vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2152 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ from collections.abc import Callable, Iterable
5
+ from contextlib import nullcontext
6
+ from enum import Enum
7
+ from functools import partial
8
+ from typing import Literal, cast, get_args, overload
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch.nn.parameter import UninitializedParameter
13
+
14
+ import vllm.envs as envs
15
+ from vllm._aiter_ops import rocm_aiter_ops
16
+ from vllm.config import VllmConfig, get_current_vllm_config
17
+ from vllm.config.parallel import ExpertPlacementStrategy
18
+ from vllm.distributed import (
19
+ get_dp_group,
20
+ get_ep_group,
21
+ get_pcp_group,
22
+ get_tensor_model_parallel_world_size,
23
+ tensor_model_parallel_all_reduce,
24
+ )
25
+ from vllm.distributed.eplb.eplb_state import EplbState
26
+ from vllm.forward_context import ForwardContext, get_forward_context
27
+ from vllm.logger import init_logger
28
+ from vllm.model_executor.custom_op import CustomOp
29
+ from vllm.model_executor.layers.fused_moe.config import (
30
+ FusedMoEConfig,
31
+ FusedMoEParallelConfig,
32
+ FusedMoEQuantConfig,
33
+ RoutingMethodType,
34
+ )
35
+ from vllm.model_executor.layers.fused_moe.fused_moe import zero_experts_compute_triton
36
+ from vllm.model_executor.layers.fused_moe.modular_kernel import (
37
+ FusedMoEPermuteExpertsUnpermute,
38
+ FusedMoEPrepareAndFinalize,
39
+ )
40
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
41
+ init_aiter_topK_meta_data,
42
+ )
43
+ from vllm.model_executor.layers.fused_moe.routing_simulator import RoutingSimulator
44
+ from vllm.model_executor.layers.quantization.base_config import (
45
+ QuantizationConfig,
46
+ )
47
+ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
48
+ is_flashinfer_supporting_global_sf,
49
+ )
50
+ from vllm.platforms import current_platform
51
+ from vllm.utils.math_utils import cdiv, round_up
52
+ from vllm.utils.torch_utils import (
53
+ aux_stream,
54
+ current_stream,
55
+ direct_register_custom_op,
56
+ )
57
+ from vllm.v1.worker.ubatching import dbo_current_ubatch_id
58
+
59
+ if current_platform.is_cuda_alike():
60
+ from .fused_moe import eplb_map_to_physical_and_record, fused_experts
61
+ else:
62
+ fused_experts = None # type: ignore
63
+ FusedMoEPermuteExpertsUnpermute = object # type: ignore
64
+ FusedMoEPrepareAndFinalize = object # type: ignore
65
+
66
+ def _eplb_map_to_physical_and_record(
67
+ topk_ids: torch.Tensor,
68
+ expert_load_view: torch.Tensor,
69
+ logical_to_physical_map: torch.Tensor,
70
+ logical_replica_count: torch.Tensor,
71
+ ) -> torch.Tensor:
72
+ # CPU fallback: no EPLB so just return as is
73
+ return topk_ids
74
+
75
+ eplb_map_to_physical_and_record = _eplb_map_to_physical_and_record
76
+ from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
77
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
78
+ rocm_aiter_grouped_topk,
79
+ )
80
+
81
+ if current_platform.is_tpu():
82
+ from .moe_pallas import fused_moe as fused_moe_pallas
83
+ else:
84
+ fused_moe_pallas = None # type: ignore
85
+
86
+ from vllm.model_executor.layers.fused_moe.fused_moe_method_base import (
87
+ FusedMoEMethodBase,
88
+ )
89
+ from vllm.model_executor.layers.fused_moe.fused_moe_modular_method import (
90
+ FusedMoEModularMethod,
91
+ )
92
+ from vllm.model_executor.layers.fused_moe.unquantized_fused_moe_method import (
93
+ UnquantizedFusedMoEMethod,
94
+ )
95
+
96
+ logger = init_logger(__name__)
97
+
98
+
99
+ class FusedMoeWeightScaleSupported(Enum):
100
+ TENSOR = "tensor"
101
+ CHANNEL = "channel"
102
+ GROUP = "group"
103
+ BLOCK = "block"
104
+
105
+
106
+ def determine_expert_map(
107
+ ep_size: int,
108
+ ep_rank: int,
109
+ global_num_experts: int,
110
+ expert_placement_strategy: ExpertPlacementStrategy = "linear",
111
+ num_fused_shared_experts: int = 0,
112
+ return_expert_mask: bool = False,
113
+ ) -> tuple[int, torch.Tensor | None, torch.Tensor | None]:
114
+ """
115
+ Calculates how many experts should be assigned to each rank for EP and
116
+ creates a mapping from global to local expert index. Experts are
117
+ distributed evenly across ranks. Any remaining are assigned to the
118
+ last rank.
119
+
120
+ Args:
121
+ ep_size: The size of the expert parallel group
122
+ ep_rank: The rank of the current process in the expert parallel
123
+ group
124
+ global_num_experts: The total number of experts in the model.
125
+ expert_placement_strategy: The expert placement strategy.
126
+
127
+ Returns:
128
+ tuple[int, Optional[torch.Tensor]]: A tuple containing:
129
+ - local_num_experts (int): The number of experts assigned
130
+ to the current rank.
131
+ - expert_map (Optional[torch.Tensor]): A tensor of shape
132
+ (global_num_experts,) mapping from global to local index.
133
+ Contains -1 for experts not assigned to the current rank.
134
+ Returns None if ep_size is 1.
135
+ - expert_mask (Optional[torch.Tensor]): A tensor of shape
136
+ (global_num_experts + num_fused_shared_experts + 1,)
137
+ containing 1 for experts assigned to the current rank
138
+ and 0 for sentinel.
139
+ Returns None if ep_size is 1.
140
+ Used only when AITER MOE is enabled.
141
+ """
142
+ assert ep_size > 0
143
+ if ep_size == 1:
144
+ return (global_num_experts, None, None)
145
+
146
+ # Distribute experts as evenly as possible to each rank.
147
+ base_experts = global_num_experts // ep_size
148
+ remainder = global_num_experts % ep_size
149
+ local_num_experts = base_experts + 1 if ep_rank < remainder else base_experts
150
+
151
+ # Create a tensor of size num_experts filled with -1
152
+ expert_map = torch.full((global_num_experts,), -1, dtype=torch.int32)
153
+ # Create an expert map for the local experts
154
+ if expert_placement_strategy == "linear":
155
+ start_idx = ep_rank * base_experts + min(ep_rank, remainder)
156
+ expert_map[start_idx : start_idx + local_num_experts] = torch.arange(
157
+ 0, local_num_experts, dtype=torch.int32
158
+ )
159
+ elif expert_placement_strategy == "round_robin":
160
+ local_log_experts = torch.arange(
161
+ ep_rank, global_num_experts, ep_size, dtype=torch.int32
162
+ )
163
+
164
+ expert_map[local_log_experts] = torch.arange(
165
+ 0, local_num_experts, dtype=torch.int32
166
+ )
167
+ else:
168
+ raise ValueError(
169
+ "Unsupported expert placement strategy "
170
+ f"'{expert_placement_strategy}', expected one of "
171
+ f"{get_args(ExpertPlacementStrategy)}"
172
+ )
173
+
174
+ expert_mask = None
175
+ if return_expert_mask:
176
+ expert_mask = torch.ones(
177
+ (global_num_experts + num_fused_shared_experts + 1,), dtype=torch.int32
178
+ )
179
+ expert_mask[-1] = 0
180
+ expert_mask[:global_num_experts] = expert_map > -1
181
+ expert_map = torch.cat(
182
+ (
183
+ expert_map,
184
+ torch.tensor(
185
+ [local_num_experts + i for i in range(num_fused_shared_experts)],
186
+ dtype=torch.int32,
187
+ ),
188
+ ),
189
+ dim=0,
190
+ )
191
+
192
+ return (local_num_experts, expert_map, expert_mask)
193
+
194
+
195
+ def determine_expert_placement_strategy(
196
+ expert_placement_strategy: ExpertPlacementStrategy,
197
+ moe_parallel_config: FusedMoEParallelConfig,
198
+ num_expert_group: int | None,
199
+ num_redundant_experts: int,
200
+ enable_eplb: bool,
201
+ ) -> ExpertPlacementStrategy:
202
+ if expert_placement_strategy == "round_robin":
203
+ round_robin_supported = (
204
+ (num_expert_group is not None and num_expert_group > 1)
205
+ and num_redundant_experts == 0
206
+ and not enable_eplb
207
+ )
208
+
209
+ if not round_robin_supported:
210
+ logger.warning(
211
+ "Round-robin expert placement is only supported for "
212
+ "models with multiple expert groups and no redundant "
213
+ "experts. Falling back to linear expert placement."
214
+ )
215
+ return "linear"
216
+ if (
217
+ moe_parallel_config.use_all2all_kernels
218
+ and not moe_parallel_config.use_deepep_ll_kernels
219
+ ):
220
+ logger.warning(
221
+ "Round-robin expert placement currently only supports "
222
+ "the DeepEP low-latency backend, but '%s' was configured. "
223
+ "Falling back to linear expert placement.",
224
+ moe_parallel_config.all2all_backend,
225
+ )
226
+ return "linear"
227
+
228
+ return expert_placement_strategy
229
+
230
+
231
+ def get_compressed_expert_map(expert_map: torch.Tensor) -> str:
232
+ """
233
+ Compresses the expert map by removing any -1 entries.
234
+
235
+ Args:
236
+ expert_map (torch.Tensor): A tensor of shape (global_num_experts,)
237
+ mapping from global to local index. Contains -1 for experts not
238
+ assigned to the current rank.
239
+
240
+ Returns:
241
+ str: A string mapping from local to global index.
242
+ Using str to support hashing for logging once only.
243
+ """
244
+ global_indices = torch.where(expert_map != -1)[0]
245
+ local_indices = expert_map[global_indices]
246
+ return ", ".join(
247
+ f"{local_index.item()}->{global_index.item()}"
248
+ for local_index, global_index in zip(local_indices, global_indices)
249
+ )
250
+
251
+
252
+ def maybe_roundup_hidden_size(
253
+ hidden_size: int,
254
+ act_dtype: torch.dtype,
255
+ quant_config: QuantizationConfig | None,
256
+ moe_parallel_config: FusedMoEParallelConfig,
257
+ is_lora_enabled: bool,
258
+ ) -> int:
259
+ """
260
+ Given layer hidden size and MoE configurations, round up hidden_size
261
+ if necessary.
262
+
263
+ Args:
264
+ hidden_size: Layer hidden-size
265
+ act_dtype: Data type of the layer activations.
266
+ quant_config: Fused MoE quantization configuration.
267
+ moe_parallel_config: Fused MoE parallelization strategy configuration.
268
+ is_lora_enabled: True if the engine is enabled with LoRA. This
269
+ is used in the case of mxfp4 quantization in selecting the
270
+ MxFP4Backend.
271
+
272
+ Return:
273
+ Rounded up hidden_size if rounding up is required based on the configs.
274
+ Original hidden size otherwise.
275
+ """
276
+ from vllm.model_executor.layers.fused_moe.all2all_utils import (
277
+ maybe_roundup_layer_hidden_size,
278
+ )
279
+
280
+ hidden_size = maybe_roundup_layer_hidden_size(
281
+ hidden_size, act_dtype, moe_parallel_config
282
+ )
283
+
284
+ # we are padding globally so EP buffer allocation works
285
+ if quant_config and quant_config.get_name() == "mxfp4":
286
+ from vllm.model_executor.layers.quantization.mxfp4 import (
287
+ Mxfp4Backend,
288
+ get_mxfp4_backend,
289
+ )
290
+
291
+ current_mxfp4_backend = get_mxfp4_backend(is_lora_enabled)
292
+ if (
293
+ current_mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
294
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
295
+ ):
296
+ hidden_size = round_up(hidden_size, 128)
297
+ elif (
298
+ current_platform.is_rocm()
299
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
300
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
301
+ ):
302
+ hidden_size = round_up(hidden_size, 256)
303
+
304
+ return hidden_size
305
+
306
+
307
+ @CustomOp.register("fused_moe")
308
+ class FusedMoE(CustomOp):
309
+ """FusedMoE layer for MoE models.
310
+
311
+ This layer contains both MergedColumnParallel weights (gate_up_proj /
312
+ w13) and RowParallelLinear weights (down_proj/ w2).
313
+
314
+ Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
315
+ copy that naming convention here and handle any remapping in the
316
+ load_weights function in each model implementation.
317
+
318
+ Args:
319
+ num_experts: Number of experts in the model
320
+ top_k: Number of experts selected for each token
321
+ hidden_size: Input hidden state size of the transformer
322
+ intermediate_size: Intermediate size of the experts
323
+ params_dtype: Data type for the parameters.
324
+ reduce_results: Whether to all_reduce on the output of the layer
325
+ renormalize: Whether to renormalize the logits in the fused_moe kernel
326
+ quant_config: Quantization configure.
327
+ enable_eplb: Whether to enable expert parallelism load balancer.
328
+ """
329
+
330
+ def __init__(
331
+ self,
332
+ num_experts: int, # Global number of experts
333
+ top_k: int,
334
+ hidden_size: int,
335
+ intermediate_size: int,
336
+ params_dtype: torch.dtype | None = None,
337
+ reduce_results: bool = False,
338
+ renormalize: bool = True,
339
+ use_grouped_topk: bool = False,
340
+ num_expert_group: int | None = None,
341
+ topk_group: int | None = None,
342
+ quant_config: QuantizationConfig | None = None,
343
+ tp_size: int | None = None,
344
+ ep_size: int | None = None,
345
+ dp_size: int | None = None,
346
+ pcp_size: int | None = None,
347
+ prefix: str = "",
348
+ custom_routing_function: Callable | None = None,
349
+ scoring_func: str = "softmax",
350
+ routed_scaling_factor: float = 1.0,
351
+ e_score_correction_bias: torch.Tensor | None = None,
352
+ apply_router_weight_on_input: bool = False,
353
+ activation: str = "silu",
354
+ is_act_and_mul: bool = True,
355
+ enable_eplb: bool = False,
356
+ num_redundant_experts: int = 0,
357
+ has_bias: bool = False,
358
+ is_sequence_parallel=False,
359
+ zero_expert_num: int | None = 0,
360
+ zero_expert_type: str | None = None,
361
+ expert_mapping: list[tuple[str, str, int, str]] | None = None,
362
+ n_shared_experts: int | None = None,
363
+ routing_method_type: int | None = None,
364
+ ):
365
+ super().__init__()
366
+
367
+ # Allow disabling of the separate shared experts stream for
368
+ # debug purposes.
369
+ # TODO: Remove this after more extensive testings with TP/DP
370
+ # and other execution modes
371
+ if envs.VLLM_DISABLE_SHARED_EXPERTS_STREAM:
372
+ logger.info_once("Disabling MoE shared_experts cuda stream")
373
+ self.shared_experts_stream = None
374
+ else:
375
+ # TODO(rob): enable shared expert overlap with non-cuda-alike.
376
+ # aux_stream() returns None on non-cuda-alike platforms.
377
+ self.shared_experts_stream = aux_stream()
378
+ if self.shared_experts_stream is not None:
379
+ logger.info_once("Enabled separate cuda stream for MoE shared_experts")
380
+
381
+ if params_dtype is None:
382
+ params_dtype = torch.get_default_dtype()
383
+ self.params_dtype = params_dtype
384
+
385
+ vllm_config = get_current_vllm_config()
386
+ self.vllm_config = vllm_config
387
+
388
+ # FIXME (varun): We should have a better way of inferring the activation
389
+ # datatype. This works for now as the tensor datatype entering the MoE
390
+ # operation is typically unquantized (i.e. float16/bfloat16).
391
+ if vllm_config.model_config is not None:
392
+ moe_in_dtype = vllm_config.model_config.dtype
393
+ else:
394
+ # TODO (bnell): This is a hack to get test_mixtral_moe to work
395
+ # since model_config is not set in the pytest test.
396
+ moe_in_dtype = params_dtype
397
+
398
+ tp_size_ = (
399
+ tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
400
+ )
401
+ dp_size_ = dp_size if dp_size is not None else get_dp_group().world_size
402
+ pcp_size_ = pcp_size if pcp_size is not None else get_pcp_group().world_size
403
+
404
+ self.is_sequence_parallel = is_sequence_parallel
405
+ self.sp_size = tp_size_ if is_sequence_parallel else 1
406
+
407
+ self.moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
408
+ tp_size_=tp_size_,
409
+ pcp_size_=pcp_size_,
410
+ dp_size_=dp_size_,
411
+ vllm_parallel_config=vllm_config.parallel_config,
412
+ )
413
+
414
+ self.global_num_experts = num_experts + num_redundant_experts
415
+ self.logical_num_experts = num_experts
416
+ self.zero_expert_num = zero_expert_num
417
+ self.zero_expert_type = zero_expert_type
418
+
419
+ # Expert mapping used in self.load_weights
420
+ self.expert_mapping = expert_mapping
421
+
422
+ # Round up hidden size if needed.
423
+ hidden_size = maybe_roundup_hidden_size(
424
+ hidden_size,
425
+ moe_in_dtype,
426
+ quant_config,
427
+ self.moe_parallel_config,
428
+ is_lora_enabled=self.vllm_config.lora_config is not None,
429
+ )
430
+
431
+ # For smuggling this layer into the fused moe custom op
432
+ compilation_config = vllm_config.compilation_config
433
+ if prefix in compilation_config.static_forward_context:
434
+ raise ValueError("Duplicate layer name: {}".format(prefix))
435
+ compilation_config.static_forward_context[prefix] = self
436
+ self.layer_name = prefix
437
+
438
+ self.enable_eplb = enable_eplb
439
+ self.expert_load_view: torch.Tensor | None = None
440
+ self.logical_to_physical_map: torch.Tensor | None = None
441
+ self.logical_replica_count: torch.Tensor | None = None
442
+ self.expert_placement_strategy: ExpertPlacementStrategy = (
443
+ vllm_config.parallel_config.expert_placement_strategy
444
+ )
445
+
446
+ # ROCm aiter shared experts fusion
447
+ self.rocm_aiter_fmoe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
448
+ self.aiter_fmoe_shared_expert_enabled = (
449
+ rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
450
+ )
451
+
452
+ self.num_fused_shared_experts = (
453
+ n_shared_experts
454
+ if n_shared_experts is not None and self.aiter_fmoe_shared_expert_enabled
455
+ else 0
456
+ )
457
+ if (
458
+ not self.aiter_fmoe_shared_expert_enabled
459
+ and self.num_fused_shared_experts != 0
460
+ ):
461
+ raise ValueError(
462
+ "n_shared_experts is only supported on ROCm aiter when "
463
+ "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS is enabled"
464
+ )
465
+
466
+ # Determine expert maps
467
+ if self.use_ep:
468
+ if self.enable_eplb:
469
+ assert self.global_num_experts % self.ep_size == 0, (
470
+ "EPLB currently only supports even distribution of "
471
+ "experts across ranks."
472
+ )
473
+ else:
474
+ assert num_redundant_experts == 0, (
475
+ "Redundant experts are only supported with EPLB."
476
+ )
477
+
478
+ self.expert_placement_strategy = determine_expert_placement_strategy(
479
+ expert_placement_strategy=self.expert_placement_strategy,
480
+ moe_parallel_config=self.moe_parallel_config,
481
+ num_expert_group=num_expert_group,
482
+ num_redundant_experts=num_redundant_experts,
483
+ enable_eplb=self.enable_eplb,
484
+ )
485
+
486
+ self.expert_map: torch.Tensor | None
487
+ local_num_experts, expert_map, expert_mask = determine_expert_map(
488
+ ep_size=self.ep_size,
489
+ ep_rank=self.ep_rank,
490
+ global_num_experts=self.global_num_experts,
491
+ expert_placement_strategy=self.expert_placement_strategy,
492
+ num_fused_shared_experts=self.num_fused_shared_experts,
493
+ return_expert_mask=self.rocm_aiter_fmoe_enabled,
494
+ )
495
+ self.local_num_experts = local_num_experts
496
+ self.register_buffer("expert_map", expert_map)
497
+ self.register_buffer("expert_mask", expert_mask)
498
+ self._maybe_init_expert_routing_tables()
499
+ logger.info_once(
500
+ "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
501
+ "placement strategy: %s. Local/global"
502
+ " number of experts: %s/%s. Experts local to global index map:"
503
+ " %s.",
504
+ self.ep_rank,
505
+ self.ep_size,
506
+ self.expert_placement_strategy,
507
+ self.local_num_experts,
508
+ self.global_num_experts,
509
+ get_compressed_expert_map(self.expert_map),
510
+ )
511
+ else:
512
+ self.local_num_experts, self.expert_map, self.expert_mask = (
513
+ self.global_num_experts,
514
+ None,
515
+ None,
516
+ )
517
+
518
+ self.top_k = top_k
519
+
520
+ self._init_aiter_shared_experts_topK_buffer(
521
+ vllm_config=vllm_config, dp_size=dp_size_
522
+ )
523
+
524
+ assert intermediate_size % self.tp_size == 0
525
+ self.hidden_size = hidden_size
526
+ self.intermediate_size_per_partition = intermediate_size // self.tp_size
527
+ self.reduce_results = reduce_results
528
+ self.renormalize = renormalize
529
+ self.use_grouped_topk = use_grouped_topk
530
+ if self.use_grouped_topk:
531
+ assert num_expert_group is not None and topk_group is not None
532
+ self.num_expert_group = num_expert_group
533
+ self.topk_group = topk_group
534
+ self.custom_routing_function = custom_routing_function
535
+ self.scoring_func = scoring_func
536
+ self.routed_scaling_factor = routed_scaling_factor
537
+ self.e_score_correction_bias = e_score_correction_bias
538
+ self.apply_router_weight_on_input = apply_router_weight_on_input
539
+ self.activation = activation
540
+
541
+ if self.scoring_func != "softmax" and not self.use_grouped_topk:
542
+ raise ValueError(
543
+ "Only softmax scoring function is supported for non-grouped topk."
544
+ )
545
+
546
+ # ToDo: Better logic to determine the routing method type
547
+ if routing_method_type is not None:
548
+ self.routing_method_type = routing_method_type
549
+ else:
550
+ if scoring_func == "sigmoid":
551
+ if self.use_grouped_topk:
552
+ self.routing_method_type = RoutingMethodType.DeepSeekV3
553
+ elif self.top_k == 1:
554
+ self.routing_method_type = RoutingMethodType.Llama4
555
+ elif self.scoring_func == "softmax":
556
+ self.routing_method_type = (
557
+ RoutingMethodType.Renormalize
558
+ if not self.renormalize
559
+ else RoutingMethodType.RenormalizeNaive
560
+ )
561
+ else:
562
+ self.routing_method_type = RoutingMethodType.TopK
563
+
564
+ self.moe_config: FusedMoEConfig = FusedMoEConfig(
565
+ num_experts=self.global_num_experts,
566
+ experts_per_token=top_k,
567
+ hidden_dim=hidden_size,
568
+ num_local_experts=self.local_num_experts,
569
+ moe_parallel_config=self.moe_parallel_config,
570
+ in_dtype=moe_in_dtype,
571
+ max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
572
+ has_bias=has_bias,
573
+ is_act_and_mul=is_act_and_mul,
574
+ is_lora_enabled=vllm_config.lora_config is not None,
575
+ )
576
+ self.moe_config_use_flashinfer_cutlass_kernels = (
577
+ self.moe_config.use_flashinfer_cutlass_kernels
578
+ )
579
+
580
+ self.quant_config = quant_config
581
+
582
+ def _get_quant_method() -> FusedMoEMethodBase:
583
+ """
584
+ Helper method to ensure self.quant_method is never None and
585
+ of the proper type.
586
+ """
587
+ quant_method = None
588
+ if self.quant_config is not None:
589
+ quant_method = self.quant_config.get_quant_method(self, prefix)
590
+ if quant_method is None:
591
+ quant_method = UnquantizedFusedMoEMethod(self.moe_config)
592
+ assert isinstance(quant_method, FusedMoEMethodBase)
593
+ return quant_method
594
+
595
+ # Note: get_quant_method will look at the layer's local_num_experts
596
+ # for heuristic purposes, so it must be initialized first.
597
+ self.quant_method: FusedMoEMethodBase = _get_quant_method()
598
+
599
+ if not self.moe_config.is_act_and_mul:
600
+ # Avoid circular import
601
+ from vllm.model_executor.layers.quantization.modelopt import (
602
+ ModelOptFp8MoEMethod,
603
+ ModelOptNvFp4FusedMoE,
604
+ )
605
+
606
+ if not isinstance(
607
+ self.quant_method,
608
+ (
609
+ UnquantizedFusedMoEMethod,
610
+ ModelOptFp8MoEMethod,
611
+ ModelOptNvFp4FusedMoE,
612
+ ),
613
+ ):
614
+ raise NotImplementedError(
615
+ "is_act_and_mul=False is supported only for unquantized "
616
+ ", ModelOpt FP8, and ModelOpt NvFp4 checkpoints"
617
+ )
618
+ if not current_platform.is_cuda():
619
+ raise NotImplementedError(
620
+ "is_act_and_mul=False is supported only for CUDA for now"
621
+ )
622
+
623
+ if self.enable_eplb and not self.quant_method.supports_eplb:
624
+ # TODO: Add support for additional quantization methods.
625
+ # The implementation for other quantization methods does not
626
+ # contain essential differences, but the current quant API
627
+ # design causes duplicated work when extending to new
628
+ # quantization methods, so I'm leaving it for now.
629
+ # If you plan to add support for more quantization methods,
630
+ # please refer to the implementation in `Fp8MoEMethod`.
631
+ raise NotImplementedError(
632
+ f"EPLB is not supported {self.quant_method.__class__.__name__}. "
633
+ "EPLB is only supported for FP8 quantization for now."
634
+ )
635
+
636
+ moe_quant_params = {
637
+ "num_experts": self.local_num_experts,
638
+ "hidden_size": hidden_size,
639
+ "intermediate_size_per_partition": self.intermediate_size_per_partition,
640
+ "params_dtype": params_dtype,
641
+ "weight_loader": self.weight_loader,
642
+ "global_num_experts": self.global_num_experts,
643
+ }
644
+ # need full intermediate size pre-sharding for WNA16 act order
645
+ if self.quant_method.__class__.__name__ in (
646
+ "GPTQMarlinMoEMethod",
647
+ "CompressedTensorsWNA16MarlinMoEMethod",
648
+ "CompressedTensorsWNA16MoEMethod",
649
+ ):
650
+ moe_quant_params["intermediate_size_full"] = intermediate_size
651
+
652
+ self.quant_method.create_weights(layer=self, **moe_quant_params)
653
+
654
+ # Chunked all2all staging tensor
655
+ self.batched_hidden_states: torch.Tensor | None = None
656
+ self.batched_router_logits: torch.Tensor | None = None
657
+
658
+ # Note: maybe_init_modular_kernel should only be called by
659
+ # prepare_communication_buffer_for_model.
660
+ # This is called after all weight loading and post-processing, so it
661
+ # should be safe to swap out the quant_method.
662
+ def maybe_init_modular_kernel(self) -> None:
663
+ self.ensure_moe_quant_config_init()
664
+ # routing_tables only needed for round-robin expert placement with
665
+ # DeepEP all2all backend.
666
+ routing_tables = self._maybe_init_expert_routing_tables()
667
+ prepare_finalize = self.quant_method.maybe_make_prepare_finalize(
668
+ routing_tables=routing_tables
669
+ )
670
+ if prepare_finalize is not None:
671
+ logger.debug(
672
+ "%s for %s(%s)", prepare_finalize.__class__.__name__, self, id(self)
673
+ )
674
+ self.quant_method = FusedMoEModularMethod.make(
675
+ self, self.quant_method, prepare_finalize, self.shared_experts
676
+ )
677
+
678
+ @property
679
+ def shared_experts(self) -> torch.nn.Module | None:
680
+ return None
681
+
682
+ @property
683
+ def gate(self) -> torch.nn.Module | None:
684
+ return None
685
+
686
+ @property
687
+ def tp_size(self):
688
+ return self.moe_parallel_config.tp_size
689
+
690
+ @property
691
+ def dp_size(self):
692
+ return self.moe_parallel_config.dp_size
693
+
694
+ @property
695
+ def pcp_size(self):
696
+ return self.moe_parallel_config.pcp_size
697
+
698
+ @property
699
+ def ep_size(self):
700
+ return self.moe_parallel_config.ep_size
701
+
702
+ @property
703
+ def tp_rank(self):
704
+ return self.moe_parallel_config.tp_rank
705
+
706
+ @property
707
+ def dp_rank(self):
708
+ return self.moe_parallel_config.dp_rank
709
+
710
+ @property
711
+ def pcp_rank(self):
712
+ return self.moe_parallel_config.pcp_rank
713
+
714
+ @property
715
+ def ep_rank(self):
716
+ return self.moe_parallel_config.ep_rank
717
+
718
+ @property
719
+ def use_ep(self):
720
+ return self.moe_parallel_config.use_ep
721
+
722
+ @property
723
+ def use_pplx_kernels(self):
724
+ return self.moe_parallel_config.use_pplx_kernels
725
+
726
+ @property
727
+ def use_deepep_ht_kernels(self):
728
+ return self.moe_parallel_config.use_deepep_ht_kernels
729
+
730
+ @property
731
+ def use_deepep_ll_kernels(self):
732
+ return self.moe_parallel_config.use_deepep_ll_kernels
733
+
734
+ @property
735
+ def use_flashinfer_cutlass_kernels(self):
736
+ return (
737
+ self.moe_quant_config is not None
738
+ and self.moe_quant_config.quant_dtype == "nvfp4"
739
+ and self.moe_config_use_flashinfer_cutlass_kernels
740
+ )
741
+
742
+ @property
743
+ def use_marlin_kernels(self):
744
+ return getattr(self.quant_method, "use_marlin", False)
745
+
746
+ @property
747
+ def use_dp_chunking(self) -> bool:
748
+ return (
749
+ self.moe_parallel_config.use_pplx_kernels
750
+ or self.moe_parallel_config.use_deepep_ll_kernels
751
+ or (self.dp_size > 1 and self.use_flashinfer_cutlass_kernels)
752
+ )
753
+
754
+ @property
755
+ def is_internal_router(self) -> bool:
756
+ # By default, router/gate is called before FusedMoE forward pass
757
+ return False
758
+
759
+ def _maybe_init_expert_routing_tables(
760
+ self,
761
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None:
762
+ # Currently routing_tables only needed for round-robin expert placement
763
+ # with DeepEP-ll all2all backend.
764
+ if (
765
+ self.expert_placement_strategy != "round_robin"
766
+ or not self.use_deepep_ll_kernels
767
+ ):
768
+ return None
769
+
770
+ if hasattr(self, "expert_global_to_physical"):
771
+ return cast(
772
+ tuple[torch.Tensor, torch.Tensor, torch.Tensor],
773
+ (
774
+ self.expert_global_to_physical,
775
+ self.expert_physical_to_global,
776
+ self.expert_local_to_global,
777
+ ),
778
+ )
779
+
780
+ if self.expert_map is None:
781
+ return None
782
+
783
+ routing_tables = self.ensure_round_robin_expert_routing_tables(
784
+ global_num_experts=self.global_num_experts,
785
+ ep_size=self.ep_size,
786
+ ep_rank=self.ep_rank,
787
+ local_num_experts=self.local_num_experts,
788
+ device=self.expert_map.device,
789
+ )
790
+
791
+ global_to_physical, physical_to_global, local_global = routing_tables
792
+ self.register_buffer("expert_global_to_physical", global_to_physical)
793
+ self.register_buffer("expert_physical_to_global", physical_to_global)
794
+ self.register_buffer("expert_local_to_global", local_global)
795
+
796
+ return routing_tables
797
+
798
+ @staticmethod
799
+ def ensure_round_robin_expert_routing_tables(
800
+ global_num_experts: int,
801
+ ep_size: int,
802
+ ep_rank: int,
803
+ local_num_experts: int,
804
+ device: torch.device | None = None,
805
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
806
+ device_kwargs = {"device": device} if device is not None else {}
807
+ global_indices = torch.arange(
808
+ global_num_experts, dtype=torch.long, **device_kwargs
809
+ )
810
+ owner = torch.remainder(global_indices, ep_size)
811
+ local_index = torch.div(global_indices, ep_size, rounding_mode="floor")
812
+ base = global_num_experts // ep_size
813
+ remainder = global_num_experts % ep_size
814
+ physical_offset = owner * base
815
+ if remainder > 0:
816
+ remainder_tensor = torch.tensor(
817
+ remainder, dtype=torch.long, **device_kwargs
818
+ )
819
+ physical_offset = physical_offset + torch.minimum(owner, remainder_tensor)
820
+
821
+ global_to_physical = physical_offset + local_index
822
+ physical_to_global = torch.empty_like(global_to_physical)
823
+ physical_to_global[global_to_physical] = global_indices
824
+
825
+ local_global = torch.arange(
826
+ ep_rank,
827
+ global_num_experts,
828
+ ep_size,
829
+ dtype=torch.long,
830
+ **device_kwargs,
831
+ )
832
+ if local_global.numel() != local_num_experts:
833
+ local_global = local_global[:local_num_experts]
834
+
835
+ return (global_to_physical, physical_to_global, local_global)
836
+
837
+ def update_expert_map(self):
838
+ # ep_size and ep_rank should already be updated
839
+ assert self.expert_map is not None
840
+ with self.expert_map.device:
841
+ local_num_experts, expert_map, expert_mask = determine_expert_map(
842
+ ep_size=self.ep_size,
843
+ ep_rank=self.ep_rank,
844
+ global_num_experts=self.global_num_experts,
845
+ expert_placement_strategy=self.expert_placement_strategy,
846
+ num_fused_shared_experts=self.num_fused_shared_experts,
847
+ return_expert_mask=self.rocm_aiter_fmoe_enabled,
848
+ )
849
+ self.local_num_experts = local_num_experts
850
+ self.register_buffer("expert_map", expert_map)
851
+ self.register_buffer("expert_mask", expert_mask)
852
+ self._maybe_init_expert_routing_tables()
853
+ if self.aiter_fmoe_shared_expert_enabled:
854
+ self._init_aiter_shared_experts_topK_buffer(
855
+ vllm_config=get_current_vllm_config(),
856
+ dp_size=get_dp_group().world_size,
857
+ )
858
+
859
+ def _maybe_setup_shared_experts_stream(
860
+ self,
861
+ hidden_states: torch.Tensor,
862
+ has_separate_shared_experts: bool,
863
+ use_chunked_impl: bool,
864
+ ) -> tuple[bool, torch.Tensor | None]:
865
+ use_shared_experts_stream = (
866
+ has_separate_shared_experts
867
+ and not use_chunked_impl
868
+ and self.shared_experts_stream is not None
869
+ and (
870
+ hidden_states.shape[0]
871
+ <= envs.VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD
872
+ )
873
+ )
874
+
875
+ hidden_states_clone: torch.Tensor | None = None
876
+ if use_shared_experts_stream:
877
+ assert self.shared_experts_stream is not None
878
+
879
+ # Clone BEFORE switching streams to avoid race condition
880
+ # where routed_expert kernel may mutate hidden_states.
881
+ hidden_states_clone = hidden_states.clone()
882
+
883
+ # Record that the clone will be used by shared_experts_stream
884
+ # to avoid gc issue from deallocation of hidden_states_clone
885
+ # For more details: https://docs.pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html # noqa: E501
886
+ # NOTE: We dont need shared_output.record_stream(current_stream())
887
+ # because we synch the streams before using shared_output.
888
+ hidden_states_clone.record_stream(self.shared_experts_stream)
889
+
890
+ # Mark sync start point for the separate shared experts
891
+ # stream here since we want to run in parallel with the
892
+ # router/gate (next op below)
893
+ assert self.shared_experts_stream is not None
894
+ self.shared_experts_stream.wait_stream(current_stream())
895
+
896
+ return use_shared_experts_stream, hidden_states_clone
897
+
898
+ def _load_per_tensor_weight_scale(
899
+ self,
900
+ shard_id: str,
901
+ param: torch.nn.Parameter,
902
+ loaded_weight: torch.Tensor,
903
+ expert_id: int,
904
+ ):
905
+ param_data = param.data
906
+ # for per tensor weight quantization
907
+ if shard_id in ("w1", "w3"):
908
+ # We have to keep the weight scales of w1 and w3 because
909
+ # we need to re-quantize w1/w3 weights after weight loading.
910
+ idx = 0 if shard_id == "w1" else 1
911
+ param_data[expert_id][idx] = loaded_weight
912
+ # If we are in the row parallel case (down_proj)
913
+ elif shard_id == "w2":
914
+ param_data[expert_id] = loaded_weight
915
+
916
+ def _load_combined_w13_weight_scale(
917
+ self,
918
+ shard_dim: int,
919
+ loaded_weight: torch.Tensor,
920
+ param: torch.Tensor,
921
+ tp_rank: int,
922
+ ):
923
+ """
924
+ Load w13 weight scales assuming that w1 weight scales and w3 weight
925
+ scales are stored in the same loaded_weight tensor.
926
+ """
927
+ shard_size = param.shape[shard_dim]
928
+ loaded_weight = loaded_weight.narrow(
929
+ shard_dim, shard_size * tp_rank, shard_size
930
+ )
931
+ param.copy_(loaded_weight)
932
+
933
+ def _load_model_weight_or_group_weight_scale(
934
+ self,
935
+ shard_dim: int,
936
+ expert_data: torch.Tensor,
937
+ shard_id: str,
938
+ loaded_weight: torch.Tensor,
939
+ tp_rank: int,
940
+ load_full_w2: bool = False,
941
+ ):
942
+ """
943
+ Load grouped weight scales for group quantization or model weights
944
+ :param shard_dim: dimension to shard
945
+ :param expert_data: parameter for a particular expert
946
+ :param shard_id: either w1, w2, or w3
947
+ :param loaded_weight: checkpoint weight to load into the param
948
+ :param tp_rank: tensor parallel rank
949
+ :param load_full_w2: whether or not the w2 loaded should be sharded.
950
+ """
951
+ if shard_id == "w2":
952
+ # In the case where we have actorder/g_idx, we do not partition the
953
+ # w2 scales, as indicated by `load_full` argument, for all tp cases
954
+ self._load_w2(
955
+ shard_dim=shard_dim,
956
+ loaded_weight=loaded_weight,
957
+ expert_data=expert_data,
958
+ tp_rank=tp_rank,
959
+ load_full=load_full_w2,
960
+ )
961
+ elif shard_id in ("w1", "w3"):
962
+ self._load_w13(
963
+ shard_id=shard_id,
964
+ shard_dim=shard_dim,
965
+ loaded_weight=loaded_weight,
966
+ expert_data=expert_data,
967
+ tp_rank=tp_rank,
968
+ )
969
+
970
+ def _load_per_channel_weight_scale(
971
+ self,
972
+ expert_data: torch.Tensor,
973
+ shard_dim: int,
974
+ shard_id: str,
975
+ loaded_weight: torch.Tensor,
976
+ tp_rank: int,
977
+ ):
978
+ # for per channel weight quantization
979
+ if shard_id == "w2":
980
+ expert_data.copy_(loaded_weight)
981
+ elif shard_id in ("w1", "w3"):
982
+ self._load_w13(
983
+ shard_id=shard_id,
984
+ shard_dim=shard_dim,
985
+ loaded_weight=loaded_weight,
986
+ expert_data=expert_data,
987
+ tp_rank=tp_rank,
988
+ )
989
+
990
+ def _load_w13(
991
+ self,
992
+ expert_data: torch.Tensor,
993
+ shard_dim: int,
994
+ shard_id: str,
995
+ loaded_weight: torch.Tensor,
996
+ tp_rank: int,
997
+ load_full: bool = False,
998
+ ):
999
+ # Index the loaded weight for tp sharding.
1000
+ # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
1001
+ if self.moe_config.is_act_and_mul:
1002
+ shard_size = expert_data.shape[shard_dim] // 2
1003
+ else:
1004
+ shard_size = expert_data.shape[shard_dim]
1005
+ if not load_full:
1006
+ loaded_weight = loaded_weight.narrow(
1007
+ shard_dim, shard_size * tp_rank, shard_size
1008
+ )
1009
+ # Narrow parameter and load.
1010
+ # w1, gate_proj: Load into first logical weight of w13.
1011
+ if shard_id == "w1":
1012
+ expert_data = expert_data.narrow(shard_dim, 0, shard_size)
1013
+ # w3, up_proj: Load into second logical weight of w13.
1014
+ else:
1015
+ assert shard_id == "w3"
1016
+ expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
1017
+ expert_data.copy_(loaded_weight)
1018
+
1019
+ def _load_w2(
1020
+ self,
1021
+ expert_data: torch.Tensor,
1022
+ shard_dim: int,
1023
+ loaded_weight: torch.Tensor,
1024
+ tp_rank: int,
1025
+ load_full: bool = False,
1026
+ ):
1027
+ # Index the loaded weight for tp sharding.
1028
+ # down_proj: "RowParallel" so tp sharding on input_dim
1029
+ # Narrow parameter and load.
1030
+ shard_size = expert_data.shape[shard_dim]
1031
+ if not load_full:
1032
+ loaded_weight = loaded_weight.narrow(
1033
+ shard_dim, shard_size * tp_rank, shard_size
1034
+ )
1035
+ # w2, down_proj: Load into only logical weight of w2.
1036
+ expert_data.copy_(loaded_weight)
1037
+
1038
+ def _load_single_value(
1039
+ self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, expert_id: int
1040
+ ):
1041
+ param_data = param.data
1042
+
1043
+ # Input scales can be loaded directly and should be equal.
1044
+ param_data[expert_id] = loaded_weight
1045
+
1046
+ def _load_g_idx(
1047
+ self,
1048
+ shard_id: str,
1049
+ expert_data: torch.Tensor,
1050
+ shard_dim: int,
1051
+ loaded_weight: torch.Tensor,
1052
+ tp_rank: int,
1053
+ ):
1054
+ if shard_id == "w2":
1055
+ self._load_w2(
1056
+ shard_dim=shard_dim,
1057
+ loaded_weight=loaded_weight,
1058
+ expert_data=expert_data,
1059
+ tp_rank=tp_rank,
1060
+ )
1061
+ else:
1062
+ assert shard_id in ("w1", "w3")
1063
+ expert_data.copy_(loaded_weight)
1064
+
1065
+ def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
1066
+ if self.expert_map is None:
1067
+ return expert_id
1068
+ return self.expert_map[expert_id].item()
1069
+
1070
+ def _init_aiter_shared_experts_topK_buffer(
1071
+ self, vllm_config: VllmConfig, dp_size: int
1072
+ ):
1073
+ if self.num_fused_shared_experts > 0:
1074
+ init_aiter_topK_meta_data(
1075
+ n_routed_experts=self.global_num_experts,
1076
+ n_shared_experts=self.num_fused_shared_experts,
1077
+ top_k=self.top_k,
1078
+ tp_rank=self.ep_rank if self.use_ep else self.tp_rank,
1079
+ tp_size=self.ep_size if self.use_ep else self.tp_size,
1080
+ shared_experts_score=1.0,
1081
+ max_num_tokens=vllm_config.scheduler_config.max_num_batched_tokens
1082
+ * dp_size,
1083
+ is_EP=self.use_ep,
1084
+ )
1085
+ self.local_num_experts += self.num_fused_shared_experts
1086
+
1087
+ @overload
1088
+ def weight_loader(
1089
+ self,
1090
+ param: torch.nn.Parameter,
1091
+ loaded_weight: torch.Tensor,
1092
+ weight_name: str,
1093
+ shard_id: str,
1094
+ expert_id: int,
1095
+ return_success: Literal[False],
1096
+ ) -> None: ...
1097
+
1098
+ @overload
1099
+ def weight_loader(
1100
+ self,
1101
+ param: torch.nn.Parameter,
1102
+ loaded_weight: torch.Tensor,
1103
+ weight_name: str,
1104
+ shard_id: str,
1105
+ expert_id: int,
1106
+ return_success: Literal[True],
1107
+ ) -> bool: ...
1108
+
1109
+ def weight_loader(
1110
+ self,
1111
+ param: torch.nn.Parameter,
1112
+ loaded_weight: torch.Tensor,
1113
+ weight_name: str,
1114
+ shard_id: str,
1115
+ expert_id: int,
1116
+ return_success: bool = False,
1117
+ ) -> bool | None:
1118
+ if self.quant_config and self.quant_config.get_name() == "mxfp4":
1119
+ # (FIXME) for gpt-oss all experts are combined
1120
+ if "bias" in weight_name:
1121
+ dim1 = loaded_weight.shape[1]
1122
+ param.data[:, :dim1].copy_(loaded_weight)
1123
+ else:
1124
+ dim1 = loaded_weight.shape[1]
1125
+ dim2 = loaded_weight.shape[2]
1126
+ param.data[:, :dim1, :dim2].copy_(loaded_weight)
1127
+ return True if return_success else None
1128
+
1129
+ quant_method_name = self.quant_method.__class__.__name__
1130
+ global_expert_id = expert_id
1131
+ expert_id = self._map_global_expert_id_to_local_expert_id(global_expert_id)
1132
+
1133
+ allow_flashinfer = getattr(self.quant_method, "allow_flashinfer", False)
1134
+ moe_backend = getattr(self.quant_method, "flashinfer_moe_backend", None)
1135
+
1136
+ use_global_sf = (
1137
+ allow_flashinfer
1138
+ and is_flashinfer_supporting_global_sf(moe_backend)
1139
+ and "input_scale" in weight_name
1140
+ and quant_method_name == "ModelOptNvFp4FusedMoE"
1141
+ )
1142
+
1143
+ if expert_id == -1 and not use_global_sf:
1144
+ # Failed to load this param since it's not local to this rank
1145
+ return False if return_success else None
1146
+ # Hereafter, `expert_id` is local physical id
1147
+
1148
+ # compressed-tensors checkpoints with packed weights are stored flipped
1149
+ # TODO (mgoin): check self.quant_method.quant_config.quant_format
1150
+ # against known CompressionFormat enum values that have this quality
1151
+ if self.quant_method.__class__.__name__ in (
1152
+ "CompressedTensorsWNA16MarlinMoEMethod",
1153
+ "CompressedTensorsWNA16MoEMethod",
1154
+ ):
1155
+ loaded_weight = loaded_weight.t().contiguous()
1156
+
1157
+ if shard_id not in ("w1", "w2", "w3"):
1158
+ raise ValueError(f"shard_id must be ['w1','w2','w3'] but got {shard_id}.")
1159
+
1160
+ # Fetch the dim to shard the parameter/loaded weight
1161
+ # based on the shard id. This will be whatever
1162
+ # dimension intermediate_size_per_partition is used.
1163
+ SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
1164
+
1165
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
1166
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
1167
+ if is_gguf_weight_type:
1168
+ param.weight_type = loaded_weight.item()
1169
+ param.data.copy_(loaded_weight)
1170
+ return True if return_success else None
1171
+
1172
+ # Case for BitsAndBytes
1173
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1174
+ if use_bitsandbytes_4bit:
1175
+ shard_dim = 0
1176
+
1177
+ expert_data = param.data[expert_id]
1178
+ if shard_id == "w2":
1179
+ expert_data.copy_(loaded_weight)
1180
+ elif shard_id in ("w1", "w3"):
1181
+ # BNB inflight quantization has already sharded the weights
1182
+ full_load = True
1183
+ self._load_w13(
1184
+ shard_id=shard_id,
1185
+ shard_dim=shard_dim,
1186
+ loaded_weight=loaded_weight,
1187
+ expert_data=expert_data,
1188
+ tp_rank=self.tp_rank,
1189
+ load_full=full_load,
1190
+ )
1191
+ return True if return_success else None
1192
+
1193
+ # is_transposed: if the dim to shard the weight
1194
+ # should be flipped. Required by GPTQ, compressed-tensors
1195
+ # should be whatever dimension intermediate_size_per_partition is
1196
+ is_transposed = getattr(param, "is_transposed", False)
1197
+ shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
1198
+ if is_transposed:
1199
+ shard_dim = int(not shard_dim)
1200
+
1201
+ full_load = len(loaded_weight.shape) == 3
1202
+ if full_load:
1203
+ shard_dim += 1
1204
+
1205
+ # Materialize GGUF UninitializedParameter
1206
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
1207
+ final_shape = list(loaded_weight.shape)
1208
+ if shard_id in ["w1", "w3"]:
1209
+ final_shape[1] *= 2
1210
+ final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
1211
+ param.materialize(final_shape, dtype=loaded_weight.dtype)
1212
+
1213
+ expert_data = param.data if full_load else param.data[expert_id]
1214
+
1215
+ # Case input scale: input_scale loading is only supported for fp8
1216
+ if "input_scale" in weight_name:
1217
+ # this is needed for compressed-tensors only
1218
+ loaded_weight = loaded_weight.to(param.data.device)
1219
+
1220
+ if (
1221
+ "compressed" in quant_method_name.lower()
1222
+ and param.data[expert_id] != 1
1223
+ and (param.data[expert_id] - loaded_weight).abs() > 1e-5
1224
+ ):
1225
+ raise ValueError(
1226
+ "input_scales of w1 and w3 of a layer "
1227
+ f"must be equal. But got {param.data[expert_id]} "
1228
+ f"vs. {loaded_weight}"
1229
+ )
1230
+
1231
+ self._load_single_value(
1232
+ param=param,
1233
+ loaded_weight=loaded_weight,
1234
+ expert_id=global_expert_id if use_global_sf else expert_id,
1235
+ )
1236
+ return True if return_success else None
1237
+
1238
+ # Case g_idx
1239
+ if "g_idx" in weight_name:
1240
+ self._load_g_idx(
1241
+ shard_dim=0,
1242
+ shard_id=shard_id,
1243
+ loaded_weight=loaded_weight,
1244
+ expert_data=expert_data,
1245
+ tp_rank=self.tp_rank,
1246
+ )
1247
+ return True if return_success else None
1248
+
1249
+ # TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
1250
+ if "ModelOpt" in quant_method_name:
1251
+ # Determine per-tensor weight scale patterns based on variant
1252
+ # Use the dedicated method instead of brittle string matching
1253
+ uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern()
1254
+
1255
+ # Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
1256
+ # weights scales.
1257
+ # Input scales are always per-tensor.
1258
+ # Weight scales: FP4 uses "weight_scale_2" and FP8 uses
1259
+ # "weight_scale" for per-tensor scales.
1260
+ is_per_tensor = (
1261
+ "weight_scale_2" in weight_name
1262
+ if uses_weight_scale_2
1263
+ else "weight_scale" in weight_name
1264
+ ) or "input_scale" in weight_name
1265
+ if is_per_tensor:
1266
+ self._load_per_tensor_weight_scale(
1267
+ shard_id=shard_id,
1268
+ param=param,
1269
+ loaded_weight=loaded_weight,
1270
+ expert_id=expert_id,
1271
+ )
1272
+ return True if return_success else None
1273
+
1274
+ # If the weight is w13_weight_scale and w13_weight_scales are
1275
+ # combined into single loaded_weight, call
1276
+ # _load_combined_w13_weight_scale() to load it.
1277
+ # This is checked by comparing the hidden_out dims of the
1278
+ # loaded_weight and the param.
1279
+ if "w13_weight_scale" in weight_name:
1280
+ loaded_weight_hidden_out = loaded_weight.shape[-2]
1281
+ param_hidden_out = param.data.shape[-2] * self.tp_size
1282
+ if loaded_weight_hidden_out == param_hidden_out:
1283
+ self._load_combined_w13_weight_scale(
1284
+ shard_dim=shard_dim,
1285
+ loaded_weight=loaded_weight,
1286
+ param=expert_data,
1287
+ tp_rank=self.tp_rank,
1288
+ )
1289
+ return True if return_success else None
1290
+
1291
+ # For other weights, call _load_model_weight_or_group_weight_scale()
1292
+ # to load it.
1293
+ if "weight" in weight_name:
1294
+ self._load_model_weight_or_group_weight_scale(
1295
+ shard_id=shard_id,
1296
+ shard_dim=shard_dim,
1297
+ loaded_weight=loaded_weight,
1298
+ expert_data=expert_data,
1299
+ tp_rank=self.tp_rank,
1300
+ )
1301
+ return True if return_success else None
1302
+
1303
+ # Case weight scales, zero_points and offset, weight/input global scales
1304
+ if "scale" in weight_name or "zero" in weight_name or "offset" in weight_name:
1305
+ # load the weight scales and zp based on the quantization scheme
1306
+ # supported weight scales/zp can be found in
1307
+ # FusedMoeWeightScaleSupported
1308
+ # TODO @dsikka: once hardened, refactor to use vLLM Parameters
1309
+ # specific to each case
1310
+ quant_method = getattr(param, "quant_method", None)
1311
+ if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
1312
+ self._load_per_channel_weight_scale(
1313
+ shard_id=shard_id,
1314
+ shard_dim=shard_dim,
1315
+ loaded_weight=loaded_weight,
1316
+ expert_data=expert_data,
1317
+ tp_rank=self.tp_rank,
1318
+ )
1319
+ elif quant_method in [
1320
+ FusedMoeWeightScaleSupported.GROUP.value,
1321
+ FusedMoeWeightScaleSupported.BLOCK.value,
1322
+ ]:
1323
+ self._load_model_weight_or_group_weight_scale(
1324
+ shard_id=shard_id,
1325
+ shard_dim=shard_dim,
1326
+ loaded_weight=loaded_weight,
1327
+ expert_data=expert_data,
1328
+ tp_rank=self.tp_rank,
1329
+ load_full_w2=getattr(param, "load_full_w2", False),
1330
+ )
1331
+ elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
1332
+ self._load_per_tensor_weight_scale(
1333
+ shard_id=shard_id,
1334
+ param=param,
1335
+ loaded_weight=loaded_weight,
1336
+ expert_id=expert_id,
1337
+ )
1338
+ else:
1339
+ WEIGHT_SCALE_SUPPORTED = [e.value for e in FusedMoeWeightScaleSupported]
1340
+ raise ValueError(
1341
+ f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}"
1342
+ )
1343
+ return True if return_success else None
1344
+
1345
+ # Case weight_shape
1346
+ if "weight_shape" in weight_name:
1347
+ # only required by compressed-tensors
1348
+ self._load_single_value(
1349
+ param=param, loaded_weight=loaded_weight, expert_id=expert_id
1350
+ )
1351
+ return True if return_success else None
1352
+
1353
+ # Case model weights
1354
+ if "weight" in weight_name:
1355
+ self._load_model_weight_or_group_weight_scale(
1356
+ shard_id=shard_id,
1357
+ shard_dim=shard_dim,
1358
+ loaded_weight=loaded_weight,
1359
+ expert_data=expert_data,
1360
+ tp_rank=self.tp_rank,
1361
+ )
1362
+ return True if return_success else None
1363
+
1364
+ return False if return_success else None
1365
+
1366
+ def load_weights(
1367
+ self, weights: Iterable[tuple[str, torch.Tensor]]
1368
+ ) -> Iterable[str]:
1369
+ if (expert_mapping := self.expert_mapping) is None:
1370
+ raise ValueError(
1371
+ "`self.expert_mapping` must be provided to "
1372
+ "load weights using `self.load_weights`."
1373
+ )
1374
+ for expert_name, loaded_weight in weights:
1375
+ qual_name = f"{self.layer_name}.{expert_name}"
1376
+ for param_name, weight_name, expert_id, shard_id in expert_mapping:
1377
+ if weight_name not in qual_name:
1378
+ continue
1379
+ weight_name = qual_name.replace(weight_name, param_name)
1380
+ param_name = weight_name.removeprefix(f"{self.layer_name}.")
1381
+ param = getattr(self, param_name)
1382
+ success = self.weight_loader(
1383
+ param=param,
1384
+ loaded_weight=loaded_weight,
1385
+ weight_name=weight_name,
1386
+ shard_id=shard_id,
1387
+ expert_id=expert_id,
1388
+ return_success=True,
1389
+ )
1390
+ if success:
1391
+ logger.debug(
1392
+ "Loaded %s for expert %d into %s",
1393
+ param_name,
1394
+ expert_id,
1395
+ self.layer_name,
1396
+ )
1397
+ yield param_name
1398
+
1399
+ def get_expert_weights(self) -> Iterable[torch.Tensor]:
1400
+ def _maybe_make_contiguous(
1401
+ name: str, p: torch.nn.Parameter
1402
+ ) -> torch.nn.Parameter:
1403
+ """
1404
+ In some cases, the last 2 dimensions (the non-expert dimensions)
1405
+ of the weight scale tensor are transposed. This function
1406
+ transforms the tensor (view update) so the tensor is contiguous().
1407
+ Example: A non-contiguous scale tensor,
1408
+ `x` of shape (E, 32, 16) and stride (512, 1, 32) is transformed to
1409
+ `x_` of shape (E, 16, 32) and stride (512, 32, 1).
1410
+ Note that we specifically use torch.transpose() so `x_` refers
1411
+ to the same underlying memory. The tensors `x` and `x_`, pointing
1412
+ to the same underlying memory make this transformation safe in the
1413
+ context of EPLB. i.e. It is the same memory and just the view
1414
+ is different.
1415
+ Note: This function handles the "weight_scale" tensors specifically.
1416
+ This could however be generalized to handle similar tensors.
1417
+ """
1418
+ if p.ndim != 3:
1419
+ return p
1420
+ if p.is_contiguous():
1421
+ # Already contiguous. do nothing.
1422
+ return p
1423
+ # p is non-contiguous. We only handle the case where the last 2
1424
+ # dimensions of the scales tensor is transposed. We can handle
1425
+ # other cases when they become relevant.
1426
+ is_transposed_12 = p.stride(1) == 1 and p.stride(2) != 1
1427
+ if "weight_scale" not in name or not is_transposed_12:
1428
+ # do nothing.
1429
+ return p
1430
+
1431
+ # Do not update the layer parameter as the layer's MoE operations would
1432
+ # expect the parameter's tensor to the same shape / stride. Instead,
1433
+ # make a new torch.nn.Parameter that is used just in the context of
1434
+ # EPLB.
1435
+ return torch.nn.Parameter(
1436
+ torch.transpose(p.data, 1, 2), requires_grad=False
1437
+ )
1438
+
1439
+ weights = list(self.named_parameters())
1440
+ weights = [(name, _maybe_make_contiguous(name, p)) for name, p in weights]
1441
+
1442
+ assert all(
1443
+ weight.is_contiguous()
1444
+ for name, weight in weights
1445
+ if not name.startswith("_shared_experts.")
1446
+ )
1447
+
1448
+ # Filter out the non-expert weights.
1449
+ # `e_score_correction_bias` is a bias for each logical expert,
1450
+ # with shape (num_logical_experts,), not an expert weight.
1451
+ NON_EXPERT_WEIGHTS = {
1452
+ "e_score_correction_bias",
1453
+ }
1454
+
1455
+ return [
1456
+ weight.view(self.local_num_experts, -1)
1457
+ for name, weight in weights
1458
+ if name not in NON_EXPERT_WEIGHTS
1459
+ and weight.shape != torch.Size([])
1460
+ and not name.startswith("_shared_experts.")
1461
+ # exclude parameters from non-expert submodules (e.g. gate/shared)
1462
+ and not name.startswith("_gate.")
1463
+ ]
1464
+
1465
+ def set_eplb_state(
1466
+ self,
1467
+ moe_layer_idx: int,
1468
+ expert_load_view: torch.Tensor,
1469
+ logical_to_physical_map: torch.Tensor,
1470
+ logical_replica_count: torch.Tensor,
1471
+ ) -> None:
1472
+ """
1473
+ Register the EPLB state in this layer.
1474
+
1475
+ This is used later in forward pass, where we get the expert mapping
1476
+ and record the load metrics in `expert_load_view`.
1477
+ """
1478
+ self.expert_load_view = expert_load_view[moe_layer_idx]
1479
+ self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
1480
+ self.logical_replica_count = logical_replica_count[moe_layer_idx]
1481
+
1482
+ def ensure_moe_quant_config_init(self):
1483
+ if self.quant_method.moe_quant_config is None:
1484
+ # Note: the moe_quant_config can't be constructed until after
1485
+ # weight loading post processing.
1486
+ self.quant_method.moe_quant_config = (
1487
+ self.quant_method.get_fused_moe_quant_config(self)
1488
+ )
1489
+
1490
+ @property
1491
+ def moe_quant_config(self) -> FusedMoEQuantConfig | None:
1492
+ self.ensure_moe_quant_config_init()
1493
+ return self.quant_method.moe_quant_config
1494
+
1495
+ def ensure_dp_chunking_init(self):
1496
+ if not self.use_dp_chunking or self.batched_hidden_states is not None:
1497
+ return
1498
+
1499
+ states_shape: tuple[int, ...]
1500
+ logits_shape: tuple[int, ...]
1501
+
1502
+ moe = self.moe_config
1503
+
1504
+ if self.vllm_config.parallel_config.enable_dbo:
1505
+ states_shape = (2, moe.max_num_tokens, self.hidden_size)
1506
+ logits_shape = (2, moe.max_num_tokens, self.logical_num_experts)
1507
+ else:
1508
+ states_shape = (moe.max_num_tokens, self.hidden_size)
1509
+ logits_shape = (moe.max_num_tokens, self.logical_num_experts)
1510
+
1511
+ self.batched_hidden_states = torch.zeros(
1512
+ states_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
1513
+ )
1514
+
1515
+ self.batched_router_logits = torch.zeros(
1516
+ logits_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
1517
+ )
1518
+
1519
+ def select_experts(
1520
+ self,
1521
+ hidden_states: torch.Tensor,
1522
+ router_logits: torch.Tensor,
1523
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
1524
+ """
1525
+ Route the input hidden states to the top-k experts based on the
1526
+ router logits.
1527
+
1528
+ Returns:
1529
+ (topk_weights, topk_ids, zero_expert_result)
1530
+ (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
1531
+ The weights, expert ids, and zero expert computation result.
1532
+
1533
+ **Compatibility**: When EPLB is not enabled, the returned ids are
1534
+ equivalent to global logical ids, so should be compatible with
1535
+ plain MoE implementations without redundant experts.
1536
+ """
1537
+ from vllm.model_executor.layers.fused_moe.fused_moe import (
1538
+ fused_topk,
1539
+ fused_topk_bias,
1540
+ )
1541
+
1542
+ if self.enable_eplb:
1543
+ if self.quant_method.supports_eplb:
1544
+ if self.expert_load_view is None:
1545
+ raise ValueError(
1546
+ "enable_eplb=True requiere expert_load_view != None"
1547
+ )
1548
+ if self.logical_to_physical_map is None:
1549
+ raise ValueError(
1550
+ "enable_eplb=True requiere logical_to_physical_map != None"
1551
+ )
1552
+ if self.logical_replica_count is None:
1553
+ raise ValueError(
1554
+ "enable_eplb=True requiere logical_replica_count != None"
1555
+ )
1556
+ else:
1557
+ raise NotImplementedError(
1558
+ f"EPLB is not supported for {self.quant_method.method_name}."
1559
+ )
1560
+
1561
+ indices_type = self.quant_method.topk_indices_dtype
1562
+
1563
+ # Check if we should use a routing simulation strategy
1564
+ routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
1565
+ if routing_strategy != "":
1566
+ topk_weights, topk_ids = RoutingSimulator.simulate_routing(
1567
+ hidden_states=hidden_states,
1568
+ router_logits=router_logits,
1569
+ strategy_name=routing_strategy,
1570
+ top_k=self.top_k,
1571
+ indices_type=indices_type,
1572
+ )
1573
+
1574
+ # DeepSeekv2 uses grouped_top_k
1575
+ elif self.use_grouped_topk:
1576
+ assert self.topk_group is not None
1577
+ assert self.num_expert_group is not None
1578
+ if rocm_aiter_ops.is_fused_moe_enabled():
1579
+ if not rocm_aiter_ops.is_fusion_moe_shared_experts_enabled():
1580
+ assert self.num_fused_shared_experts == 0
1581
+ grouped_topk_impl = partial(
1582
+ rocm_aiter_grouped_topk,
1583
+ num_fused_shared_experts=self.num_fused_shared_experts,
1584
+ )
1585
+ else:
1586
+ grouped_topk_impl = grouped_topk
1587
+
1588
+ topk_weights, topk_ids = grouped_topk_impl(
1589
+ hidden_states=hidden_states,
1590
+ gating_output=router_logits,
1591
+ topk=self.top_k,
1592
+ renormalize=self.renormalize,
1593
+ num_expert_group=self.num_expert_group,
1594
+ topk_group=self.topk_group,
1595
+ scoring_func=self.scoring_func,
1596
+ routed_scaling_factor=self.routed_scaling_factor,
1597
+ e_score_correction_bias=self.e_score_correction_bias,
1598
+ )
1599
+ elif self.e_score_correction_bias is not None:
1600
+ topk_weights, topk_ids = fused_topk_bias(
1601
+ hidden_states=hidden_states,
1602
+ gating_output=router_logits,
1603
+ e_score_correction_bias=self.e_score_correction_bias.data,
1604
+ topk=self.top_k,
1605
+ renormalize=self.renormalize,
1606
+ )
1607
+ if self.routed_scaling_factor != 1.0:
1608
+ topk_weights *= self.routed_scaling_factor
1609
+ elif self.custom_routing_function is None:
1610
+ topk_weights, topk_ids, token_expert_indices = fused_topk(
1611
+ hidden_states=hidden_states,
1612
+ gating_output=router_logits,
1613
+ topk=self.top_k,
1614
+ renormalize=self.renormalize,
1615
+ indices_type=indices_type,
1616
+ )
1617
+ else:
1618
+ topk_weights, topk_ids = self.custom_routing_function(
1619
+ hidden_states=hidden_states,
1620
+ gating_output=router_logits,
1621
+ topk=self.top_k,
1622
+ renormalize=self.renormalize,
1623
+ )
1624
+
1625
+ if self.enable_eplb:
1626
+ topk_ids = eplb_map_to_physical_and_record(
1627
+ topk_ids=topk_ids,
1628
+ expert_load_view=self.expert_load_view,
1629
+ logical_to_physical_map=self.logical_to_physical_map,
1630
+ logical_replica_count=self.logical_replica_count,
1631
+ )
1632
+
1633
+ if (indices_type is not None) and topk_ids.dtype != indices_type:
1634
+ topk_ids = topk_ids.to(dtype=indices_type)
1635
+
1636
+ assert topk_ids.dtype == indices_type or indices_type is None
1637
+
1638
+ # Compute zero expert result if needed
1639
+ if (
1640
+ self.zero_expert_num is not None
1641
+ and self.zero_expert_num > 0
1642
+ and self.zero_expert_type is not None
1643
+ and self.global_num_experts is not None
1644
+ ):
1645
+ zero_expert_result = zero_experts_compute_triton(
1646
+ expert_indices=topk_ids,
1647
+ expert_scales=topk_weights,
1648
+ num_experts=self.global_num_experts,
1649
+ zero_expert_type=self.zero_expert_type,
1650
+ hidden_states=hidden_states,
1651
+ )
1652
+ else:
1653
+ zero_expert_result = None
1654
+ return topk_weights, topk_ids, zero_expert_result
1655
+
1656
+ def must_reduce_shared_expert_outputs(self) -> bool:
1657
+ """
1658
+ The shared_experts are typically computed using the RowParallelLinear
1659
+ layer. The result of this function is typically used as
1660
+ the reduce_results argument to the module.
1661
+ When just tensor-parallel is used, it is not required to reduce
1662
+ the shared_experts results immediately. Instead we reduce at the
1663
+ once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
1664
+ With EP and all2all kernels - this is no longer viable as all
1665
+ GPU ranks in DP, produce the complete set of hidden_states.
1666
+ Therefore it is required that we reduce the shared_experts output
1667
+ early.
1668
+ """
1669
+ assert self.quant_method is not None
1670
+ return (
1671
+ isinstance(self.quant_method, FusedMoEModularMethod)
1672
+ and self.quant_method.fused_experts.output_is_reduced()
1673
+ )
1674
+
1675
+ def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
1676
+ """
1677
+ Some combine kernels reduce across GPU ranks by default.
1678
+ """
1679
+ if self.must_reduce_shared_expert_outputs():
1680
+ return final_hidden_states
1681
+ else:
1682
+ return tensor_model_parallel_all_reduce(final_hidden_states)
1683
+
1684
+ def forward_native(
1685
+ self,
1686
+ hidden_states: torch.Tensor,
1687
+ router_logits: torch.Tensor,
1688
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1689
+ og_hidden_states = hidden_states.shape[-1]
1690
+ if self.hidden_size != og_hidden_states:
1691
+ hidden_states = F.pad(
1692
+ hidden_states,
1693
+ (0, self.hidden_size - og_hidden_states),
1694
+ mode="constant",
1695
+ value=0.0,
1696
+ )
1697
+
1698
+ def reduce_output(states: torch.Tensor) -> torch.Tensor:
1699
+ if (
1700
+ not self.is_sequence_parallel
1701
+ and not self.use_dp_chunking
1702
+ and self.reduce_results
1703
+ and (self.tp_size > 1 or self.ep_size > 1)
1704
+ ):
1705
+ states = self.maybe_all_reduce_tensor_model_parallel(states)
1706
+ return states
1707
+
1708
+ if self.shared_experts is None:
1709
+ if current_platform.is_tpu():
1710
+ # TODO: Once the OOM issue for the TPU backend is resolved, we
1711
+ # will switch to using the moe_forward custom op.
1712
+ fused_output = self.forward_impl(hidden_states, router_logits)
1713
+ assert not isinstance(fused_output, tuple)
1714
+ else:
1715
+ fused_output = torch.ops.vllm.moe_forward(
1716
+ hidden_states, router_logits, self.layer_name
1717
+ )
1718
+ if self.zero_expert_num is not None and self.zero_expert_num > 0:
1719
+ assert isinstance(fused_output, tuple)
1720
+ fused_output, zero_expert_result = fused_output
1721
+ return (reduce_output(fused_output) + zero_expert_result)[
1722
+ ..., :og_hidden_states
1723
+ ]
1724
+ else:
1725
+ return reduce_output(fused_output)[..., :og_hidden_states]
1726
+ else:
1727
+ if current_platform.is_tpu():
1728
+ # TODO: Once the OOM issue for the TPU backend is resolved, we
1729
+ # will switch to using the moe_forward custom op.
1730
+ shared_output, fused_output = self.forward_impl(
1731
+ hidden_states, router_logits
1732
+ )
1733
+ else:
1734
+ shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
1735
+ hidden_states, router_logits, self.layer_name
1736
+ )
1737
+ return (
1738
+ reduce_output(shared_output)[..., :og_hidden_states],
1739
+ reduce_output(fused_output)[..., :og_hidden_states],
1740
+ )
1741
+
1742
+ def forward_cuda(
1743
+ self,
1744
+ hidden_states: torch.Tensor,
1745
+ router_logits: torch.Tensor,
1746
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1747
+ return self.forward_native(hidden_states, router_logits)
1748
+
1749
+ def forward_impl_chunked(
1750
+ self,
1751
+ full_hidden_states: torch.Tensor,
1752
+ full_router_logits: torch.Tensor,
1753
+ has_separate_shared_experts: bool,
1754
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1755
+ assert self.batched_hidden_states is not None
1756
+ assert self.batched_router_logits is not None
1757
+ assert self.batched_hidden_states.dtype == full_hidden_states.dtype
1758
+ assert self.batched_router_logits.dtype == full_router_logits.dtype
1759
+ # Check size compatibility.
1760
+ assert self.batched_hidden_states.size(-1) == full_hidden_states.size(-1)
1761
+ assert self.batched_router_logits.size(-1) == full_router_logits.size(-1)
1762
+
1763
+ full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
1764
+ if self.shared_experts is not None:
1765
+ full_shared_final_hidden_states = torch.empty_like(full_hidden_states)
1766
+
1767
+ def process_chunk(chunk_start, chunk_end, skip_result_store=False):
1768
+ chunk_size = chunk_end - chunk_start
1769
+ hidden_states = full_hidden_states[chunk_start:chunk_end, :]
1770
+ router_logits = full_router_logits[chunk_start:chunk_end, :]
1771
+
1772
+ assert self.batched_hidden_states is not None
1773
+ assert self.batched_router_logits is not None
1774
+ # This is only true when DBO has been enabled in the config.
1775
+ # Both tensors will have an outer dimension for the ubatch id
1776
+ if self.batched_hidden_states.dim() == 3:
1777
+ assert self.batched_router_logits.dim() == 3
1778
+ batch_buffer_idx = dbo_current_ubatch_id()
1779
+ batched_hidden_states = self.batched_hidden_states[batch_buffer_idx, :]
1780
+ batched_router_logits = self.batched_router_logits[batch_buffer_idx, :]
1781
+ else:
1782
+ batched_hidden_states = self.batched_hidden_states
1783
+ batched_router_logits = self.batched_router_logits
1784
+
1785
+ assert (
1786
+ batched_hidden_states.size(0) # type: ignore
1787
+ >= chunk_size
1788
+ )
1789
+ assert (
1790
+ batched_router_logits.size(0) # type: ignore
1791
+ >= chunk_size
1792
+ )
1793
+ staged_hidden_states = batched_hidden_states[:chunk_size, :] # type: ignore
1794
+ staged_router_logits = batched_router_logits[:chunk_size, :] # type: ignore
1795
+ staged_hidden_states.copy_(hidden_states, non_blocking=True)
1796
+ staged_router_logits.copy_(router_logits, non_blocking=True)
1797
+
1798
+ # Matrix multiply.
1799
+ final_hidden_states = self.quant_method.apply(
1800
+ layer=self,
1801
+ x=staged_hidden_states,
1802
+ router_logits=staged_router_logits,
1803
+ top_k=self.top_k,
1804
+ renormalize=self.renormalize,
1805
+ use_grouped_topk=self.use_grouped_topk,
1806
+ global_num_experts=self.global_num_experts,
1807
+ expert_map=self.expert_map
1808
+ if not self.rocm_aiter_fmoe_enabled
1809
+ else self.expert_mask,
1810
+ topk_group=self.topk_group,
1811
+ num_expert_group=self.num_expert_group,
1812
+ custom_routing_function=self.custom_routing_function,
1813
+ scoring_func=self.scoring_func,
1814
+ routed_scaling_factor=self.routed_scaling_factor,
1815
+ e_score_correction_bias=self.e_score_correction_bias,
1816
+ activation=self.activation,
1817
+ enable_eplb=self.enable_eplb,
1818
+ expert_load_view=self.expert_load_view,
1819
+ logical_to_physical_map=self.logical_to_physical_map,
1820
+ logical_replica_count=self.logical_replica_count,
1821
+ )
1822
+
1823
+ if has_separate_shared_experts:
1824
+ assert not isinstance(final_hidden_states, tuple)
1825
+ assert self.shared_experts is not None
1826
+
1827
+ shared_output = self.shared_experts(staged_hidden_states)
1828
+
1829
+ final_hidden_states = (
1830
+ shared_output,
1831
+ final_hidden_states,
1832
+ )
1833
+
1834
+ if self.zero_expert_num is not None and self.zero_expert_num > 0:
1835
+ assert isinstance(final_hidden_states, tuple)
1836
+ assert self.shared_experts is None
1837
+ final_hidden_states, zero_expert_result = final_hidden_states
1838
+ if zero_expert_result is not None:
1839
+ final_hidden_states += zero_expert_result
1840
+
1841
+ if not skip_result_store:
1842
+ if self.shared_experts is None:
1843
+ full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
1844
+ final_hidden_states, non_blocking=True
1845
+ )
1846
+ else:
1847
+ full_shared_final_hidden_states[chunk_start:chunk_end, :].copy_(
1848
+ final_hidden_states[0], non_blocking=True
1849
+ )
1850
+ full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
1851
+ final_hidden_states[1], non_blocking=True
1852
+ )
1853
+
1854
+ ctx = get_forward_context()
1855
+ # flashinfer_cutlass_kernels can handle: optional DP + TP/EP
1856
+ max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
1857
+ moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
1858
+
1859
+ # If the input to the MoE is sequence parallel then divide by sp_size
1860
+ # to find the maximum number of tokens for any individual dispatcher.
1861
+ if self.is_sequence_parallel:
1862
+ max_tokens_across_dispatchers = cdiv(
1863
+ max_tokens_across_dispatchers, self.sp_size
1864
+ )
1865
+
1866
+ num_tokens = full_hidden_states.size(0)
1867
+ for chunk_idx, chunk_start_ in enumerate(
1868
+ range(0, max_tokens_across_dispatchers, moe_dp_chunk_size_per_rank)
1869
+ ):
1870
+ chunk_start = chunk_start_
1871
+ chunk_end = min(
1872
+ chunk_start + moe_dp_chunk_size_per_rank, max_tokens_across_dispatchers
1873
+ )
1874
+ # clamp start and end
1875
+ chunk_start = min(chunk_start, num_tokens - 1)
1876
+ chunk_end = min(chunk_end, num_tokens)
1877
+ with ctx.dp_metadata.chunked_sizes(
1878
+ self.sp_size, moe_dp_chunk_size_per_rank, chunk_idx
1879
+ ):
1880
+ process_chunk(
1881
+ chunk_start, chunk_end, skip_result_store=chunk_start_ >= num_tokens
1882
+ )
1883
+
1884
+ if self.shared_experts is None:
1885
+ return full_fused_final_hidden_states
1886
+ else:
1887
+ return (full_shared_final_hidden_states, full_fused_final_hidden_states)
1888
+
1889
+ def forward_impl(
1890
+ self,
1891
+ hidden_states: torch.Tensor,
1892
+ router_logits: torch.Tensor,
1893
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1894
+ assert self.quant_method is not None
1895
+
1896
+ self.ensure_moe_quant_config_init()
1897
+ self.ensure_dp_chunking_init()
1898
+
1899
+ has_separate_shared_experts = (
1900
+ not isinstance(self.quant_method, FusedMoEModularMethod)
1901
+ and self.shared_experts is not None
1902
+ )
1903
+
1904
+ use_chunked_impl = self.use_dp_chunking
1905
+
1906
+ use_shared_experts_stream, hidden_states_clone = (
1907
+ self._maybe_setup_shared_experts_stream(
1908
+ hidden_states, has_separate_shared_experts, use_chunked_impl
1909
+ )
1910
+ )
1911
+
1912
+ # If router/gate provided, then apply it here.
1913
+ # (Note: This code runs only when "overlapped mode" is on to allow
1914
+ # parallel execution of shared experts with the FusedMoE via
1915
+ # separate cuda stream)
1916
+ if self.gate is not None:
1917
+ router_logits, _ = self.gate(hidden_states)
1918
+
1919
+ if use_chunked_impl:
1920
+ return self.forward_impl_chunked(
1921
+ hidden_states, router_logits, has_separate_shared_experts
1922
+ )
1923
+
1924
+ do_naive_dispatch_combine: bool = self.dp_size > 1 and not isinstance(
1925
+ self.quant_method, FusedMoEModularMethod
1926
+ )
1927
+
1928
+ ctx = get_forward_context()
1929
+ sp_ctx = (
1930
+ ctx.dp_metadata.sp_local_sizes(self.sp_size)
1931
+ if ctx.dp_metadata
1932
+ else nullcontext()
1933
+ )
1934
+
1935
+ with sp_ctx:
1936
+ if do_naive_dispatch_combine:
1937
+ hidden_states_combined, router_logits = get_ep_group().dispatch(
1938
+ hidden_states, router_logits, self.is_sequence_parallel
1939
+ )
1940
+ # Run shared experts before matrix multiply.
1941
+ # because matrix multiply maybe modify the hidden_states.
1942
+ if has_separate_shared_experts and not use_shared_experts_stream:
1943
+ assert self.shared_experts is not None
1944
+ shared_output = self.shared_experts(hidden_states)
1945
+
1946
+ # NOTE: Similar with DP, PCP also needs dispatch and combine. For
1947
+ # simplicity, AgRsAll2All was added separately for PCP here. Maybe
1948
+ # we should modify All2AllManager abstract to better support PCP.
1949
+ if self.pcp_size > 1:
1950
+ hidden_states = get_pcp_group().all_gather(
1951
+ hidden_states,
1952
+ dim=0,
1953
+ )
1954
+ router_logits = get_pcp_group().all_gather(
1955
+ router_logits,
1956
+ dim=0,
1957
+ )
1958
+
1959
+ # Matrix multiply.
1960
+ final_hidden_states = self.quant_method.apply(
1961
+ layer=self,
1962
+ x=hidden_states_combined
1963
+ if do_naive_dispatch_combine
1964
+ else hidden_states,
1965
+ router_logits=router_logits,
1966
+ top_k=self.top_k,
1967
+ renormalize=self.renormalize,
1968
+ use_grouped_topk=self.use_grouped_topk,
1969
+ global_num_experts=self.global_num_experts,
1970
+ expert_map=self.expert_map
1971
+ if not self.rocm_aiter_fmoe_enabled
1972
+ else self.expert_mask,
1973
+ topk_group=self.topk_group,
1974
+ num_expert_group=self.num_expert_group,
1975
+ custom_routing_function=self.custom_routing_function,
1976
+ scoring_func=self.scoring_func,
1977
+ routed_scaling_factor=self.routed_scaling_factor,
1978
+ e_score_correction_bias=self.e_score_correction_bias,
1979
+ activation=self.activation,
1980
+ apply_router_weight_on_input=self.apply_router_weight_on_input,
1981
+ enable_eplb=self.enable_eplb,
1982
+ expert_load_view=self.expert_load_view,
1983
+ logical_to_physical_map=self.logical_to_physical_map,
1984
+ logical_replica_count=self.logical_replica_count,
1985
+ )
1986
+
1987
+ if has_separate_shared_experts:
1988
+ assert self.shared_experts is not None
1989
+
1990
+ if use_shared_experts_stream:
1991
+ # Run shared experts in parallel on a separate stream
1992
+ # NOTE: We start the separate stream here and mark the
1993
+ # sync end point immediately after it is done. This is
1994
+ # important to avoid excessive stream allocations by the cuda
1995
+ # graph replay later.
1996
+ with torch.cuda.stream(self.shared_experts_stream):
1997
+ # Note that hidden_states clone() is necessary here to avoid
1998
+ # conflict with the main stream
1999
+ shared_output = self.shared_experts(hidden_states_clone)
2000
+ current_stream().wait_stream(self.shared_experts_stream)
2001
+
2002
+ final_hidden_states = (
2003
+ shared_output,
2004
+ final_hidden_states,
2005
+ )
2006
+ elif self.zero_expert_num is not None and self.zero_expert_num > 0:
2007
+ assert isinstance(final_hidden_states, tuple)
2008
+ final_hidden_states, zero_expert_result = final_hidden_states
2009
+
2010
+ def combine_output(states: torch.Tensor) -> torch.Tensor:
2011
+ if do_naive_dispatch_combine:
2012
+ states = get_ep_group().combine(states, self.is_sequence_parallel)
2013
+
2014
+ if self.pcp_size > 1:
2015
+ states = get_pcp_group().reduce_scatter(
2016
+ states,
2017
+ dim=0,
2018
+ )
2019
+
2020
+ return states
2021
+
2022
+ if self.shared_experts is not None:
2023
+ return (
2024
+ final_hidden_states[0],
2025
+ combine_output(final_hidden_states[1]),
2026
+ )
2027
+ elif self.zero_expert_num is not None and self.zero_expert_num > 0:
2028
+ assert isinstance(final_hidden_states, torch.Tensor)
2029
+ return (combine_output(final_hidden_states), zero_expert_result)
2030
+ else:
2031
+ return combine_output(final_hidden_states)
2032
+
2033
+ @classmethod
2034
+ def make_expert_params_mapping(
2035
+ cls,
2036
+ ckpt_gate_proj_name: str,
2037
+ ckpt_down_proj_name: str,
2038
+ ckpt_up_proj_name: str,
2039
+ num_experts: int,
2040
+ num_redundant_experts: int = 0,
2041
+ ) -> list[tuple[str, str, int, str]]:
2042
+ num_physical_experts = num_experts + num_redundant_experts
2043
+
2044
+ # In the returned mapping:
2045
+ # - `expert_id` is the physical expert id
2046
+ # - `weight_name` contains the weight name of the logical expert
2047
+ # So that we should map the expert id to logical in `weight_name`
2048
+ physical_to_logical_map = (
2049
+ EplbState.build_initial_global_physical_to_logical_map(
2050
+ num_experts, num_redundant_experts
2051
+ )
2052
+ )
2053
+
2054
+ return [
2055
+ # (param_name, weight_name, expert_id, shard_id)
2056
+ (
2057
+ "experts.w13_"
2058
+ if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
2059
+ else "experts.w2_",
2060
+ f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
2061
+ expert_id,
2062
+ shard_id,
2063
+ )
2064
+ for expert_id in range(num_physical_experts)
2065
+ for shard_id, weight_name in [
2066
+ ("w1", ckpt_gate_proj_name),
2067
+ ("w2", ckpt_down_proj_name),
2068
+ ("w3", ckpt_up_proj_name),
2069
+ ]
2070
+ ]
2071
+
2072
+ def extra_repr(self) -> str:
2073
+ s = (
2074
+ f"global_num_experts={self.global_num_experts}, "
2075
+ f"local_num_experts={self.local_num_experts}, "
2076
+ f"top_k={self.top_k}, "
2077
+ f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
2078
+ f"tp_size={self.tp_size},\n"
2079
+ f"ep_size={self.ep_size}, "
2080
+ f"reduce_results={self.reduce_results}, "
2081
+ f"renormalize={self.renormalize}, "
2082
+ f"use_grouped_topk={self.use_grouped_topk}"
2083
+ )
2084
+
2085
+ if self.use_grouped_topk:
2086
+ s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
2087
+
2088
+ s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
2089
+
2090
+ return s
2091
+
2092
+
2093
+ def moe_forward(
2094
+ hidden_states: torch.Tensor,
2095
+ router_logits: torch.Tensor,
2096
+ layer_name: str,
2097
+ ) -> torch.Tensor:
2098
+ forward_context: ForwardContext = get_forward_context()
2099
+ self = forward_context.no_compile_layers[layer_name]
2100
+ assert self.shared_experts is None
2101
+ return self.forward_impl(hidden_states, router_logits)
2102
+
2103
+
2104
+ def moe_forward_fake(
2105
+ hidden_states: torch.Tensor,
2106
+ router_logits: torch.Tensor,
2107
+ layer_name: str,
2108
+ ) -> torch.Tensor:
2109
+ return torch.empty_like(hidden_states)
2110
+
2111
+
2112
+ direct_register_custom_op(
2113
+ op_name="moe_forward",
2114
+ op_func=moe_forward,
2115
+ mutates_args=["hidden_states"],
2116
+ fake_impl=moe_forward_fake,
2117
+ tags=(torch.Tag.needs_fixed_stride_order,),
2118
+ )
2119
+
2120
+
2121
+ def moe_forward_shared(
2122
+ hidden_states: torch.Tensor,
2123
+ router_logits: torch.Tensor,
2124
+ layer_name: str,
2125
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2126
+ forward_context: ForwardContext = get_forward_context()
2127
+ self = forward_context.no_compile_layers[layer_name]
2128
+ assert self.shared_experts is not None
2129
+ return self.forward_impl(hidden_states, router_logits)
2130
+
2131
+
2132
+ def moe_forward_shared_fake(
2133
+ hidden_states: torch.Tensor,
2134
+ router_logits: torch.Tensor,
2135
+ layer_name: str,
2136
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2137
+ shared_out = torch.empty_like(hidden_states)
2138
+ fused_out = torch.empty_like(hidden_states)
2139
+ return shared_out, fused_out
2140
+
2141
+
2142
+ direct_register_custom_op(
2143
+ op_name="moe_forward_shared",
2144
+ op_func=moe_forward_shared,
2145
+ mutates_args=["hidden_states"],
2146
+ fake_impl=moe_forward_shared_fake,
2147
+ tags=(torch.Tag.needs_fixed_stride_order,),
2148
+ )
2149
+
2150
+ # Mark the FusedMoE weight_loader as supporting MoE-specific parameters
2151
+ # to avoid expensive runtime reflection in model loading code
2152
+ FusedMoE.weight_loader.supports_moe_loading = True # type: ignore[attr-defined]