vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2387 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from collections.abc import Callable
6
+ from enum import Enum
7
+
8
+ import torch
9
+ from compressed_tensors import CompressionFormat
10
+ from compressed_tensors.quantization import ActivationOrdering, QuantizationStrategy
11
+ from torch.nn.parameter import Parameter
12
+
13
+ import vllm.envs as envs
14
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
15
+ from vllm import _custom_ops as ops
16
+ from vllm._aiter_ops import rocm_aiter_ops
17
+ from vllm.distributed import get_tensor_model_parallel_world_size
18
+ from vllm.logger import init_logger
19
+ from vllm.model_executor.layers.fused_moe import (
20
+ FusedMoE,
21
+ FusedMoEActivationFormat,
22
+ FusedMoEConfig,
23
+ FusedMoEMethodBase,
24
+ FusedMoEPermuteExpertsUnpermute,
25
+ FusedMoeWeightScaleSupported,
26
+ UnquantizedFusedMoEMethod,
27
+ )
28
+ from vllm.model_executor.layers.fused_moe.config import (
29
+ FusedMoEQuantConfig,
30
+ fp8_w8a8_moe_quant_config,
31
+ int4_w4a16_moe_quant_config,
32
+ int8_w8a8_moe_quant_config,
33
+ int8_w8a16_moe_quant_config,
34
+ nvfp4_moe_quant_config,
35
+ )
36
+ from vllm.model_executor.layers.fused_moe.cpu_fused_moe import select_experts
37
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
38
+ is_valid_flashinfer_cutlass_fused_moe,
39
+ )
40
+ from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
41
+ BatchedMarlinExperts,
42
+ MarlinExperts,
43
+ fused_marlin_moe,
44
+ )
45
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
46
+ WNA16_SUPPORTED_BITS,
47
+ WNA16_SUPPORTED_TYPES_MAP,
48
+ )
49
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
50
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
51
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize,
52
+ flashinfer_trtllm_fp4_moe,
53
+ prepare_static_weights_for_trtllm_fp4_moe,
54
+ reorder_w1w3_to_w3w1,
55
+ select_nvfp4_gemm_impl,
56
+ )
57
+ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
58
+ FlashinferMoeBackend,
59
+ get_flashinfer_moe_backend,
60
+ )
61
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
62
+ expert_weight_is_col_major,
63
+ requant_weight_ue8m0_inplace,
64
+ )
65
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
66
+ check_moe_marlin_supports_layer,
67
+ get_marlin_input_dtype,
68
+ marlin_act_int8_process_scales,
69
+ marlin_make_workspace_new,
70
+ marlin_moe_permute_scales,
71
+ )
72
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
73
+ prepare_moe_fp4_layer_for_marlin,
74
+ )
75
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
76
+ prepare_moe_fp8_layer_for_marlin,
77
+ )
78
+ from vllm.model_executor.layers.quantization.utils.quant_utils import swizzle_blockscale
79
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
80
+ all_close_1d,
81
+ normalize_e4m3fn_to_e4m3fnuz,
82
+ per_tensor_dequantize,
83
+ )
84
+ from vllm.model_executor.utils import set_weight_attrs
85
+ from vllm.platforms import CpuArchEnum, current_platform
86
+ from vllm.scalar_type import scalar_types
87
+ from vllm.utils.deep_gemm import (
88
+ get_col_major_tma_aligned_tensor,
89
+ is_deep_gemm_e8m0_used,
90
+ )
91
+
92
+ logger = init_logger(__name__)
93
+
94
+
95
+ class GPTQMarlinState(Enum):
96
+ REPACK = enum.auto()
97
+ READY = enum.auto()
98
+
99
+
100
+ __all__ = [
101
+ "CompressedTensorsMoEMethod",
102
+ "CompressedTensorsW8A8Fp8MoEMethod",
103
+ "CompressedTensorsW8A8Int8MoEMethod",
104
+ "CompressedTensorsWNA16MarlinMoEMethod",
105
+ "CompressedTensorsWNA16MoEMethod",
106
+ "CompressedTensorsW4A4Nvfp4MoEMethod",
107
+ "CompressedTensorsW4A8Int8MoEMethod",
108
+ ]
109
+
110
+
111
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
112
+ @staticmethod
113
+ def get_moe_method(
114
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
115
+ layer: torch.nn.Module,
116
+ layer_name: str,
117
+ ) -> "CompressedTensorsMoEMethod":
118
+ # FusedMoE was made by combining multiple Linears so need to
119
+ # make sure quantization config for Linear can target it
120
+ quant_config._add_fused_moe_to_target_scheme_map()
121
+ unfused_names = [
122
+ layer_name + proj_name
123
+ for proj_name in [".0.gate_proj", ".0.up_proj", ".0.down_proj"]
124
+ ]
125
+ # TODO: refactor this to use expert_mapping and check all layer numbers
126
+ all_scheme_dicts = [
127
+ quant_config.get_scheme_dict(layer, name) for name in unfused_names
128
+ ]
129
+ scheme_dict = all_scheme_dicts.pop()
130
+
131
+ # multiple schemes found
132
+ if not all([cur_dict == scheme_dict for cur_dict in all_scheme_dicts]):
133
+ raise ValueError(
134
+ "All MoE projections need to have same "
135
+ "quantization scheme but found multiple"
136
+ )
137
+
138
+ if scheme_dict is None: # ignored layer
139
+ return UnquantizedFusedMoEMethod(layer.moe_config)
140
+
141
+ # TODO: @dsikka: refactor this to use schemes as other kernels
142
+ # are supported + check if the layer is being ignored.
143
+ weight_quant = scheme_dict.get("weights")
144
+ input_quant = scheme_dict.get("input_activations")
145
+
146
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
147
+ # group_size=None means channelwise
148
+ group_size = weight_quant.group_size or -1
149
+ # Prefer to use the MarlinMoE kernel when it is supported.
150
+ if (
151
+ not check_moe_marlin_supports_layer(layer, group_size)
152
+ or current_platform.is_rocm()
153
+ ):
154
+ if (
155
+ weight_quant.strategy == QuantizationStrategy.GROUP
156
+ and weight_quant.actorder
157
+ in (ActivationOrdering.GROUP, ActivationOrdering.DYNAMIC)
158
+ ):
159
+ raise ValueError(
160
+ "WNA16MoE is not supported with actorder=group/dynamic."
161
+ )
162
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
163
+ return CompressedTensorsWNA16MoEMethod(
164
+ quant_config, layer.moe_config, layer_name
165
+ )
166
+ else:
167
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
168
+ return CompressedTensorsWNA16MarlinMoEMethod(
169
+ quant_config, layer.moe_config, layer_name
170
+ )
171
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
172
+ return CompressedTensorsW4A4Nvfp4MoEMethod(layer.moe_config, layer_name)
173
+ elif (
174
+ quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
175
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
176
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)
177
+ ):
178
+ return CompressedTensorsW8A8Fp8MoEMethod(
179
+ quant_config, layer.moe_config, layer_name
180
+ )
181
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
182
+ return CompressedTensorsW8A8Int8MoEMethod(
183
+ quant_config, layer.moe_config, layer_name
184
+ )
185
+ elif quant_config._is_dynamic_token_w4a8_int(weight_quant, input_quant):
186
+ return CompressedTensorsW4A8Int8MoEMethod(
187
+ quant_config, layer.moe_config, layer_name
188
+ )
189
+ else:
190
+ raise RuntimeError(
191
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}"
192
+ )
193
+
194
+
195
+ class CompressedTensorsW4A4Nvfp4MoEMethod(CompressedTensorsMoEMethod):
196
+ def __init__(self, moe: FusedMoEConfig, layer_name: str | None = None):
197
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
198
+ detect_nvfp4_moe_support,
199
+ )
200
+
201
+ super().__init__(moe)
202
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
203
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
204
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
205
+ self.use_marlin = _nvfp4.use_marlin
206
+ self.group_size = 16
207
+ self.layer_name = layer_name
208
+ self.marlin_input_dtype = (
209
+ get_marlin_input_dtype(layer_name) if self.use_marlin else None
210
+ )
211
+ self.flashinfer_moe_backend = None
212
+ if self.allow_flashinfer:
213
+ self.flashinfer_moe_backend = get_flashinfer_moe_backend()
214
+ logger.info_once(
215
+ f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
216
+ " for CompressedTensorsW4A4Nvfp4MoEMethod."
217
+ )
218
+ elif self.use_marlin:
219
+ logger.info_once("Using Marlin for CompressedTensorsW4A4Nvfp4MoEMethod.")
220
+ else:
221
+ logger.info_once("Using Cutlass for CompressedTensorsW4A4Nvfp4MoEMethod.")
222
+
223
+ def create_weights(
224
+ self,
225
+ layer: torch.nn.Module,
226
+ num_experts: int,
227
+ hidden_size: int,
228
+ intermediate_size_per_partition: int,
229
+ params_dtype: torch.dtype,
230
+ **extra_weight_attrs,
231
+ ):
232
+ layer.num_experts = num_experts
233
+ layer.params_dtype = params_dtype
234
+
235
+ w13_weight = torch.nn.Parameter(
236
+ torch.empty(
237
+ num_experts,
238
+ 2 * intermediate_size_per_partition,
239
+ # 2 fp4 items are packed in the input dimension
240
+ hidden_size // 2,
241
+ requires_grad=False,
242
+ dtype=torch.uint8,
243
+ ),
244
+ requires_grad=False,
245
+ )
246
+ layer.register_parameter("w13_weight_packed", w13_weight)
247
+ set_weight_attrs(w13_weight, extra_weight_attrs)
248
+
249
+ w2_weight = torch.nn.Parameter(
250
+ torch.empty(
251
+ num_experts,
252
+ hidden_size,
253
+ # 2 fp4 items are packed in the input dimension
254
+ intermediate_size_per_partition // 2,
255
+ dtype=torch.uint8,
256
+ ),
257
+ requires_grad=False,
258
+ )
259
+ layer.register_parameter("w2_weight_packed", w2_weight)
260
+ set_weight_attrs(w2_weight, extra_weight_attrs)
261
+
262
+ # Weight Scales
263
+ w13_weight_scale = torch.nn.Parameter(
264
+ torch.empty(
265
+ num_experts,
266
+ 2 * intermediate_size_per_partition,
267
+ # 2 fp4 items are packed in the input dimension
268
+ hidden_size // self.group_size,
269
+ dtype=torch.float8_e4m3fn,
270
+ ),
271
+ requires_grad=False,
272
+ )
273
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
274
+ extra_weight_attrs.update(
275
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
276
+ )
277
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
278
+
279
+ w2_weight_scale = torch.nn.Parameter(
280
+ torch.empty(
281
+ num_experts,
282
+ hidden_size,
283
+ # 2 fp4 items are packed in the input dimension
284
+ intermediate_size_per_partition // self.group_size,
285
+ dtype=torch.float8_e4m3fn,
286
+ ),
287
+ requires_grad=False,
288
+ )
289
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
290
+ extra_weight_attrs.update(
291
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
292
+ )
293
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
294
+
295
+ # Weight Global Scales
296
+ w13_weight_scale_2 = torch.nn.Parameter(
297
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
298
+ )
299
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
300
+ extra_weight_attrs.update(
301
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
302
+ )
303
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
304
+
305
+ w2_weight_scale_2 = torch.nn.Parameter(
306
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
307
+ )
308
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
309
+ extra_weight_attrs.update(
310
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
311
+ )
312
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
313
+
314
+ # Input Global Scales
315
+ w13_input_scale = torch.nn.Parameter(
316
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
317
+ )
318
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
319
+ extra_weight_attrs.update(
320
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
321
+ )
322
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
323
+
324
+ w2_input_scale = torch.nn.Parameter(
325
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
326
+ )
327
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
328
+ extra_weight_attrs.update(
329
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
330
+ )
331
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
332
+
333
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
334
+ # From packed to weight
335
+ layer.w13_weight = torch.nn.Parameter(
336
+ layer.w13_weight_packed.data, requires_grad=False
337
+ )
338
+ delattr(layer, "w13_weight_packed")
339
+
340
+ layer.w2_weight = torch.nn.Parameter(
341
+ layer.w2_weight_packed.data, requires_grad=False
342
+ )
343
+ delattr(layer, "w2_weight_packed")
344
+
345
+ # reorder GEMM1 weights and block scales for FlashInfer CUTLASS kernel.
346
+ if self.allow_flashinfer:
347
+ w, s = reorder_w1w3_to_w3w1(
348
+ layer.w13_weight.data, layer.w13_weight_scale.data, dim=-2
349
+ )
350
+ layer.w13_weight = torch.nn.Parameter(w, requires_grad=False)
351
+ layer.w13_weight_scale = torch.nn.Parameter(s, requires_grad=False)
352
+
353
+ if not torch.allclose(
354
+ layer.w13_weight_global_scale[:, 0], layer.w13_weight_global_scale[:, 1]
355
+ ):
356
+ logger.warning_once(
357
+ "w1_weight_global_scale must match w3_weight_global_scale. "
358
+ "Accuracy may be affected."
359
+ )
360
+
361
+ # Take inverse of global scale saved to disk
362
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
363
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False
364
+ )
365
+
366
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
367
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False
368
+ )
369
+
370
+ if self.use_marlin:
371
+ prepare_moe_fp4_layer_for_marlin(layer, input_dtype=self.marlin_input_dtype)
372
+ return
373
+ # w13
374
+ if (
375
+ self.allow_flashinfer
376
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
377
+ ):
378
+ w13_input_global_scale = (
379
+ layer.w13_input_global_scale.min()
380
+ .to(torch.float32)
381
+ .expand(layer.num_experts)
382
+ )
383
+ else:
384
+ w13_input_global_scale = layer.w13_input_global_scale.min(dim=1).values.to(
385
+ torch.float32
386
+ )
387
+ layer.g1_alphas = torch.nn.Parameter(
388
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
389
+ requires_grad=False,
390
+ )
391
+
392
+ layer.w13_input_scale_quant = torch.nn.Parameter(
393
+ (w13_input_global_scale), requires_grad=False
394
+ )
395
+
396
+ # w2
397
+ if (
398
+ self.allow_flashinfer
399
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
400
+ ):
401
+ w2_input_global_scale = (
402
+ layer.w2_input_global_scale.min()
403
+ .to(torch.float32)
404
+ .expand(layer.num_experts)
405
+ )
406
+ else:
407
+ w2_input_global_scale = layer.w2_input_global_scale
408
+
409
+ layer.g2_alphas = torch.nn.Parameter(
410
+ ((1 / w2_input_global_scale) * layer.w2_weight_scale_2).to(torch.float32),
411
+ requires_grad=False,
412
+ )
413
+
414
+ layer.w2_input_scale_quant = torch.nn.Parameter(
415
+ (w2_input_global_scale), requires_grad=False
416
+ )
417
+
418
+ # TensorRT-LLM specific processing
419
+ if (
420
+ self.allow_flashinfer
421
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
422
+ ):
423
+ # Prepare static weights for TRT-LLM kernel
424
+ # alternate: prepare_static_weight_layouts_for_trtllm_moe
425
+ (
426
+ gemm1_weights_fp4_shuffled,
427
+ gemm1_scales_fp4_shuffled,
428
+ gemm2_weights_fp4_shuffled,
429
+ gemm2_scales_fp4_shuffled,
430
+ ) = prepare_static_weights_for_trtllm_fp4_moe(
431
+ layer.w13_weight,
432
+ layer.w2_weight,
433
+ layer.w13_weight_scale,
434
+ layer.w2_weight_scale,
435
+ layer.w2_weight.size(-2), # hidden_size
436
+ layer.w13_weight.size(-2) // 2, # intermediate_size
437
+ layer.w13_weight.size(0), # num_experts
438
+ )
439
+ logger.debug_once("Finished shuffling weights for TRT-LLM MOE")
440
+
441
+ layer.gemm1_weights_fp4_shuffled = Parameter(
442
+ gemm1_weights_fp4_shuffled, requires_grad=False
443
+ )
444
+ layer.gemm2_weights_fp4_shuffled = Parameter(
445
+ gemm2_weights_fp4_shuffled, requires_grad=False
446
+ )
447
+ layer.gemm1_scales_fp4_shuffled = Parameter(
448
+ gemm1_scales_fp4_shuffled, requires_grad=False
449
+ )
450
+ layer.gemm2_scales_fp4_shuffled = Parameter(
451
+ gemm2_scales_fp4_shuffled, requires_grad=False
452
+ )
453
+
454
+ # Additional parameter needed for TRT-LLM
455
+ layer.g1_scale_c = Parameter(
456
+ (layer.w2_input_scale_quant * layer.g1_alphas).to(torch.float32),
457
+ requires_grad=False,
458
+ )
459
+
460
+ # Clean up weights that won't be used by TRT-LLM
461
+ del layer.w2_weight
462
+ del layer.w2_weight_scale
463
+ del layer.w13_weight
464
+ del layer.w13_weight_scale
465
+ else:
466
+ # swizzle weight scales
467
+ layer.w13_weight_scale = torch.nn.Parameter(
468
+ swizzle_blockscale(layer.w13_weight_scale), requires_grad=False
469
+ )
470
+
471
+ layer.w2_weight_scale = torch.nn.Parameter(
472
+ swizzle_blockscale(layer.w2_weight_scale), requires_grad=False
473
+ )
474
+
475
+ def maybe_make_prepare_finalize(
476
+ self,
477
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
478
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
479
+ if self.use_marlin or (
480
+ self.allow_flashinfer
481
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
482
+ ):
483
+ return None
484
+ elif not self.allow_flashinfer:
485
+ return super().maybe_make_prepare_finalize(routing_tables)
486
+
487
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(self.moe)
488
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
489
+ return prepare_finalize
490
+
491
+ def select_gemm_impl(
492
+ self,
493
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
494
+ layer: torch.nn.Module,
495
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
496
+ assert self.moe_quant_config is not None
497
+ """Return the appropriate GEMM experts implementation."""
498
+ experts = select_nvfp4_gemm_impl(
499
+ self.moe,
500
+ self.moe_quant_config,
501
+ allow_flashinfer=self.allow_flashinfer,
502
+ )
503
+ logger.debug_once("Using %s", experts.__class__.__name__)
504
+ return experts
505
+
506
+ def get_fused_moe_quant_config(
507
+ self, layer: torch.nn.Module
508
+ ) -> FusedMoEQuantConfig | None:
509
+ if (
510
+ self.use_marlin
511
+ or self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
512
+ ):
513
+ return None
514
+
515
+ return nvfp4_moe_quant_config(
516
+ g1_alphas=layer.g1_alphas,
517
+ g2_alphas=layer.g2_alphas,
518
+ a1_gscale=layer.w13_input_scale_quant,
519
+ a2_gscale=layer.w2_input_scale_quant,
520
+ w1_scale=layer.w13_weight_scale,
521
+ w2_scale=layer.w2_weight_scale,
522
+ )
523
+
524
+ def apply(
525
+ self,
526
+ layer: FusedMoE,
527
+ x: torch.Tensor,
528
+ router_logits: torch.Tensor,
529
+ top_k: int,
530
+ renormalize: bool,
531
+ use_grouped_topk: bool = False,
532
+ topk_group: int | None = None,
533
+ num_expert_group: int | None = None,
534
+ global_num_experts: int = -1,
535
+ expert_map: torch.Tensor | None = None,
536
+ custom_routing_function: Callable | None = None,
537
+ scoring_func: str = "softmax",
538
+ routed_scaling_factor: float = 1.0,
539
+ e_score_correction_bias: torch.Tensor | None = None,
540
+ apply_router_weight_on_input: bool = False,
541
+ activation: str = "silu",
542
+ enable_eplb: bool = False,
543
+ expert_load_view: torch.Tensor | None = None,
544
+ logical_to_physical_map: torch.Tensor | None = None,
545
+ logical_replica_count: torch.Tensor | None = None,
546
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
547
+ assert activation == "silu", "Only SiLU activation is supported."
548
+
549
+ if (
550
+ self.allow_flashinfer
551
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
552
+ ):
553
+ if enable_eplb:
554
+ raise NotImplementedError(
555
+ "EPLB not supported for `CompressedTensorsW4A4MoEMethod` yet."
556
+ )
557
+
558
+ return flashinfer_trtllm_fp4_moe(
559
+ layer=layer,
560
+ x=x,
561
+ router_logits=router_logits,
562
+ top_k=top_k,
563
+ global_num_experts=global_num_experts,
564
+ num_expert_group=num_expert_group,
565
+ topk_group=topk_group,
566
+ custom_routing_function=custom_routing_function,
567
+ e_score_correction_bias=e_score_correction_bias,
568
+ )
569
+
570
+ topk_weights, topk_ids, _ = layer.select_experts(
571
+ hidden_states=x,
572
+ router_logits=router_logits,
573
+ )
574
+
575
+ if self.use_marlin:
576
+ return fused_marlin_moe(
577
+ x,
578
+ layer.w13_weight,
579
+ layer.w2_weight,
580
+ None,
581
+ None,
582
+ layer.w13_weight_scale,
583
+ layer.w2_weight_scale,
584
+ router_logits,
585
+ topk_weights,
586
+ topk_ids,
587
+ global_scale1=layer.w13_weight_scale_2,
588
+ global_scale2=layer.w2_weight_scale_2,
589
+ quant_type_id=scalar_types.float4_e2m1f.id,
590
+ apply_router_weight_on_input=apply_router_weight_on_input,
591
+ global_num_experts=global_num_experts,
592
+ expert_map=expert_map,
593
+ input_dtype=self.marlin_input_dtype,
594
+ workspace=layer.workspace,
595
+ )
596
+
597
+ # FlashInfer fused experts path
598
+ elif self.allow_flashinfer:
599
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
600
+ flashinfer_cutlass_moe_fp4,
601
+ )
602
+
603
+ assert is_valid_flashinfer_cutlass_fused_moe(
604
+ x, layer.w13_weight, layer.w2_weight
605
+ ), "Flashinfer CUTLASS Fused MoE not applicable!"
606
+
607
+ assert self.moe_quant_config is not None
608
+
609
+ return flashinfer_cutlass_moe_fp4(
610
+ hidden_states=x,
611
+ w1=layer.w13_weight,
612
+ w2=layer.w2_weight,
613
+ topk_weights=topk_weights,
614
+ topk_ids=topk_ids,
615
+ quant_config=self.moe_quant_config,
616
+ inplace=False, # TODO(shuw): fix later, now output is high prec
617
+ activation=activation,
618
+ global_num_experts=global_num_experts,
619
+ expert_map=expert_map,
620
+ apply_router_weight_on_input=apply_router_weight_on_input,
621
+ )
622
+ else:
623
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
624
+
625
+ assert expert_map is None, (
626
+ "Expert Parallelism / expert_map "
627
+ "is currently not supported for "
628
+ "CompressedTensorsW4A4Nvfp4MoEMethod."
629
+ )
630
+ assert self.moe_quant_config is not None
631
+
632
+ # Cutlass moe takes in activations in BF16/Half precision
633
+ # and fp4 quantized weights loaded from the checkpoint
634
+ return cutlass_moe_fp4(
635
+ a=x,
636
+ w1_fp4=layer.w13_weight,
637
+ w2_fp4=layer.w2_weight,
638
+ topk_weights=topk_weights,
639
+ topk_ids=topk_ids,
640
+ quant_config=self.moe_quant_config,
641
+ apply_router_weight_on_input=apply_router_weight_on_input,
642
+ # TODO(bnell): derive these from arguments
643
+ m=x.shape[0],
644
+ n=layer.w2_weight.shape[2] * 2,
645
+ k=x.shape[1],
646
+ e=layer.w13_weight.shape[0],
647
+ ).to(x.dtype)
648
+
649
+
650
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
651
+ def __init__(
652
+ self,
653
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
654
+ moe: FusedMoEConfig,
655
+ layer_name: str | None = None,
656
+ ):
657
+ super().__init__(moe)
658
+ self.quant_config = quant_config
659
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get("weights")
660
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
661
+ "input_activations"
662
+ )
663
+
664
+ per_tensor = (
665
+ self.weight_quant.strategy == QuantizationStrategy.TENSOR
666
+ and self.input_quant.strategy == QuantizationStrategy.TENSOR
667
+ )
668
+ per_channel = (
669
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
670
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
671
+ )
672
+ if not (per_tensor or per_channel):
673
+ assert self.weight_quant.strategy == QuantizationStrategy.BLOCK
674
+ self.weight_block_size = self.weight_quant.block_structure
675
+ assert self.weight_quant.dynamic is not None
676
+ else:
677
+ self.weight_block_size = None
678
+ self.block_quant = self.weight_block_size is not None
679
+
680
+ self.static_input_scales = not self.input_quant.dynamic
681
+ if self.static_input_scales and per_channel:
682
+ raise ValueError(
683
+ "For FP8 Fused MoE layer, we require either per tensor or "
684
+ "channelwise, dynamic per token quantization."
685
+ )
686
+
687
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
688
+ # kernel for fast weight-only FP8 quantization
689
+ self.use_marlin = (
690
+ not current_platform.has_device_capability(89)
691
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN
692
+ and not self.block_quant
693
+ )
694
+ # Disable marlin for rocm
695
+ if current_platform.is_rocm():
696
+ self.use_marlin = False
697
+
698
+ self.rocm_aiter_moe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
699
+
700
+ # cutlass path
701
+ self.is_fp8_w8a8_sm100 = quant_config._is_fp8_w8a8_sm100(
702
+ self.weight_quant, self.input_quant
703
+ )
704
+ self.use_cutlass = not self.block_quant and (
705
+ quant_config._is_fp8_w8a8_sm90(self.weight_quant, self.input_quant)
706
+ or self.is_fp8_w8a8_sm100
707
+ )
708
+ self.disable_expert_map = False
709
+ self.layer_name = layer_name
710
+ self.marlin_input_dtype = (
711
+ get_marlin_input_dtype(layer_name) if self.use_marlin else None
712
+ )
713
+
714
+ def create_weights(
715
+ self,
716
+ layer: torch.nn.Module,
717
+ num_experts: int,
718
+ hidden_size: int,
719
+ intermediate_size_per_partition: int,
720
+ params_dtype: torch.dtype,
721
+ **extra_weight_attrs,
722
+ ):
723
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
724
+ layer.hidden_size = hidden_size
725
+ layer.num_experts = num_experts
726
+ layer.orig_dtype = params_dtype
727
+ layer.weight_block_size = None
728
+
729
+ params_dtype = torch.float8_e4m3fn
730
+
731
+ if self.block_quant:
732
+ assert self.weight_block_size is not None
733
+ layer.weight_block_size = self.weight_block_size
734
+ tp_size = get_tensor_model_parallel_world_size()
735
+ block_n, block_k = (
736
+ self.weight_block_size[0],
737
+ self.weight_block_size[1],
738
+ )
739
+ # NOTE: To ensure proper alignment of the block-wise quantization
740
+ # scales, the output_size of the weights for both the gate and up
741
+ # layers must be divisible by block_n.
742
+ # Required by column parallel or enabling merged weights
743
+ if intermediate_size_per_partition % block_n != 0:
744
+ raise ValueError(
745
+ f"The output_size of gate's and up's weight = "
746
+ f"{intermediate_size_per_partition} is not divisible by "
747
+ f"weight quantization block_n = {block_n}."
748
+ )
749
+ if tp_size > 1 and intermediate_size_per_partition % block_k != 0:
750
+ # Required by row parallel
751
+ raise ValueError(
752
+ f"The input_size of down's weight = "
753
+ f"{intermediate_size_per_partition} is not divisible by "
754
+ f"weight quantization block_k = {block_k}."
755
+ )
756
+
757
+ # WEIGHTS
758
+ w13_weight = torch.nn.Parameter(
759
+ torch.empty(
760
+ num_experts,
761
+ 2 * intermediate_size_per_partition,
762
+ hidden_size,
763
+ dtype=params_dtype,
764
+ ),
765
+ requires_grad=False,
766
+ )
767
+ layer.register_parameter("w13_weight", w13_weight)
768
+ set_weight_attrs(w13_weight, extra_weight_attrs)
769
+
770
+ w2_weight = torch.nn.Parameter(
771
+ torch.empty(
772
+ num_experts,
773
+ hidden_size,
774
+ intermediate_size_per_partition,
775
+ dtype=params_dtype,
776
+ ),
777
+ requires_grad=False,
778
+ )
779
+ layer.register_parameter("w2_weight", w2_weight)
780
+ set_weight_attrs(w2_weight, extra_weight_attrs)
781
+
782
+ # WEIGHT_SCALES
783
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
784
+ # Allocate 2 scales for w1 and w3 respectively.
785
+ # They are combined to a single scale after weight loading.
786
+ w13_weight_scale = torch.nn.Parameter(
787
+ torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
788
+ )
789
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
790
+ w2_weight_scale = torch.nn.Parameter(
791
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
792
+ )
793
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
794
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
795
+ extra_weight_attrs.update(
796
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
797
+ )
798
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
799
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
800
+
801
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
802
+ w13_weight_scale = torch.nn.Parameter(
803
+ torch.ones(
804
+ num_experts,
805
+ 2 * intermediate_size_per_partition,
806
+ 1,
807
+ dtype=torch.float32,
808
+ ),
809
+ requires_grad=False,
810
+ )
811
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
812
+ w2_weight_scale = torch.nn.Parameter(
813
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
814
+ requires_grad=False,
815
+ )
816
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
817
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
818
+ extra_weight_attrs.update(
819
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
820
+ )
821
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
822
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
823
+
824
+ elif self.weight_quant.strategy == QuantizationStrategy.BLOCK:
825
+ w13_weight_scale = torch.nn.Parameter(
826
+ torch.ones(
827
+ num_experts,
828
+ 2 * ((intermediate_size_per_partition + block_n - 1) // block_n),
829
+ (hidden_size + block_k - 1) // block_k,
830
+ dtype=torch.float32,
831
+ ),
832
+ requires_grad=False,
833
+ )
834
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
835
+ w2_weight_scale = torch.nn.Parameter(
836
+ torch.ones(
837
+ num_experts,
838
+ (hidden_size + block_n - 1) // block_n,
839
+ (intermediate_size_per_partition + block_k - 1) // block_k,
840
+ dtype=torch.float32,
841
+ ),
842
+ requires_grad=False,
843
+ )
844
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
845
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
846
+ extra_weight_attrs.update(
847
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
848
+ )
849
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
850
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
851
+
852
+ # INPUT_SCALES
853
+ if self.static_input_scales:
854
+ w13_input_scale = torch.nn.Parameter(
855
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
856
+ )
857
+ layer.register_parameter("w13_input_scale", w13_input_scale)
858
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
859
+
860
+ w2_input_scale = torch.nn.Parameter(
861
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
862
+ )
863
+ layer.register_parameter("w2_input_scale", w2_input_scale)
864
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
865
+ else:
866
+ layer.w13_input_scale = None
867
+ layer.w2_input_scale = None
868
+
869
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
870
+ # Fp8 moe kernels require a single activation scale.
871
+ # We take the max of all the scales in case they differ.
872
+ if self.static_input_scales:
873
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
874
+ if layer.w13_input_scale is None or layer.w2_input_scale is None:
875
+ raise ValueError(
876
+ "QuantConfig has static quantization, but found "
877
+ "activation scales are None."
878
+ )
879
+ if not all_close_1d(layer.w13_input_scale) or not all_close_1d(
880
+ layer.w2_input_scale
881
+ ):
882
+ logger.warning_once(
883
+ "Found input_scales that are not equal for "
884
+ "fp8 MoE layer. Using the maximum across experts "
885
+ "for each layer."
886
+ )
887
+ layer.w13_input_scale = torch.nn.Parameter(
888
+ layer.w13_input_scale.max(), requires_grad=False
889
+ )
890
+ layer.w2_input_scale = torch.nn.Parameter(
891
+ layer.w2_input_scale.max(), requires_grad=False
892
+ )
893
+
894
+ if current_platform.is_fp8_fnuz():
895
+ # Normalize the weights and scales
896
+ w13_weight, w13_weight_scale, w13_input_scale = (
897
+ normalize_e4m3fn_to_e4m3fnuz(
898
+ layer.w13_weight, layer.w13_weight_scale, layer.w13_input_scale
899
+ )
900
+ )
901
+ w2_weight, w2_weight_scale, w2_input_scale = normalize_e4m3fn_to_e4m3fnuz(
902
+ layer.w2_weight, layer.w2_weight_scale, layer.w2_input_scale
903
+ )
904
+ # Reset the parameter
905
+ layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
906
+ layer.w13_weight_scale = torch.nn.Parameter(
907
+ w13_weight_scale, requires_grad=False
908
+ )
909
+ if w13_input_scale is not None:
910
+ layer.w13_input_scale = torch.nn.Parameter(
911
+ w13_input_scale, requires_grad=False
912
+ )
913
+ layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
914
+ layer.w2_weight_scale = torch.nn.Parameter(
915
+ w2_weight_scale, requires_grad=False
916
+ )
917
+ if w2_input_scale is not None:
918
+ layer.w2_input_scale = torch.nn.Parameter(
919
+ w2_input_scale, requires_grad=False
920
+ )
921
+
922
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
923
+ # for w13 per expert. Use max then dequant and requant each expert.
924
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
925
+ assert layer.w13_weight_scale is not None
926
+ shard_size = layer.intermediate_size_per_partition
927
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
928
+ for expert_id in range(layer.local_num_experts):
929
+ start = 0
930
+ for shard_id in range(2):
931
+ dq_weight = per_tensor_dequantize(
932
+ layer.w13_weight[expert_id][start : start + shard_size, :],
933
+ layer.w13_weight_scale[expert_id][shard_id],
934
+ )
935
+ layer.w13_weight[expert_id][start : start + shard_size, :], _ = (
936
+ ops.scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
937
+ )
938
+ start += shard_size
939
+ layer.w13_weight_scale = torch.nn.Parameter(
940
+ max_w13_scales, requires_grad=False
941
+ )
942
+
943
+ # Property to determine if AITER is used
944
+ if self.rocm_aiter_moe_enabled:
945
+ # reshaping weights is required for aiter moe kernel.
946
+ shuffled_w13, shuffled_w2 = rocm_aiter_ops.shuffle_weights(
947
+ layer.w13_weight.data, layer.w2_weight.data
948
+ )
949
+
950
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13, requires_grad=False)
951
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2, requires_grad=False)
952
+
953
+ elif self.use_marlin:
954
+ prepare_moe_fp8_layer_for_marlin(
955
+ layer, False, input_dtype=self.marlin_input_dtype
956
+ )
957
+ # Activations not quantized for marlin.
958
+ del layer.w13_input_scale
959
+ del layer.w2_input_scale
960
+
961
+ if self.use_cutlass:
962
+ assert self.weight_quant.strategy != QuantizationStrategy.BLOCK
963
+ device = layer.w13_weight.device
964
+ # ab_strides1 and c_strides2 are the same
965
+ self.ab_strides1_c_strides2 = torch.full(
966
+ (layer.local_num_experts,),
967
+ layer.hidden_size,
968
+ device=device,
969
+ dtype=torch.int64,
970
+ )
971
+ self.ab_strides2 = torch.full(
972
+ (layer.local_num_experts,),
973
+ layer.intermediate_size_per_partition,
974
+ device=device,
975
+ dtype=torch.int64,
976
+ )
977
+ self.c_strides1 = torch.full(
978
+ (layer.local_num_experts,),
979
+ 2 * layer.intermediate_size_per_partition,
980
+ device=device,
981
+ dtype=torch.int64,
982
+ )
983
+
984
+ if is_deep_gemm_e8m0_used() and self.block_quant:
985
+ assert layer.weight_block_size is not None
986
+ # Re-quantise the expert weights so their scales are UE8M0.
987
+ block_sz = tuple(layer.weight_block_size)
988
+ requant_weight_ue8m0_inplace(
989
+ layer.w13_weight.data,
990
+ layer.w13_weight_scale.data,
991
+ block_sz,
992
+ )
993
+ requant_weight_ue8m0_inplace(
994
+ layer.w2_weight.data,
995
+ layer.w2_weight_scale.data,
996
+ block_sz,
997
+ )
998
+
999
+ # Ensure column-major TMA alignment expected by DeepGEMM.
1000
+ if expert_weight_is_col_major(layer.w13_weight_scale):
1001
+ layer.w13_weight_scale = get_col_major_tma_aligned_tensor(
1002
+ layer.w13_weight_scale
1003
+ )
1004
+ if expert_weight_is_col_major(layer.w2_weight_scale):
1005
+ layer.w2_weight_scale = get_col_major_tma_aligned_tensor(
1006
+ layer.w2_weight_scale
1007
+ )
1008
+
1009
+ def maybe_make_prepare_finalize(
1010
+ self,
1011
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
1012
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
1013
+ if self.use_marlin or self.rocm_aiter_moe_enabled:
1014
+ return None
1015
+ else:
1016
+ return super().maybe_make_prepare_finalize(routing_tables)
1017
+
1018
+ def select_gemm_impl(
1019
+ self,
1020
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1021
+ layer: torch.nn.Module,
1022
+ ) -> FusedMoEPermuteExpertsUnpermute:
1023
+ # cutlass path
1024
+ assert self.moe_quant_config is not None
1025
+ if self.use_cutlass:
1026
+ from vllm.model_executor.layers.fused_moe import (
1027
+ CutlassBatchedExpertsFp8,
1028
+ CutlassExpertsFp8,
1029
+ )
1030
+
1031
+ experts: FusedMoEPermuteExpertsUnpermute
1032
+
1033
+ num_dispatchers = prepare_finalize.num_dispatchers()
1034
+
1035
+ if (
1036
+ prepare_finalize.activation_format
1037
+ == FusedMoEActivationFormat.BatchedExperts
1038
+ ):
1039
+ logger.debug("CutlassBatchedExpertsFp8(%s)", self.__class__.__name__)
1040
+ experts = CutlassBatchedExpertsFp8(
1041
+ self.moe.num_local_experts,
1042
+ num_dispatchers,
1043
+ self.moe.in_dtype,
1044
+ ab_strides1=self.ab_strides1_c_strides2,
1045
+ ab_strides2=self.ab_strides2,
1046
+ c_strides1=self.c_strides1,
1047
+ c_strides2=self.ab_strides1_c_strides2,
1048
+ quant_config=self.moe_quant_config,
1049
+ )
1050
+ else:
1051
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
1052
+ experts = CutlassExpertsFp8(
1053
+ self.moe.in_dtype,
1054
+ ab_strides1=self.ab_strides1_c_strides2,
1055
+ ab_strides2=self.ab_strides2,
1056
+ c_strides1=self.c_strides1,
1057
+ c_strides2=self.ab_strides1_c_strides2,
1058
+ quant_config=self.moe_quant_config,
1059
+ )
1060
+
1061
+ self.disable_expert_map = (
1062
+ num_dispatchers > 1 or not experts.supports_expert_map()
1063
+ )
1064
+
1065
+ return experts
1066
+
1067
+ # triton path
1068
+ from vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe import ( # noqa: E501
1069
+ BatchedTritonOrDeepGemmExperts,
1070
+ )
1071
+ from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
1072
+ TritonOrDeepGemmExperts,
1073
+ )
1074
+
1075
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
1076
+
1077
+ if (
1078
+ prepare_finalize.activation_format
1079
+ == FusedMoEActivationFormat.BatchedExperts
1080
+ ):
1081
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1082
+ assert max_num_tokens_per_rank is not None
1083
+
1084
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
1085
+ return BatchedTritonOrDeepGemmExperts(
1086
+ max_num_tokens=max_num_tokens_per_rank,
1087
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1088
+ quant_config=self.moe_quant_config,
1089
+ allow_deep_gemm=(
1090
+ envs.VLLM_USE_DEEP_GEMM and envs.VLLM_MOE_USE_DEEP_GEMM
1091
+ ),
1092
+ )
1093
+ else:
1094
+ logger.debug("TritonOrDeepGemmExperts(%s)", self.__class__.__name__)
1095
+ return TritonOrDeepGemmExperts(
1096
+ self.moe_quant_config,
1097
+ allow_deep_gemm=(
1098
+ envs.VLLM_USE_DEEP_GEMM and envs.VLLM_MOE_USE_DEEP_GEMM
1099
+ ),
1100
+ )
1101
+
1102
+ def get_fused_moe_quant_config(
1103
+ self, layer: torch.nn.Module
1104
+ ) -> FusedMoEQuantConfig | None:
1105
+ if self.use_marlin:
1106
+ return None
1107
+
1108
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
1109
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1110
+
1111
+ return fp8_w8a8_moe_quant_config(
1112
+ w1_scale=layer.w13_weight_scale,
1113
+ w2_scale=layer.w2_weight_scale,
1114
+ a1_scale=layer.w13_input_scale,
1115
+ a2_scale=layer.w2_input_scale,
1116
+ per_act_token_quant=per_act_token,
1117
+ per_out_ch_quant=per_channel_quant,
1118
+ block_shape=layer.weight_block_size,
1119
+ )
1120
+
1121
+ def apply(
1122
+ self,
1123
+ layer: FusedMoE,
1124
+ x: torch.Tensor,
1125
+ router_logits: torch.Tensor,
1126
+ top_k: int,
1127
+ renormalize: bool,
1128
+ use_grouped_topk: bool = False,
1129
+ topk_group: int | None = None,
1130
+ num_expert_group: int | None = None,
1131
+ global_num_experts: int = -1,
1132
+ expert_map: torch.Tensor | None = None,
1133
+ custom_routing_function: Callable | None = None,
1134
+ scoring_func: str = "softmax",
1135
+ routed_scaling_factor: float = 1.0,
1136
+ e_score_correction_bias: torch.Tensor | None = None,
1137
+ apply_router_weight_on_input: bool = False,
1138
+ activation: str = "silu",
1139
+ enable_eplb: bool = False,
1140
+ expert_load_view: torch.Tensor | None = None,
1141
+ logical_to_physical_map: torch.Tensor | None = None,
1142
+ logical_replica_count: torch.Tensor | None = None,
1143
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1144
+ topk_weights, topk_ids, _ = layer.select_experts(
1145
+ hidden_states=x,
1146
+ router_logits=router_logits,
1147
+ )
1148
+
1149
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
1150
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1151
+
1152
+ if self.use_marlin:
1153
+ assert activation == "silu", f"{activation} not supported for Marlin MoE."
1154
+ return fused_marlin_moe(
1155
+ x,
1156
+ layer.w13_weight,
1157
+ layer.w2_weight,
1158
+ None,
1159
+ None,
1160
+ layer.w13_weight_scale,
1161
+ layer.w2_weight_scale,
1162
+ router_logits,
1163
+ topk_weights,
1164
+ topk_ids,
1165
+ quant_type_id=scalar_types.float8_e4m3fn.id,
1166
+ apply_router_weight_on_input=apply_router_weight_on_input,
1167
+ global_num_experts=global_num_experts,
1168
+ expert_map=expert_map,
1169
+ input_dtype=self.marlin_input_dtype,
1170
+ workspace=layer.workspace,
1171
+ )
1172
+
1173
+ elif self.rocm_aiter_moe_enabled:
1174
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
1175
+ rocm_aiter_fused_experts,
1176
+ )
1177
+
1178
+ assert per_act_token == per_channel_quant
1179
+ assert self.moe_quant_config is not None
1180
+ return rocm_aiter_fused_experts(
1181
+ hidden_states=x,
1182
+ w1=layer.w13_weight,
1183
+ w2=layer.w2_weight,
1184
+ topk_weights=topk_weights,
1185
+ topk_ids=topk_ids,
1186
+ activation=activation,
1187
+ apply_router_weight_on_input=apply_router_weight_on_input,
1188
+ expert_map=expert_map,
1189
+ quant_config=self.moe_quant_config,
1190
+ )
1191
+
1192
+ # cutlass path
1193
+ elif self.use_cutlass:
1194
+ assert self.moe_quant_config is not None
1195
+
1196
+ # small-batch fallback on SM100
1197
+ if self.is_fp8_w8a8_sm100 and topk_ids.shape[0] <= 8:
1198
+ from vllm.model_executor.layers.fused_moe import fused_experts
1199
+
1200
+ assert per_act_token == per_channel_quant
1201
+ return fused_experts(
1202
+ hidden_states=x,
1203
+ w1=layer.w13_weight,
1204
+ w2=layer.w2_weight,
1205
+ topk_weights=topk_weights,
1206
+ topk_ids=topk_ids,
1207
+ inplace=True,
1208
+ activation=activation,
1209
+ apply_router_weight_on_input=apply_router_weight_on_input,
1210
+ global_num_experts=global_num_experts,
1211
+ expert_map=None if self.disable_expert_map else expert_map,
1212
+ quant_config=self.moe_quant_config,
1213
+ )
1214
+ else:
1215
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
1216
+ cutlass_moe_fp8,
1217
+ )
1218
+
1219
+ assert per_act_token == per_channel_quant
1220
+ assert self.moe_quant_config is not None
1221
+ return cutlass_moe_fp8(
1222
+ x,
1223
+ layer.w13_weight,
1224
+ layer.w2_weight,
1225
+ topk_weights,
1226
+ topk_ids,
1227
+ quant_config=self.moe_quant_config,
1228
+ activation=activation,
1229
+ global_num_experts=global_num_experts,
1230
+ expert_map=None if self.disable_expert_map else expert_map,
1231
+ ab_strides1=self.ab_strides1_c_strides2,
1232
+ ab_strides2=self.ab_strides2,
1233
+ c_strides1=self.c_strides1,
1234
+ c_strides2=self.ab_strides1_c_strides2,
1235
+ )
1236
+
1237
+ else:
1238
+ from vllm.model_executor.layers.fused_moe import fused_experts
1239
+
1240
+ assert per_act_token == per_channel_quant
1241
+ assert self.moe_quant_config is not None
1242
+ return fused_experts(
1243
+ hidden_states=x,
1244
+ w1=layer.w13_weight,
1245
+ w2=layer.w2_weight,
1246
+ topk_weights=topk_weights,
1247
+ topk_ids=topk_ids,
1248
+ inplace=True,
1249
+ activation=activation,
1250
+ apply_router_weight_on_input=apply_router_weight_on_input,
1251
+ global_num_experts=global_num_experts,
1252
+ expert_map=expert_map,
1253
+ quant_config=self.moe_quant_config,
1254
+ )
1255
+
1256
+ @property
1257
+ def supports_eplb(self) -> bool:
1258
+ return True
1259
+
1260
+
1261
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
1262
+ def __init__(
1263
+ self,
1264
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1265
+ moe: FusedMoEConfig,
1266
+ layer_name: str | None = None,
1267
+ ):
1268
+ super().__init__(moe)
1269
+ self.quant_config = quant_config
1270
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get("weights")
1271
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
1272
+ "input_activations"
1273
+ )
1274
+
1275
+ per_channel = (
1276
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1277
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
1278
+ )
1279
+ if not per_channel:
1280
+ raise ValueError(
1281
+ "For INT8 Fused MoE layers, we require channelwise, "
1282
+ "dynamic per token quantization. Found "
1283
+ f"{self.weight_quant}, {self.input_quant}"
1284
+ )
1285
+
1286
+ self.static_input_scales = not self.input_quant.dynamic
1287
+ if self.static_input_scales:
1288
+ raise ValueError(
1289
+ "For INT8 Fused MoE layers, we require channelwise, "
1290
+ "dynamic per token quantization. Found static input scales."
1291
+ )
1292
+
1293
+ def create_weights(
1294
+ self,
1295
+ layer: torch.nn.Module,
1296
+ num_experts: int,
1297
+ hidden_size: int,
1298
+ intermediate_size_per_partition: int,
1299
+ params_dtype: torch.dtype,
1300
+ **extra_weight_attrs,
1301
+ ):
1302
+ params_dtype = torch.int8
1303
+
1304
+ # WEIGHTS
1305
+ w13_weight = torch.nn.Parameter(
1306
+ torch.empty(
1307
+ num_experts,
1308
+ 2 * intermediate_size_per_partition,
1309
+ hidden_size,
1310
+ dtype=params_dtype,
1311
+ ),
1312
+ requires_grad=False,
1313
+ )
1314
+ layer.register_parameter("w13_weight", w13_weight)
1315
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1316
+
1317
+ w2_weight = torch.nn.Parameter(
1318
+ torch.empty(
1319
+ num_experts,
1320
+ hidden_size,
1321
+ intermediate_size_per_partition,
1322
+ dtype=params_dtype,
1323
+ ),
1324
+ requires_grad=False,
1325
+ )
1326
+ layer.register_parameter("w2_weight", w2_weight)
1327
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1328
+
1329
+ # WEIGHT_SCALES
1330
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1331
+ w13_weight_scale = torch.nn.Parameter(
1332
+ torch.ones(
1333
+ num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
1334
+ ),
1335
+ requires_grad=False,
1336
+ )
1337
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1338
+ w2_weight_scale = torch.nn.Parameter(
1339
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
1340
+ requires_grad=False,
1341
+ )
1342
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1343
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1344
+ extra_weight_attrs.update(
1345
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
1346
+ )
1347
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1348
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1349
+
1350
+ # INPUT_SCALES
1351
+ assert not self.static_input_scales
1352
+ layer.w13_input_scale = None
1353
+ layer.w2_input_scale = None
1354
+
1355
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1356
+ pass
1357
+
1358
+ def get_fused_moe_quant_config(
1359
+ self, layer: torch.nn.Module
1360
+ ) -> FusedMoEQuantConfig | None:
1361
+ return int8_w8a8_moe_quant_config(
1362
+ w1_scale=layer.w13_weight_scale,
1363
+ w2_scale=layer.w2_weight_scale,
1364
+ a1_scale=layer.w13_input_scale,
1365
+ a2_scale=layer.w2_input_scale,
1366
+ per_act_token_quant=True,
1367
+ )
1368
+
1369
+ def apply(
1370
+ self,
1371
+ layer: FusedMoE,
1372
+ x: torch.Tensor,
1373
+ router_logits: torch.Tensor,
1374
+ top_k: int,
1375
+ renormalize: bool,
1376
+ use_grouped_topk: bool = False,
1377
+ topk_group: int | None = None,
1378
+ num_expert_group: int | None = None,
1379
+ global_num_experts: int = -1,
1380
+ expert_map: torch.Tensor | None = None,
1381
+ custom_routing_function: Callable | None = None,
1382
+ scoring_func: str = "softmax",
1383
+ routed_scaling_factor: float = 1.0,
1384
+ e_score_correction_bias: torch.Tensor | None = None,
1385
+ apply_router_weight_on_input: bool = False,
1386
+ activation: str = "silu",
1387
+ enable_eplb: bool = False,
1388
+ expert_load_view: torch.Tensor | None = None,
1389
+ logical_to_physical_map: torch.Tensor | None = None,
1390
+ logical_replica_count: torch.Tensor | None = None,
1391
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1392
+ from vllm.model_executor.layers.fused_moe import fused_experts
1393
+
1394
+ topk_weights, topk_ids, _ = layer.select_experts(
1395
+ hidden_states=x,
1396
+ router_logits=router_logits,
1397
+ )
1398
+
1399
+ return fused_experts(
1400
+ hidden_states=x,
1401
+ w1=layer.w13_weight,
1402
+ w2=layer.w2_weight,
1403
+ topk_weights=topk_weights,
1404
+ topk_ids=topk_ids,
1405
+ inplace=True,
1406
+ activation=activation,
1407
+ apply_router_weight_on_input=apply_router_weight_on_input,
1408
+ global_num_experts=global_num_experts,
1409
+ expert_map=expert_map,
1410
+ quant_config=self.moe_quant_config,
1411
+ )
1412
+
1413
+
1414
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1415
+ def __init__(
1416
+ self,
1417
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1418
+ moe: FusedMoEConfig,
1419
+ layer_name: str | None = None,
1420
+ ):
1421
+ super().__init__(moe)
1422
+ self.quant_config = quant_config
1423
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1424
+ # are supported + check if the layer is being ignored.
1425
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1426
+ self.num_bits = config.num_bits
1427
+ self.packed_factor = 32 // config.num_bits
1428
+ self.strategy = config.strategy
1429
+ self.group_size = config.group_size
1430
+ self.actorder = config.actorder
1431
+ self.layer_name = layer_name
1432
+ self.marlin_input_dtype = get_marlin_input_dtype(layer_name)
1433
+ assert config.symmetric, "Only symmetric quantization is supported for MoE"
1434
+
1435
+ if not (
1436
+ self.quant_config.quant_format == CompressionFormat.pack_quantized.value
1437
+ and self.num_bits in WNA16_SUPPORTED_BITS
1438
+ ):
1439
+ raise ValueError(
1440
+ "For Fused MoE layers, only ",
1441
+ f"{CompressionFormat.pack_quantized.value} ",
1442
+ "is supported for the following bits: ",
1443
+ f"{WNA16_SUPPORTED_BITS}",
1444
+ )
1445
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1446
+ self.use_marlin = True
1447
+
1448
+ def create_weights(
1449
+ self,
1450
+ layer: torch.nn.Module,
1451
+ num_experts: int,
1452
+ hidden_size: int,
1453
+ intermediate_size_per_partition: int,
1454
+ params_dtype: torch.dtype,
1455
+ **extra_weight_attrs,
1456
+ ):
1457
+ intermediate_size_full = extra_weight_attrs.pop("intermediate_size_full")
1458
+
1459
+ # Will transpose the loaded weight along the
1460
+ # intermediate and hidden dim sizes. Will
1461
+ # shard for TP along the transposed dims
1462
+ extra_weight_attrs.update(
1463
+ {"is_transposed": True, "quant_method": self.strategy}
1464
+ )
1465
+ w13_weight = torch.nn.Parameter(
1466
+ torch.empty(
1467
+ num_experts,
1468
+ hidden_size // self.packed_factor,
1469
+ 2 * intermediate_size_per_partition,
1470
+ dtype=torch.int32,
1471
+ ),
1472
+ requires_grad=False,
1473
+ )
1474
+ layer.register_parameter("w13_weight_packed", w13_weight)
1475
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1476
+
1477
+ w2_weight = torch.nn.Parameter(
1478
+ torch.empty(
1479
+ num_experts,
1480
+ intermediate_size_per_partition // self.packed_factor,
1481
+ hidden_size,
1482
+ dtype=torch.int32,
1483
+ ),
1484
+ requires_grad=False,
1485
+ )
1486
+ layer.register_parameter("w2_weight_packed", w2_weight)
1487
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1488
+
1489
+ # In the case where we have actorder/g_idx,
1490
+ # we do not partition the w2 scales
1491
+ load_full_w2 = self.actorder and self.group_size != -1
1492
+ w2_scales_size = (
1493
+ intermediate_size_full if load_full_w2 else intermediate_size_per_partition
1494
+ )
1495
+
1496
+ self.is_k_full = (not self.actorder) or (
1497
+ intermediate_size_per_partition == intermediate_size_full
1498
+ )
1499
+
1500
+ if self.strategy == "channel":
1501
+ num_groups_w2 = num_groups_w13 = 1
1502
+ self.group_size = -1
1503
+ else:
1504
+ num_groups_w2 = w2_scales_size // self.group_size
1505
+ num_groups_w13 = hidden_size // self.group_size
1506
+
1507
+ layer.num_groups_w13 = num_groups_w13
1508
+ layer.num_groups_w2 = num_groups_w2
1509
+
1510
+ w13_scale = torch.nn.Parameter(
1511
+ torch.ones(
1512
+ num_experts,
1513
+ num_groups_w13,
1514
+ 2 * intermediate_size_per_partition,
1515
+ dtype=params_dtype,
1516
+ ),
1517
+ requires_grad=False,
1518
+ )
1519
+ layer.register_parameter("w13_weight_scale", w13_scale)
1520
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1521
+
1522
+ w2_scale = torch.nn.Parameter(
1523
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1524
+ requires_grad=False,
1525
+ )
1526
+ layer.register_parameter("w2_weight_scale", w2_scale)
1527
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1528
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1529
+
1530
+ w2_weight_shape = torch.nn.Parameter(
1531
+ torch.empty(num_experts, 2), requires_grad=False
1532
+ )
1533
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1534
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1535
+ w13_weight_shape = torch.nn.Parameter(
1536
+ torch.empty(num_experts, 2), requires_grad=False
1537
+ )
1538
+
1539
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1540
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1541
+
1542
+ w13_g_idx = torch.nn.Parameter(
1543
+ torch.empty(
1544
+ num_experts,
1545
+ hidden_size,
1546
+ dtype=torch.int32,
1547
+ ),
1548
+ requires_grad=False,
1549
+ )
1550
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1551
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1552
+
1553
+ w2_g_idx = torch.nn.Parameter(
1554
+ torch.empty(
1555
+ num_experts,
1556
+ intermediate_size_per_partition,
1557
+ dtype=torch.int32,
1558
+ ),
1559
+ requires_grad=False,
1560
+ )
1561
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1562
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1563
+
1564
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1565
+ torch.empty(
1566
+ num_experts,
1567
+ hidden_size,
1568
+ dtype=torch.int32,
1569
+ ),
1570
+ requires_grad=False,
1571
+ )
1572
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1573
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1574
+
1575
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1576
+ torch.empty(
1577
+ num_experts,
1578
+ intermediate_size_per_partition,
1579
+ dtype=torch.int32,
1580
+ ),
1581
+ requires_grad=False,
1582
+ )
1583
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1584
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1585
+
1586
+ layer.a13_scale = None
1587
+ layer.a2_scale = None
1588
+ layer.marlin_state = GPTQMarlinState.REPACK
1589
+
1590
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1591
+ num_experts = layer.w13_weight_g_idx.shape[0]
1592
+ device = layer.w13_weight_g_idx.device
1593
+ is_a_8bit = (
1594
+ self.marlin_input_dtype is not None
1595
+ and self.marlin_input_dtype.itemsize == 1
1596
+ )
1597
+
1598
+ if self.marlin_input_dtype == torch.float8_e4m3fn:
1599
+ # NOTE: for non-zp quantization format only
1600
+ ops.marlin_int4_fp8_preprocess(layer.w13_weight_packed, inplace=True)
1601
+ ops.marlin_int4_fp8_preprocess(layer.w2_weight_packed, inplace=True)
1602
+ layer.w13_weight_scale.data = layer.w13_weight_scale.data * 512
1603
+ layer.w2_weight_scale.data = layer.w2_weight_scale.data * 512
1604
+
1605
+ # when running models with grouped act order,
1606
+ # resort to g_idx values provided in checkpoint
1607
+ if self.actorder == "group":
1608
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1609
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1610
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1611
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1612
+
1613
+ for e in range(num_experts):
1614
+ w13_g_idx_sort_indices[e] = torch.argsort(layer.w13_weight_g_idx[e]).to(
1615
+ torch.int32
1616
+ )
1617
+ w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_weight_g_idx[e]).to(
1618
+ torch.int32
1619
+ )
1620
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1621
+ w13_g_idx_sort_indices[e]
1622
+ ]
1623
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][w2_g_idx_sort_indices[e]]
1624
+
1625
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1626
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1627
+ replace_parameter(layer, "w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1628
+ replace_parameter(layer, "w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1629
+
1630
+ else:
1631
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1632
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1633
+ requires_grad=False,
1634
+ )
1635
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1636
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1637
+ requires_grad=False,
1638
+ )
1639
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1640
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1641
+ requires_grad=False,
1642
+ )
1643
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1644
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1645
+ requires_grad=False,
1646
+ )
1647
+
1648
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1649
+ layer.w13_weight_packed,
1650
+ layer.w13_g_idx_sort_indices,
1651
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1652
+ layer.w13_weight_packed.shape[2],
1653
+ self.num_bits,
1654
+ is_a_8bit=is_a_8bit,
1655
+ )
1656
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1657
+
1658
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1659
+ layer.w2_weight_packed,
1660
+ layer.w2_g_idx_sort_indices,
1661
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1662
+ layer.w2_weight_packed.shape[2],
1663
+ self.num_bits,
1664
+ is_a_8bit=is_a_8bit,
1665
+ )
1666
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1667
+
1668
+ # Repack scales
1669
+ marlin_w13_scales = marlin_moe_permute_scales(
1670
+ s=layer.w13_weight_scale,
1671
+ size_k=layer.w13_weight_packed.shape[2],
1672
+ size_n=layer.w13_weight_scale.shape[2],
1673
+ group_size=self.group_size,
1674
+ is_a_8bit=is_a_8bit,
1675
+ )
1676
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w13 > 1:
1677
+ marlin_w13_scales, w13_input_global_scale = marlin_act_int8_process_scales(
1678
+ marlin_w13_scales
1679
+ )
1680
+ layer.register_parameter(
1681
+ "w13_input_global_scale",
1682
+ torch.nn.Parameter(w13_input_global_scale, requires_grad=False),
1683
+ )
1684
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1685
+
1686
+ marlin_w2_scales = marlin_moe_permute_scales(
1687
+ s=layer.w2_weight_scale,
1688
+ size_k=layer.w2_weight_scale.shape[1]
1689
+ * (self.group_size if self.group_size != -1 else self.packed_factor),
1690
+ size_n=layer.w2_weight_scale.shape[2],
1691
+ group_size=self.group_size,
1692
+ is_a_8bit=is_a_8bit,
1693
+ )
1694
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w2 > 1:
1695
+ marlin_w2_scales, w2_input_global_scale = marlin_act_int8_process_scales(
1696
+ marlin_w2_scales
1697
+ )
1698
+ layer.register_parameter(
1699
+ "w2_input_global_scale",
1700
+ torch.nn.Parameter(w2_input_global_scale, requires_grad=False),
1701
+ )
1702
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1703
+
1704
+ layer.workspace = marlin_make_workspace_new(device, 4)
1705
+
1706
+ def get_fused_moe_quant_config(
1707
+ self, layer: torch.nn.Module
1708
+ ) -> FusedMoEQuantConfig | None:
1709
+ if self.num_bits != 4:
1710
+ return None
1711
+ return int4_w4a16_moe_quant_config(
1712
+ w1_scale=layer.w13_weight_scale,
1713
+ w2_scale=layer.w2_weight_scale,
1714
+ w1_zp=None,
1715
+ w2_zp=None,
1716
+ block_shape=[0, self.group_size],
1717
+ )
1718
+
1719
+ def select_gemm_impl(
1720
+ self,
1721
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1722
+ layer: torch.nn.Module,
1723
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1724
+ assert self.num_bits == 4, "only supporting w4"
1725
+ layer.w13_weight = layer.w13_weight_packed
1726
+ layer.w2_weight = layer.w2_weight_packed
1727
+ assert all([w is not None for w in [layer.w13_weight, layer.w2_weight]])
1728
+ assert self.moe_quant_config is not None
1729
+ if (
1730
+ prepare_finalize.activation_format
1731
+ == mk.FusedMoEActivationFormat.BatchedExperts
1732
+ ):
1733
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1734
+ assert max_num_tokens_per_rank is not None
1735
+ return BatchedMarlinExperts(
1736
+ max_num_tokens=max_num_tokens_per_rank,
1737
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1738
+ quant_config=self.moe_quant_config,
1739
+ w13_g_idx=layer.w13_weight_g_idx,
1740
+ w2_g_idx=layer.w2_weight_g_idx,
1741
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1742
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1743
+ is_k_full=self.is_k_full,
1744
+ )
1745
+ else:
1746
+ return MarlinExperts(
1747
+ quant_config=self.moe_quant_config,
1748
+ w13_g_idx=layer.w13_weight_g_idx,
1749
+ w2_g_idx=layer.w2_weight_g_idx,
1750
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1751
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1752
+ is_k_full=self.is_k_full,
1753
+ )
1754
+
1755
+ def apply(
1756
+ self,
1757
+ layer: FusedMoE,
1758
+ x: torch.Tensor,
1759
+ router_logits: torch.Tensor,
1760
+ top_k: int,
1761
+ renormalize: bool,
1762
+ use_grouped_topk: bool = False,
1763
+ topk_group: int | None = None,
1764
+ num_expert_group: int | None = None,
1765
+ global_num_experts: int = -1,
1766
+ expert_map: torch.Tensor | None = None,
1767
+ custom_routing_function: Callable | None = None,
1768
+ scoring_func: str = "softmax",
1769
+ routed_scaling_factor: float = 1.0,
1770
+ e_score_correction_bias: torch.Tensor | None = None,
1771
+ apply_router_weight_on_input: bool = False,
1772
+ activation: str = "silu",
1773
+ enable_eplb: bool = False,
1774
+ expert_load_view: torch.Tensor | None = None,
1775
+ logical_to_physical_map: torch.Tensor | None = None,
1776
+ logical_replica_count: torch.Tensor | None = None,
1777
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1778
+ assert activation == "silu", f"{activation} not supported for Marlin MoE."
1779
+
1780
+ topk_weights, topk_ids, _ = layer.select_experts(
1781
+ hidden_states=x,
1782
+ router_logits=router_logits,
1783
+ )
1784
+
1785
+ return fused_marlin_moe(
1786
+ x,
1787
+ layer.w13_weight_packed,
1788
+ layer.w2_weight_packed,
1789
+ None,
1790
+ None,
1791
+ layer.w13_weight_scale,
1792
+ layer.w2_weight_scale,
1793
+ router_logits,
1794
+ topk_weights,
1795
+ topk_ids,
1796
+ input_global_scale1=getattr(layer, "w13_input_global_scale", None),
1797
+ input_global_scale2=getattr(layer, "w2_input_global_scale", None),
1798
+ quant_type_id=self.quant_type.id,
1799
+ apply_router_weight_on_input=apply_router_weight_on_input,
1800
+ global_num_experts=global_num_experts,
1801
+ expert_map=expert_map,
1802
+ g_idx1=layer.w13_weight_g_idx,
1803
+ g_idx2=layer.w2_weight_g_idx,
1804
+ sort_indices1=layer.w13_g_idx_sort_indices,
1805
+ sort_indices2=layer.w2_g_idx_sort_indices,
1806
+ workspace=layer.workspace,
1807
+ input_dtype=self.marlin_input_dtype,
1808
+ is_k_full=self.is_k_full,
1809
+ )
1810
+
1811
+
1812
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1813
+ def __init__(
1814
+ self,
1815
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1816
+ moe: FusedMoEConfig,
1817
+ layer_name: str | None = None,
1818
+ ):
1819
+ super().__init__(moe)
1820
+ self.quant_config = quant_config
1821
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1822
+ # are supported + check if the layer is being ignored.
1823
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1824
+ self.num_bits = config.num_bits
1825
+ self.packed_factor = 32 // config.num_bits
1826
+ self.strategy = config.strategy
1827
+ # channelwise is not supported by this kernel
1828
+ assert config.strategy == "group"
1829
+ self.group_size = config.group_size
1830
+ # grouped actorder isn't supported by this kernel
1831
+ assert config.actorder != "group"
1832
+ assert config.symmetric, "Only symmetric quantization is supported for MoE"
1833
+
1834
+ if not (
1835
+ self.quant_config.quant_format == CompressionFormat.pack_quantized.value
1836
+ and self.num_bits in WNA16_SUPPORTED_BITS
1837
+ ):
1838
+ raise ValueError(
1839
+ "For Fused MoE layers, only ",
1840
+ f"{CompressionFormat.pack_quantized.value} ",
1841
+ "is supported for the following bits: ",
1842
+ f"{WNA16_SUPPORTED_BITS}",
1843
+ )
1844
+
1845
+ def create_weights(
1846
+ self,
1847
+ layer: torch.nn.Module,
1848
+ num_experts: int,
1849
+ hidden_size: int,
1850
+ intermediate_size_per_partition: int,
1851
+ params_dtype: torch.dtype,
1852
+ **extra_weight_attrs,
1853
+ ):
1854
+ # Will transpose the loaded weight along the
1855
+ # intermediate and hidden dim sizes. Will
1856
+ # shard for TP along the transposed dims
1857
+ extra_weight_attrs.update(
1858
+ {"is_transposed": True, "quant_method": self.strategy}
1859
+ )
1860
+ w13_weight = torch.nn.Parameter(
1861
+ torch.empty(
1862
+ num_experts,
1863
+ hidden_size // self.packed_factor,
1864
+ 2 * intermediate_size_per_partition,
1865
+ dtype=torch.int32,
1866
+ ),
1867
+ requires_grad=False,
1868
+ )
1869
+ layer.register_parameter("w13_weight_packed", w13_weight)
1870
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1871
+
1872
+ w2_weight = torch.nn.Parameter(
1873
+ torch.empty(
1874
+ num_experts,
1875
+ intermediate_size_per_partition // self.packed_factor,
1876
+ hidden_size,
1877
+ dtype=torch.int32,
1878
+ ),
1879
+ requires_grad=False,
1880
+ )
1881
+ layer.register_parameter("w2_weight_packed", w2_weight)
1882
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1883
+
1884
+ w2_scales_size = intermediate_size_per_partition
1885
+
1886
+ if self.strategy == "channel":
1887
+ num_groups_w2 = num_groups_w13 = 1
1888
+ self.group_size = -1
1889
+ else:
1890
+ num_groups_w2 = w2_scales_size // self.group_size
1891
+ num_groups_w13 = hidden_size // self.group_size
1892
+
1893
+ w13_scale = torch.nn.Parameter(
1894
+ torch.ones(
1895
+ num_experts,
1896
+ num_groups_w13,
1897
+ 2 * intermediate_size_per_partition,
1898
+ dtype=params_dtype,
1899
+ ),
1900
+ requires_grad=False,
1901
+ )
1902
+ layer.register_parameter("w13_weight_scale", w13_scale)
1903
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1904
+
1905
+ w2_scale = torch.nn.Parameter(
1906
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1907
+ requires_grad=False,
1908
+ )
1909
+ layer.register_parameter("w2_weight_scale", w2_scale)
1910
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1911
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1912
+
1913
+ w2_weight_shape = torch.nn.Parameter(
1914
+ torch.empty(num_experts, 2), requires_grad=False
1915
+ )
1916
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1917
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1918
+ w13_weight_shape = torch.nn.Parameter(
1919
+ torch.empty(num_experts, 2), requires_grad=False
1920
+ )
1921
+
1922
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1923
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1924
+
1925
+ w13_g_idx = torch.nn.Parameter(
1926
+ torch.empty(
1927
+ num_experts,
1928
+ hidden_size,
1929
+ dtype=torch.int32,
1930
+ ),
1931
+ requires_grad=False,
1932
+ )
1933
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1934
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1935
+
1936
+ w2_g_idx = torch.nn.Parameter(
1937
+ torch.empty(
1938
+ num_experts,
1939
+ intermediate_size_per_partition,
1940
+ dtype=torch.int32,
1941
+ ),
1942
+ requires_grad=False,
1943
+ )
1944
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1945
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1946
+
1947
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1948
+ torch.empty(
1949
+ num_experts,
1950
+ hidden_size,
1951
+ dtype=torch.int32,
1952
+ ),
1953
+ requires_grad=False,
1954
+ )
1955
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1956
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1957
+
1958
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1959
+ torch.empty(
1960
+ num_experts,
1961
+ intermediate_size_per_partition,
1962
+ dtype=torch.int32,
1963
+ ),
1964
+ requires_grad=False,
1965
+ )
1966
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1967
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1968
+
1969
+ layer.a13_scale = None
1970
+ layer.a2_scale = None
1971
+
1972
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1973
+ # Reconfigure packed weights and scales to match moe_wna16 format
1974
+ layer.w13_weight_packed = torch.nn.Parameter(
1975
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1976
+ requires_grad=False,
1977
+ )
1978
+ layer.w2_weight_packed = torch.nn.Parameter(
1979
+ layer.w2_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1980
+ requires_grad=False,
1981
+ )
1982
+ layer.w13_weight_scale = torch.nn.Parameter(
1983
+ layer.w13_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1984
+ )
1985
+ layer.w2_weight_scale = torch.nn.Parameter(
1986
+ layer.w2_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1987
+ )
1988
+
1989
+ def get_fused_moe_quant_config(
1990
+ self, layer: torch.nn.Module
1991
+ ) -> FusedMoEQuantConfig | None:
1992
+ assert self.num_bits == 4 or self.num_bits == 8
1993
+ config_builder = (
1994
+ int4_w4a16_moe_quant_config
1995
+ if self.num_bits == 4
1996
+ else int8_w8a16_moe_quant_config
1997
+ )
1998
+
1999
+ return config_builder(
2000
+ w1_scale=layer.w13_weight_scale,
2001
+ w2_scale=layer.w2_weight_scale,
2002
+ w1_zp=None,
2003
+ w2_zp=None,
2004
+ block_shape=[0, self.group_size],
2005
+ )
2006
+
2007
+ def apply(
2008
+ self,
2009
+ layer: FusedMoE,
2010
+ x: torch.Tensor,
2011
+ router_logits: torch.Tensor,
2012
+ top_k: int,
2013
+ renormalize: bool,
2014
+ use_grouped_topk: bool = False,
2015
+ topk_group: int | None = None,
2016
+ num_expert_group: int | None = None,
2017
+ global_num_experts: int = -1,
2018
+ expert_map: torch.Tensor | None = None,
2019
+ custom_routing_function: Callable | None = None,
2020
+ scoring_func: str = "softmax",
2021
+ routed_scaling_factor: float = 1.0,
2022
+ e_score_correction_bias: torch.Tensor | None = None,
2023
+ apply_router_weight_on_input: bool = False,
2024
+ activation: str = "silu",
2025
+ enable_eplb: bool = False,
2026
+ expert_load_view: torch.Tensor | None = None,
2027
+ logical_to_physical_map: torch.Tensor | None = None,
2028
+ logical_replica_count: torch.Tensor | None = None,
2029
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
2030
+ from vllm.model_executor.layers.fused_moe import fused_experts
2031
+
2032
+ topk_weights, topk_ids, _ = layer.select_experts(
2033
+ hidden_states=x,
2034
+ router_logits=router_logits,
2035
+ )
2036
+
2037
+ return fused_experts(
2038
+ x,
2039
+ layer.w13_weight_packed,
2040
+ layer.w2_weight_packed,
2041
+ topk_weights=topk_weights,
2042
+ topk_ids=topk_ids,
2043
+ inplace=True,
2044
+ activation=activation,
2045
+ apply_router_weight_on_input=apply_router_weight_on_input,
2046
+ global_num_experts=global_num_experts,
2047
+ expert_map=expert_map,
2048
+ quant_config=self.moe_quant_config,
2049
+ )
2050
+
2051
+ @property
2052
+ def supports_eplb(self) -> bool:
2053
+ return True
2054
+
2055
+
2056
+ class CompressedTensorsW4A8Int8MoEMethod(CompressedTensorsMoEMethod):
2057
+ """
2058
+ CPU-only MoE method using dynamic 4-bit matmul kernels on Arm Platform
2059
+ - Weights: int4 (stored as int8 values in [-8,7], packed to uint8 nibbles)
2060
+ - Scales: Fp32 for Channelwise , bf16 for groupwise quantization
2061
+ - Bias: Same data type as original weights
2062
+ - Activations: FP32/Bf16 dynamic per-token (A8 Int),
2063
+ quantized inside the kernel
2064
+ """
2065
+
2066
+ def __init__(
2067
+ self,
2068
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
2069
+ moe: FusedMoEConfig,
2070
+ layer_name: str | None = None,
2071
+ ):
2072
+ super().__init__(moe)
2073
+ self.has_bias = self.moe.has_bias
2074
+ self.quant_config = quant_config
2075
+
2076
+ # Validate scheme: weights=W4 (channel or group),
2077
+ # activations=dynamic TOKEN (A8)
2078
+ wq = self.quant_config.target_scheme_map["Linear"].get("weights")
2079
+ aq = self.quant_config.target_scheme_map["Linear"].get("input_activations")
2080
+
2081
+ # Must be dynamic per-token activations
2082
+ if aq.strategy != QuantizationStrategy.TOKEN or not aq.dynamic:
2083
+ raise ValueError(
2084
+ "W4A8-int MoE needs dynamic per-token activation quantization."
2085
+ )
2086
+
2087
+ # Weight can be channel-wise (group_size=None) or group-wise
2088
+ self.group_size = wq.group_size if (wq.group_size is not None) else -1
2089
+ if wq.num_bits != 4:
2090
+ raise ValueError("This method only supports 4-bit weights (num_bits=4).")
2091
+
2092
+ # CPU only
2093
+ if not current_platform.is_cpu():
2094
+ raise ValueError("CompressedTensorsW4A8Int8MoEMethod is CPU-only.")
2095
+
2096
+ # Arm: check _dyn ops availability
2097
+ if current_platform.get_cpu_architecture() == CpuArchEnum.ARM:
2098
+ try:
2099
+ _ = torch.ops.aten._dyn_quant_matmul_4bit
2100
+ _ = torch.ops.aten._dyn_quant_pack_4bit_weight
2101
+ except AttributeError as err:
2102
+ raise RuntimeError(
2103
+ f"""PyTorch {torch.__version__} lacks _dyn_quant_* 4bit ops;
2104
+ install a newer build."""
2105
+ ) from err
2106
+ self.static_input_scales = False # always dynamic per token
2107
+
2108
+ # ---- parameter creation ----
2109
+ def create_weights(
2110
+ self,
2111
+ layer: torch.nn.Module,
2112
+ num_experts: int,
2113
+ hidden_size: int,
2114
+ intermediate_size_per_partition: int,
2115
+ params_dtype: torch.dtype,
2116
+ **extra_weight_attrs,
2117
+ ):
2118
+ # Shapes per local rank (TP/EP):
2119
+ # w13: [E, 2*I_local, H] int8 (int4 values in [-8,7])
2120
+ # w2 : [E, H, I_local] int8
2121
+ # Scales:
2122
+ # channel-wise: group_size=-1 -> per-output-row, single scale per row
2123
+ # group-wise : group_size=g ->
2124
+ # per-output-row, (in_features/g) scales
2125
+
2126
+ E = num_experts
2127
+ H = hidden_size
2128
+ IN = intermediate_size_per_partition
2129
+ g = self.group_size
2130
+
2131
+ # Per-row scale columns
2132
+ def _n_scale_cols(in_features: int) -> int:
2133
+ return 1 if g == -1 else (in_features // g)
2134
+
2135
+ # Register unpacked int4-as-int8 weights the loader will fill.
2136
+ w13 = torch.nn.Parameter(
2137
+ torch.empty(E, 2 * IN, H, dtype=torch.int8), requires_grad=False
2138
+ )
2139
+ set_weight_attrs(w13, extra_weight_attrs)
2140
+ layer.register_parameter("w13_weight", w13)
2141
+
2142
+ w2 = torch.nn.Parameter(
2143
+ torch.empty(E, H, IN, dtype=torch.int8), requires_grad=False
2144
+ )
2145
+ set_weight_attrs(w2, extra_weight_attrs)
2146
+ layer.register_parameter("w2_weight", w2)
2147
+
2148
+ # Register scales
2149
+ # KleidiAI groupwise kernels accepts float32 scales
2150
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2151
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2152
+
2153
+ w13_s = torch.nn.Parameter(
2154
+ torch.ones(E, 2 * IN, _n_scale_cols(H), dtype=scale_dtype),
2155
+ requires_grad=False,
2156
+ )
2157
+ set_weight_attrs(
2158
+ w13_s,
2159
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2160
+ )
2161
+ layer.register_parameter("w13_weight_scale", w13_s)
2162
+
2163
+ w2_s = torch.nn.Parameter(
2164
+ torch.ones(E, H, _n_scale_cols(IN), dtype=scale_dtype), requires_grad=False
2165
+ )
2166
+ set_weight_attrs(
2167
+ w2_s,
2168
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2169
+ )
2170
+ layer.register_parameter("w2_weight_scale", w2_s)
2171
+
2172
+ if self.has_bias:
2173
+ w13_bias = torch.nn.Parameter(
2174
+ torch.zeros(E, 2 * IN, dtype=params_dtype), requires_grad=False
2175
+ )
2176
+ layer.register_parameter("w13_bias", w13_bias)
2177
+ set_weight_attrs(w13_bias, extra_weight_attrs)
2178
+
2179
+ w2_bias = torch.nn.Parameter(
2180
+ torch.zeros(num_experts, hidden_size, dtype=params_dtype),
2181
+ requires_grad=False,
2182
+ )
2183
+ layer.register_parameter("w2_bias", w2_bias)
2184
+ set_weight_attrs(w2_bias, extra_weight_attrs)
2185
+
2186
+ # Placeholders for packed weights (will be replaced after packing)
2187
+ layer.register_parameter(
2188
+ "w13_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2189
+ )
2190
+ set_weight_attrs(layer.w13_weight_packed, extra_weight_attrs)
2191
+
2192
+ layer.register_parameter(
2193
+ "w2_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2194
+ )
2195
+ set_weight_attrs(layer.w2_weight_packed, extra_weight_attrs)
2196
+
2197
+ # dims for 4 bit fused matmuls
2198
+ layer.w13_in_features = H
2199
+ layer.w13_out_features = 2 * IN
2200
+ layer.w2_in_features = IN
2201
+ layer.w2_out_features = H
2202
+ layer.group_size = g
2203
+
2204
+ # post-load packing to dyn-4bit KleidiAI kernel's format
2205
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
2206
+ E = layer.w13_weight.shape[0]
2207
+ H = layer.w13_in_features
2208
+ I2 = layer.w13_out_features
2209
+ IN = layer.w2_in_features
2210
+ g = layer.group_size
2211
+
2212
+ def _pack_matrix(
2213
+ int4_as_int8_2d: torch.Tensor,
2214
+ scales_2d: torch.Tensor,
2215
+ bias_1d: torch.Tensor | None,
2216
+ in_features: int,
2217
+ out_features: int,
2218
+ ) -> torch.Tensor:
2219
+ # int4 values are stored as int8 in [-8,7].
2220
+ # Shift to unsigned nibble and pack pairs along input-dim.
2221
+ tmp = int4_as_int8_2d.add(8) # [out, in]
2222
+ uint8_nibbles = ((tmp[:, 1::2] << 4) | tmp[:, ::2]).to(
2223
+ torch.uint8
2224
+ ) # [out, in//2]
2225
+
2226
+ # KleidiAI groupwise kernels accepts float32 scales
2227
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2228
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2229
+ scales = scales_2d.to(scale_dtype)
2230
+ bias = None if bias_1d is None else bias_1d.to(torch.float32)
2231
+ return torch.ops.aten._dyn_quant_pack_4bit_weight(
2232
+ uint8_nibbles,
2233
+ scales,
2234
+ bias,
2235
+ g if g != -1 else in_features,
2236
+ in_features,
2237
+ out_features,
2238
+ )
2239
+
2240
+ # Pack per expert
2241
+ w13_packed_list = []
2242
+ w2_packed_list = []
2243
+
2244
+ has_w13_bias = hasattr(layer, "w13_bias") and layer.w13_bias is not None
2245
+ has_w2_bias = hasattr(layer, "w2_bias") and layer.w2_bias is not None
2246
+
2247
+ for e in range(E):
2248
+ w13_packed_list.append(
2249
+ _pack_matrix(
2250
+ layer.w13_weight[e], # [2I, H]
2251
+ layer.w13_weight_scale[e], # [2I, H/g or 1]
2252
+ layer.w13_bias[e] if has_w13_bias else None, # [2I]
2253
+ H,
2254
+ I2,
2255
+ )
2256
+ )
2257
+ w2_packed_list.append(
2258
+ _pack_matrix(
2259
+ # w2 shape is [H, IN]; we need [out, in] == [H, IN].
2260
+ layer.w2_weight[e], # [H, IN]
2261
+ layer.w2_weight_scale[e], # [H, IN/g or 1]
2262
+ layer.w2_bias[e] if has_w2_bias else None, # [H]
2263
+ IN,
2264
+ layer.w2_out_features, # in_features=IN, out_features=H
2265
+ )
2266
+ )
2267
+
2268
+ # each packed tensor has identical shape per expert; stack on dim 0
2269
+ w13_packed = torch.stack(w13_packed_list, dim=0)
2270
+ w2_packed = torch.stack(w2_packed_list, dim=0)
2271
+
2272
+ replace_parameter(
2273
+ layer,
2274
+ "w13_weight_packed",
2275
+ torch.nn.Parameter(w13_packed, requires_grad=False),
2276
+ )
2277
+ replace_parameter(
2278
+ layer,
2279
+ "w2_weight_packed",
2280
+ torch.nn.Parameter(w2_packed, requires_grad=False),
2281
+ )
2282
+
2283
+ # free raw tensors/scales/bias now that they're packed into the payload.
2284
+ replace_parameter(
2285
+ layer, "w13_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2286
+ )
2287
+ replace_parameter(
2288
+ layer, "w2_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2289
+ )
2290
+ replace_parameter(
2291
+ layer,
2292
+ "w13_weight_scale",
2293
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2294
+ )
2295
+ replace_parameter(
2296
+ layer,
2297
+ "w2_weight_scale",
2298
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2299
+ )
2300
+ if has_w13_bias:
2301
+ replace_parameter(
2302
+ layer,
2303
+ "w13_bias",
2304
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2305
+ )
2306
+ if has_w2_bias:
2307
+ replace_parameter(
2308
+ layer,
2309
+ "w2_bias",
2310
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2311
+ )
2312
+
2313
+ def get_fused_moe_quant_config(
2314
+ self, layer: torch.nn.Module
2315
+ ) -> FusedMoEQuantConfig | None:
2316
+ # CPU dynamic 4-bit MoE path does not use modular kernels or
2317
+ # fused_experts; quant config is not needed.
2318
+ return None
2319
+
2320
+ def apply(
2321
+ self,
2322
+ layer: torch.nn.Module,
2323
+ x: torch.Tensor,
2324
+ router_logits: torch.Tensor,
2325
+ top_k: int,
2326
+ renormalize: bool,
2327
+ use_grouped_topk: bool = False,
2328
+ topk_group: int | None = None,
2329
+ num_expert_group: int | None = None,
2330
+ global_num_experts: int = -1,
2331
+ expert_map: torch.Tensor | None = None,
2332
+ custom_routing_function: Callable | None = None,
2333
+ scoring_func: str = "softmax",
2334
+ routed_scaling_factor: float = 1.0,
2335
+ e_score_correction_bias: torch.Tensor | None = None,
2336
+ apply_router_weight_on_input: bool = False,
2337
+ activation: str = "silu",
2338
+ enable_eplb: bool = False,
2339
+ expert_load_view: torch.Tensor | None = None,
2340
+ logical_to_physical_map: torch.Tensor | None = None,
2341
+ logical_replica_count: torch.Tensor | None = None,
2342
+ ) -> torch.Tensor:
2343
+ assert not enable_eplb, "EPLB not supported for W4A8-int MoE yet."
2344
+ assert activation in ("silu", "swigluoai", "swiglu"), (
2345
+ "Only SiLU/SwiGLUGU/SwiGLUUG are supported."
2346
+ )
2347
+ assert expert_map is None, """expert_map/EP not implemented
2348
+ for CPU dyn-4bit MoE."""
2349
+
2350
+ def _act_kind(s: str) -> int:
2351
+ # 0 = SwiGLU_Gu (SiLU(g)*u), 1 = SwiGLU_Ug (SiLU(u)*g), 2 = SiLU
2352
+ if s == "swiglu":
2353
+ return 0
2354
+ if s == "swigluoai":
2355
+ return 1
2356
+ if s == "silu":
2357
+ return 2
2358
+ raise ValueError(f"Unknown activation '{s}'")
2359
+
2360
+ # Apply topk softmax on router output
2361
+ topk_weights, topk_ids = select_experts(
2362
+ hidden_states=x,
2363
+ router_logits=router_logits,
2364
+ use_grouped_topk=use_grouped_topk,
2365
+ top_k=top_k,
2366
+ renormalize=renormalize,
2367
+ topk_group=topk_group,
2368
+ num_expert_group=num_expert_group,
2369
+ custom_routing_function=custom_routing_function,
2370
+ scoring_func=scoring_func,
2371
+ routed_scaling_factor=routed_scaling_factor,
2372
+ e_score_correction_bias=e_score_correction_bias,
2373
+ )
2374
+
2375
+ return torch.ops._C.dynamic_4bit_int_moe(
2376
+ x,
2377
+ topk_ids.to(torch.long),
2378
+ topk_weights,
2379
+ layer.w13_weight_packed,
2380
+ layer.w2_weight_packed,
2381
+ layer.w2_out_features,
2382
+ layer.w2_in_features,
2383
+ layer.w13_out_features,
2384
+ layer.group_size,
2385
+ apply_router_weight_on_input,
2386
+ int(_act_kind(activation)),
2387
+ )