vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2240 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import time
4
+ from abc import ABC, abstractmethod
5
+ from collections import defaultdict
6
+ from collections.abc import Callable, Generator, ItemsView, Iterable, Mapping, Sequence
7
+ from dataclasses import dataclass, field, replace
8
+ from enum import Enum
9
+ from functools import lru_cache
10
+ from typing import (
11
+ TYPE_CHECKING,
12
+ Any,
13
+ Generic,
14
+ NamedTuple,
15
+ Protocol,
16
+ TypeAlias,
17
+ cast,
18
+ overload,
19
+ )
20
+
21
+ import regex as re
22
+ import torch
23
+ from typing_extensions import TypeVar, assert_never
24
+
25
+ from vllm.logger import init_logger
26
+ from vllm.tokenizers import TokenizerLike
27
+ from vllm.transformers_utils.processor import cached_processor_from_config
28
+ from vllm.utils.collection_utils import flatten_2d_lists, full_groupby
29
+ from vllm.utils.func_utils import get_allowed_kwarg_only_overrides
30
+ from vllm.utils.jsontree import JSONTree, json_map_leaves
31
+
32
+ from .hasher import MultiModalHasher
33
+ from .inputs import (
34
+ MultiModalDataDict,
35
+ MultiModalEncDecInputs,
36
+ MultiModalFieldConfig,
37
+ MultiModalInputs,
38
+ MultiModalKwargsItem,
39
+ MultiModalKwargsItems,
40
+ MultiModalKwargsOptionalItems,
41
+ MultiModalUUIDDict,
42
+ PlaceholderRange,
43
+ )
44
+ from .parse import (
45
+ DictEmbeddingItems,
46
+ EmbeddingItems,
47
+ MultiModalDataItems,
48
+ MultiModalDataParser,
49
+ )
50
+
51
+ if TYPE_CHECKING:
52
+ from transformers.configuration_utils import PretrainedConfig
53
+ from transformers.feature_extraction_utils import BatchFeature
54
+ from transformers.processing_utils import ProcessorMixin
55
+
56
+ from vllm.config import ModelConfig
57
+
58
+ from .cache import BaseMultiModalProcessorCache
59
+ from .profiling import BaseDummyInputsBuilder
60
+ else:
61
+ PretrainedConfig = object
62
+ BatchFeature = object
63
+ ProcessorMixin = object
64
+
65
+ ModelConfig = object
66
+
67
+ BaseMultiModalProcessorCache = object
68
+
69
+ logger = init_logger(__name__)
70
+
71
+ _S = TypeVar("_S", str, list[int])
72
+
73
+ PromptSeq: TypeAlias = str | list[int]
74
+ """A token sequence (list of token IDs) or text."""
75
+
76
+
77
+ @lru_cache(maxsize=2048)
78
+ def _cached_encode(
79
+ tokenizer: TokenizerLike,
80
+ text: str,
81
+ *,
82
+ add_special_tokens: bool = True,
83
+ ) -> list[int]:
84
+ return tokenizer.encode(text, add_special_tokens=add_special_tokens)
85
+
86
+
87
+ @lru_cache(maxsize=2048)
88
+ def _cached_decode(
89
+ tokenizer: TokenizerLike,
90
+ token_ids: tuple[int, ...],
91
+ *,
92
+ skip_special_tokens: bool = False,
93
+ ) -> str:
94
+ return tokenizer.decode(list(token_ids), skip_special_tokens=skip_special_tokens)
95
+
96
+
97
+ def _seq2text(
98
+ tokenizer: TokenizerLike | None,
99
+ seq: PromptSeq,
100
+ *,
101
+ use_cache: bool = True,
102
+ ) -> str:
103
+ if isinstance(seq, str):
104
+ return seq
105
+
106
+ if tokenizer is None:
107
+ raise ValueError("You cannot decode tokens when `skip_tokenizer_init=True`")
108
+
109
+ if not use_cache:
110
+ return tokenizer.decode(seq)
111
+
112
+ return _cached_decode(tokenizer, tuple(seq))
113
+
114
+
115
+ def _seq2tokens(
116
+ tokenizer: TokenizerLike | None,
117
+ seq: PromptSeq,
118
+ *,
119
+ use_cache: bool = True,
120
+ ) -> list[int]:
121
+ if isinstance(seq, str):
122
+ if tokenizer is None:
123
+ raise ValueError("You cannot encode text when `skip_tokenizer_init=True`")
124
+
125
+ if not use_cache:
126
+ return tokenizer.encode(seq, add_special_tokens=False)
127
+
128
+ return _cached_encode(tokenizer, seq, add_special_tokens=False)
129
+
130
+ return seq
131
+
132
+
133
+ class _GetMatchIndex(Protocol):
134
+ def __call__(
135
+ self,
136
+ tokenizer: TokenizerLike | None,
137
+ prompt: PromptSeq,
138
+ start_idx: int = 0,
139
+ ) -> int | None: ...
140
+
141
+
142
+ @dataclass
143
+ class PromptIndex:
144
+ """Resolves to an index in the prompt."""
145
+
146
+ get_match_index: _GetMatchIndex
147
+
148
+
149
+ class PromptIndexTargets:
150
+ @staticmethod
151
+ def start() -> PromptIndex:
152
+ """
153
+ Resolves to the start of the prompt (before the first token).
154
+
155
+ This results in a match even if the prompt is empty.
156
+ """
157
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: 0)
158
+
159
+ @staticmethod
160
+ def prefix(seq: PromptSeq) -> PromptIndex:
161
+ """
162
+ Resolves to a location in the prompt after the given prefix.
163
+ """
164
+
165
+ def get_match_index(
166
+ tokenizer: TokenizerLike | None,
167
+ prompt: PromptSeq,
168
+ start_idx: int = 0,
169
+ ) -> int | None:
170
+ if start_idx != 0:
171
+ return None
172
+
173
+ prefix = seq
174
+
175
+ if isinstance(prompt, str):
176
+ # Make both `str`
177
+ prefix = _seq2text(tokenizer, prefix, use_cache=False)
178
+ else:
179
+ # Make both `list[int]`
180
+ prefix = _seq2tokens(tokenizer, prefix, use_cache=False)
181
+
182
+ match_idx = len(prefix)
183
+ return match_idx if prompt[:match_idx] == prefix else None
184
+
185
+ return PromptIndex(get_match_index)
186
+
187
+ @staticmethod
188
+ def end() -> PromptIndex:
189
+ """
190
+ Resolves to the end of the prompt (after the last token).
191
+
192
+ This results in a match even if the prompt is empty.
193
+ """
194
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: len(prompt))
195
+
196
+
197
+ UpdateTarget: TypeAlias = PromptSeq | PromptIndex
198
+ """
199
+ The token sequence or text to update.
200
+ """
201
+
202
+ PromptUpdateTarget: TypeAlias = Callable[[int], UpdateTarget] | UpdateTarget
203
+ """
204
+ Given the index of the processed item within
205
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
206
+ output the corresponding token sequence (or text).
207
+
208
+ For convenience, you can directly pass in the token sequence (or text)
209
+ instead of a function if it does not depend on the input.
210
+ """
211
+
212
+
213
+ @dataclass
214
+ class PromptUpdateDetails(Generic[_S]):
215
+ """Details about the token sequence or text that are part of the update."""
216
+
217
+ full: _S
218
+ """The full content."""
219
+
220
+ is_embed: Callable[[TokenizerLike | None, PromptSeq], torch.Tensor] | None = None
221
+ """
222
+ Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
223
+ return a boolean mask of shape `(len(full),)` indicating which positions
224
+ of `full` to assign embeddings to.
225
+
226
+ `None` (default) means to assign embeddings to all positions of `full`.
227
+
228
+ The embeddings are obtained by calling
229
+ [`SupportsMultiModal.embed_multimodal`][vllm.model_executor.models.interfaces.SupportsMultiModal.embed_multimodal].
230
+ """
231
+
232
+ @staticmethod
233
+ def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
234
+ return PromptUpdateDetails(full=seq)
235
+
236
+ @staticmethod
237
+ def select_text(
238
+ seq: _S,
239
+ embed_text: str,
240
+ ) -> "PromptUpdateDetails[_S]":
241
+ def is_embed(tokenizer: TokenizerLike | None, full: PromptSeq) -> torch.Tensor:
242
+ embed_token_ids = _seq2tokens(tokenizer, embed_text, use_cache=False)
243
+ token_ids = _seq2tokens(tokenizer, full)
244
+
245
+ return torch.isin(
246
+ torch.tensor(token_ids),
247
+ torch.tensor(embed_token_ids),
248
+ )
249
+
250
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
251
+
252
+ @staticmethod
253
+ def select_token_id(
254
+ seq: _S,
255
+ embed_token_id: int,
256
+ ) -> "PromptUpdateDetails[_S]":
257
+ def is_embed(tokenizer: TokenizerLike | None, full: PromptSeq) -> torch.Tensor:
258
+ token_ids = _seq2tokens(tokenizer, full)
259
+
260
+ return torch.tensor(token_ids) == embed_token_id
261
+
262
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
263
+
264
+
265
+ PromptUpdateInfo: TypeAlias = PromptSeq | PromptUpdateDetails
266
+ """
267
+ The token sequence or text that are part of the update.
268
+
269
+ If only part of the content corresponds to feature placeholders, you can
270
+ use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
271
+ specify which part.
272
+ """
273
+
274
+ PromptUpdateContent: TypeAlias = Callable[[int], PromptUpdateInfo] | PromptUpdateInfo
275
+ """
276
+ Given the index of the processed item within
277
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
278
+ output the corresponding token sequence (or text).
279
+
280
+ For convenience, you can directly pass in the token sequence (or text)
281
+ instead of a function if it does not depend on the input.
282
+ """
283
+
284
+
285
+ class UpdateMode(str, Enum):
286
+ INSERT = "insert"
287
+ REPLACE = "replace"
288
+
289
+
290
+ @dataclass
291
+ class PromptUpdate(ABC):
292
+ """
293
+ Defines how to update a prompt with placeholder tokens.
294
+ """
295
+
296
+ modality: str
297
+ """The modality for which the update is made."""
298
+
299
+ target: PromptUpdateTarget
300
+ """The token sequence (or text) to update."""
301
+
302
+ @property
303
+ @abstractmethod
304
+ def content(self) -> PromptUpdateContent:
305
+ """The placeholder tokens that are part of the update."""
306
+ raise NotImplementedError
307
+
308
+ @property
309
+ @abstractmethod
310
+ def mode(self) -> UpdateMode:
311
+ """Defines how to update the prompt."""
312
+ raise NotImplementedError
313
+
314
+ def _resolve_target(self, item_idx: int) -> UpdateTarget:
315
+ target = self.target
316
+ if callable(target):
317
+ target = target(item_idx)
318
+
319
+ return target
320
+
321
+ def _resolve_content(self, item_idx: int) -> PromptUpdateDetails:
322
+ content = self.content
323
+ if callable(content):
324
+ content = content(item_idx)
325
+
326
+ if not isinstance(content, PromptUpdateDetails):
327
+ content = PromptUpdateDetails.from_seq(content)
328
+
329
+ return content
330
+
331
+ def resolve(self, item_idx: int) -> "ResolvedPromptUpdate":
332
+ """
333
+ Given the index of the processed item within
334
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
335
+ output a copy of this object with its lazy attributes resolved.
336
+ """
337
+ return ResolvedPromptUpdate(
338
+ modality=self.modality,
339
+ item_idx=item_idx,
340
+ mode=self.mode,
341
+ target=self._resolve_target(item_idx),
342
+ content=self._resolve_content(item_idx),
343
+ )
344
+
345
+
346
+ @dataclass
347
+ class PromptInsertion(PromptUpdate):
348
+ """
349
+ Defines how to insert placeholder tokens into a prompt.
350
+
351
+ Example:
352
+
353
+ For each image, insert a number of `<image>` feature placeholders
354
+ equal to the feature size of the vision encoder after the `<s>` token:
355
+
356
+ ```python
357
+ PromptInsertion(
358
+ modality="image",
359
+ target="<s>",
360
+ insertion="<image>" * image_feature_size,
361
+ )
362
+ ```
363
+
364
+ Insert these tokens at the start of the prompt:
365
+
366
+ ```python
367
+ PromptInsertion(
368
+ modality="image",
369
+ target=PromptIndexTargets.start(),
370
+ insertion="<image>" * image_feature_size,
371
+ )
372
+ ```
373
+
374
+ Insert these tokens after a prefix `Images:`:
375
+
376
+ ```python
377
+ PromptInsertion(
378
+ modality="image",
379
+ target=PromptIndexTargets.prefix("Images:"),
380
+ insertion="<image>" * image_feature_size,
381
+ )
382
+ ```
383
+
384
+ Insert these tokens at the end of the prompt:
385
+
386
+ ```python
387
+ PromptInsertion(
388
+ modality="image",
389
+ target=PromptIndexTargets.end(),
390
+ insertion="<image>" * image_feature_size,
391
+ )
392
+ ```
393
+ """
394
+
395
+ insertion: PromptUpdateContent = field(repr=False)
396
+ """
397
+ Given the index of the processed item within
398
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
399
+ output the token sequence (or text) to insert right after
400
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
401
+
402
+ For convenience, you can directly pass in the token sequence (or text)
403
+ instead of a function if it does not depend on the input.
404
+ """
405
+
406
+ @property
407
+ def content(self) -> PromptUpdateContent:
408
+ return self.insertion
409
+
410
+ @property
411
+ def mode(self) -> UpdateMode:
412
+ return UpdateMode.INSERT
413
+
414
+
415
+ @dataclass
416
+ class PromptReplacement(PromptUpdate):
417
+ """
418
+ Defines how to replace portions of an input prompt with placeholder tokens.
419
+
420
+ Example:
421
+
422
+ For each image, replace one `<image>` input placeholder in the prompt
423
+ with a number of `<image>` feature placeholders
424
+ equal to the feature size of the vision encoder:
425
+
426
+ ```python
427
+ PromptReplacement(
428
+ modality="image",
429
+ target="<image>",
430
+ replacement="<image>" * image_feature_size,
431
+ )
432
+ ```
433
+
434
+ As above, but further pad the feature placeholders with `<image_bos>`
435
+ and `<image_eos>`, which are not supposed to be passed to the vision
436
+ encoder:
437
+
438
+ ```python
439
+ PromptReplacement(
440
+ modality="image",
441
+ target="<image>",
442
+ replacement=PromptUpdateDetails(
443
+ full="".join(
444
+ [
445
+ "<image_bos>",
446
+ "<image>" * image_feature_size,
447
+ "<image_eos>",
448
+ ]
449
+ ),
450
+ features="<image>" * image_feature_size,
451
+ ),
452
+ )
453
+ ```
454
+
455
+ To avoid unnecessary tokenization during prompt replacement,
456
+ we recommended passing token sequences instead of text:
457
+
458
+ ```python
459
+ PromptReplacement(
460
+ modality="image",
461
+ target=[image_token_id],
462
+ replacement=PromptUpdateDetails(
463
+ full=(
464
+ [image_bos_id] + [image_token_id] * image_feature_size + [image_eos_id]
465
+ ),
466
+ features=[image_token_id] * image_feature_size,
467
+ ),
468
+ )
469
+ ```
470
+ """
471
+
472
+ replacement: PromptUpdateContent = field(repr=False)
473
+ """
474
+ Given the index of the processed item within
475
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
476
+ output the token sequence (or text) to replace
477
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
478
+
479
+ For convenience, you can directly pass in the token sequence (or text)
480
+ instead of a function if it does not depend on the input.
481
+ """
482
+
483
+ @property
484
+ def content(self) -> PromptUpdateContent:
485
+ return self.replacement
486
+
487
+ @property
488
+ def mode(self) -> UpdateMode:
489
+ return UpdateMode.REPLACE
490
+
491
+
492
+ class _HasModalityAttr(Protocol):
493
+ modality: str
494
+
495
+
496
+ class _HasModalityProp(Protocol):
497
+ @property
498
+ def modality(self) -> str: ...
499
+
500
+
501
+ _M = TypeVar("_M", bound=_HasModalityAttr | _HasModalityProp)
502
+
503
+
504
+ def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
505
+ """
506
+ Convenience function to apply
507
+ [`full_groupby`][vllm.utils.collection_utils.full_groupby]
508
+ based on modality.
509
+ """
510
+ return full_groupby(values, key=lambda x: x.modality)
511
+
512
+
513
+ class PromptTargetMatch(NamedTuple):
514
+ start_idx: int
515
+ end_idx: int
516
+
517
+
518
+ @dataclass(frozen=True)
519
+ class ResolvedPromptUpdate:
520
+ """
521
+ A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] with its
522
+ lazy attributes resolved, apart from those related to tokenization.
523
+ """
524
+
525
+ modality: str
526
+ """The modality for which the update is made."""
527
+
528
+ item_idx: int
529
+ """The index within `modality` of the item this update pertains to."""
530
+
531
+ mode: UpdateMode
532
+ """Defines how to update the prompt."""
533
+
534
+ target: UpdateTarget
535
+ """The token sequence (or text) to update."""
536
+
537
+ content: PromptUpdateDetails = field(repr=False)
538
+ """The placeholder tokens that are part of the update."""
539
+
540
+ def iter_token_matches(
541
+ self,
542
+ prompt: list[int],
543
+ tokenizer: TokenizerLike | None,
544
+ *,
545
+ start_idx: int = 0,
546
+ ) -> Generator[PromptTargetMatch]:
547
+ """Yield each instance of `self.target` found in `prompt`."""
548
+ target = self.target
549
+
550
+ if isinstance(target, PromptIndex):
551
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
552
+ if match_idx is not None:
553
+ yield PromptTargetMatch(match_idx, match_idx)
554
+
555
+ return
556
+
557
+ target_token_ids = _seq2tokens(tokenizer, target)
558
+
559
+ for match in iter_token_matches(prompt, target_token_ids, start_idx=start_idx):
560
+ yield PromptTargetMatch(match.start_idx, match.end_idx)
561
+
562
+ def iter_text_matches(
563
+ self,
564
+ prompt: str,
565
+ tokenizer: TokenizerLike | None,
566
+ *,
567
+ start_idx: int = 0,
568
+ ) -> Generator[PromptTargetMatch]:
569
+ """Yield each instance of `self.target` found in `prompt`."""
570
+ target = self.target
571
+
572
+ if isinstance(target, PromptIndex):
573
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
574
+ if match_idx is not None:
575
+ yield PromptTargetMatch(match_idx, match_idx)
576
+
577
+ return
578
+
579
+ target_text = _seq2text(tokenizer, target)
580
+
581
+ for match in re.finditer(re.escape(target_text), prompt, pos=start_idx):
582
+ yield PromptTargetMatch(match.start(), match.end())
583
+
584
+ def iter_matches(
585
+ self,
586
+ prompt: list[int] | str,
587
+ tokenizer: TokenizerLike | None,
588
+ *,
589
+ start_idx: int = 0,
590
+ ) -> Generator[PromptTargetMatch]:
591
+ """Yield each instance of `self.target` found in `prompt`."""
592
+ if isinstance(prompt, str):
593
+ return self.iter_text_matches(prompt, tokenizer, start_idx=start_idx)
594
+
595
+ return self.iter_token_matches(prompt, tokenizer, start_idx=start_idx)
596
+
597
+ def with_target(self, target: UpdateTarget):
598
+ return replace(self, target=target)
599
+
600
+ def with_content(self, content: PromptUpdateInfo):
601
+ if not isinstance(content, PromptUpdateDetails):
602
+ content = PromptUpdateDetails.from_seq(content)
603
+
604
+ return replace(self, content=content)
605
+
606
+
607
+ class _TokenMatch(NamedTuple):
608
+ start_idx: int
609
+ end_idx: int
610
+
611
+
612
+ def iter_token_matches(
613
+ token_ids: list[int],
614
+ match_ids: list[int],
615
+ *,
616
+ start_idx: int = 0,
617
+ ) -> Generator[_TokenMatch]:
618
+ """
619
+ Yield each occurrence of `match_ids` in `token_ids`.
620
+
621
+ Note that empty matches are ignored.
622
+ """
623
+ prompt_len = len(token_ids)
624
+ match_len = len(match_ids)
625
+
626
+ if match_len == 0:
627
+ return
628
+
629
+ while start_idx < prompt_len - match_len + 1:
630
+ end_idx = start_idx + match_len
631
+
632
+ if token_ids[start_idx:end_idx] == match_ids:
633
+ yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
634
+
635
+ # Exclude overlapping matches
636
+ start_idx = end_idx
637
+ else:
638
+ start_idx += 1
639
+
640
+
641
+ def replace_token_matches(
642
+ token_ids: list[int],
643
+ match_ids: list[int],
644
+ new_ids: list[int],
645
+ ) -> list[int]:
646
+ """
647
+ Replace each occurrence of `match_ids` in `token_ids`
648
+ with `new_ids`.
649
+
650
+ Note that empty matches are ignored.
651
+ """
652
+ out_seqs = list[list[int]]()
653
+ prev_end_idx = 0
654
+
655
+ for match in iter_token_matches(token_ids, match_ids):
656
+ start_idx = match.start_idx
657
+ end_idx = match.end_idx
658
+
659
+ out_seqs.append(token_ids[prev_end_idx:start_idx])
660
+ out_seqs.append(new_ids)
661
+ prev_end_idx = end_idx
662
+
663
+ out_seqs.append(token_ids[prev_end_idx:])
664
+
665
+ return flatten_2d_lists(out_seqs)
666
+
667
+
668
+ @dataclass
669
+ class PlaceholderFeaturesInfo:
670
+ modality: str
671
+ item_idx: int
672
+ start_idx: int
673
+ tokens: list[int]
674
+ is_embed: torch.Tensor | None
675
+
676
+ @property
677
+ def length(self) -> int:
678
+ return len(self.tokens)
679
+
680
+ def to_range(self) -> PlaceholderRange:
681
+ # TODO: Is it worth it to optimize this by stripping the
682
+ # leading and ending positions where `is_embed=False`?
683
+ return PlaceholderRange(
684
+ offset=self.start_idx,
685
+ length=self.length,
686
+ is_embed=self.is_embed,
687
+ )
688
+
689
+
690
+ _MatchToApply = tuple[tuple[str, int], tuple[PromptTargetMatch, int]]
691
+
692
+
693
+ def _find_matches(
694
+ prompt: _S,
695
+ mm_prompt_updates: "MultiModalPromptUpdates",
696
+ tokenizer: TokenizerLike | None,
697
+ *,
698
+ prev_end_idx: int = 0,
699
+ current_result: "MultiModalPromptUpdatesApplyResult",
700
+ ) -> tuple[UpdateMode | None, list[_MatchToApply]]:
701
+ mode: UpdateMode | None = None
702
+ mm_matches = dict[tuple[str, int], tuple[PromptTargetMatch, int]]()
703
+
704
+ for modality, modality_updates in mm_prompt_updates.items():
705
+ for item_idx, item_updates in enumerate(modality_updates):
706
+ if current_result[modality][item_idx] is not None:
707
+ continue # Updates have already been applied for this item
708
+
709
+ for update_idx, update in enumerate(item_updates):
710
+ if (modality, item_idx) in mm_matches:
711
+ break # Already found a match for this item
712
+
713
+ for match in update.iter_matches(
714
+ prompt,
715
+ tokenizer,
716
+ start_idx=prev_end_idx,
717
+ ):
718
+ # All matches should share the same mode
719
+ if mode is None:
720
+ mode = update.mode
721
+ elif mode != update.mode:
722
+ continue
723
+
724
+ mm_matches[(modality, item_idx)] = match, update_idx
725
+ break # Get only the first valid match per item
726
+
727
+ # Prioritize earlier matches
728
+ matches_to_apply = sorted(mm_matches.items(), key=lambda item: item[1][0])
729
+
730
+ # To avoid conflicts, only replace one non-empty item at a time
731
+ if mode == UpdateMode.REPLACE:
732
+ matches_to_apply_ = list[_MatchToApply]()
733
+ has_non_empty_matches = False
734
+
735
+ for item in matches_to_apply:
736
+ _, (match, _) = item
737
+ if match.start_idx == match.end_idx:
738
+ matches_to_apply_.append(item)
739
+ elif not has_non_empty_matches:
740
+ has_non_empty_matches = True
741
+ matches_to_apply_.append(item)
742
+
743
+ matches_to_apply = matches_to_apply_
744
+
745
+ return mode, matches_to_apply
746
+
747
+
748
+ def _all_items_found(
749
+ mm_item_counts: dict[str, int],
750
+ mm_found_counts: dict[str, int],
751
+ ) -> bool:
752
+ return all(
753
+ item_idx >= mm_item_counts[modality]
754
+ for modality, item_idx in mm_found_counts.items()
755
+ )
756
+
757
+
758
+ def _apply_matches(
759
+ prompt: _S,
760
+ mm_prompt_updates: "MultiModalPromptUpdates",
761
+ tokenizer: TokenizerLike | None,
762
+ ) -> tuple[list[_S], "MultiModalPromptUpdatesApplyResult"]:
763
+ mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
764
+
765
+ out_seqs = list[str | list[int]]()
766
+ out_result: MultiModalPromptUpdatesApplyResult = {
767
+ m: [None] * len(items) for m, items in mm_prompt_updates.items()
768
+ }
769
+
770
+ # Early exit if no items to find
771
+ mm_found_counts = {
772
+ m: sum(r is not None for r in res) for m, res in out_result.items()
773
+ }
774
+ if _all_items_found(mm_item_counts, mm_found_counts):
775
+ return [prompt], out_result
776
+
777
+ prev_end_idx = 0
778
+ while True:
779
+ mode, matches_to_apply = _find_matches(
780
+ prompt,
781
+ mm_prompt_updates,
782
+ tokenizer,
783
+ prev_end_idx=prev_end_idx,
784
+ current_result=out_result,
785
+ )
786
+
787
+ if mode is None:
788
+ break # No more matches to find
789
+
790
+ for (modality, item_idx), (match, update_idx) in matches_to_apply:
791
+ matched_update = mm_prompt_updates[modality][item_idx][update_idx]
792
+ matched_content = matched_update.content.full
793
+
794
+ if mode == UpdateMode.INSERT:
795
+ end_idx_to_insert = match.end_idx
796
+ elif mode == UpdateMode.REPLACE:
797
+ end_idx_to_insert = match.start_idx
798
+ else:
799
+ assert_never(mode)
800
+
801
+ out_seqs.append(prompt[prev_end_idx:end_idx_to_insert])
802
+ out_seqs.append(
803
+ _seq2text(tokenizer, matched_content)
804
+ if isinstance(prompt, str)
805
+ else _seq2tokens(tokenizer, matched_content)
806
+ )
807
+ out_result[modality][item_idx] = update_idx
808
+
809
+ # Exclude overlapping matches
810
+ prev_end_idx = match.end_idx
811
+
812
+ # Early exit if all items found
813
+ mm_found_counts = {
814
+ m: sum(r is not None for r in res) for m, res in out_result.items()
815
+ }
816
+ if _all_items_found(mm_item_counts, mm_found_counts):
817
+ break
818
+
819
+ out_seqs.append(prompt[prev_end_idx:])
820
+
821
+ return cast(list[_S], out_seqs), out_result
822
+
823
+
824
+ def apply_token_matches(
825
+ prompt: list[int],
826
+ mm_prompt_updates: "MultiModalPromptUpdates",
827
+ tokenizer: TokenizerLike | None,
828
+ ) -> tuple[list[int], "MultiModalPromptUpdatesApplyResult"]:
829
+ """
830
+ Apply the updates in `mm_prompt_updates` to `prompt`.
831
+
832
+ Matches are exclusive even when multiple modalities share
833
+ the same placeholder tokens. In that case, the modality that
834
+ appears earlier in `mm_prompt_updates` takes priority.
835
+ """
836
+ token_id_seqs, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
837
+
838
+ return flatten_2d_lists(token_id_seqs), result
839
+
840
+
841
+ def apply_text_matches(
842
+ prompt: str,
843
+ mm_prompt_updates: "MultiModalPromptUpdates",
844
+ tokenizer: TokenizerLike | None,
845
+ ) -> tuple[str, "MultiModalPromptUpdatesApplyResult"]:
846
+ """
847
+ Apply the updates in `mm_prompt_updates` to `prompt`.
848
+
849
+ Matches are exclusive even when multiple modalities share
850
+ the same placeholder tokens. In that case, the modality that
851
+ appears earlier in `mm_prompt_updates` takes priority.
852
+ """
853
+ texts, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
854
+
855
+ return "".join(texts), result
856
+
857
+
858
+ def _iter_placeholders(
859
+ prompt: list[int],
860
+ mm_prompt_updates: "MultiModalPromptUpdates",
861
+ tokenizer: TokenizerLike | None,
862
+ ) -> Iterable[PlaceholderFeaturesInfo]:
863
+ """
864
+ Yield each set of placeholder tokens found in `prompt`.
865
+
866
+ Matches are exclusive even when multiple modalities share
867
+ the same placeholder tokens. In that case, the modality that
868
+ appears earlier in `mm_prompt_updates` takes priority.
869
+
870
+ Note that empty matches are ignored.
871
+ """
872
+ mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
873
+ item_idx_by_modality = {modality: 0 for modality in mm_prompt_updates}
874
+
875
+ if _all_items_found(mm_item_counts, item_idx_by_modality):
876
+ return
877
+
878
+ prompt_len = len(prompt)
879
+ start_idx = 0
880
+
881
+ while start_idx < prompt_len:
882
+ found = False
883
+
884
+ for modality, modality_updates in mm_prompt_updates.items():
885
+ item_idx = item_idx_by_modality[modality]
886
+ if item_idx >= mm_item_counts.get(modality, 0):
887
+ continue
888
+
889
+ for update in modality_updates[item_idx]:
890
+ content = update.content
891
+ content_tokens_full = _seq2tokens(tokenizer, content.full)
892
+ content_len_full = len(content_tokens_full)
893
+ end_idx_full = start_idx + content_len_full
894
+
895
+ if content_len_full == 0 or end_idx_full > prompt_len:
896
+ continue
897
+
898
+ if prompt[start_idx:end_idx_full] == content_tokens_full:
899
+ content_is_embed = content.is_embed
900
+ if content_is_embed is not None:
901
+ content_is_embed = content_is_embed(tokenizer, content.full)
902
+
903
+ yield PlaceholderFeaturesInfo(
904
+ modality=modality,
905
+ item_idx=item_idx,
906
+ start_idx=start_idx,
907
+ tokens=content_tokens_full,
908
+ is_embed=content_is_embed,
909
+ )
910
+
911
+ # Exclude overlapping matches
912
+ start_idx = end_idx_full
913
+ item_idx_by_modality[modality] += 1
914
+ found = True
915
+ break
916
+
917
+ if found:
918
+ if _all_items_found(mm_item_counts, item_idx_by_modality):
919
+ return
920
+
921
+ break # Go back to the outer while loop
922
+
923
+ if not found:
924
+ start_idx += 1
925
+
926
+
927
+ def find_mm_placeholders(
928
+ prompt: list[int],
929
+ mm_prompt_updates: "MultiModalPromptUpdates",
930
+ tokenizer: TokenizerLike | None,
931
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
932
+ it = _iter_placeholders(prompt, mm_prompt_updates, tokenizer)
933
+ return dict(full_groupby_modality(it))
934
+
935
+
936
+ _T = TypeVar("_T")
937
+ _C = TypeVar("_C", bound=PretrainedConfig, default=PretrainedConfig)
938
+ _P = TypeVar("_P", bound=ProcessorMixin, default=ProcessorMixin)
939
+
940
+
941
+ @dataclass(frozen=True)
942
+ class InputProcessingContext:
943
+ """
944
+ Contains information about the model which may be used to
945
+ modify the inputs.
946
+ """
947
+
948
+ model_config: ModelConfig
949
+ """The configuration of the model."""
950
+
951
+ tokenizer: TokenizerLike | None
952
+ """The tokenizer used to tokenize the inputs."""
953
+
954
+ def get_tokenizer(self) -> TokenizerLike:
955
+ if self.tokenizer is None:
956
+ raise ValueError(
957
+ "You cannot pass text prompts when `skip_tokenizer_init=True`"
958
+ )
959
+
960
+ return self.tokenizer
961
+
962
+ @overload
963
+ def get_hf_config(self, /) -> PretrainedConfig: ...
964
+
965
+ @overload
966
+ def get_hf_config(
967
+ self,
968
+ typ: type[_C] | tuple[type[_C], ...],
969
+ /,
970
+ ) -> _C: ...
971
+
972
+ def get_hf_config(
973
+ self,
974
+ typ: type[Any] | tuple[type[Any], ...] | None = None,
975
+ /,
976
+ ) -> Any:
977
+ """
978
+ Get the HuggingFace configuration
979
+ (`transformers.PretrainedConfig`) of the model,
980
+ additionally checking its type.
981
+
982
+ Raises:
983
+ TypeError: If the configuration is not of the specified type.
984
+ """
985
+ if typ is None:
986
+ from transformers.configuration_utils import PretrainedConfig
987
+
988
+ typ = PretrainedConfig
989
+
990
+ hf_config = self.model_config.hf_config
991
+ if not isinstance(hf_config, typ):
992
+ raise TypeError(
993
+ "Invalid type of HuggingFace config. "
994
+ f"Expected type: {typ}, but "
995
+ f"found type: {type(hf_config)}"
996
+ )
997
+
998
+ return hf_config
999
+
1000
+ def get_hf_image_processor_config(self) -> dict[str, Any]:
1001
+ """
1002
+ Get the HuggingFace image processor configuration of the model.
1003
+ """
1004
+ return self.model_config.hf_image_processor_config
1005
+
1006
+ def get_mm_config(self):
1007
+ """
1008
+ Get the multimodal config of the model.
1009
+
1010
+ Raises:
1011
+ RuntimeError: If the model is not a multimodal model.
1012
+ """
1013
+ mm_config = self.model_config.multimodal_config
1014
+ if mm_config is None:
1015
+ raise RuntimeError("Not a multimodal model")
1016
+
1017
+ return mm_config
1018
+
1019
+ @overload
1020
+ def get_hf_processor(self, /, **kwargs: object) -> ProcessorMixin: ...
1021
+
1022
+ @overload
1023
+ def get_hf_processor(
1024
+ self,
1025
+ typ: type[_P] | tuple[type[_P], ...],
1026
+ /,
1027
+ **kwargs: object,
1028
+ ) -> _P: ...
1029
+
1030
+ def get_hf_processor(
1031
+ self,
1032
+ typ: type[Any] | tuple[type[Any], ...] | None = None,
1033
+ /,
1034
+ **kwargs: object,
1035
+ ) -> Any:
1036
+ """
1037
+ Get the HuggingFace processor
1038
+ (`transformers.ProcessorMixin`) of the model,
1039
+ additionally checking its type.
1040
+
1041
+ Raises:
1042
+ TypeError: If the processor is not of the specified type.
1043
+ """
1044
+ if typ is None:
1045
+ from transformers.processing_utils import ProcessorMixin
1046
+
1047
+ typ = ProcessorMixin
1048
+
1049
+ return cached_processor_from_config(
1050
+ self.model_config,
1051
+ processor_cls=typ,
1052
+ tokenizer=self.tokenizer,
1053
+ **kwargs,
1054
+ )
1055
+
1056
+ def init_processor(
1057
+ self,
1058
+ typ: type[_T],
1059
+ /,
1060
+ **kwargs: object,
1061
+ ) -> _T:
1062
+ """
1063
+ Initialize a HuggingFace-like processor class, merging the
1064
+ keyword arguments with those in the model's configuration.
1065
+ """
1066
+ mm_config = self.model_config.get_multimodal_config()
1067
+ base_kwargs = mm_config.mm_processor_kwargs
1068
+ if base_kwargs is None:
1069
+ base_kwargs = {}
1070
+
1071
+ merged_kwargs = {**base_kwargs, **kwargs}
1072
+
1073
+ return typ(**merged_kwargs)
1074
+
1075
+ def _postprocess_output(
1076
+ self,
1077
+ output: JSONTree,
1078
+ ) -> JSONTree:
1079
+ def _postprocess_one(x: object):
1080
+ if isinstance(x, torch.Tensor): # noqa: SIM102
1081
+ # This mimics the behavior of transformers.BatchFeature
1082
+ if x.is_floating_point():
1083
+ x = x.to(dtype=self.model_config.dtype)
1084
+
1085
+ return x
1086
+
1087
+ return json_map_leaves(_postprocess_one, output)
1088
+
1089
+ def call_hf_processor(
1090
+ self,
1091
+ hf_processor: ProcessorMixin,
1092
+ data: Mapping[str, object],
1093
+ kwargs: Mapping[str, object] = {},
1094
+ *,
1095
+ num_tries: int = 1,
1096
+ max_tries: int = 5,
1097
+ ) -> BatchFeature | JSONTree:
1098
+ """
1099
+ Call `hf_processor` on the prompt `data`
1100
+ (text, image, audio...) with configurable options `kwargs`.
1101
+ """
1102
+ assert callable(hf_processor)
1103
+
1104
+ mm_config = self.model_config.get_multimodal_config()
1105
+ merged_kwargs = mm_config.merge_mm_processor_kwargs(kwargs)
1106
+
1107
+ allowed_kwargs = get_allowed_kwarg_only_overrides(
1108
+ hf_processor,
1109
+ merged_kwargs,
1110
+ requires_kw_only=False,
1111
+ allow_var_kwargs=True,
1112
+ )
1113
+
1114
+ try:
1115
+ output = hf_processor(**data, **allowed_kwargs, return_tensors="pt")
1116
+ except Exception as exc:
1117
+ # See https://github.com/huggingface/tokenizers/issues/537
1118
+ if (
1119
+ isinstance(exc, RuntimeError)
1120
+ and exc
1121
+ and exc.args[0] == "Already borrowed"
1122
+ and num_tries < max_tries
1123
+ ):
1124
+ logger.warning(
1125
+ "Failed to acquire tokenizer in current thread. "
1126
+ "Retrying (%d/%d)...",
1127
+ num_tries,
1128
+ max_tries,
1129
+ )
1130
+ time.sleep(0.5)
1131
+ return self.call_hf_processor(
1132
+ hf_processor,
1133
+ data,
1134
+ kwargs,
1135
+ num_tries=num_tries + 1,
1136
+ max_tries=max_tries,
1137
+ )
1138
+
1139
+ msg = (
1140
+ f"Failed to apply {type(hf_processor).__name__} "
1141
+ f"on data={data} with kwargs={allowed_kwargs}"
1142
+ )
1143
+
1144
+ raise ValueError(msg) from exc
1145
+
1146
+ # this emulates output.to(dtype=self.model_config.dtype)
1147
+ from transformers.feature_extraction_utils import BatchFeature
1148
+
1149
+ if isinstance(output, BatchFeature):
1150
+ output_ = self._postprocess_output(output.data)
1151
+ return BatchFeature(output_)
1152
+
1153
+ logger.warning_once(
1154
+ "%s did not return `BatchFeature`. "
1155
+ "Make sure to match the behaviour of `ProcessorMixin` when "
1156
+ "implementing custom processors.",
1157
+ type(hf_processor).__name__,
1158
+ )
1159
+
1160
+ return self._postprocess_output(output)
1161
+
1162
+
1163
+ class BaseProcessingInfo:
1164
+ """Base class to provide the information necessary for data processing."""
1165
+
1166
+ def __init__(self, ctx: InputProcessingContext) -> None:
1167
+ super().__init__()
1168
+
1169
+ self.ctx = ctx
1170
+
1171
+ @property
1172
+ def model_id(self) -> str:
1173
+ return self.ctx.model_config.model
1174
+
1175
+ def get_tokenizer(self) -> TokenizerLike:
1176
+ return self.ctx.get_tokenizer()
1177
+
1178
+ def get_hf_config(self) -> PretrainedConfig:
1179
+ return self.ctx.get_hf_config()
1180
+
1181
+ def get_hf_processor(self, **kwargs: object) -> ProcessorMixin:
1182
+ """
1183
+ Subclasses can override this method to handle
1184
+ specific kwargs from model config or user inputs.
1185
+ """
1186
+ return self.ctx.get_hf_processor(**kwargs)
1187
+
1188
+ @abstractmethod
1189
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
1190
+ """
1191
+ Return the maximum supported number of items for each modality.
1192
+
1193
+ A value of `None` means unlimited number of items.
1194
+
1195
+ Omitting a modality from the returned dictionary means that
1196
+ it is not supported at all.
1197
+ """
1198
+ raise NotImplementedError
1199
+
1200
+ def get_allowed_mm_limits(self) -> Mapping[str, int]:
1201
+ """Return the maximum allowed number of items for each modality."""
1202
+ supported_mm_limits = self.get_supported_mm_limits()
1203
+ mm_config = self.ctx.get_mm_config()
1204
+
1205
+ allowed_limits = dict[str, int]()
1206
+ for modality, supported_limit in supported_mm_limits.items():
1207
+ user_limit = mm_config.get_limit_per_prompt(modality)
1208
+
1209
+ allowed_limits[modality] = (
1210
+ user_limit
1211
+ if supported_limit is None
1212
+ else min(user_limit, supported_limit)
1213
+ )
1214
+
1215
+ return allowed_limits
1216
+
1217
+ def get_mm_max_tokens_per_item(
1218
+ self,
1219
+ seq_len: int,
1220
+ mm_counts: Mapping[str, int],
1221
+ ) -> Mapping[str, int] | None:
1222
+ """
1223
+ Return the maximum number of tokens per item of for each modality.
1224
+
1225
+ When `None` (the default) is returned, vLLM will generate dummy inputs
1226
+ (images/videos) at maximum possible sizes and process them to determine
1227
+ the maximum token count per modality.
1228
+
1229
+ This approach works but can be very slow for certain models (e.g.,
1230
+ Qwen2.5-VL), leading to very long startup time. For better performance,
1231
+ each model can override this method to return pre-computed maximum token
1232
+ counts, avoiding the need for dummy input generation and processing.
1233
+
1234
+ Note:
1235
+ The maximum number of tokens per item of each modality returned
1236
+ from this function should respect the model's maximum sequence
1237
+ length and the maximum number of items of each modality allowed,
1238
+ and agree with dummy inputs (images/videos) at maximum possible
1239
+ sizes.
1240
+ """
1241
+ return None
1242
+
1243
+
1244
+ _I = TypeVar("_I", bound=BaseProcessingInfo)
1245
+
1246
+ MultiModalHashes = dict[str, list[str]]
1247
+ """
1248
+ A collection of the multi-modal hash for each item, with a similar structure as
1249
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1250
+ """
1251
+
1252
+ MultiModalIsCached = dict[str, list[bool]]
1253
+ """
1254
+ A collection of the `is_cached` flag for each item, with a similar structure as
1255
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1256
+ """
1257
+
1258
+ MultiModalPromptUpdates = Mapping[str, list[Sequence[ResolvedPromptUpdate]]]
1259
+ """
1260
+ A collection of prompt updates with a similar structure as
1261
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1262
+ """
1263
+
1264
+ MultiModalPromptUpdatesApplyResult = Mapping[str, list[int | None]]
1265
+ """
1266
+ For an item `MultiModalPromptUpdates[k][i]`,
1267
+ `MultiModalPromptUpdatesApplyResult[k][i]` represents the index of the
1268
+ `ResolvedPromptUpdate` instance that has been applied, or `None` if none of the
1269
+ `ResolvedPromptUpdate` instances have been applied.
1270
+ """
1271
+
1272
+
1273
+ class MultiModalProcessingInfo(NamedTuple):
1274
+ kwargs: MultiModalKwargsOptionalItems
1275
+ hashes: MultiModalHashes
1276
+ prompt_updates: MultiModalPromptUpdates
1277
+
1278
+
1279
+ class BaseMultiModalProcessor(ABC, Generic[_I]):
1280
+ """
1281
+ Abstract base class to process multi-modal inputs to be used in vLLM.
1282
+
1283
+ Not to be confused with `transformers.ProcessorMixin`.
1284
+ """
1285
+
1286
+ def __init__(
1287
+ self,
1288
+ info: _I,
1289
+ dummy_inputs: "BaseDummyInputsBuilder[_I]",
1290
+ *,
1291
+ cache: BaseMultiModalProcessorCache | None = None,
1292
+ ) -> None:
1293
+ super().__init__()
1294
+
1295
+ self.info = info
1296
+ self.dummy_inputs = dummy_inputs
1297
+ self.cache = cache
1298
+
1299
+ self.data_parser = self._get_data_parser()
1300
+
1301
+ # Avoid unnecessary recomputation
1302
+ self._supported_mm_limits = self.info.get_supported_mm_limits()
1303
+ self._allowed_mm_limits = self.info.get_allowed_mm_limits()
1304
+
1305
+ @property
1306
+ def supported_mm_limits(self):
1307
+ return self._supported_mm_limits
1308
+
1309
+ @property
1310
+ def allowed_mm_limits(self):
1311
+ return self._allowed_mm_limits
1312
+
1313
+ def __call__(
1314
+ self,
1315
+ prompt: str,
1316
+ mm_data: MultiModalDataDict,
1317
+ hf_processor_mm_kwargs: Mapping[str, object],
1318
+ *,
1319
+ mm_uuids: MultiModalUUIDDict | None = None,
1320
+ ) -> MultiModalInputs:
1321
+ return self.apply(prompt, mm_data, hf_processor_mm_kwargs, mm_uuids=mm_uuids)
1322
+
1323
+ def _get_data_parser(self) -> MultiModalDataParser:
1324
+ """
1325
+ Construct a parser to preprocess multi-modal data items
1326
+ before passing them to
1327
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1328
+
1329
+ You can support additional modalities by creating a subclass
1330
+ of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
1331
+ that has additional subparsers.
1332
+ """
1333
+ return MultiModalDataParser()
1334
+
1335
+ def validate_num_items(
1336
+ self,
1337
+ modality: str,
1338
+ num_items: int,
1339
+ ) -> None:
1340
+ supported_limit = self.supported_mm_limits.get(modality, 0)
1341
+ allowed_limit = self.allowed_mm_limits.get(modality, 0)
1342
+
1343
+ if supported_limit is None:
1344
+ supported_limit = allowed_limit
1345
+
1346
+ limit = min(supported_limit, allowed_limit)
1347
+
1348
+ if num_items > limit:
1349
+ msg = f"At most {limit} {modality}(s) may be provided in one prompt."
1350
+
1351
+ if num_items <= supported_limit:
1352
+ msg += " Set `--limit-mm-per-prompt` to increase this limit."
1353
+
1354
+ raise ValueError(msg)
1355
+
1356
+ def _to_mm_items(
1357
+ self,
1358
+ mm_data: MultiModalDataDict,
1359
+ ) -> MultiModalDataItems:
1360
+ """
1361
+ Normalize
1362
+ [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
1363
+ to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
1364
+ before passing them to
1365
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1366
+ """
1367
+ mm_items = self.data_parser.parse_mm_data(mm_data)
1368
+
1369
+ mm_config = self.info.ctx.model_config.get_multimodal_config()
1370
+ if not mm_config.enable_mm_embeds:
1371
+ for modality, items in mm_items.items():
1372
+ if isinstance(items, (EmbeddingItems, DictEmbeddingItems)):
1373
+ raise ValueError(
1374
+ f"You must set `--enable-mm-embeds` to input "
1375
+ f"`{modality}_embeds`"
1376
+ )
1377
+
1378
+ for modality, items in mm_items.items():
1379
+ self.validate_num_items(modality, len(items))
1380
+
1381
+ return mm_items
1382
+
1383
+ @abstractmethod
1384
+ def _get_mm_fields_config(
1385
+ self,
1386
+ hf_inputs: BatchFeature,
1387
+ hf_processor_mm_kwargs: Mapping[str, object],
1388
+ ) -> Mapping[str, MultiModalFieldConfig]:
1389
+ """Given the HF-processed data, output the metadata of each field."""
1390
+ raise NotImplementedError
1391
+
1392
+ @abstractmethod
1393
+ def _get_prompt_updates(
1394
+ self,
1395
+ mm_items: MultiModalDataItems,
1396
+ hf_processor_mm_kwargs: Mapping[str, object],
1397
+ out_mm_kwargs: MultiModalKwargsItems,
1398
+ ) -> Sequence[PromptUpdate]:
1399
+ """
1400
+ Given the original multi-modal items for this modality
1401
+ and HF-processed data, output the updates to perform.
1402
+
1403
+ The information returned by this method is used to update token inputs
1404
+ which bypass the HF processor. It is also used to update the output of
1405
+ HF processor if the HF process does not apply prompt updates to text
1406
+ inputs.
1407
+
1408
+ Moreover, this information is critical to determine the token positions
1409
+ in order to construct
1410
+ [`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
1411
+ for each multi-modal item.
1412
+ """
1413
+ raise NotImplementedError
1414
+
1415
+ def _bind_and_group_updates(
1416
+ self,
1417
+ prompt_updates: Sequence[PromptUpdate],
1418
+ mm_item_counts: Mapping[str, int],
1419
+ ) -> MultiModalPromptUpdates:
1420
+ return {
1421
+ modality: [
1422
+ [update.resolve(item_idx) for update in updates]
1423
+ for item_idx in range(mm_item_counts.get(modality, 0))
1424
+ ]
1425
+ for modality, updates in full_groupby_modality(prompt_updates)
1426
+ }
1427
+
1428
+ def _get_mm_prompt_updates(
1429
+ self,
1430
+ mm_items: MultiModalDataItems,
1431
+ hf_processor_mm_kwargs: Mapping[str, object],
1432
+ out_mm_kwargs: MultiModalKwargsItems,
1433
+ ) -> MultiModalPromptUpdates:
1434
+ unbound_prompt_updates = self._get_prompt_updates(
1435
+ mm_items=mm_items,
1436
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1437
+ out_mm_kwargs=out_mm_kwargs,
1438
+ )
1439
+
1440
+ mm_prompt_updates = self._bind_and_group_updates(
1441
+ unbound_prompt_updates,
1442
+ mm_items.get_all_counts(),
1443
+ )
1444
+
1445
+ for modality, prompt_updates in mm_prompt_updates.items():
1446
+ for item_idx, item_prompt_updates in enumerate(prompt_updates):
1447
+ if len(item_prompt_updates) > 1:
1448
+ logger.warning_once(
1449
+ "Detected %d prompt updates for `mm_items[%r][%s]`. "
1450
+ "Multiple prompt updates per item is now "
1451
+ "deprecated and may be removed in v0.13. "
1452
+ "Instead, please specify dynamic update targets "
1453
+ "in the same prompt update definition by passing "
1454
+ "a function to `PromptUpdate.target`.",
1455
+ len(prompt_updates),
1456
+ modality,
1457
+ item_idx,
1458
+ )
1459
+
1460
+ return mm_prompt_updates
1461
+
1462
+ def _find_mm_placeholders(
1463
+ self,
1464
+ new_token_ids: list[int],
1465
+ mm_prompt_updates: MultiModalPromptUpdates,
1466
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
1467
+ tokenizer = self.info.get_tokenizer()
1468
+
1469
+ return find_mm_placeholders(new_token_ids, mm_prompt_updates, tokenizer)
1470
+
1471
+ def _get_hf_mm_data(
1472
+ self,
1473
+ mm_items: MultiModalDataItems,
1474
+ ) -> tuple[Mapping[str, object], Mapping[str, object]]:
1475
+ processor_data = dict[str, object]()
1476
+ passthrough_data = dict[str, object]()
1477
+
1478
+ for items in mm_items.values():
1479
+ processor_data.update(items.get_processor_data())
1480
+ passthrough_data.update(items.get_passthrough_data())
1481
+
1482
+ return processor_data, passthrough_data
1483
+
1484
+ def _call_hf_processor(
1485
+ self,
1486
+ prompt: str,
1487
+ # Not to be confused with `mm_data` in `self.apply`.
1488
+ # This refers to the data to be passed to HF processor.
1489
+ mm_data: Mapping[str, object],
1490
+ mm_kwargs: Mapping[str, object],
1491
+ tok_kwargs: Mapping[str, object],
1492
+ ) -> BatchFeature:
1493
+ """
1494
+ Call the HF processor on the prompt text and
1495
+ associated multi-modal data.
1496
+ """
1497
+ return self.info.ctx.call_hf_processor(
1498
+ self.info.get_hf_processor(**mm_kwargs),
1499
+ dict(text=prompt, **mm_data),
1500
+ dict(**mm_kwargs, **tok_kwargs),
1501
+ )
1502
+
1503
+ def _hf_processor_applies_updates(
1504
+ self,
1505
+ prompt_text: str,
1506
+ mm_items: MultiModalDataItems,
1507
+ hf_processor_mm_kwargs: Mapping[str, object],
1508
+ tokenization_kwargs: Mapping[str, object],
1509
+ ) -> bool:
1510
+ """
1511
+ Return whether the HF processor applies prompt updates.
1512
+
1513
+ For most HF processors, this should be `True` when multi-modal
1514
+ data items are passed, but `False` when multi-modal embeddings
1515
+ are passed.
1516
+ """
1517
+ return not any(
1518
+ isinstance(items, (EmbeddingItems, DictEmbeddingItems))
1519
+ for items in mm_items.values()
1520
+ )
1521
+
1522
+ def _apply_hf_processor_text_mm(
1523
+ self,
1524
+ prompt_text: str,
1525
+ mm_items: MultiModalDataItems,
1526
+ hf_processor_mm_kwargs: Mapping[str, object],
1527
+ tokenization_kwargs: Mapping[str, object],
1528
+ ) -> tuple[list[int], BatchFeature, bool]:
1529
+ """
1530
+ Apply the HF processor on the prompt text and multi-modal data
1531
+ together.
1532
+
1533
+ In addition, return whether prompt updates have been applied.
1534
+ """
1535
+ processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
1536
+
1537
+ processed_data = self._call_hf_processor(
1538
+ prompt=prompt_text,
1539
+ mm_data=processor_data,
1540
+ mm_kwargs=hf_processor_mm_kwargs,
1541
+ tok_kwargs=tokenization_kwargs,
1542
+ )
1543
+ processed_data.update(passthrough_data)
1544
+
1545
+ (prompt_ids,) = processed_data.pop("input_ids").tolist()
1546
+
1547
+ is_update_applied = self._hf_processor_applies_updates(
1548
+ prompt_text=prompt_text,
1549
+ mm_items=mm_items,
1550
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1551
+ tokenization_kwargs=tokenization_kwargs,
1552
+ )
1553
+
1554
+ return prompt_ids, processed_data, is_update_applied
1555
+
1556
+ def _apply_hf_processor_text_only(
1557
+ self,
1558
+ prompt_text: str,
1559
+ tokenization_kwargs: Mapping[str, object],
1560
+ ) -> list[int]:
1561
+ """
1562
+ Apply the HF processor on the prompt text only.
1563
+
1564
+ Since HF processor requires that text and multi-modal items
1565
+ correspond to each other, we create dummy multi-modal items
1566
+ to go along with the text.
1567
+ """
1568
+ prompt_ids, _, _ = self._apply_hf_processor_text_mm(
1569
+ prompt_text=prompt_text,
1570
+ mm_items=MultiModalDataItems({}),
1571
+ hf_processor_mm_kwargs={},
1572
+ tokenization_kwargs=tokenization_kwargs,
1573
+ )
1574
+
1575
+ return prompt_ids
1576
+
1577
+ def _apply_hf_processor_tokens_only(
1578
+ self,
1579
+ prompt_tokens: list[int],
1580
+ ) -> list[int]:
1581
+ """
1582
+ Apply the HF processor on the prompt tokens only.
1583
+
1584
+ Most HF processors accept prompt text but not prompt tokens.
1585
+ If the HF processor adds or removes tokens that are not related to
1586
+ multi-modal data, you should override this method so it is consistent
1587
+ with the output of
1588
+ [`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
1589
+ on the
1590
+ corresponding text.
1591
+ """
1592
+ return prompt_tokens
1593
+
1594
+ def _apply_hf_processor_mm_only(
1595
+ self,
1596
+ mm_items: MultiModalDataItems,
1597
+ hf_processor_mm_kwargs: Mapping[str, object],
1598
+ tokenization_kwargs: Mapping[str, object],
1599
+ ) -> BatchFeature:
1600
+ """
1601
+ Apply the HF processor on the multi-modal data only.
1602
+
1603
+ Since HF processor requires that text and multi-modal items
1604
+ correspond to each other, we generate dummy text using
1605
+ [`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
1606
+ to go along with the multi-modal data.
1607
+ """
1608
+ mm_counts = mm_items.get_all_counts()
1609
+
1610
+ _, mm_processed_data, _ = self._apply_hf_processor_text_mm(
1611
+ prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
1612
+ mm_items=mm_items,
1613
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1614
+ tokenization_kwargs=tokenization_kwargs,
1615
+ )
1616
+
1617
+ return mm_processed_data
1618
+
1619
+ def _apply_hf_processor_main(
1620
+ self,
1621
+ prompt: str | list[int],
1622
+ mm_items: MultiModalDataItems,
1623
+ hf_processor_mm_kwargs: Mapping[str, object],
1624
+ tokenization_kwargs: Mapping[str, object],
1625
+ *,
1626
+ enable_hf_prompt_update: bool,
1627
+ ) -> tuple[list[int], BatchFeature, bool]:
1628
+ """
1629
+ Apply the HF processor on the prompt text and multi-modal data.
1630
+
1631
+ In addition, return whether prompt updates have been applied
1632
+ (for most HF processors, this should be `True`).
1633
+
1634
+ Note:
1635
+ If `enable_hf_prompt_update=False`, we use HF processor
1636
+ to perform prompt updates if available; HF processor requires
1637
+ that the prompt corresponds to multi-modal items.
1638
+ """
1639
+ if isinstance(prompt, str):
1640
+ if enable_hf_prompt_update:
1641
+ return self._apply_hf_processor_text_mm(
1642
+ prompt_text=prompt,
1643
+ mm_items=mm_items,
1644
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1645
+ tokenization_kwargs=tokenization_kwargs,
1646
+ )
1647
+
1648
+ prompt_ids = self._apply_hf_processor_text_only(prompt, tokenization_kwargs)
1649
+ else:
1650
+ prompt_ids = self._apply_hf_processor_tokens_only(prompt)
1651
+
1652
+ mm_processed_data = self._apply_hf_processor_mm_only(
1653
+ mm_items=mm_items,
1654
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1655
+ tokenization_kwargs=tokenization_kwargs,
1656
+ )
1657
+
1658
+ return prompt_ids, mm_processed_data, False
1659
+
1660
+ def _hash_mm_items(
1661
+ self,
1662
+ mm_items: MultiModalDataItems,
1663
+ hf_processor_mm_kwargs: Mapping[str, object],
1664
+ tokenization_kwargs: Mapping[str, object],
1665
+ *,
1666
+ mm_uuids: MultiModalUUIDDict | None = None,
1667
+ ) -> MultiModalHashes:
1668
+ """Create MM hashes to be returned.
1669
+
1670
+
1671
+ Note: When overrides are provided via callers of `apply`,
1672
+ `_hash_mm_items` will be bypassed and the overrides will be used.
1673
+ """
1674
+ model_id = self.info.model_id
1675
+
1676
+ hashes: MultiModalHashes = {}
1677
+ mm_uuids = mm_uuids or {}
1678
+
1679
+ for modality, items in mm_items.items():
1680
+ if modality in mm_uuids:
1681
+ mm_uuids_per_modality = mm_uuids[modality]
1682
+ if isinstance(mm_uuids_per_modality, str):
1683
+ mm_uuids_per_modality = [mm_uuids_per_modality]
1684
+
1685
+ # For None entries, compute a hash; otherwise, use provided ID.
1686
+ computed: list[str] = []
1687
+ for i, item in enumerate(items):
1688
+ item_uuid = mm_uuids_per_modality[i]
1689
+
1690
+ # NOTE: Even if a item_uuid is provided, we still compute a
1691
+ # hash if `hf_processor_mm_kwargs` or `tokenization_kwargs`
1692
+ # are provided. This is because the processed multimodal
1693
+ # inputs can be different depending on the processor kwargs.
1694
+ if (
1695
+ item_uuid is None
1696
+ or hf_processor_mm_kwargs
1697
+ or tokenization_kwargs
1698
+ ):
1699
+ # NOTE: use provided hash string to hash with kwargs
1700
+ # if available for better performance.
1701
+ item = item_uuid if item_uuid is not None else item
1702
+ computed.append(
1703
+ MultiModalHasher.hash_kwargs(
1704
+ model_id=model_id,
1705
+ **{modality: item},
1706
+ **hf_processor_mm_kwargs,
1707
+ **tokenization_kwargs,
1708
+ )
1709
+ )
1710
+ else:
1711
+ computed.append(item_uuid)
1712
+ hashes[modality] = computed
1713
+ else:
1714
+ hashes[modality] = [
1715
+ MultiModalHasher.hash_kwargs(
1716
+ model_id=model_id,
1717
+ **{modality: item},
1718
+ **hf_processor_mm_kwargs,
1719
+ **tokenization_kwargs,
1720
+ )
1721
+ for item in items
1722
+ ]
1723
+
1724
+ return hashes
1725
+
1726
+ def _get_cache_missing_items(
1727
+ self,
1728
+ cache: BaseMultiModalProcessorCache,
1729
+ mm_data_items: MultiModalDataItems,
1730
+ mm_hashes: MultiModalHashes,
1731
+ ) -> tuple[MultiModalIsCached, MultiModalDataItems]:
1732
+ mm_is_cached = {
1733
+ modality: cache.is_cached(hashes) for modality, hashes in mm_hashes.items()
1734
+ }
1735
+
1736
+ mm_missing_idxs = {
1737
+ modality: [
1738
+ idx
1739
+ for idx, item_is_cached in enumerate(items_is_cached)
1740
+ if not item_is_cached
1741
+ ]
1742
+ for modality, items_is_cached in mm_is_cached.items()
1743
+ }
1744
+ mm_missing_data = {}
1745
+ for modality, idxs in mm_missing_idxs.items():
1746
+ missing_modality_data = []
1747
+ for idx in idxs:
1748
+ data = mm_data_items[modality][idx]
1749
+ if data is None:
1750
+ raise ValueError(
1751
+ f"Cache miss for {modality} at index {idx} "
1752
+ f"but data is not provided."
1753
+ )
1754
+ else:
1755
+ missing_modality_data.append(data)
1756
+ mm_missing_data[modality] = missing_modality_data
1757
+
1758
+ return mm_is_cached, self._to_mm_items(mm_missing_data)
1759
+
1760
+ def _recompute_cached_prompt_update(
1761
+ self,
1762
+ cached_update: ResolvedPromptUpdate,
1763
+ new_item_idx: int,
1764
+ ) -> ResolvedPromptUpdate:
1765
+ """
1766
+ Override this if other attributes of `ResolvedPromptUpdate`
1767
+ also need to be recomputed after retrieving from the cache.
1768
+ """
1769
+ return replace(cached_update, item_idx=new_item_idx)
1770
+
1771
+ def _merge_mm_kwargs(
1772
+ self,
1773
+ cache: BaseMultiModalProcessorCache,
1774
+ mm_hashes: MultiModalHashes,
1775
+ mm_is_cached: MultiModalIsCached,
1776
+ mm_missing_kwargs: MultiModalKwargsItems,
1777
+ mm_missing_prompt_updates: MultiModalPromptUpdates,
1778
+ ) -> tuple[MultiModalKwargsOptionalItems, MultiModalPromptUpdates]:
1779
+ # Need to touch all mm hashes before update to avoid hash in updated
1780
+ # list evict during update
1781
+ for hashes in mm_hashes.values():
1782
+ for item_hash in hashes:
1783
+ cache.touch_sender_cache_item(item_hash)
1784
+
1785
+ mm_missing_next_idx = defaultdict[str, int](lambda: 0)
1786
+
1787
+ merged_kwargs = defaultdict[str, list[MultiModalKwargsItem | None]](list)
1788
+ merged_prompt_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](
1789
+ list
1790
+ )
1791
+ for modality, hashes in mm_hashes.items():
1792
+ missing_kwargs = mm_missing_kwargs.get(modality, [])
1793
+ missing_prompt_updates = mm_missing_prompt_updates.get(modality, [])
1794
+
1795
+ for item_idx, item_hash in enumerate(hashes):
1796
+ if not mm_is_cached[modality][item_idx]:
1797
+ missing_next_idx = mm_missing_next_idx[modality]
1798
+ missing_kwargs_item = missing_kwargs[missing_next_idx]
1799
+ missing_updates_item = missing_prompt_updates[missing_next_idx]
1800
+
1801
+ mm_missing_next_idx[modality] += 1
1802
+
1803
+ item = missing_kwargs_item, missing_updates_item
1804
+ else:
1805
+ item = None
1806
+
1807
+ kwargs, updates = cache.get_and_update_item(item, item_hash)
1808
+
1809
+ merged_kwargs[modality].append(kwargs)
1810
+ merged_prompt_updates[modality].append(
1811
+ [
1812
+ self._recompute_cached_prompt_update(update, item_idx)
1813
+ for update in updates
1814
+ ]
1815
+ )
1816
+
1817
+ mm_kwargs = MultiModalKwargsItems(merged_kwargs)
1818
+ mm_prompt_updates = dict(merged_prompt_updates)
1819
+
1820
+ return mm_kwargs, mm_prompt_updates
1821
+
1822
+ def _apply_hf_processor(
1823
+ self,
1824
+ prompt: str | list[int],
1825
+ mm_data_items: MultiModalDataItems,
1826
+ hf_processor_mm_kwargs: Mapping[str, object],
1827
+ tokenization_kwargs: Mapping[str, object],
1828
+ *,
1829
+ mm_uuids: MultiModalUUIDDict | None = None,
1830
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
1831
+ (
1832
+ prompt_ids,
1833
+ mm_processed_data,
1834
+ is_update_applied,
1835
+ ) = self._apply_hf_processor_main(
1836
+ prompt=prompt,
1837
+ mm_items=mm_data_items,
1838
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1839
+ tokenization_kwargs=tokenization_kwargs,
1840
+ enable_hf_prompt_update=True,
1841
+ )
1842
+
1843
+ mm_kwargs = MultiModalKwargsItems.from_hf_inputs(
1844
+ mm_processed_data,
1845
+ self._get_mm_fields_config(mm_processed_data, hf_processor_mm_kwargs),
1846
+ )
1847
+
1848
+ # Use overrides if provided; fallback to data-dependent hashing.
1849
+ mm_hashes = self._hash_mm_items(
1850
+ mm_data_items,
1851
+ hf_processor_mm_kwargs,
1852
+ tokenization_kwargs,
1853
+ mm_uuids=mm_uuids,
1854
+ )
1855
+
1856
+ mm_prompt_updates = self._get_mm_prompt_updates(
1857
+ mm_data_items,
1858
+ hf_processor_mm_kwargs,
1859
+ mm_kwargs,
1860
+ )
1861
+
1862
+ mm_info = MultiModalProcessingInfo(
1863
+ kwargs=mm_kwargs,
1864
+ hashes=mm_hashes,
1865
+ prompt_updates=mm_prompt_updates,
1866
+ )
1867
+
1868
+ return prompt_ids, mm_info, is_update_applied
1869
+
1870
+ def _cached_apply_hf_processor(
1871
+ self,
1872
+ prompt: str | list[int],
1873
+ mm_data_items: MultiModalDataItems,
1874
+ hf_processor_mm_kwargs: Mapping[str, object],
1875
+ tokenization_kwargs: Mapping[str, object],
1876
+ *,
1877
+ mm_uuids: MultiModalUUIDDict | None = None,
1878
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
1879
+ """
1880
+ Apply the HF processor on the full prompt text,
1881
+ caching the results and reusing cached results.
1882
+ """
1883
+ cache = self.cache
1884
+
1885
+ _, passthrough_data = self._get_hf_mm_data(mm_data_items)
1886
+ if cache is None or passthrough_data:
1887
+ return self._apply_hf_processor(
1888
+ prompt=prompt,
1889
+ mm_data_items=mm_data_items,
1890
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1891
+ tokenization_kwargs=tokenization_kwargs,
1892
+ mm_uuids=mm_uuids,
1893
+ )
1894
+
1895
+ mm_hashes = self._hash_mm_items(
1896
+ mm_data_items,
1897
+ hf_processor_mm_kwargs,
1898
+ tokenization_kwargs,
1899
+ mm_uuids=mm_uuids,
1900
+ )
1901
+
1902
+ mm_is_cached, mm_missing_data_items = self._get_cache_missing_items(
1903
+ cache=cache,
1904
+ mm_data_items=mm_data_items,
1905
+ mm_hashes=mm_hashes,
1906
+ )
1907
+
1908
+ # NOTE: `prompt` does not correspond to `mm_missing_data_items`,
1909
+ # so we can't apply prompt updates until the new multimodal
1910
+ # items are combined with the cached multimodal items
1911
+ (
1912
+ prompt_ids,
1913
+ mm_missing_processed_data,
1914
+ is_update_applied,
1915
+ ) = self._apply_hf_processor_main(
1916
+ prompt=prompt,
1917
+ mm_items=mm_missing_data_items,
1918
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1919
+ tokenization_kwargs=tokenization_kwargs,
1920
+ enable_hf_prompt_update=False,
1921
+ )
1922
+
1923
+ mm_missing_kwargs = MultiModalKwargsItems.from_hf_inputs(
1924
+ mm_missing_processed_data,
1925
+ self._get_mm_fields_config(
1926
+ mm_missing_processed_data, hf_processor_mm_kwargs
1927
+ ),
1928
+ )
1929
+
1930
+ mm_missing_prompt_updates = self._get_mm_prompt_updates(
1931
+ mm_missing_data_items,
1932
+ hf_processor_mm_kwargs,
1933
+ mm_missing_kwargs,
1934
+ )
1935
+
1936
+ mm_kwargs, mm_prompt_updates = self._merge_mm_kwargs(
1937
+ cache,
1938
+ mm_hashes=mm_hashes,
1939
+ mm_is_cached=mm_is_cached,
1940
+ mm_missing_kwargs=mm_missing_kwargs,
1941
+ mm_missing_prompt_updates=mm_missing_prompt_updates,
1942
+ )
1943
+
1944
+ mm_info = MultiModalProcessingInfo(
1945
+ kwargs=mm_kwargs,
1946
+ hashes=mm_hashes,
1947
+ prompt_updates=mm_prompt_updates,
1948
+ )
1949
+
1950
+ return prompt_ids, mm_info, is_update_applied
1951
+
1952
+ def _apply_token_matches(
1953
+ self,
1954
+ prompt: list[int],
1955
+ mm_prompt_updates: MultiModalPromptUpdates,
1956
+ ) -> tuple[list[int], MultiModalPromptUpdatesApplyResult]:
1957
+ tokenizer = self.info.get_tokenizer()
1958
+ return apply_token_matches(prompt, mm_prompt_updates, tokenizer)
1959
+
1960
+ def _apply_text_matches(
1961
+ self,
1962
+ prompt: str,
1963
+ mm_prompt_updates: MultiModalPromptUpdates,
1964
+ ) -> tuple[str, MultiModalPromptUpdatesApplyResult]:
1965
+ tokenizer = self.info.get_tokenizer()
1966
+ return apply_text_matches(prompt, mm_prompt_updates, tokenizer)
1967
+
1968
+ def _apply_prompt_updates(
1969
+ self,
1970
+ token_ids: list[int],
1971
+ mm_prompt_updates: MultiModalPromptUpdates,
1972
+ ) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
1973
+ tokenizer = self.info.get_tokenizer()
1974
+
1975
+ new_token_ids, match_result = self._apply_token_matches(
1976
+ token_ids,
1977
+ mm_prompt_updates,
1978
+ )
1979
+
1980
+ # If the search text does not represent a special token,
1981
+ # it may have different token IDs in the prompt, because
1982
+ # the tokens may go across the boundaries of the search text.
1983
+ # ----
1984
+ # e.g. when searching for "foo" in "food", if "food" itself makes
1985
+ # up a token, then the token ID of "foo" will not appear at all
1986
+ # ----
1987
+ # Since it is inefficient to search for all possible tokenizations
1988
+ # of the search text in the prompt, we instead perform string-based
1989
+ # updates on the decoded token IDs, then encode them back.
1990
+ if not all(
1991
+ all(update_idx is not None for update_idx in update_idxs)
1992
+ for update_idxs in match_result.values()
1993
+ ):
1994
+ new_text, match_result = self._apply_text_matches(
1995
+ _seq2text(tokenizer, token_ids, use_cache=False),
1996
+ mm_prompt_updates,
1997
+ )
1998
+
1999
+ new_token_ids = _seq2tokens(tokenizer, new_text, use_cache=False)
2000
+
2001
+ matched_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](list)
2002
+ for modality, update_idxs in match_result.items():
2003
+ for item_idx, update_idx in enumerate(update_idxs):
2004
+ assert update_idx is not None, (
2005
+ "Failed to apply prompt replacement for "
2006
+ f"mm_items[{modality!r}][{item_idx}]"
2007
+ )
2008
+
2009
+ matched_updates[modality].append(
2010
+ [mm_prompt_updates[modality][item_idx][update_idx]]
2011
+ )
2012
+
2013
+ placeholders = self._find_mm_placeholders(
2014
+ new_token_ids,
2015
+ dict(matched_updates),
2016
+ )
2017
+
2018
+ return new_token_ids, placeholders
2019
+
2020
+ def _validate_mm_kwargs(
2021
+ self,
2022
+ mm_kwargs: MultiModalKwargsOptionalItems,
2023
+ mm_item_counts: Mapping[str, int],
2024
+ ) -> None:
2025
+ for modality, item_count in mm_item_counts.items():
2026
+ items = mm_kwargs.get(modality, [])
2027
+
2028
+ if len(items) != item_count:
2029
+ raise RuntimeError(
2030
+ f"Expected there to be {item_count} {modality} items in "
2031
+ f"keyword arguments corresponding to {item_count} "
2032
+ f"{modality} data items, but only found {len(items)}! "
2033
+ "There is likely a problem with your "
2034
+ "implementation of merged multi-modal processor for this "
2035
+ "model (usually arising from an inconsistency between "
2036
+ "`_call_hf_processor` and `_get_mm_fields_config`)."
2037
+ )
2038
+
2039
+ def _validate_mm_updates(
2040
+ self,
2041
+ mm_updates: MultiModalPromptUpdates,
2042
+ mm_item_counts: Mapping[str, int],
2043
+ ) -> None:
2044
+ for modality, item_count in mm_item_counts.items():
2045
+ placeholders = mm_updates.get(modality, [])
2046
+
2047
+ if len(placeholders) != item_count:
2048
+ raise RuntimeError(
2049
+ f"Expected there to be {item_count} prompt updates "
2050
+ f"corresponding to {item_count} {modality} items, but "
2051
+ f"instead found {len(placeholders)} prompt updates! "
2052
+ "This is likely because you forgot to include input "
2053
+ "placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
2054
+ "in the prompt. If the model has a chat template, make "
2055
+ "sure you have applied it before calling `LLM.generate`."
2056
+ )
2057
+
2058
+ def _validate_mm_placeholders(
2059
+ self,
2060
+ mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
2061
+ mm_item_counts: Mapping[str, int],
2062
+ ) -> None:
2063
+ for modality, item_count in mm_item_counts.items():
2064
+ placeholders = mm_placeholders.get(modality, [])
2065
+
2066
+ if len(placeholders) != item_count:
2067
+ raise RuntimeError(
2068
+ f"Expected there to be {item_count} prompt placeholders "
2069
+ f"corresponding to {item_count} {modality} items, but "
2070
+ f"instead found {len(placeholders)} prompt placeholders! "
2071
+ "Make sure the implementation of `_call_hf_processor` and "
2072
+ "`_get_mm_fields_config` are consistent with each other."
2073
+ )
2074
+
2075
+ def _maybe_apply_prompt_updates(
2076
+ self,
2077
+ mm_items: MultiModalDataItems,
2078
+ prompt_ids: list[int],
2079
+ mm_kwargs: MultiModalKwargsOptionalItems,
2080
+ mm_prompt_updates: MultiModalPromptUpdates,
2081
+ is_update_applied: bool,
2082
+ ) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
2083
+ mm_item_counts = mm_items.get_all_counts()
2084
+ self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
2085
+ self._validate_mm_updates(mm_prompt_updates, mm_item_counts)
2086
+
2087
+ if is_update_applied:
2088
+ mm_placeholders = self._find_mm_placeholders(
2089
+ prompt_ids,
2090
+ mm_prompt_updates,
2091
+ )
2092
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
2093
+ else:
2094
+ prompt_ids, mm_placeholders = self._apply_prompt_updates(
2095
+ prompt_ids,
2096
+ mm_prompt_updates,
2097
+ )
2098
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
2099
+
2100
+ return prompt_ids, mm_placeholders
2101
+
2102
+ def apply(
2103
+ self,
2104
+ prompt: str | list[int],
2105
+ mm_data: MultiModalDataDict,
2106
+ hf_processor_mm_kwargs: Mapping[str, object],
2107
+ tokenization_kwargs: Mapping[str, object] | None = None,
2108
+ *,
2109
+ mm_uuids: MultiModalUUIDDict | None = None,
2110
+ ) -> MultiModalInputs:
2111
+ """
2112
+ Process multi-modal inputs to be used in vLLM.
2113
+
2114
+ The main steps are:
2115
+
2116
+ 1. Apply HF Processor on prompt text and multi-modal data together,
2117
+ outputting token IDs and processed tensors.
2118
+ 2. Find and update sequences in the token IDs with placeholder tokens.
2119
+ The number of placeholder tokens equals the feature size of the
2120
+ multi-modal data outputted by the multi-modal encoder.
2121
+ 3. Extract information about the placeholder tokens from the
2122
+ processed token IDs.
2123
+ """
2124
+ mm_items = self._to_mm_items(mm_data)
2125
+
2126
+ if tokenization_kwargs is None:
2127
+ tokenization_kwargs = {}
2128
+
2129
+ (
2130
+ prompt_ids,
2131
+ mm_info,
2132
+ is_update_applied,
2133
+ ) = self._cached_apply_hf_processor(
2134
+ prompt,
2135
+ mm_items,
2136
+ hf_processor_mm_kwargs,
2137
+ tokenization_kwargs=tokenization_kwargs,
2138
+ mm_uuids=mm_uuids,
2139
+ )
2140
+
2141
+ # NOTE: tokenization_kwargs are not required to init processor
2142
+ prompt_ids, mm_placeholders = self._maybe_apply_prompt_updates(
2143
+ mm_items=mm_items,
2144
+ prompt_ids=prompt_ids,
2145
+ mm_kwargs=mm_info.kwargs,
2146
+ mm_prompt_updates=mm_info.prompt_updates,
2147
+ is_update_applied=is_update_applied,
2148
+ )
2149
+
2150
+ mm_placeholder_ranges = {
2151
+ modality: [item.to_range() for item in placeholders]
2152
+ for modality, placeholders in mm_placeholders.items()
2153
+ }
2154
+
2155
+ return MultiModalInputs(
2156
+ type="multimodal",
2157
+ prompt_token_ids=prompt_ids,
2158
+ mm_kwargs=mm_info.kwargs,
2159
+ mm_hashes=mm_info.hashes,
2160
+ mm_placeholders=mm_placeholder_ranges,
2161
+ )
2162
+
2163
+
2164
+ class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
2165
+ @abstractmethod
2166
+ def create_encoder_prompt(
2167
+ self,
2168
+ prompt: str | list[int],
2169
+ mm_data: MultiModalDataDict,
2170
+ ) -> str | list[int]:
2171
+ """
2172
+ Create input prompt for the encoder. HF processor will be applied on
2173
+ this prompt during profiling and generation.
2174
+ """
2175
+ raise NotImplementedError
2176
+
2177
+ @property
2178
+ def pad_dummy_encoder_prompt(self) -> bool:
2179
+ return False
2180
+
2181
+ def create_decoder_prompt(
2182
+ self,
2183
+ prompt: str | list[int],
2184
+ mm_data: MultiModalDataDict,
2185
+ ) -> str | list[int]:
2186
+ """Create input prompt for the decoder."""
2187
+ return prompt
2188
+
2189
+ def _get_enc_dec_inputs(
2190
+ self,
2191
+ prompt: str | list[int],
2192
+ mm_data: MultiModalDataDict,
2193
+ encoder_inputs: MultiModalInputs,
2194
+ ):
2195
+ tokenizer = self.info.get_tokenizer()
2196
+ decoder_prompt_raw = self.create_decoder_prompt(prompt, mm_data)
2197
+ if isinstance(decoder_prompt_raw, str):
2198
+ decoder_prompt_ids = tokenizer.encode(
2199
+ decoder_prompt_raw, add_special_tokens=False
2200
+ )
2201
+ else:
2202
+ decoder_prompt_ids = decoder_prompt_raw
2203
+
2204
+ mm_inputs = MultiModalEncDecInputs(
2205
+ encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
2206
+ **encoder_inputs,
2207
+ )
2208
+ mm_inputs["prompt_token_ids"] = decoder_prompt_ids
2209
+ return mm_inputs
2210
+
2211
+ def apply(
2212
+ self,
2213
+ prompt: str | list[int],
2214
+ mm_data: MultiModalDataDict,
2215
+ hf_processor_mm_kwargs: Mapping[str, object],
2216
+ tokenization_kwargs: Mapping[str, object] | None = None,
2217
+ *,
2218
+ mm_uuids: MultiModalUUIDDict | None = None,
2219
+ ) -> MultiModalEncDecInputs:
2220
+ """
2221
+ Process multi-modal inputs to be used in vLLM.
2222
+ The main processing steps are modified to fit encoder-decoder model:
2223
+ 1. Create encoder prompt from input prompt text.
2224
+ 2. Apply the HF processor on encoder prompt.
2225
+ 3. Copy the input prompt text as decoder prompt inputs.
2226
+ """
2227
+ encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
2228
+ encoder_inputs = super().apply(
2229
+ encoder_prompt,
2230
+ mm_data,
2231
+ hf_processor_mm_kwargs,
2232
+ tokenization_kwargs,
2233
+ mm_uuids=mm_uuids,
2234
+ )
2235
+
2236
+ return self._get_enc_dec_inputs(
2237
+ prompt=prompt,
2238
+ mm_data=mm_data,
2239
+ encoder_inputs=encoder_inputs,
2240
+ )