.device != a.device:
|
|
2843
|
+
raise ValueError("`a` and `b` must be on the same device.")
|
|
2844
|
+
|
|
2845
|
+
xh_e2m1 = torch.empty(
|
|
2846
|
+
*a.shape[:-1], a.size(-1) // 2, dtype=torch.uint8, device=a.device
|
|
2847
|
+
)
|
|
2848
|
+
|
|
2849
|
+
rows, cols = a.numel() // a.size(-1), a.size(-1) // 32
|
|
2850
|
+
n_row_blocks = ceil_div(rows, 128)
|
|
2851
|
+
n_col_blocks = ceil_div(cols, 4)
|
|
2852
|
+
padded_rows = n_row_blocks * 128
|
|
2853
|
+
padded_cols = n_col_blocks * 4
|
|
2854
|
+
|
|
2855
|
+
xh_e8m0 = torch.empty(
|
|
2856
|
+
padded_rows, padded_cols, dtype=torch.float8_e8m0fnu, device=a.device
|
|
2857
|
+
)
|
|
2858
|
+
|
|
2859
|
+
if not hasattr(torch.ops, "_qutlass_C"):
|
|
2860
|
+
raise RuntimeError(
|
|
2861
|
+
"The `_qutlass_C` extension is not loaded. "
|
|
2862
|
+
"Make sure your custom op library is imported before calling fusedQuantizeMx."
|
|
2863
|
+
)
|
|
2864
|
+
|
|
2865
|
+
if method == "quest":
|
|
2866
|
+
return torch.ops._qutlass_C.fusedQuantizeMxQuest(a, b, xh_e2m1, xh_e8m0)
|
|
2867
|
+
elif method == "abs_max":
|
|
2868
|
+
return torch.ops._qutlass_C.fusedQuantizeMxAbsMax(a, b, xh_e2m1, xh_e8m0)
|
|
2869
|
+
else:
|
|
2870
|
+
raise ValueError(f"invalid method {method!r}, must be 'quest' or 'abs_max'")
|
|
2871
|
+
|
|
2872
|
+
|
|
2873
|
+
if hasattr(torch.ops._qutlass_C, "fusedQuantizeNv"):
|
|
2874
|
+
|
|
2875
|
+
@register_fake("_qutlass_C::fusedQuantizeNv")
|
|
2876
|
+
def _fake_fused_quantize_nv(
|
|
2877
|
+
a: torch.Tensor,
|
|
2878
|
+
b: torch.Tensor,
|
|
2879
|
+
xh_e2m1: torch.Tensor,
|
|
2880
|
+
xh_e4m3: torch.Tensor,
|
|
2881
|
+
global_scale: torch.Tensor,
|
|
2882
|
+
):
|
|
2883
|
+
return xh_e2m1, xh_e4m3
|
|
2884
|
+
|
|
2885
|
+
|
|
2886
|
+
def fusedQuantizeNv(
|
|
2887
|
+
a: torch.Tensor, b: torch.Tensor, global_scale: torch.Tensor
|
|
2888
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2889
|
+
xh_e2m1 = torch.empty(
|
|
2890
|
+
*a.shape[:-1], a.size(-1) // 2, dtype=torch.uint8, device=a.device
|
|
2891
|
+
)
|
|
2892
|
+
|
|
2893
|
+
rows, cols = a.numel() // a.size(-1), a.size(-1) // 16
|
|
2894
|
+
n_row_blocks = ceil_div(rows, 128)
|
|
2895
|
+
n_col_blocks = ceil_div(cols, 4)
|
|
2896
|
+
padded_rows = n_row_blocks * 128
|
|
2897
|
+
padded_cols = n_col_blocks * 4
|
|
2898
|
+
xh_e4m3 = torch.empty(
|
|
2899
|
+
padded_rows, padded_cols, dtype=torch.float8_e4m3fn, device=a.device
|
|
2900
|
+
)
|
|
2901
|
+
|
|
2902
|
+
return torch.ops._qutlass_C.fusedQuantizeNv(a, b, xh_e2m1, xh_e4m3, global_scale)
|
|
2903
|
+
|
|
2904
|
+
|
|
2905
|
+
def hadacore_transform(x: torch.Tensor, inplace: bool = True) -> torch.Tensor:
|
|
2906
|
+
"""
|
|
2907
|
+
Perform Hadamard transforms using [Hadacore](https://arxiv.org/abs/2412.08832)
|
|
2908
|
+
kernels. Note that these kernels exploit the recursive properties of
|
|
2909
|
+
Sylvester Hadamards, and therefore do not require transform weight data
|
|
2910
|
+
|
|
2911
|
+
Note that sylvester hadamard transforms are also symmetric, which means that
|
|
2912
|
+
this function is also applies the (transpose <=> inverse) transform.
|
|
2913
|
+
|
|
2914
|
+
:param x: value to be transformed inplace
|
|
2915
|
+
:param inplace: modify value in place
|
|
2916
|
+
:return: value after transformation
|
|
2917
|
+
"""
|
|
2918
|
+
return torch.ops._C.hadacore_transform(x, inplace)
|
|
2919
|
+
|
|
2920
|
+
|
|
2921
|
+
if hasattr(torch.ops._C, "hadacore_transform"):
|
|
2922
|
+
|
|
2923
|
+
@register_fake("_C::hadacore_transform")
|
|
2924
|
+
def _hadacore_transform_fake(x: torch.Tensor, inplace: bool) -> torch.Tensor:
|
|
2925
|
+
return torch.empty_like(x) if not inplace else x
|