vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
vllm/config/model.py ADDED
@@ -0,0 +1,2274 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import warnings
5
+ from collections.abc import Callable
6
+ from dataclasses import InitVar, field
7
+ from importlib.util import find_spec
8
+ from typing import TYPE_CHECKING, Any, Literal, cast, get_args
9
+
10
+ import torch
11
+ from pydantic import ConfigDict, SkipValidation, field_validator, model_validator
12
+ from pydantic.dataclasses import dataclass
13
+ from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
14
+ from transformers.configuration_utils import ALLOWED_LAYER_TYPES
15
+
16
+ import vllm.envs as envs
17
+ from vllm.attention.backends.registry import AttentionBackendEnum
18
+ from vllm.config.multimodal import MMCacheType, MMEncoderTPMode, MultiModalConfig
19
+ from vllm.config.pooler import PoolerConfig
20
+ from vllm.config.scheduler import RunnerType
21
+ from vllm.config.utils import config, getattr_iter
22
+ from vllm.logger import init_logger
23
+ from vllm.platforms import current_platform
24
+ from vllm.transformers_utils.config import (
25
+ ConfigFormat,
26
+ get_config,
27
+ get_hf_image_processor_config,
28
+ get_hf_text_config,
29
+ get_pooling_config,
30
+ get_sentence_transformer_tokenizer_config,
31
+ is_encoder_decoder,
32
+ try_get_dense_modules,
33
+ try_get_generation_config,
34
+ try_get_safetensors_metadata,
35
+ try_get_tokenizer_config,
36
+ uses_mrope,
37
+ uses_xdrope_dim,
38
+ )
39
+ from vllm.transformers_utils.gguf_utils import (
40
+ maybe_patch_hf_config_from_gguf,
41
+ )
42
+ from vllm.transformers_utils.runai_utils import ObjectStorageModel, is_runai_obj_uri
43
+ from vllm.transformers_utils.utils import (
44
+ is_gguf,
45
+ is_remote_gguf,
46
+ maybe_model_redirect,
47
+ split_remote_gguf,
48
+ )
49
+ from vllm.utils.import_utils import LazyLoader
50
+ from vllm.utils.torch_utils import common_broadcastable_dtype
51
+
52
+ if TYPE_CHECKING:
53
+ from transformers import PretrainedConfig
54
+
55
+ import vllm.model_executor.layers.quantization as me_quant
56
+ import vllm.model_executor.models as me_models
57
+ from vllm.config.load import LoadConfig
58
+ from vllm.config.parallel import ParallelConfig
59
+ from vllm.model_executor.layers.quantization import QuantizationMethods
60
+ from vllm.v1.sample.logits_processor import LogitsProcessor
61
+ else:
62
+ PretrainedConfig = Any
63
+
64
+ me_quant = LazyLoader(
65
+ "model_executor", globals(), "vllm.model_executor.layers.quantization"
66
+ )
67
+ me_models = LazyLoader("model_executor", globals(), "vllm.model_executor.models")
68
+ LoadConfig = Any
69
+ ParallelConfig = Any
70
+ QuantizationMethods = Any
71
+ LogitsProcessor = Any
72
+
73
+ logger = init_logger(__name__)
74
+
75
+ RunnerOption = Literal["auto", RunnerType]
76
+ ConvertType = Literal["none", "embed", "classify", "reward"]
77
+ ConvertOption = Literal["auto", ConvertType]
78
+ TaskOption = Literal[
79
+ "auto",
80
+ "generate",
81
+ "embedding",
82
+ "embed",
83
+ "classify",
84
+ "score",
85
+ "reward",
86
+ "transcription",
87
+ "draft",
88
+ ]
89
+ TokenizerMode = Literal["auto", "hf", "slow", "mistral"]
90
+ ModelDType = Literal["auto", "half", "float16", "bfloat16", "float", "float32"]
91
+ LogprobsMode = Literal[
92
+ "raw_logits", "raw_logprobs", "processed_logits", "processed_logprobs"
93
+ ]
94
+ HfOverrides = dict[str, Any] | Callable[[PretrainedConfig], PretrainedConfig]
95
+ ModelImpl = Literal["auto", "vllm", "transformers", "terratorch"]
96
+ LayerBlockType = Literal["attention", "linear_attention", "mamba"]
97
+
98
+ _RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
99
+ "generate": ["generate", "transcription"],
100
+ "pooling": ["embedding", "embed", "classify", "score", "reward"],
101
+ "draft": ["draft"],
102
+ }
103
+
104
+ _RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
105
+ "generate": [],
106
+ "pooling": ["embed", "classify", "reward"],
107
+ "draft": [],
108
+ }
109
+
110
+ AttnTypeStr = Literal[
111
+ "decoder", "encoder", "encoder_only", "encoder_decoder", "attention_free", "hybrid"
112
+ ]
113
+
114
+
115
+ @config
116
+ @dataclass(config=ConfigDict(arbitrary_types_allowed=True))
117
+ class ModelConfig:
118
+ """Configuration for the model."""
119
+
120
+ model: str = "Qwen/Qwen3-0.6B"
121
+ """Name or path of the Hugging Face model to use. It is also used as the
122
+ content for `model_name` tag in metrics output when `served_model_name` is
123
+ not specified."""
124
+ runner: RunnerOption = "auto"
125
+ """The type of model runner to use. Each vLLM instance only supports one
126
+ model runner, even if the same model can be used for multiple types."""
127
+ convert: ConvertOption = "auto"
128
+ """Convert the model using adapters defined in
129
+ [vllm.model_executor.models.adapters][]. The most common use case is to
130
+ adapt a text generation model to be used for pooling tasks."""
131
+ task: TaskOption | None = None
132
+ """[DEPRECATED] The task to use the model for. If the model supports more
133
+ than one model runner, this is used to select which model runner to run.
134
+
135
+ Note that the model may support other tasks using the same model runner.
136
+ """
137
+ tokenizer: SkipValidation[str] = None # type: ignore
138
+ """Name or path of the Hugging Face tokenizer to use. If unspecified, model
139
+ name or path will be used."""
140
+ tokenizer_mode: TokenizerMode | str = "auto"
141
+ """Tokenizer mode:\n
142
+ - "auto" will use "hf" tokenizer if Mistral's tokenizer is not available.\n
143
+ - "hf" will use the fast tokenizer if available.\n
144
+ - "slow" will always use the slow tokenizer.\n
145
+ - "mistral" will always use the tokenizer from `mistral_common`.\n
146
+ - Other custom values can be supported via plugins."""
147
+ trust_remote_code: bool = False
148
+ """Trust remote code (e.g., from HuggingFace) when downloading the model
149
+ and tokenizer."""
150
+ dtype: ModelDType | torch.dtype = "auto"
151
+ """Data type for model weights and activations:\n
152
+ - "auto" will use FP16 precision for FP32 and FP16 models, and BF16
153
+ precision for BF16 models.\n
154
+ - "half" for FP16. Recommended for AWQ quantization.\n
155
+ - "float16" is the same as "half".\n
156
+ - "bfloat16" for a balance between precision and range.\n
157
+ - "float" is shorthand for FP32 precision.\n
158
+ - "float32" for FP32 precision."""
159
+ seed: int = 0
160
+ """Random seed for reproducibility.
161
+
162
+ We must set the global seed because otherwise,
163
+ different tensor parallel workers would sample different tokens,
164
+ leading to inconsistent results."""
165
+ hf_config: PretrainedConfig = field(init=False)
166
+ """The Hugging Face config of the model."""
167
+ hf_text_config: PretrainedConfig = field(init=False)
168
+ """The Hugging Face config of the text model (same as hf_config for text models)."""
169
+ hf_config_path: str | None = None
170
+ """Name or path of the Hugging Face config to use. If unspecified, model
171
+ name or path will be used."""
172
+ allowed_local_media_path: str = ""
173
+ """Allowing API requests to read local images or videos from directories
174
+ specified by the server file system. This is a security risk. Should only
175
+ be enabled in trusted environments."""
176
+ allowed_media_domains: list[str] | None = None
177
+ """If set, only media URLs that belong to this domain can be used for
178
+ multi-modal inputs. """
179
+ revision: str | None = None
180
+ """The specific model version to use. It can be a branch name, a tag name,
181
+ or a commit id. If unspecified, will use the default version."""
182
+ code_revision: str | None = None
183
+ """The specific revision to use for the model code on the Hugging Face Hub.
184
+ It can be a branch name, a tag name, or a commit id. If unspecified, will
185
+ use the default version."""
186
+ tokenizer_revision: str | None = None
187
+ """The specific revision to use for the tokenizer on the Hugging Face Hub.
188
+ It can be a branch name, a tag name, or a commit id. If unspecified, will
189
+ use the default version."""
190
+ max_model_len: SkipValidation[int] = None # type: ignore
191
+ """Model context length (prompt and output). If unspecified, will be
192
+ automatically derived from the model config.
193
+
194
+ When passing via `--max-model-len`, supports k/m/g/K/M/G in human-readable
195
+ format. Examples:\n
196
+ - 1k -> 1000\n
197
+ - 1K -> 1024\n
198
+ - 25.6k -> 25,600"""
199
+ spec_target_max_model_len: int | None = None
200
+ """Specify the maximum length for spec decoding draft models."""
201
+ quantization: SkipValidation[QuantizationMethods | None] = None
202
+ """Method used to quantize the weights. If `None`, we first check the
203
+ `quantization_config` attribute in the model config file. If that is
204
+ `None`, we assume the model weights are not quantized and use `dtype` to
205
+ determine the data type of the weights."""
206
+ enforce_eager: bool = False
207
+ """Whether to always use eager-mode PyTorch. If True, we will disable CUDA
208
+ graph and always execute the model in eager mode. If False, we will use
209
+ CUDA graph and eager execution in hybrid for maximal performance and
210
+ flexibility."""
211
+ max_logprobs: int = 20
212
+ """Maximum number of log probabilities to return when `logprobs` is
213
+ specified in `SamplingParams`. The default value comes the default for the
214
+ OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length *
215
+ vocab_size) logprobs are allowed to be returned and it may cause OOM."""
216
+ logprobs_mode: LogprobsMode = "raw_logprobs"
217
+ """Indicates the content returned in the logprobs and prompt_logprobs.
218
+ Supported mode:
219
+ 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits.
220
+ Raw means the values before applying any logit processors, like bad words.
221
+ Processed means the values after applying all processors, including
222
+ temperature and top_k/top_p.
223
+ """
224
+ disable_sliding_window: bool = False
225
+ """Whether to disable sliding window. If True, we will disable the sliding
226
+ window functionality of the model, capping to sliding window size. If the
227
+ model does not support sliding window, this argument is ignored."""
228
+ disable_cascade_attn: bool = False
229
+ """Disable cascade attention for V1. While cascade attention does not
230
+ change the mathematical correctness, disabling it could be useful for
231
+ preventing potential numerical issues. Note that even if this is set to
232
+ False, cascade attention will be only used when the heuristic tells that
233
+ it's beneficial."""
234
+ skip_tokenizer_init: bool = False
235
+ """Skip initialization of tokenizer and detokenizer. Expects valid
236
+ `prompt_token_ids` and `None` for prompt from the input. The generated
237
+ output will contain token ids."""
238
+ enable_prompt_embeds: bool = False
239
+ """If `True`, enables passing text embeddings as inputs via the
240
+ `prompt_embeds` key.
241
+
242
+ WARNING: The vLLM engine may crash if incorrect shape of embeddings is passed.
243
+ Only enable this flag for trusted users!"""
244
+ served_model_name: str | list[str] | None = None
245
+ """The model name(s) used in the API. If multiple names are provided, the
246
+ server will respond to any of the provided names. The model name in the
247
+ model field of a response will be the first name in this list. If not
248
+ specified, the model name will be the same as the `--model` argument. Noted
249
+ that this name(s) will also be used in `model_name` tag content of
250
+ prometheus metrics, if multiple names provided, metrics tag will take the
251
+ first one."""
252
+ config_format: str | ConfigFormat = "auto"
253
+ """The format of the model config to load:\n
254
+ - "auto" will try to load the config in hf format if available after trying
255
+ to load in mistral format.\n
256
+ - "hf" will load the config in hf format.\n
257
+ - "mistral" will load the config in mistral format."""
258
+ hf_token: bool | str | None = None
259
+ """The token to use as HTTP bearer authorization for remote files . If
260
+ `True`, will use the token generated when running `huggingface-cli login`
261
+ (stored in `~/.huggingface`)."""
262
+ hf_overrides: HfOverrides = field(default_factory=dict)
263
+ """If a dictionary, contains arguments to be forwarded to the Hugging Face
264
+ config. If a callable, it is called to update the HuggingFace config."""
265
+ logits_processor_pattern: str | None = None
266
+ """Optional regex pattern specifying valid logits processor qualified names
267
+ that can be passed with the `logits_processors` extra completion argument.
268
+ Defaults to `None`, which allows no processors."""
269
+ generation_config: str = "auto"
270
+ """The folder path to the generation config. Defaults to `"auto"`, the
271
+ generation config will be loaded from model path. If set to `"vllm"`, no
272
+ generation config is loaded, vLLM defaults will be used. If set to a folder
273
+ path, the generation config will be loaded from the specified folder path.
274
+ If `max_new_tokens` is specified in generation config, then it sets a
275
+ server-wide limit on the number of output tokens for all requests."""
276
+ override_generation_config: dict[str, Any] = field(default_factory=dict)
277
+ """Overrides or sets generation config. e.g. `{"temperature": 0.5}`. If
278
+ used with `--generation-config auto`, the override parameters will be
279
+ merged with the default config from the model. If used with
280
+ `--generation-config vllm`, only the override parameters are used."""
281
+ enable_sleep_mode: bool = False
282
+ """Enable sleep mode for the engine (only cuda and
283
+ hip platforms are supported)."""
284
+ model_impl: str | ModelImpl = "auto"
285
+ """Which implementation of the model to use:\n
286
+ - "auto" will try to use the vLLM implementation, if it exists, and fall
287
+ back to the Transformers implementation if no vLLM implementation is
288
+ available.\n
289
+ - "vllm" will use the vLLM model implementation.\n
290
+ - "transformers" will use the Transformers model implementation.\n
291
+ - "terratorch" will use the TerraTorch model implementation.
292
+ """
293
+ override_attention_dtype: str | None = None
294
+ """Override dtype for attention"""
295
+ logits_processors: list[str | type[LogitsProcessor]] | None = None
296
+ """One or more logits processors' fully-qualified class names or class
297
+ definitions"""
298
+ io_processor_plugin: str | None = None
299
+ """IOProcessor plugin name to load at model startup"""
300
+
301
+ # Pooler config
302
+ pooler_config: PoolerConfig | None = None
303
+ """Pooler config which controls the behaviour of output pooling in pooling
304
+ models."""
305
+
306
+ # Multimodal config and init vars
307
+ multimodal_config: MultiModalConfig | None = None
308
+ """Configuration for multimodal model. If `None`, this will be inferred
309
+ from the architecture of `self.model`."""
310
+ limit_mm_per_prompt: InitVar[dict[str, int | dict[str, int]] | None] = None
311
+ enable_mm_embeds: InitVar[bool | None] = None
312
+ media_io_kwargs: InitVar[dict[str, dict[str, Any]] | None] = None
313
+ mm_processor_kwargs: InitVar[dict[str, Any] | None] = None
314
+ mm_processor_cache_gb: InitVar[float | None] = None
315
+ mm_processor_cache_type: InitVar[MMCacheType | None] = None
316
+ mm_shm_cache_max_object_size_mb: InitVar[int | None] = None
317
+ mm_encoder_tp_mode: InitVar[MMEncoderTPMode | None] = None
318
+ mm_encoder_attn_backend: InitVar[AttentionBackendEnum | str | None] = None
319
+ interleave_mm_strings: InitVar[bool | None] = None
320
+ skip_mm_profiling: InitVar[bool | None] = None
321
+ video_pruning_rate: InitVar[float | None] = None
322
+
323
+ def compute_hash(self) -> str:
324
+ """
325
+ WARNING: Whenever a new field is added to this config,
326
+ ensure that it is included in the factors list if
327
+ it affects the computation graph.
328
+
329
+ Provide a hash that uniquely identifies all the configs
330
+ that affect the structure of the computation
331
+ graph from input ids/embeddings to the final hidden states,
332
+ excluding anything before input ids/embeddings and after
333
+ the final hidden states.
334
+ """
335
+ ignored_factors = {
336
+ "runner",
337
+ "convert",
338
+ "task",
339
+ "tokenizer",
340
+ "tokenizer_mode",
341
+ "seed",
342
+ "hf_config_path",
343
+ "allowed_local_media_path",
344
+ "allowed_media_domains",
345
+ "tokenizer_revision",
346
+ "spec_target_max_model_len",
347
+ "enforce_eager",
348
+ "logprobs_mode",
349
+ "disable_cascade_attn",
350
+ "skip_tokenizer_init",
351
+ "served_model_name",
352
+ "config_format",
353
+ "hf_token",
354
+ "hf_overrides",
355
+ "logits_processor_pattern",
356
+ "override_attention_dtype",
357
+ "logits_processors",
358
+ "io_processor_plugin",
359
+ "pooler_config",
360
+ "multimodal_config",
361
+ "limit_mm_per_prompt",
362
+ "media_io_kwargs",
363
+ "mm_processor_kwargs",
364
+ "mm_processor_cache_gb",
365
+ "mm_processor_cache_type",
366
+ "mm_shm_cache_max_object_size_mb",
367
+ "mm_encoder_tp_mode",
368
+ "interleave_mm_strings",
369
+ "skip_mm_profiling",
370
+ }
371
+
372
+ from vllm.config.utils import get_hash_factors, hash_factors
373
+
374
+ factors = get_hash_factors(self, ignored_factors)
375
+ return hash_factors(factors)
376
+
377
+ def _update_nested(
378
+ self,
379
+ target: PretrainedConfig | dict[str, Any],
380
+ updates: dict[str, Any],
381
+ ) -> None:
382
+ """Recursively updates a config or dict with nested updates."""
383
+ for key, value in updates.items():
384
+ if isinstance(value, dict):
385
+ # Get the nested target
386
+ if isinstance(target, dict):
387
+ nested_target = target.get(key)
388
+ else:
389
+ nested_target = getattr(target, key, None)
390
+
391
+ # If nested target exists and can be updated recursively
392
+ if nested_target is not None and (
393
+ isinstance(nested_target, dict)
394
+ or hasattr(nested_target, "__dict__")
395
+ ):
396
+ self._update_nested(nested_target, value)
397
+ continue
398
+
399
+ # Set the value (base case)
400
+ if isinstance(target, dict):
401
+ target[key] = value
402
+ else:
403
+ setattr(target, key, value)
404
+
405
+ def _apply_dict_overrides(
406
+ self,
407
+ config: PretrainedConfig,
408
+ overrides: dict[str, Any],
409
+ ) -> None:
410
+ """Apply dict overrides, handling both nested configs and dict values."""
411
+ from transformers import PretrainedConfig
412
+
413
+ for key, value in overrides.items():
414
+ attr = getattr(config, key, None)
415
+ if attr is not None and isinstance(attr, PretrainedConfig):
416
+ # It's a nested config - recursively update it
417
+ self._update_nested(attr, value)
418
+ else:
419
+ # It's a dict-valued parameter - set it directly
420
+ setattr(config, key, value)
421
+
422
+ def __post_init__(
423
+ self,
424
+ # Multimodal config init vars
425
+ limit_mm_per_prompt: dict[str, int | dict[str, int]] | None,
426
+ enable_mm_embeds: bool | None,
427
+ media_io_kwargs: dict[str, dict[str, Any]] | None,
428
+ mm_processor_kwargs: dict[str, Any] | None,
429
+ mm_processor_cache_gb: float | None,
430
+ mm_processor_cache_type: MMCacheType | None,
431
+ mm_shm_cache_max_object_size_mb: int | None,
432
+ mm_encoder_tp_mode: MMEncoderTPMode | None,
433
+ mm_encoder_attn_backend: AttentionBackendEnum | str | None,
434
+ interleave_mm_strings: bool | None,
435
+ skip_mm_profiling: bool | None,
436
+ video_pruning_rate: float | None,
437
+ ) -> None:
438
+ # Keep set served_model_name before maybe_model_redirect(self.model)
439
+ self.served_model_name = get_served_model_name(
440
+ self.model, self.served_model_name
441
+ )
442
+ self.model = maybe_model_redirect(self.model)
443
+ # The tokenizer is consistent with the model by default.
444
+ if self.tokenizer is None:
445
+ self.tokenizer = self.model
446
+ if self.tokenizer_revision is None:
447
+ self.tokenizer_revision = self.revision
448
+ self.tokenizer = maybe_model_redirect(self.tokenizer)
449
+
450
+ if isinstance(self.hf_config_path, str):
451
+ self.hf_config_path = maybe_model_redirect(self.hf_config_path)
452
+
453
+ if callable(self.hf_overrides):
454
+ hf_overrides_kw = {}
455
+ hf_overrides_fn = self.hf_overrides
456
+ dict_overrides: dict[str, Any] = {}
457
+ else:
458
+ # Separate dict overrides from flat ones
459
+ # We'll determine how to apply dict overrides after loading the config
460
+ hf_overrides_kw = {}
461
+ dict_overrides = {}
462
+ for key, value in self.hf_overrides.items():
463
+ if isinstance(value, dict):
464
+ dict_overrides[key] = value
465
+ else:
466
+ hf_overrides_kw[key] = value
467
+ hf_overrides_fn = None
468
+
469
+ self.maybe_pull_model_tokenizer_for_runai(self.model, self.tokenizer)
470
+
471
+ if (
472
+ (backend := envs.VLLM_ATTENTION_BACKEND)
473
+ and backend == "FLASHINFER"
474
+ and find_spec("flashinfer") is None
475
+ ):
476
+ raise ValueError(
477
+ "VLLM_ATTENTION_BACKEND is set to FLASHINFER, but flashinfer "
478
+ "module was not found. See "
479
+ "https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile " # noqa: E501
480
+ "for instructions on how to install it."
481
+ )
482
+
483
+ from vllm.platforms import current_platform
484
+
485
+ if self.override_attention_dtype is not None and not current_platform.is_rocm():
486
+ warnings.warn(
487
+ "override-attention-dtype is set but not using ROCm platform",
488
+ stacklevel=2,
489
+ )
490
+
491
+ if self.enable_sleep_mode and not current_platform.is_sleep_mode_available():
492
+ raise ValueError("Sleep mode is not supported on current platform.")
493
+
494
+ hf_config = get_config(
495
+ self.hf_config_path or self.model,
496
+ self.trust_remote_code,
497
+ self.revision,
498
+ self.code_revision,
499
+ self.config_format,
500
+ hf_overrides_kw=hf_overrides_kw,
501
+ hf_overrides_fn=hf_overrides_fn,
502
+ )
503
+ hf_config = maybe_patch_hf_config_from_gguf(
504
+ self.model,
505
+ hf_config,
506
+ )
507
+
508
+ self.hf_config = hf_config
509
+ if dict_overrides:
510
+ self._apply_dict_overrides(hf_config, dict_overrides)
511
+ self.hf_text_config = get_hf_text_config(self.hf_config)
512
+ self.attention_chunk_size = getattr(
513
+ self.hf_text_config, "attention_chunk_size", None
514
+ )
515
+ self.encoder_config = self._get_encoder_config()
516
+ self.hf_image_processor_config = get_hf_image_processor_config(
517
+ self.model, hf_token=self.hf_token, revision=self.revision
518
+ )
519
+
520
+ architectures = self.architectures
521
+ registry = self.registry
522
+ is_generative_model = registry.is_text_generation_model(architectures, self)
523
+ is_pooling_model = registry.is_pooling_model(architectures, self)
524
+
525
+ def _task_to_convert(task: TaskOption) -> ConvertType:
526
+ if task == "embedding" or task == "embed":
527
+ return "embed"
528
+ if task == "classify":
529
+ return "classify"
530
+ if task == "reward":
531
+ return "reward"
532
+ if task == "score":
533
+ new_task = self._get_default_pooling_task(architectures)
534
+ return "classify" if new_task == "classify" else "embed"
535
+
536
+ return "none"
537
+
538
+ if self.task is not None:
539
+ runner: RunnerOption = "auto"
540
+ convert: ConvertOption = "auto"
541
+ msg_prefix = (
542
+ "The 'task' option has been deprecated and will be "
543
+ "removed in v0.13.0 or v1.0, whichever comes first."
544
+ )
545
+ msg_hint = "Please remove this option."
546
+
547
+ is_generative_task = self.task in _RUNNER_TASKS["generate"]
548
+ is_pooling_task = self.task in _RUNNER_TASKS["pooling"]
549
+
550
+ if is_generative_model and is_pooling_model:
551
+ if is_generative_task:
552
+ runner = "generate"
553
+ convert = "auto"
554
+ msg_hint = (
555
+ "Please replace this option with `--runner "
556
+ "generate` to continue using this model "
557
+ "as a generative model."
558
+ )
559
+ elif is_pooling_task:
560
+ runner = "pooling"
561
+ convert = "auto"
562
+ msg_hint = (
563
+ "Please replace this option with `--runner "
564
+ "pooling` to continue using this model "
565
+ "as a pooling model."
566
+ )
567
+ else: # task == "auto"
568
+ pass
569
+ elif is_generative_model or is_pooling_model:
570
+ if is_generative_task:
571
+ runner = "generate"
572
+ convert = "auto"
573
+ msg_hint = "Please remove this option"
574
+ elif is_pooling_task:
575
+ runner = "pooling"
576
+ convert = _task_to_convert(self.task)
577
+ msg_hint = (
578
+ "Please replace this option with `--convert "
579
+ f"{convert}` to continue using this model "
580
+ "as a pooling model."
581
+ )
582
+ else: # task == "auto"
583
+ pass
584
+ else:
585
+ # Neither generative nor pooling model - try to convert if possible
586
+ if is_pooling_task:
587
+ runner = "pooling"
588
+ convert = _task_to_convert(self.task)
589
+ msg_hint = (
590
+ "Please replace this option with `--runner pooling "
591
+ f"--convert {convert}` to continue using this model "
592
+ "as a pooling model."
593
+ )
594
+ else:
595
+ debug_info = {
596
+ "architectures": architectures,
597
+ "is_generative_model": is_generative_model,
598
+ "is_pooling_model": is_pooling_model,
599
+ }
600
+ raise AssertionError(
601
+ "The model should be a generative or "
602
+ "pooling model when task is set to "
603
+ f"{self.task!r}. Found: {debug_info}"
604
+ )
605
+
606
+ self.runner = runner
607
+ self.convert = convert
608
+
609
+ msg = f"{msg_prefix} {msg_hint}"
610
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
611
+
612
+ self.runner_type = self._get_runner_type(architectures, self.runner)
613
+ self.convert_type = self._get_convert_type(
614
+ architectures, self.runner_type, self.convert
615
+ )
616
+
617
+ if self.runner_type == "generate" and not is_generative_model:
618
+ generate_converts = _RUNNER_CONVERTS["generate"]
619
+ if self.convert_type not in generate_converts:
620
+ # Currently we don't have any converters for generative models
621
+ raise ValueError("This model does not support `--runner generate`.")
622
+ if self.runner_type == "pooling" and not is_pooling_model:
623
+ pooling_converts = _RUNNER_CONVERTS["pooling"]
624
+ if self.convert_type not in pooling_converts:
625
+ convert_option = "<" + "|".join(pooling_converts) + ">"
626
+ raise ValueError(
627
+ "This model does not support `--runner pooling`. "
628
+ f"You can pass `--convert {convert_option} to adapt "
629
+ "it into a pooling model."
630
+ )
631
+
632
+ # Note: Initialize these attributes early because transformers fallback
633
+ # may fail to load dynamic modules in child processes
634
+ model_info, arch = registry.inspect_model_cls(architectures, self)
635
+ self._model_info = model_info
636
+ self._architecture = arch
637
+ logger.info("Resolved architecture: %s", arch)
638
+
639
+ # Init pooler config if needed
640
+ if self.runner_type == "pooling":
641
+ if self.pooler_config is None:
642
+ self.pooler_config = PoolerConfig()
643
+
644
+ base_config = get_pooling_config(self.model, self.revision)
645
+ if base_config is not None:
646
+ # Only set values that are not overridden by the user
647
+ for k, v in base_config.items():
648
+ if getattr(self.pooler_config, k) is None:
649
+ setattr(self.pooler_config, k, v)
650
+
651
+ default_pooling_type = self._model_info.default_pooling_type
652
+ if self.pooler_config.pooling_type is None:
653
+ self.pooler_config.pooling_type = default_pooling_type
654
+
655
+ self.dtype: torch.dtype = _get_and_verify_dtype(
656
+ self.model,
657
+ self.hf_config,
658
+ self.dtype,
659
+ is_pooling_model=self.runner_type == "pooling",
660
+ revision=self.revision,
661
+ )
662
+
663
+ self.original_max_model_len = self.max_model_len
664
+ self.max_model_len = self.get_and_verify_max_len(self.max_model_len)
665
+ # Init multimodal config if needed
666
+ if self._model_info.supports_multimodal:
667
+ if (
668
+ mm_encoder_tp_mode == "data"
669
+ and not self._model_info.supports_multimodal_encoder_tp_data
670
+ ):
671
+ logger.warning_once(
672
+ "This model does not support `--mm-encoder-tp-mode data`. "
673
+ "Falling back to `--mm-encoder-tp-mode weights`."
674
+ )
675
+ mm_encoder_tp_mode = "weights"
676
+
677
+ mm_config_kwargs = dict(
678
+ limit_per_prompt=limit_mm_per_prompt,
679
+ enable_mm_embeds=enable_mm_embeds,
680
+ media_io_kwargs=media_io_kwargs,
681
+ mm_processor_kwargs=mm_processor_kwargs,
682
+ mm_processor_cache_gb=mm_processor_cache_gb,
683
+ mm_processor_cache_type=mm_processor_cache_type,
684
+ mm_shm_cache_max_object_size_mb=mm_shm_cache_max_object_size_mb,
685
+ mm_encoder_tp_mode=mm_encoder_tp_mode,
686
+ mm_encoder_attn_backend=mm_encoder_attn_backend,
687
+ interleave_mm_strings=interleave_mm_strings,
688
+ skip_mm_profiling=skip_mm_profiling,
689
+ video_pruning_rate=video_pruning_rate,
690
+ )
691
+
692
+ mm_config_kwargs = {
693
+ k: v for k, v in mm_config_kwargs.items() if v is not None
694
+ }
695
+
696
+ self.multimodal_config = MultiModalConfig(**mm_config_kwargs)
697
+
698
+ # Multimodal GGUF models must use original repo for mm processing
699
+ if is_gguf(self.tokenizer) and self.is_multimodal_model:
700
+ raise ValueError(
701
+ "Loading a multimodal GGUF model needs to use original "
702
+ "tokenizer. Please specify the unquantized hf model's "
703
+ "repo name or path using the --tokenizer argument."
704
+ )
705
+
706
+ if self.disable_sliding_window:
707
+ # Set after get_and_verify_max_len to ensure that max_model_len
708
+ # can be correctly capped to sliding window size
709
+ self.hf_text_config.sliding_window = None
710
+
711
+ # Avoid running try_verify_and_update_config multiple times
712
+ self.config_updated = False
713
+
714
+ self._verify_quantization()
715
+ self._verify_cuda_graph()
716
+ self._verify_bnb_config()
717
+
718
+ @field_validator("tokenizer_mode", mode="after")
719
+ def _lowercase_tokenizer_mode(cls, tokenizer_mode: str) -> str:
720
+ return tokenizer_mode.lower()
721
+
722
+ @field_validator("quantization", mode="before")
723
+ @classmethod
724
+ def validate_quantization_before(cls, value: Any) -> Any:
725
+ if isinstance(value, str):
726
+ return value.lower()
727
+ return value
728
+
729
+ @model_validator(mode="after")
730
+ def validate_model_config_after(self: "ModelConfig") -> "ModelConfig":
731
+ if not isinstance(self.tokenizer, str):
732
+ raise ValueError("tokenizer must be a string after __post_init__.")
733
+ if not isinstance(self.max_model_len, int):
734
+ raise ValueError("max_model_len must be an integer after __post_init__.")
735
+ return self
736
+
737
+ def _get_transformers_backend_cls(self) -> str:
738
+ """Determine which Transformers modeling backend class will be used if
739
+ `model_impl` is set to `transformers` or `auto`."""
740
+ cls = "Transformers"
741
+ # If 'hf_config != hf_text_config' it's a nested config, i.e. multimodal
742
+ cls += "MultiModal" if self.hf_config != self.hf_text_config else ""
743
+ cls += "MoE" if self.get_num_experts() > 1 else ""
744
+ # Check if the architecture we're wrapping has defaults
745
+ runner = None
746
+ task = None
747
+ if defaults := try_match_architecture_defaults(self.architectures[0]):
748
+ _, (runner, task) = defaults
749
+ # User specified value take precedence
750
+ if self.runner != "auto":
751
+ runner = self.runner
752
+ # Only consider Transformers modeling backend pooling classes if we're wrapping
753
+ # an architecture that defaults to pooling. Otherwise, we return the LM class
754
+ # and use adapters.
755
+ if runner == "pooling" and task in {"embed", "classify"}:
756
+ if task == "embed":
757
+ cls += "EmbeddingModel"
758
+ elif task == "classify":
759
+ cls += "ForSequenceClassification"
760
+ else:
761
+ cls += "ForCausalLM"
762
+ return cls
763
+
764
+ def using_transformers_backend(self) -> bool:
765
+ """Check if the model is using the Transformers modeling backend class."""
766
+ used_cls = self._model_info.architecture
767
+ transformers_backend_cls = self._get_transformers_backend_cls()
768
+ return used_cls == transformers_backend_cls
769
+
770
+ @property
771
+ def registry(self):
772
+ return me_models.ModelRegistry
773
+
774
+ @property
775
+ def architectures(self) -> list[str]:
776
+ return getattr(self.hf_config, "architectures", [])
777
+
778
+ @property
779
+ def architecture(self) -> str:
780
+ """The architecture vllm actually used."""
781
+ return self._architecture
782
+
783
+ def maybe_pull_model_tokenizer_for_runai(self, model: str, tokenizer: str) -> None:
784
+ """Pull model/tokenizer from Object Storage to temporary
785
+ directory when needed.
786
+
787
+ Args:
788
+ model: Model name or path
789
+ tokenizer: Tokenizer name or path
790
+ """
791
+
792
+ if not (is_runai_obj_uri(model) or is_runai_obj_uri(tokenizer)):
793
+ return
794
+
795
+ if is_runai_obj_uri(model):
796
+ object_storage_model = ObjectStorageModel(url=model)
797
+ object_storage_model.pull_files(
798
+ model, allow_pattern=["*.model", "*.py", "*.json"]
799
+ )
800
+ self.model_weights = model
801
+ self.model = object_storage_model.dir
802
+
803
+ # If tokenizer is same as model, download to same directory
804
+ if model == tokenizer:
805
+ object_storage_model.pull_files(
806
+ model,
807
+ ignore_pattern=[
808
+ "*.pt",
809
+ "*.safetensors",
810
+ "*.bin",
811
+ "*.tensors",
812
+ "*.pth",
813
+ ],
814
+ )
815
+ self.tokenizer = object_storage_model.dir
816
+ return
817
+
818
+ # Only download tokenizer if needed and not already handled
819
+ if is_runai_obj_uri(tokenizer):
820
+ object_storage_tokenizer = ObjectStorageModel(url=tokenizer)
821
+ object_storage_tokenizer.pull_files(
822
+ model,
823
+ ignore_pattern=["*.pt", "*.safetensors", "*.bin", "*.tensors", "*.pth"],
824
+ )
825
+ self.tokenizer = object_storage_tokenizer.dir
826
+
827
+ def _get_encoder_config(self):
828
+ model = self.model
829
+ if is_remote_gguf(model):
830
+ model, _ = split_remote_gguf(model)
831
+ return get_sentence_transformer_tokenizer_config(model, self.revision)
832
+
833
+ def _get_default_runner_type(
834
+ self,
835
+ architectures: list[str],
836
+ ) -> RunnerType:
837
+ registry = self.registry
838
+
839
+ # Some Sentence Transformers models use *ForCausalLM archs
840
+ if get_pooling_config(self.model, self.revision):
841
+ return "pooling"
842
+
843
+ for arch in architectures:
844
+ if arch in registry.get_supported_archs():
845
+ if registry.is_pooling_model(architectures, self):
846
+ return "pooling"
847
+ if registry.is_text_generation_model(architectures, self):
848
+ return "generate"
849
+
850
+ match = try_match_architecture_defaults(arch)
851
+ if match:
852
+ _, (runner_type, _) = match
853
+ return runner_type
854
+
855
+ return "generate"
856
+
857
+ def _get_runner_type(
858
+ self,
859
+ architectures: list[str],
860
+ runner: RunnerOption,
861
+ ) -> RunnerType:
862
+ if runner != "auto":
863
+ return runner
864
+
865
+ runner_type = self._get_default_runner_type(architectures)
866
+
867
+ # Don't log the most common case
868
+ if runner_type != "generate":
869
+ logger.info(
870
+ "Resolved `--runner auto` to `--runner %s`. "
871
+ "Pass the value explicitly to silence this message.",
872
+ runner_type,
873
+ )
874
+
875
+ return runner_type
876
+
877
+ def _get_default_convert_type(
878
+ self,
879
+ architectures: list[str],
880
+ runner_type: RunnerType,
881
+ ) -> ConvertType:
882
+ registry = self.registry
883
+
884
+ for arch in architectures:
885
+ if arch in registry.get_supported_archs():
886
+ if runner_type == "generate" and registry.is_text_generation_model(
887
+ architectures, self
888
+ ):
889
+ return "none"
890
+ if runner_type == "pooling" and registry.is_pooling_model(
891
+ architectures, self
892
+ ):
893
+ return "none"
894
+
895
+ match = try_match_architecture_defaults(arch, runner_type=runner_type)
896
+ if match:
897
+ _, (_, convert_type) = match
898
+ return convert_type
899
+
900
+ # This is to handle Sentence Transformers models that use *ForCausalLM
901
+ # and also multi-modal pooling models which are not defined as
902
+ # Sentence Transformers models
903
+ if runner_type == "pooling":
904
+ return "embed"
905
+
906
+ return "none"
907
+
908
+ def _get_convert_type(
909
+ self,
910
+ architectures: list[str],
911
+ runner_type: RunnerType,
912
+ convert: ConvertOption,
913
+ ) -> ConvertType:
914
+ if convert != "auto":
915
+ return convert
916
+
917
+ convert_type = self._get_default_convert_type(architectures, runner_type)
918
+
919
+ # Don't log the most common case
920
+ if convert_type != "none":
921
+ logger.info(
922
+ "Resolved `--convert auto` to `--convert %s`. "
923
+ "Pass the value explicitly to silence this message.",
924
+ convert_type,
925
+ )
926
+
927
+ return convert_type
928
+
929
+ def _get_default_pooling_task(
930
+ self,
931
+ architectures: list[str],
932
+ ) -> Literal["embed", "classify", "reward"]:
933
+ if self.registry.is_cross_encoder_model(architectures, self):
934
+ return "classify"
935
+
936
+ for arch in architectures:
937
+ match = try_match_architecture_defaults(arch, runner_type="pooling")
938
+ if match:
939
+ _, (_, convert_type) = match
940
+ assert convert_type != "none"
941
+ return convert_type
942
+
943
+ return "embed"
944
+
945
+ def _parse_quant_hf_config(self, hf_config: PretrainedConfig):
946
+ quant_cfg = getattr(hf_config, "quantization_config", None)
947
+ if quant_cfg is None:
948
+ # compressed-tensors uses a "compression_config" key
949
+ quant_cfg = getattr(hf_config, "compression_config", None)
950
+
951
+ else:
952
+ # Set quant_method for ModelOpt models.
953
+ producer_name = quant_cfg.get("producer", {}).get("name")
954
+ if producer_name == "modelopt":
955
+ quant_algo = quant_cfg.get("quantization", {}).get("quant_algo")
956
+ if quant_algo == "FP8":
957
+ quant_cfg["quant_method"] = "modelopt"
958
+ elif quant_algo == "NVFP4":
959
+ quant_cfg["quant_method"] = "modelopt_fp4"
960
+ elif quant_algo is not None:
961
+ raise ValueError(f"Unknown ModelOpt quant algo: {quant_algo}")
962
+
963
+ return quant_cfg
964
+
965
+ def _verify_quantization(self) -> None:
966
+ supported_quantization = me_quant.QUANTIZATION_METHODS
967
+ if self.quantization is not None:
968
+ self.quantization = cast(me_quant.QuantizationMethods, self.quantization)
969
+
970
+ # Parse quantization method from the HF model config, if available.
971
+ quant_cfg = self._parse_quant_hf_config(self.hf_config)
972
+ if quant_cfg is None and (
973
+ text_config := getattr(self.hf_config, "text_config", None)
974
+ ):
975
+ # Check the text config as well for multi-modal models.
976
+ quant_cfg = self._parse_quant_hf_config(text_config)
977
+
978
+ if quant_cfg is not None:
979
+ # Use the community standard 'quant_method'
980
+ quant_method = quant_cfg.get("quant_method", "").lower()
981
+
982
+ # Normalize library names
983
+ quant_method = quant_method.replace(
984
+ "compressed_tensors", "compressed-tensors"
985
+ )
986
+
987
+ quant_cfg["quant_method"] = quant_method
988
+
989
+ # Quantization methods which are overrides (i.e. they have a
990
+ # `override_quantization_method` method) must be checked in order
991
+ # of preference (this is particularly important for GPTQ).
992
+ overrides = [
993
+ "bitblas",
994
+ "gptq_marlin_24",
995
+ "gptq_marlin",
996
+ "gptq_bitblas",
997
+ "awq_marlin",
998
+ "ipex",
999
+ "moe_wna16",
1000
+ "modelopt",
1001
+ "modelopt_fp4",
1002
+ "petit_nvfp4",
1003
+ # Ensure heavy backends are probed last to avoid unnecessary
1004
+ # imports during override detection (e.g., MXFP4 imports Triton)
1005
+ "mxfp4",
1006
+ "cpu_gptq",
1007
+ "cpu_awq",
1008
+ ]
1009
+ quantization_methods = [
1010
+ q for q in supported_quantization if q not in overrides
1011
+ ]
1012
+ # Any custom overrides will be in quantization_methods so we place
1013
+ # them at the start of the list so custom overrides have preference
1014
+ # over the built-in ones.
1015
+ quantization_methods = quantization_methods + overrides
1016
+
1017
+ # Detect which checkpoint is it
1018
+ for name in quantization_methods:
1019
+ method = me_quant.get_quantization_config(name)
1020
+ quantization_override = method.override_quantization_method(
1021
+ quant_cfg, self.quantization
1022
+ )
1023
+ if quantization_override is not None:
1024
+ # Raise error if the override is not custom (custom would
1025
+ # be in QUANTIZATION_METHODS but not QuantizationMethods)
1026
+ # and hasn't been added to the overrides list.
1027
+ if (
1028
+ name in get_args(me_quant.QuantizationMethods)
1029
+ and name not in overrides
1030
+ ):
1031
+ raise ValueError(
1032
+ f"Quantization method {name} is an override but "
1033
+ "is has not been added to the `overrides` list "
1034
+ "above. This is necessary to ensure that the "
1035
+ "overrides are checked in order of preference."
1036
+ )
1037
+ quant_method = quantization_override
1038
+ self.quantization = quantization_override
1039
+ break
1040
+
1041
+ quant_method = quant_method if quant_method != "" else None
1042
+ # Verify quantization configurations.
1043
+ if self.quantization is None:
1044
+ self.quantization = quant_method
1045
+ elif self.quantization != quant_method:
1046
+ raise ValueError(
1047
+ "Quantization method specified in the model config "
1048
+ f"({quant_method}) does not match the quantization "
1049
+ f"method specified in the `quantization` argument "
1050
+ f"({self.quantization})."
1051
+ )
1052
+
1053
+ if self.quantization is not None:
1054
+ if self.quantization not in supported_quantization:
1055
+ raise ValueError(
1056
+ f"Unknown quantization method: {self.quantization}. Must "
1057
+ f"be one of {supported_quantization}."
1058
+ )
1059
+ from vllm.platforms import current_platform
1060
+
1061
+ current_platform.verify_quantization(self.quantization)
1062
+
1063
+ def _verify_cuda_graph(self) -> None:
1064
+ # CUDAGraph capture not supported for encoder-decoder models on ROCm
1065
+ unsupported_rocm = self.is_encoder_decoder
1066
+ if unsupported_rocm and not self.enforce_eager and current_platform.is_rocm():
1067
+ logger.warning(
1068
+ "CUDA graph is not supported for %s on ROCm yet, fallback "
1069
+ "to eager mode.",
1070
+ self.hf_config.model_type,
1071
+ )
1072
+ self.enforce_eager = True
1073
+
1074
+ def _verify_bnb_config(self) -> None:
1075
+ """
1076
+ The current version of bitsandbytes (0.46.1) with 8-bit models does not
1077
+ yet support CUDA graph.
1078
+ # TODO Remove this when bitsandbytes supports.
1079
+ """
1080
+ is_bitsandbytes = self.quantization == "bitsandbytes"
1081
+ has_quantization_config = (
1082
+ getattr(self.hf_config, "quantization_config", None) is not None
1083
+ )
1084
+ is_8bit = (
1085
+ self.hf_config.quantization_config.get("load_in_8bit", False)
1086
+ if has_quantization_config
1087
+ else False
1088
+ )
1089
+ if all(
1090
+ [
1091
+ is_bitsandbytes,
1092
+ has_quantization_config,
1093
+ is_8bit,
1094
+ not self.enforce_eager,
1095
+ ]
1096
+ ):
1097
+ logger.warning(
1098
+ "CUDA graph is not supported on BitsAndBytes 8bit yet, "
1099
+ "fallback to the eager mode."
1100
+ )
1101
+
1102
+ self.enforce_eager = True
1103
+
1104
+ def _verify_with_expert_parallelism(self) -> None:
1105
+ num_experts = self.get_num_experts()
1106
+ if num_experts < 1:
1107
+ raise ValueError(
1108
+ "Number of experts in the model must be greater than 0 "
1109
+ "when expert parallelism is enabled."
1110
+ )
1111
+
1112
+ def verify_dual_chunk_attention_config(
1113
+ self,
1114
+ load_config: LoadConfig,
1115
+ ) -> None:
1116
+ if hasattr(self.hf_config, "dual_chunk_attention_config"):
1117
+ # Try loading the sparse attention config
1118
+ from vllm.model_executor.model_loader.weight_utils import (
1119
+ get_sparse_attention_config,
1120
+ )
1121
+
1122
+ sparse_attn_config = get_sparse_attention_config(self, load_config)
1123
+ if sparse_attn_config:
1124
+ self.hf_config.dual_chunk_attention_config[
1125
+ "sparse_attention_config"
1126
+ ] = sparse_attn_config
1127
+ if (
1128
+ "sparse_attention_enabled"
1129
+ not in self.hf_config.dual_chunk_attention_config
1130
+ ):
1131
+ self.hf_config.dual_chunk_attention_config[
1132
+ "sparse_attention_enabled"
1133
+ ] = True
1134
+
1135
+ def verify_with_parallel_config(
1136
+ self,
1137
+ parallel_config: ParallelConfig,
1138
+ ) -> None:
1139
+ total_num_attention_heads = getattr(
1140
+ self.hf_text_config, "num_attention_heads", 0
1141
+ )
1142
+ tensor_parallel_size = parallel_config.tensor_parallel_size
1143
+ if total_num_attention_heads % tensor_parallel_size != 0:
1144
+ raise ValueError(
1145
+ f"Total number of attention heads ({total_num_attention_heads})"
1146
+ " must be divisible by tensor parallel size "
1147
+ f"({tensor_parallel_size})."
1148
+ )
1149
+
1150
+ if parallel_config.enable_expert_parallel:
1151
+ self._verify_with_expert_parallelism()
1152
+
1153
+ pipeline_parallel_size = parallel_config.pipeline_parallel_size
1154
+ if pipeline_parallel_size > 1 and not self.registry.is_pp_supported_model(
1155
+ self.architectures, self
1156
+ ):
1157
+ raise NotImplementedError(
1158
+ "Pipeline parallelism is not supported for this model. "
1159
+ "Supported models implement the `SupportsPP` interface."
1160
+ )
1161
+
1162
+ decode_context_parallel_size = parallel_config.decode_context_parallel_size
1163
+ if decode_context_parallel_size > 1 and not self.use_mla:
1164
+ total_num_kv_heads = self.get_total_num_kv_heads()
1165
+ assert tensor_parallel_size > total_num_kv_heads, (
1166
+ f"tensor parallel size {tensor_parallel_size} must be greater "
1167
+ f"than total num kv heads {total_num_kv_heads} when enable "
1168
+ f"decode context parallel for GQA/MQA"
1169
+ )
1170
+
1171
+ max_dcp_size = tensor_parallel_size // total_num_kv_heads
1172
+ assert decode_context_parallel_size <= max_dcp_size, (
1173
+ f"decode context parallel size must less than or equal to "
1174
+ f"(tensor parallel size {tensor_parallel_size} // total "
1175
+ f"num kv heads {total_num_kv_heads}) = {max_dcp_size}, "
1176
+ f"but got {decode_context_parallel_size}"
1177
+ )
1178
+
1179
+ num_q_per_kv = total_num_attention_heads // total_num_kv_heads
1180
+ assert num_q_per_kv % decode_context_parallel_size == 0, (
1181
+ f"Total number of q per kv attn heads ({num_q_per_kv})"
1182
+ " must be divisible by dcp world size when enable "
1183
+ "decode context parallel for GQA "
1184
+ f"({parallel_config.decode_context_parallel_size})."
1185
+ )
1186
+
1187
+ def get_sliding_window(self) -> int | None:
1188
+ """Get the sliding window size from the HF text config if present."""
1189
+ return getattr(self.hf_text_config, "sliding_window", None)
1190
+
1191
+ def get_vocab_size(self) -> int:
1192
+ return getattr(self.hf_text_config, "vocab_size", 0)
1193
+
1194
+ def get_hidden_size(self) -> int:
1195
+ return getattr(self.hf_text_config, "hidden_size", 0)
1196
+
1197
+ def get_inputs_embeds_size(self) -> int:
1198
+ # The size of inputs_embeds is usually identical to the size
1199
+ # of the hidden states, however there are exceptions, such as
1200
+ # embedding models like CLIP and SigLIP
1201
+ for target_attr in ("projection_dim", "projection_size"):
1202
+ if hasattr(self.hf_text_config, target_attr):
1203
+ return getattr(self.hf_text_config, target_attr)
1204
+
1205
+ return self.get_hidden_size()
1206
+
1207
+ @property
1208
+ def is_deepseek_mla(self) -> bool:
1209
+ if not hasattr(self.hf_text_config, "model_type"):
1210
+ return False
1211
+ elif self.hf_text_config.model_type in (
1212
+ "deepseek_v2",
1213
+ "deepseek_v3",
1214
+ "deepseek_v32",
1215
+ "deepseek_mtp",
1216
+ "kimi_k2",
1217
+ "kimi_linear",
1218
+ "longcat_flash",
1219
+ "pangu_ultra_moe",
1220
+ "pangu_ultra_moe_mtp",
1221
+ ):
1222
+ return self.hf_text_config.kv_lora_rank is not None
1223
+ elif self.hf_text_config.model_type == "eagle":
1224
+ # if the model is an EAGLE module, check for the
1225
+ # underlying architecture
1226
+ return (
1227
+ self.hf_text_config.model.model_type
1228
+ in ("deepseek_v2", "deepseek_v3", "deepseek_v32")
1229
+ and self.hf_text_config.kv_lora_rank is not None
1230
+ )
1231
+ return False
1232
+
1233
+ def get_head_size(self) -> int:
1234
+ # TODO remove hard code
1235
+ if self.is_deepseek_mla:
1236
+ qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim", 0)
1237
+ if self.use_mla:
1238
+ return self.hf_text_config.kv_lora_rank + qk_rope_head_dim
1239
+ else:
1240
+ qk_nope_head_dim = getattr(self.hf_text_config, "qk_nope_head_dim", 0)
1241
+ if qk_rope_head_dim and qk_nope_head_dim:
1242
+ return qk_rope_head_dim + qk_nope_head_dim
1243
+
1244
+ if hasattr(self.hf_text_config, "model_type") and (
1245
+ self.hf_text_config.model_type == "zamba2"
1246
+ ):
1247
+ return self.hf_text_config.attention_head_dim
1248
+
1249
+ if self.is_attention_free:
1250
+ return 0
1251
+
1252
+ # NOTE: Some configs may set head_dim=None in the config
1253
+ if getattr(self.hf_text_config, "head_dim", None) is not None:
1254
+ return self.hf_text_config.head_dim
1255
+
1256
+ # NOTE: Some models (such as PLaMo2.1) use `hidden_size_per_head`
1257
+ if getattr(self.hf_text_config, "hidden_size_per_head", None) is not None:
1258
+ return self.hf_text_config.hidden_size_per_head
1259
+
1260
+ # FIXME(woosuk): This may not be true for all models.
1261
+ return (
1262
+ self.hf_text_config.hidden_size // self.hf_text_config.num_attention_heads
1263
+ )
1264
+
1265
+ def get_total_num_kv_heads(self) -> int:
1266
+ """Returns the total number of KV heads."""
1267
+ # For GPTBigCode & Falcon:
1268
+ # NOTE: for falcon, when new_decoder_architecture is True, the
1269
+ # multi_query flag is ignored and we use n_head_kv for the number of
1270
+ # KV heads.
1271
+ falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
1272
+ new_decoder_arch_falcon = (
1273
+ self.hf_config.model_type in falcon_model_types
1274
+ and getattr(self.hf_config, "new_decoder_architecture", False)
1275
+ )
1276
+ if not new_decoder_arch_falcon and getattr(
1277
+ self.hf_text_config, "multi_query", False
1278
+ ):
1279
+ # Multi-query attention, only one KV head.
1280
+ # Currently, tensor parallelism is not supported in this case.
1281
+ return 1
1282
+
1283
+ # For DBRX and MPT
1284
+ if self.hf_config.model_type == "mpt":
1285
+ if "kv_n_heads" in self.hf_config.attn_config:
1286
+ return self.hf_config.attn_config["kv_n_heads"]
1287
+ return self.hf_config.num_attention_heads
1288
+ if self.hf_config.model_type == "dbrx":
1289
+ return getattr(
1290
+ self.hf_config.attn_config,
1291
+ "kv_n_heads",
1292
+ self.hf_config.num_attention_heads,
1293
+ )
1294
+
1295
+ if self.hf_config.model_type == "nemotron-nas":
1296
+ for block in self.hf_config.block_configs:
1297
+ if not block.attention.no_op:
1298
+ return (
1299
+ self.hf_config.num_attention_heads
1300
+ // block.attention.n_heads_in_group
1301
+ )
1302
+
1303
+ raise RuntimeError("Couldn't determine number of kv heads")
1304
+
1305
+ if self.is_attention_free:
1306
+ return 0
1307
+
1308
+ attributes = [
1309
+ # For Falcon:
1310
+ "n_head_kv",
1311
+ "num_kv_heads",
1312
+ # For LLaMA-2:
1313
+ "num_key_value_heads",
1314
+ # For ChatGLM:
1315
+ "multi_query_group_num",
1316
+ ]
1317
+ for attr in attributes:
1318
+ num_kv_heads = getattr(self.hf_text_config, attr, None)
1319
+ if num_kv_heads is not None:
1320
+ return num_kv_heads
1321
+
1322
+ # For non-grouped-query attention models, the number of KV heads is
1323
+ # equal to the number of attention heads.
1324
+ return self.hf_text_config.num_attention_heads
1325
+
1326
+ def get_num_kv_heads(self, parallel_config: ParallelConfig) -> int:
1327
+ """Returns the number of KV heads per GPU."""
1328
+ if self.use_mla:
1329
+ # When using MLA during decode it becomes MQA
1330
+ return 1
1331
+
1332
+ total_num_kv_heads = self.get_total_num_kv_heads()
1333
+ # If tensor parallelism is used, we divide the number of KV heads by
1334
+ # the tensor parallel size. We will replicate the KV heads in the
1335
+ # case where the number of KV heads is smaller than the tensor
1336
+ # parallel size so each GPU has at least one KV head.
1337
+ return max(1, total_num_kv_heads // parallel_config.tensor_parallel_size)
1338
+
1339
+ def get_num_attention_heads(self, parallel_config: ParallelConfig) -> int:
1340
+ num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
1341
+ return num_heads // parallel_config.tensor_parallel_size
1342
+
1343
+ def get_num_experts(self) -> int:
1344
+ """Returns the number of experts in the model."""
1345
+ num_expert_names = [
1346
+ "num_experts", # Jamba
1347
+ "moe_num_experts", # Dbrx
1348
+ "n_routed_experts", # DeepSeek
1349
+ "num_local_experts", # Mixtral
1350
+ ]
1351
+ num_experts = getattr_iter(self.hf_text_config, num_expert_names, 0)
1352
+ if isinstance(num_experts, list):
1353
+ # Ernie VL's remote code uses list[int]...
1354
+ # The values are always the same so we just take the first one.
1355
+ return num_experts[0]
1356
+ # Coerce to 0 if explicitly set to None
1357
+ return num_experts or 0
1358
+
1359
+ def get_total_num_hidden_layers(self) -> int:
1360
+ if (
1361
+ self.hf_text_config.model_type == "deepseek_mtp"
1362
+ or self.hf_config.model_type == "mimo_mtp"
1363
+ or self.hf_config.model_type == "glm4_moe_mtp"
1364
+ or self.hf_config.model_type == "ernie_mtp"
1365
+ or self.hf_config.model_type == "qwen3_next_mtp"
1366
+ or self.hf_config.model_type == "pangu_ultra_moe_mtp"
1367
+ ):
1368
+ total_num_hidden_layers = getattr(
1369
+ self.hf_text_config, "num_nextn_predict_layers", 0
1370
+ )
1371
+ elif self.hf_config.model_type == "longcat_flash_mtp":
1372
+ total_num_hidden_layers = getattr(
1373
+ self.hf_text_config, "num_nextn_predict_layers", 1
1374
+ )
1375
+ else:
1376
+ total_num_hidden_layers = getattr(
1377
+ self.hf_text_config, "num_hidden_layers", 0
1378
+ )
1379
+ return total_num_hidden_layers
1380
+
1381
+ def get_layers_start_end_indices(
1382
+ self, parallel_config: ParallelConfig
1383
+ ) -> tuple[int, int]:
1384
+ from vllm.distributed.utils import get_pp_indices
1385
+
1386
+ total_num_hidden_layers = self.get_total_num_hidden_layers()
1387
+
1388
+ # the layout order is: DP x PP x TP
1389
+ pp_rank = (
1390
+ parallel_config.rank // parallel_config.tensor_parallel_size
1391
+ ) % parallel_config.pipeline_parallel_size
1392
+ pp_size = parallel_config.pipeline_parallel_size
1393
+ start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
1394
+ return start, end
1395
+
1396
+ def get_num_layers(self, parallel_config: ParallelConfig) -> int:
1397
+ start, end = self.get_layers_start_end_indices(parallel_config)
1398
+ return end - start
1399
+
1400
+ def get_num_layers_by_block_type(
1401
+ self,
1402
+ parallel_config: ParallelConfig,
1403
+ block_type: LayerBlockType = "attention",
1404
+ ) -> int:
1405
+ # This function relies on 'layers_block_type' in hf_config,
1406
+ # for w/o this attribute, we will need to have workarounds like so
1407
+ attn_block_type = block_type == "attention"
1408
+ is_transformer = (
1409
+ not self.is_hybrid and not self.has_noops and not self.is_attention_free
1410
+ )
1411
+ start, end = self.get_layers_start_end_indices(parallel_config)
1412
+
1413
+ if is_transformer:
1414
+ # Handle the basic case first
1415
+ return end - start if attn_block_type else 0
1416
+ elif self.is_attention_free:
1417
+ # Attention free
1418
+ # Note that this code assumes there
1419
+ # is only one type of attention-free block type.
1420
+ return 0 if attn_block_type else end - start
1421
+ elif self.has_noops:
1422
+ block_configs = self.hf_config.block_configs
1423
+ return sum(not bc.attention.no_op for bc in block_configs[start:end])
1424
+ else:
1425
+ # Hybrid model Jamba
1426
+ layers_block_type_value = getattr(
1427
+ self.hf_text_config, "layers_block_type", None
1428
+ )
1429
+ if layers_block_type_value is not None:
1430
+ if hasattr(self.hf_text_config, "model_type") and (
1431
+ self.hf_text_config.model_type == "zamba2"
1432
+ ):
1433
+ if attn_block_type:
1434
+ return sum(
1435
+ t == "hybrid" for t in layers_block_type_value[start:end]
1436
+ )
1437
+ else:
1438
+ return self.get_num_layers(parallel_config)
1439
+ return sum(t == block_type for t in layers_block_type_value[start:end])
1440
+
1441
+ # Hybrid model Minimax
1442
+ attn_type_list = getattr(self.hf_config, "attn_type_list", None)
1443
+ if attn_type_list:
1444
+ return sum(t == 1 for t in attn_type_list[start:end])
1445
+
1446
+ # Hybrid model Qwen3Next
1447
+ layer_types_value = getattr(self.hf_config, "layer_types", None)
1448
+ if layer_types_value is not None:
1449
+ if block_type == "attention":
1450
+ return sum(
1451
+ t == "full_attention" for t in layer_types_value[start:end]
1452
+ )
1453
+ elif block_type == "linear_attention":
1454
+ return sum(
1455
+ t == "linear_attention" for t in layer_types_value[start:end]
1456
+ )
1457
+ else:
1458
+ return sum(t == block_type for t in layer_types_value[start:end])
1459
+
1460
+ if (
1461
+ layers_block_type_value is None
1462
+ and attn_type_list is None
1463
+ and layer_types_value is None
1464
+ ):
1465
+ raise ValueError(
1466
+ "The model is an hybrid without a layers_block_type or an "
1467
+ "attn_type_list, or a layer_types in the hf_config, "
1468
+ f"cannot determine the num of {block_type} layers"
1469
+ )
1470
+
1471
+ def get_mamba_chunk_size(self) -> int | None:
1472
+ """
1473
+ Returns the mamba chunk size if it exists
1474
+ """
1475
+ # used by e.g. Bamba, FalconH1, Granite, PLaMo2
1476
+ chunk_size = getattr(self.hf_text_config, "mamba_chunk_size", None)
1477
+ if chunk_size is None:
1478
+ # used by e.g. Mamba2, NemotronH, Zamba
1479
+ chunk_size = getattr(self.hf_text_config, "chunk_size", None)
1480
+
1481
+ # Since Mamba1 does not have a chunk notion
1482
+ # we use a default chunk size of 1024.
1483
+ if chunk_size is None:
1484
+ chunk_size = 2048
1485
+
1486
+ return chunk_size
1487
+
1488
+ def get_multimodal_config(self) -> MultiModalConfig:
1489
+ """
1490
+ Get the multimodal configuration of the model.
1491
+
1492
+ Raises:
1493
+ ValueError: If the model is not multimodal.
1494
+ """
1495
+ if self.multimodal_config is None:
1496
+ raise ValueError("The model is not multimodal.")
1497
+
1498
+ return self.multimodal_config
1499
+
1500
+ def try_get_generation_config(self) -> dict[str, Any]:
1501
+ """
1502
+ This method attempts to retrieve the non-default values of the
1503
+ generation config for this model.
1504
+
1505
+ The generation config can contain information about special tokens, as
1506
+ well as sampling parameters. Which is why this method exists separately
1507
+ to `get_diff_sampling_param`.
1508
+
1509
+ Returns:
1510
+ A dictionary containing the non-default generation config.
1511
+ """
1512
+ if self.generation_config in {"auto", "vllm"}:
1513
+ config = try_get_generation_config(
1514
+ self.hf_config_path or self.model,
1515
+ trust_remote_code=self.trust_remote_code,
1516
+ revision=self.revision,
1517
+ config_format=self.config_format,
1518
+ )
1519
+ else:
1520
+ config = try_get_generation_config(
1521
+ self.generation_config,
1522
+ trust_remote_code=self.trust_remote_code,
1523
+ config_format=self.config_format,
1524
+ )
1525
+
1526
+ if config is None:
1527
+ return {}
1528
+
1529
+ return config.to_diff_dict()
1530
+
1531
+ def get_diff_sampling_param(self) -> dict[str, Any]:
1532
+ """
1533
+ This method returns a dictionary containing the non-default sampling
1534
+ parameters with `override_generation_config` applied.
1535
+
1536
+ The default sampling parameters are:
1537
+
1538
+ - vLLM's neutral defaults if `self.generation_config="vllm"`
1539
+ - the model's defaults if `self.generation_config="auto"`
1540
+ - as defined in `generation_config.json` if
1541
+ `self.generation_config="path/to/generation_config/dir"`
1542
+
1543
+ Returns:
1544
+ A dictionary containing the non-default sampling parameters.
1545
+ """
1546
+ if self.generation_config == "vllm":
1547
+ config = {}
1548
+ else:
1549
+ config = self.try_get_generation_config()
1550
+
1551
+ # Overriding with given generation config
1552
+ config.update(self.override_generation_config)
1553
+
1554
+ available_params = [
1555
+ "repetition_penalty",
1556
+ "temperature",
1557
+ "top_k",
1558
+ "top_p",
1559
+ "min_p",
1560
+ "max_new_tokens",
1561
+ ]
1562
+ if any(p in config for p in available_params):
1563
+ diff_sampling_param = {
1564
+ p: config.get(p) for p in available_params if config.get(p) is not None
1565
+ }
1566
+ # Huggingface definition of max_new_tokens is equivalent
1567
+ # to vLLM's max_tokens
1568
+ if "max_new_tokens" in diff_sampling_param:
1569
+ diff_sampling_param["max_tokens"] = diff_sampling_param.pop(
1570
+ "max_new_tokens"
1571
+ )
1572
+ else:
1573
+ diff_sampling_param = {}
1574
+
1575
+ if diff_sampling_param:
1576
+ logger.warning_once(
1577
+ "Default sampling parameters have been overridden by the "
1578
+ "model's Hugging Face generation config recommended from the "
1579
+ "model creator. If this is not intended, please relaunch "
1580
+ "vLLM instance with `--generation-config vllm`."
1581
+ )
1582
+ return diff_sampling_param
1583
+
1584
+ @property
1585
+ def is_encoder_decoder(self) -> bool:
1586
+ """Extract the HF encoder/decoder model flag."""
1587
+ return is_encoder_decoder(self.hf_config)
1588
+
1589
+ @property
1590
+ def uses_alibi(self) -> bool:
1591
+ cfg = self.hf_text_config
1592
+
1593
+ return (
1594
+ getattr(cfg, "alibi", False) # Falcon
1595
+ or "BloomForCausalLM" in self.architectures # Bloom
1596
+ or getattr(cfg, "position_encoding_type", "") == "alibi" # codellm_1b_alibi
1597
+ or (
1598
+ hasattr(cfg, "attn_config") # MPT
1599
+ and (
1600
+ (
1601
+ isinstance(cfg.attn_config, dict)
1602
+ and cfg.attn_config.get("alibi", False)
1603
+ )
1604
+ or (
1605
+ not isinstance(cfg.attn_config, dict)
1606
+ and getattr(cfg.attn_config, "alibi", False)
1607
+ )
1608
+ )
1609
+ )
1610
+ )
1611
+
1612
+ @property
1613
+ def uses_mrope(self) -> bool:
1614
+ return uses_mrope(self.hf_config)
1615
+
1616
+ @property
1617
+ def uses_xdrope_dim(self) -> int:
1618
+ return uses_xdrope_dim(self.hf_config)
1619
+
1620
+ @property
1621
+ def is_multimodal_model(self) -> bool:
1622
+ return self.multimodal_config is not None
1623
+
1624
+ @property
1625
+ def is_multimodal_raw_input_only_model(self) -> bool:
1626
+ return self._model_info.supports_multimodal_raw_input_only
1627
+
1628
+ @property
1629
+ def is_cross_encoder(self) -> bool:
1630
+ return (
1631
+ self._model_info.supports_cross_encoding or self.convert_type == "classify"
1632
+ )
1633
+
1634
+ @property
1635
+ def is_pp_supported(self) -> bool:
1636
+ return self._model_info.supports_pp
1637
+
1638
+ @property
1639
+ def is_attention_free(self) -> bool:
1640
+ return self._model_info.is_attention_free
1641
+
1642
+ @property
1643
+ def is_hybrid(self) -> bool:
1644
+ # Handle granite-4.0-micro case which uses hybrid config but does not
1645
+ # actually contain any non-attention layers.
1646
+ layer_types = getattr(self.hf_config, "layer_types", None)
1647
+ if layer_types is not None and all(
1648
+ layer == "attention" for layer in layer_types
1649
+ ):
1650
+ return False
1651
+ return self._model_info.is_hybrid
1652
+
1653
+ @property
1654
+ def has_noops(self) -> bool:
1655
+ return self._model_info.has_noops
1656
+
1657
+ @property
1658
+ def has_inner_state(self):
1659
+ return self._model_info.has_inner_state
1660
+
1661
+ @property
1662
+ def supports_mamba_prefix_caching(self) -> bool:
1663
+ return self._model_info.supports_mamba_prefix_caching
1664
+
1665
+ @property
1666
+ def use_mla(self) -> bool:
1667
+ return self.is_deepseek_mla and not envs.VLLM_MLA_DISABLE
1668
+
1669
+ @property
1670
+ def is_matryoshka(self) -> bool:
1671
+ return bool(getattr(self.hf_config, "matryoshka_dimensions", None)) or getattr(
1672
+ self.hf_config, "is_matryoshka", False
1673
+ )
1674
+
1675
+ @property
1676
+ def matryoshka_dimensions(self):
1677
+ return getattr(self.hf_config, "matryoshka_dimensions", None)
1678
+
1679
+ @property
1680
+ def use_pad_token(self) -> bool:
1681
+ # cross_encoder models defaults to using pad_token.
1682
+ # `llm as reranker` models defaults to not using pad_token.
1683
+ return getattr(self.hf_config, "use_pad_token", True)
1684
+
1685
+ @property
1686
+ def head_dtype(self) -> torch.dtype:
1687
+ """
1688
+ "head" refers to the last Linear layer(s) of an LLM,
1689
+ such as the lm_head in a generation model,
1690
+ or the score or classifier in a classification model.
1691
+
1692
+ `head_dtype` currently only supports pooling models.\n
1693
+ - The pooling model defaults to using fp32 head,
1694
+ you can use --hf-overrides '{"head_dtype": "model"}' to disable it.
1695
+ """
1696
+
1697
+ head_dtype = _get_head_dtype(
1698
+ config=self.hf_config, dtype=self.dtype, runner_type=self.runner_type
1699
+ )
1700
+
1701
+ if self.runner_type != "pooling" and head_dtype != self.dtype:
1702
+ logger.warning_once(
1703
+ "`head_dtype` currently only supports pooling models."
1704
+ "fallback to model dtype [%s].",
1705
+ self.dtype,
1706
+ )
1707
+ return self.dtype
1708
+
1709
+ if head_dtype not in current_platform.supported_dtypes:
1710
+ logger.warning_once(
1711
+ "The current platform does not support [%s] head dtype, "
1712
+ "fallback to model dtype [%s].",
1713
+ head_dtype,
1714
+ self.dtype,
1715
+ )
1716
+ return self.dtype
1717
+
1718
+ logger.debug_once("head dtype: %s", head_dtype)
1719
+ return head_dtype
1720
+
1721
+ @property
1722
+ def embedding_size(self):
1723
+ dense_modules = try_get_dense_modules(self.model, revision=self.revision)
1724
+ if dense_modules is not None:
1725
+ return dense_modules[-1]["out_features"]
1726
+ return self.get_hidden_size()
1727
+
1728
+ def get_and_verify_max_len(self, max_model_len: int):
1729
+ # Consider max_model_len in tokenizer_config only when
1730
+ # pooling models use absolute position_embedding.
1731
+ tokenizer_config = None
1732
+ if (
1733
+ self.runner_type == "pooling"
1734
+ and getattr(self.hf_config, "position_embedding_type", "") == "absolute"
1735
+ ):
1736
+ tokenizer_config = try_get_tokenizer_config(
1737
+ self.tokenizer,
1738
+ trust_remote_code=self.trust_remote_code,
1739
+ revision=self.tokenizer_revision,
1740
+ )
1741
+ max_model_len = _get_and_verify_max_len(
1742
+ hf_config=self.hf_text_config,
1743
+ tokenizer_config=tokenizer_config,
1744
+ max_model_len=max_model_len,
1745
+ disable_sliding_window=self.disable_sliding_window,
1746
+ sliding_window=self.get_sliding_window(),
1747
+ spec_target_max_model_len=self.spec_target_max_model_len,
1748
+ encoder_config=self.encoder_config,
1749
+ )
1750
+ logger.info("Using max model len %s", max_model_len)
1751
+ return max_model_len
1752
+
1753
+ @property
1754
+ def attn_type(self) -> AttnTypeStr:
1755
+ if self.pooler_config is not None:
1756
+ pooling_type = self._model_info.default_pooling_type.lower()
1757
+ if pooling_type == "cls":
1758
+ return "encoder_only"
1759
+ else:
1760
+ is_causal = getattr(self.hf_config, "is_causal", True)
1761
+ return "encoder_only" if not is_causal else self._model_info.attn_type
1762
+ elif self.is_hybrid:
1763
+ return "hybrid"
1764
+ elif self.is_attention_free:
1765
+ return "attention_free"
1766
+ elif self.is_encoder_decoder:
1767
+ return "encoder_decoder"
1768
+ else:
1769
+ return "decoder"
1770
+
1771
+ @property
1772
+ def is_chunked_prefill_supported(self) -> bool:
1773
+ attn_type = self.attn_type
1774
+ if self.pooler_config is not None:
1775
+ # for pooling models
1776
+ if attn_type == "encoder_only":
1777
+ logger.debug(
1778
+ "Pooling models with bidirectional attn does not support "
1779
+ "chunked prefill."
1780
+ )
1781
+ return False
1782
+ elif attn_type == "decoder":
1783
+ pooling_type = self.pooler_config.pooling_type.lower()
1784
+ if pooling_type in ["all", "mean", "step", "cls"]:
1785
+ logger.debug(
1786
+ "Pooling models with %s pooling does not "
1787
+ "support chunked prefill.",
1788
+ pooling_type,
1789
+ )
1790
+ return False
1791
+ else:
1792
+ # pooling_type == "last"
1793
+ logger.debug(
1794
+ "Pooling models with causal attn and last pooling support "
1795
+ "chunked prefill."
1796
+ )
1797
+ return True
1798
+ # vllm currently does not have pooling models using hybrid,
1799
+ # attention_free or encoder_decoder attn types.
1800
+ return attn_type != "encoder_decoder"
1801
+ else:
1802
+ if attn_type == "encoder_decoder":
1803
+ logger.debug("Encoder decoder models does not support chunked prefill.")
1804
+ return False
1805
+ logger.debug("Generative models support chunked prefill.")
1806
+ return True
1807
+
1808
+ @property
1809
+ def is_prefix_caching_supported(self) -> bool:
1810
+ attn_type = self.attn_type
1811
+ if self.pooler_config is not None:
1812
+ # for pooling models
1813
+ if attn_type == "encoder_only":
1814
+ logger.debug(
1815
+ "Pooling models with bidirectional attn does not "
1816
+ "support prefix caching."
1817
+ )
1818
+ return False
1819
+ elif attn_type == "decoder":
1820
+ pooling_type = self.pooler_config.pooling_type.lower()
1821
+ if pooling_type in ["all", "mean", "step", "cls"]:
1822
+ logger.debug(
1823
+ "Pooling models with %s pooling does not "
1824
+ "support prefix caching.",
1825
+ pooling_type,
1826
+ )
1827
+ return False
1828
+ else:
1829
+ # pooling_type == "last"
1830
+ logger.debug(
1831
+ "Pooling models with causal attn and last pooling support "
1832
+ "prefix caching."
1833
+ )
1834
+ return True
1835
+ # vllm currently does not have pooling models using hybrid,
1836
+ # attention_free or encoder_decoder attn types.
1837
+ return False
1838
+ else:
1839
+ if attn_type == "hybrid":
1840
+ logger.debug(
1841
+ "Hybrid models does not support prefix caching since the feature "
1842
+ "is still experimental."
1843
+ )
1844
+ return False
1845
+ elif attn_type == "attention_free":
1846
+ logger.debug(
1847
+ "Attention free models does not support prefix caching since the "
1848
+ "feature is still experimental."
1849
+ )
1850
+ return False
1851
+ elif attn_type == "encoder_decoder":
1852
+ logger.debug("Encoder decoder models does not support prefix caching.")
1853
+ return False
1854
+ else: # attn_type == "decoder"
1855
+ logger.debug("Generative models support prefix caching.")
1856
+ return True
1857
+
1858
+ def is_model_moe(
1859
+ self,
1860
+ ) -> bool:
1861
+ return self.get_num_experts() > 1
1862
+
1863
+ def is_quantized(self) -> bool:
1864
+ return getattr(self.hf_config, "quantization_config", None) is not None
1865
+
1866
+
1867
+ def get_served_model_name(model: str, served_model_name: str | list[str] | None):
1868
+ """
1869
+ If the input is a non-empty list, the first model_name in
1870
+ `served_model_name` is taken.
1871
+ If the input is a non-empty string, it is used directly.
1872
+ For cases where the input is either an empty string or an
1873
+ empty list, the fallback is to use `self.model`.
1874
+ """
1875
+ if not served_model_name:
1876
+ return model
1877
+ if isinstance(served_model_name, list):
1878
+ return served_model_name[0]
1879
+ return served_model_name
1880
+
1881
+
1882
+ # Some model suffixes are based on auto classes from Transformers:
1883
+ # https://huggingface.co/docs/transformers/en/model_doc/auto
1884
+ # NOTE: Items higher on this list priority over lower ones
1885
+ _SUFFIX_TO_DEFAULTS: list[tuple[str, tuple[RunnerType, ConvertType]]] = [
1886
+ ("ForCausalLM", ("generate", "none")),
1887
+ ("ForConditionalGeneration", ("generate", "none")),
1888
+ ("ChatModel", ("generate", "none")),
1889
+ ("LMHeadModel", ("generate", "none")),
1890
+ ("ForTextEncoding", ("pooling", "embed")),
1891
+ ("EmbeddingModel", ("pooling", "embed")),
1892
+ ("ForSequenceClassification", ("pooling", "classify")),
1893
+ ("ForAudioClassification", ("pooling", "classify")),
1894
+ ("ForImageClassification", ("pooling", "classify")),
1895
+ ("ForVideoClassification", ("pooling", "classify")),
1896
+ ("ClassificationModel", ("pooling", "classify")),
1897
+ ("ForRewardModeling", ("pooling", "reward")),
1898
+ ("RewardModel", ("pooling", "reward")),
1899
+ # Let other `*Model`s take priority
1900
+ ("Model", ("pooling", "embed")),
1901
+ ]
1902
+
1903
+
1904
+ def iter_architecture_defaults():
1905
+ yield from _SUFFIX_TO_DEFAULTS
1906
+
1907
+
1908
+ def try_match_architecture_defaults(
1909
+ architecture: str,
1910
+ *,
1911
+ runner_type: RunnerType | None = None,
1912
+ convert_type: ConvertType | None = None,
1913
+ ) -> tuple[str, tuple[RunnerType, ConvertType]] | None:
1914
+ for suffix, (
1915
+ default_runner_type,
1916
+ default_convert_type,
1917
+ ) in iter_architecture_defaults():
1918
+ if (
1919
+ (runner_type is None or runner_type == default_runner_type)
1920
+ and (convert_type is None or convert_type == default_convert_type)
1921
+ and architecture.endswith(suffix)
1922
+ ):
1923
+ return suffix, (default_runner_type, default_convert_type)
1924
+
1925
+ return None
1926
+
1927
+
1928
+ _STR_DTYPE_TO_TORCH_DTYPE = {
1929
+ "half": torch.float16,
1930
+ "float16": torch.float16,
1931
+ "float": torch.float32,
1932
+ "float32": torch.float32,
1933
+ "bfloat16": torch.bfloat16,
1934
+ }
1935
+
1936
+ # model_type -> reason
1937
+ _FLOAT16_NOT_SUPPORTED_MODELS = {
1938
+ "gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
1939
+ "gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
1940
+ "gemma3_text": "Numerical instability. Please use bfloat16 or float32 instead.",
1941
+ "plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
1942
+ "glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
1943
+ }
1944
+
1945
+
1946
+ def _is_valid_dtype(model_type: str, dtype: torch.dtype):
1947
+ if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16: # noqa: E501, SIM103
1948
+ return False
1949
+
1950
+ return True
1951
+
1952
+
1953
+ def _check_valid_dtype(model_type: str, dtype: torch.dtype):
1954
+ if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16:
1955
+ reason = _FLOAT16_NOT_SUPPORTED_MODELS[model_type]
1956
+ raise ValueError(
1957
+ f"The model type {model_type!r} does not support float16. Reason: {reason}"
1958
+ )
1959
+
1960
+ return True
1961
+
1962
+
1963
+ def _find_dtype(
1964
+ model_id: str,
1965
+ config: PretrainedConfig,
1966
+ *,
1967
+ revision: str | None,
1968
+ ):
1969
+ # NOTE: getattr(config, "dtype", torch.float32) is not correct
1970
+ # because config.dtype can be None.
1971
+ config_dtype = getattr(config, "dtype", None)
1972
+
1973
+ # Fallbacks for multi-modal models if the root config
1974
+ # does not define dtype
1975
+ if config_dtype is None:
1976
+ config_dtype = getattr(config.get_text_config(), "dtype", None)
1977
+ if config_dtype is None and hasattr(config, "vision_config"):
1978
+ config_dtype = getattr(config.vision_config, "dtype", None)
1979
+ if config_dtype is None and hasattr(config, "encoder_config"):
1980
+ config_dtype = getattr(config.encoder_config, "dtype", None)
1981
+
1982
+ # Try to read the dtype of the weights if they are in safetensors format
1983
+ if config_dtype is None:
1984
+ repo_mt = try_get_safetensors_metadata(model_id, revision=revision)
1985
+
1986
+ if repo_mt and (files_mt := repo_mt.files_metadata):
1987
+ param_dtypes: set[torch.dtype] = {
1988
+ _SAFETENSORS_TO_TORCH_DTYPE[dtype_str]
1989
+ for file_mt in files_mt.values()
1990
+ for dtype_str in file_mt.parameter_count
1991
+ if dtype_str in _SAFETENSORS_TO_TORCH_DTYPE
1992
+ }
1993
+
1994
+ if param_dtypes:
1995
+ return common_broadcastable_dtype(param_dtypes)
1996
+
1997
+ if config_dtype is None:
1998
+ config_dtype = torch.float32
1999
+
2000
+ return config_dtype
2001
+
2002
+
2003
+ def _resolve_auto_dtype(
2004
+ model_type: str,
2005
+ config_dtype: torch.dtype,
2006
+ *,
2007
+ is_pooling_model: bool,
2008
+ ):
2009
+ from vllm.platforms import current_platform
2010
+
2011
+ supported_dtypes = [
2012
+ dtype
2013
+ for dtype in current_platform.supported_dtypes
2014
+ if _is_valid_dtype(model_type, dtype)
2015
+ ]
2016
+
2017
+ if is_pooling_model and torch.float16 in supported_dtypes:
2018
+ preferred_dtype = torch.float16
2019
+ else:
2020
+ preferred_dtype = supported_dtypes[0]
2021
+
2022
+ # Downcast for float32 models
2023
+ if config_dtype == torch.float32:
2024
+ config_dtype = preferred_dtype
2025
+
2026
+ if config_dtype in supported_dtypes:
2027
+ return config_dtype
2028
+
2029
+ # Ensure device compatibility
2030
+ device_name = current_platform.get_device_name()
2031
+ device_capability = current_platform.get_device_capability()
2032
+
2033
+ if device_capability is None:
2034
+ device_str = f"{device_name!r}"
2035
+ else:
2036
+ version_str = device_capability.as_version_str()
2037
+ device_str = f"{device_name!r} (with compute capability {version_str})"
2038
+
2039
+ logger.warning(
2040
+ "Your device %s doesn't support %s. Falling back to %s for compatibility.",
2041
+ device_str,
2042
+ config_dtype,
2043
+ preferred_dtype,
2044
+ )
2045
+
2046
+ return preferred_dtype
2047
+
2048
+
2049
+ def _get_and_verify_dtype(
2050
+ model_id: str,
2051
+ config: PretrainedConfig,
2052
+ dtype: str | torch.dtype,
2053
+ *,
2054
+ is_pooling_model: bool,
2055
+ revision: str | None = None,
2056
+ ) -> torch.dtype:
2057
+ config_dtype = _find_dtype(model_id, config, revision=revision)
2058
+ model_type = config.model_type
2059
+
2060
+ if isinstance(dtype, str):
2061
+ dtype = dtype.lower()
2062
+ if dtype == "auto":
2063
+ # Set default dtype from model config
2064
+ torch_dtype = _resolve_auto_dtype(
2065
+ model_type,
2066
+ config_dtype,
2067
+ is_pooling_model=is_pooling_model,
2068
+ )
2069
+ else:
2070
+ if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
2071
+ raise ValueError(f"Unknown dtype: {dtype!r}")
2072
+ torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
2073
+ elif isinstance(dtype, torch.dtype):
2074
+ torch_dtype = dtype
2075
+ else:
2076
+ raise ValueError(f"Unknown dtype: {dtype}")
2077
+
2078
+ _check_valid_dtype(model_type, torch_dtype)
2079
+
2080
+ if torch_dtype != config_dtype:
2081
+ if torch_dtype == torch.float32:
2082
+ # Upcasting to float32 is allowed.
2083
+ logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
2084
+ elif config_dtype == torch.float32:
2085
+ # Downcasting from float32 to float16 or bfloat16 is allowed.
2086
+ logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
2087
+ else:
2088
+ # Casting between float16 and bfloat16 is allowed with a warning.
2089
+ logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
2090
+
2091
+ return torch_dtype
2092
+
2093
+
2094
+ def _get_head_dtype(
2095
+ config: PretrainedConfig, dtype: torch.dtype, runner_type: str
2096
+ ) -> torch.dtype:
2097
+ head_dtype: str | torch.dtype | None = getattr(config, "head_dtype", None)
2098
+
2099
+ if head_dtype == "model":
2100
+ return dtype
2101
+ elif isinstance(head_dtype, str):
2102
+ head_dtype = head_dtype.lower()
2103
+ if head_dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
2104
+ raise ValueError(f"Unknown dtype: {head_dtype!r}")
2105
+ return _STR_DTYPE_TO_TORCH_DTYPE[head_dtype]
2106
+ elif isinstance(head_dtype, torch.dtype):
2107
+ return head_dtype
2108
+ elif head_dtype is None:
2109
+ if torch.float32 not in current_platform.supported_dtypes:
2110
+ return dtype
2111
+ if runner_type == "pooling":
2112
+ return torch.float32
2113
+ return dtype
2114
+ else:
2115
+ raise ValueError(f"Unknown dtype: {head_dtype}")
2116
+
2117
+
2118
+ def _get_and_verify_max_len(
2119
+ hf_config: PretrainedConfig,
2120
+ tokenizer_config: dict | None,
2121
+ max_model_len: int | None,
2122
+ disable_sliding_window: bool,
2123
+ sliding_window: int | None,
2124
+ spec_target_max_model_len: int | None = None,
2125
+ encoder_config: Any | None = None,
2126
+ ) -> int:
2127
+ """Get and verify the model's maximum length."""
2128
+ derived_max_model_len = float("inf")
2129
+ possible_keys = [
2130
+ # OPT
2131
+ "max_position_embeddings",
2132
+ # GPT-2
2133
+ "n_positions",
2134
+ # MPT
2135
+ "max_seq_len",
2136
+ # ChatGLM2
2137
+ "seq_length",
2138
+ # Command-R
2139
+ "model_max_length",
2140
+ # Whisper
2141
+ "max_target_positions",
2142
+ # Others
2143
+ "max_sequence_length",
2144
+ "max_seq_length",
2145
+ "seq_len",
2146
+ ]
2147
+ # Choose the smallest "max_length" from the possible keys
2148
+ max_len_key = None
2149
+ for key in possible_keys:
2150
+ max_len = getattr(hf_config, key, None)
2151
+ if max_len is not None:
2152
+ max_len_key = key if max_len < derived_max_model_len else max_len_key
2153
+ derived_max_model_len = min(derived_max_model_len, max_len)
2154
+ # For Command-R / Cohere, Cohere2 / Aya Vision models
2155
+ if tmp_max_len := getattr(hf_config, "model_max_length", None):
2156
+ max_len_key = "model_max_length"
2157
+ derived_max_model_len = tmp_max_len
2158
+
2159
+ # If sliding window is manually disabled, max_length should be less
2160
+ # than the sliding window length in the model config.
2161
+ if (
2162
+ disable_sliding_window
2163
+ and sliding_window is not None
2164
+ and sliding_window < derived_max_model_len
2165
+ ):
2166
+ max_len_key = "sliding_window"
2167
+ derived_max_model_len = sliding_window
2168
+
2169
+ # Consider model_max_length in tokenizer_config
2170
+ if tokenizer_config:
2171
+ tokenizer_model_max_length = tokenizer_config.get(
2172
+ "model_max_length", derived_max_model_len
2173
+ )
2174
+ derived_max_model_len = min(derived_max_model_len, tokenizer_model_max_length)
2175
+
2176
+ # If none of the keys were found in the config, use a default and
2177
+ # log a warning.
2178
+ if derived_max_model_len == float("inf"):
2179
+ if max_model_len is not None:
2180
+ # If max_model_len is specified, we use it.
2181
+ return max_model_len
2182
+
2183
+ if spec_target_max_model_len is not None:
2184
+ # If this is a speculative draft model, we use the max model len
2185
+ # from the target model.
2186
+ return spec_target_max_model_len
2187
+
2188
+ default_max_len = 2048
2189
+ logger.warning(
2190
+ "The model's config.json does not contain any of the following "
2191
+ "keys to determine the original maximum length of the model: "
2192
+ "%s. Assuming the model's maximum length is %d.",
2193
+ possible_keys,
2194
+ default_max_len,
2195
+ )
2196
+ derived_max_model_len = default_max_len
2197
+
2198
+ # In Transformers v5 rope_parameters could be TypedDict or dict[str, TypedDict].
2199
+ # To simplify the verification, we convert it to dict[str, TypedDict].
2200
+ rope_parameters = getattr(hf_config, "rope_parameters", None)
2201
+ if rope_parameters and not set(rope_parameters.keys()).issubset(
2202
+ ALLOWED_LAYER_TYPES
2203
+ ):
2204
+ rope_parameters = {"": rope_parameters}
2205
+
2206
+ # NOTE(woosuk): Gemma3's max_model_len (128K) is already scaled by RoPE
2207
+ # scaling, so we skip applying the scaling factor again.
2208
+ if rope_parameters is not None and "gemma3" not in hf_config.model_type:
2209
+ scaling_factor = 1.0
2210
+ for rp in rope_parameters.values():
2211
+ # No need to consider "type" key because of patch_rope_parameters when
2212
+ # loading HF config
2213
+ rope_type = rp["rope_type"]
2214
+
2215
+ if rope_type not in ("su", "longrope", "llama3"):
2216
+ # NOTE: rope_type == "default" does not define factor https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
2217
+ # NOTE: This assumes all layer types have the same scaling factor.
2218
+ scaling_factor = rp.get("factor", scaling_factor)
2219
+
2220
+ if rope_type == "yarn":
2221
+ derived_max_model_len = rp["original_max_position_embeddings"]
2222
+ # Do this outside loop since all layer types should have the same scaling
2223
+ derived_max_model_len *= scaling_factor
2224
+
2225
+ if encoder_config and "max_seq_length" in encoder_config:
2226
+ derived_max_model_len = encoder_config["max_seq_length"]
2227
+
2228
+ # If the user didn't specify `max_model_len`, then use that derived from
2229
+ # the model config as a default value.
2230
+ if max_model_len is None:
2231
+ # For LongRoPE, default to original_max_position_embeddings to avoid
2232
+ # performance degradation for shorter sequences
2233
+ if rope_parameters is not None and any(
2234
+ rp["rope_type"] == "longrope" for rp in rope_parameters.values()
2235
+ ):
2236
+ max_model_len = int(
2237
+ getattr(
2238
+ hf_config, "original_max_position_embeddings", derived_max_model_len
2239
+ )
2240
+ )
2241
+ else:
2242
+ max_model_len = int(derived_max_model_len)
2243
+ max_model_len = current_platform.check_max_model_len(max_model_len)
2244
+
2245
+ # If the user specified a max length, make sure it is smaller than the
2246
+ # derived length from the HF model config.
2247
+ elif max_model_len > derived_max_model_len:
2248
+ # Some models might have a separate key for specifying model_max_length
2249
+ # that will be bigger than derived_max_model_len. We compare user input
2250
+ # with model_max_length and allow this override when it's smaller.
2251
+ model_max_length = getattr(hf_config, "model_max_length", None)
2252
+ if model_max_length is None or max_model_len > model_max_length:
2253
+ msg = (
2254
+ f"User-specified max_model_len ({max_model_len}) is greater "
2255
+ f"than the derived max_model_len ({max_len_key}="
2256
+ f"{derived_max_model_len} or model_max_length="
2257
+ f"{model_max_length} in model's config.json)."
2258
+ )
2259
+ warning = (
2260
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN must be used with extreme "
2261
+ "caution. If the model uses relative position encoding (RoPE), "
2262
+ "positions exceeding derived_max_model_len lead to nan. If the "
2263
+ "model uses absolute position encoding, positions exceeding "
2264
+ "derived_max_model_len will cause a CUDA array out-of-bounds "
2265
+ "error."
2266
+ )
2267
+ if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
2268
+ logger.warning_once("%s %s", msg, warning)
2269
+ else:
2270
+ raise ValueError(
2271
+ f"{msg} To allow overriding this maximum, set "
2272
+ f"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1. {warning}"
2273
+ )
2274
+ return int(max_model_len)