vllm-cpu 0.12.0__cp313-cp313-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1600) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +107 -0
  3. vllm/_aiter_ops.py +1018 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2925 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +434 -0
  16. vllm/attention/backends/registry.py +286 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +975 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +469 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +51 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +136 -0
  37. vllm/attention/selector.py +268 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +117 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +41 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  56. vllm/benchmarks/sweep/serve.py +448 -0
  57. vllm/benchmarks/sweep/serve_sla.py +492 -0
  58. vllm/benchmarks/sweep/server.py +114 -0
  59. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  60. vllm/benchmarks/sweep/utils.py +4 -0
  61. vllm/benchmarks/throughput.py +799 -0
  62. vllm/collect_env.py +857 -0
  63. vllm/compilation/__init__.py +0 -0
  64. vllm/compilation/activation_quant_fusion.py +209 -0
  65. vllm/compilation/backends.py +827 -0
  66. vllm/compilation/base_static_graph.py +57 -0
  67. vllm/compilation/caching.py +180 -0
  68. vllm/compilation/collective_fusion.py +1234 -0
  69. vllm/compilation/compiler_interface.py +639 -0
  70. vllm/compilation/counter.py +48 -0
  71. vllm/compilation/cuda_graph.py +208 -0
  72. vllm/compilation/decorators.py +614 -0
  73. vllm/compilation/fix_functionalization.py +253 -0
  74. vllm/compilation/fusion.py +374 -0
  75. vllm/compilation/fusion_attn.py +359 -0
  76. vllm/compilation/fx_utils.py +91 -0
  77. vllm/compilation/inductor_pass.py +133 -0
  78. vllm/compilation/matcher_utils.py +315 -0
  79. vllm/compilation/monitor.py +62 -0
  80. vllm/compilation/noop_elimination.py +134 -0
  81. vllm/compilation/partition_rules.py +72 -0
  82. vllm/compilation/pass_manager.py +136 -0
  83. vllm/compilation/piecewise_backend.py +121 -0
  84. vllm/compilation/post_cleanup.py +21 -0
  85. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  86. vllm/compilation/sequence_parallelism.py +363 -0
  87. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  88. vllm/compilation/vllm_inductor_pass.py +173 -0
  89. vllm/compilation/wrapper.py +260 -0
  90. vllm/config/__init__.py +102 -0
  91. vllm/config/cache.py +220 -0
  92. vllm/config/compilation.py +1154 -0
  93. vllm/config/device.py +75 -0
  94. vllm/config/ec_transfer.py +110 -0
  95. vllm/config/kv_events.py +56 -0
  96. vllm/config/kv_transfer.py +114 -0
  97. vllm/config/load.py +124 -0
  98. vllm/config/lora.py +96 -0
  99. vllm/config/model.py +2274 -0
  100. vllm/config/multimodal.py +247 -0
  101. vllm/config/observability.py +131 -0
  102. vllm/config/parallel.py +653 -0
  103. vllm/config/pooler.py +124 -0
  104. vllm/config/scheduler.py +297 -0
  105. vllm/config/speculative.py +643 -0
  106. vllm/config/speech_to_text.py +38 -0
  107. vllm/config/structured_outputs.py +94 -0
  108. vllm/config/utils.py +324 -0
  109. vllm/config/vllm.py +1353 -0
  110. vllm/connections.py +189 -0
  111. vllm/device_allocator/__init__.py +0 -0
  112. vllm/device_allocator/cumem.py +327 -0
  113. vllm/distributed/__init__.py +6 -0
  114. vllm/distributed/communication_op.py +43 -0
  115. vllm/distributed/device_communicators/__init__.py +0 -0
  116. vllm/distributed/device_communicators/all2all.py +490 -0
  117. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  118. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  119. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  120. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  121. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  122. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  123. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  124. vllm/distributed/device_communicators/pynccl.py +386 -0
  125. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  126. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  127. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  128. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  129. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  130. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  131. vllm/distributed/device_communicators/symm_mem.py +156 -0
  132. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  133. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  134. vllm/distributed/ec_transfer/__init__.py +14 -0
  135. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  136. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  137. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  138. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  139. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  140. vllm/distributed/eplb/__init__.py +8 -0
  141. vllm/distributed/eplb/async_worker.py +115 -0
  142. vllm/distributed/eplb/eplb_state.py +1154 -0
  143. vllm/distributed/eplb/rebalance_algo.py +260 -0
  144. vllm/distributed/eplb/rebalance_execute.py +532 -0
  145. vllm/distributed/kv_events.py +371 -0
  146. vllm/distributed/kv_transfer/README.md +29 -0
  147. vllm/distributed/kv_transfer/__init__.py +20 -0
  148. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  150. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  151. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  152. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/base.py +575 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2480 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  173. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  174. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  175. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  177. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  178. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1790 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2106 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +188 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  192. vllm/entrypoints/api_server.py +184 -0
  193. vllm/entrypoints/chat_utils.py +1837 -0
  194. vllm/entrypoints/cli/__init__.py +13 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  201. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  202. vllm/entrypoints/cli/collect_env.py +38 -0
  203. vllm/entrypoints/cli/main.py +79 -0
  204. vllm/entrypoints/cli/openai.py +256 -0
  205. vllm/entrypoints/cli/run_batch.py +68 -0
  206. vllm/entrypoints/cli/serve.py +249 -0
  207. vllm/entrypoints/cli/types.py +29 -0
  208. vllm/entrypoints/constants.py +10 -0
  209. vllm/entrypoints/context.py +572 -0
  210. vllm/entrypoints/dynamic_lora.py +57 -0
  211. vllm/entrypoints/harmony_utils.py +535 -0
  212. vllm/entrypoints/launcher.py +175 -0
  213. vllm/entrypoints/llm.py +1762 -0
  214. vllm/entrypoints/logger.py +84 -0
  215. vllm/entrypoints/openai/__init__.py +0 -0
  216. vllm/entrypoints/openai/api_server.py +1891 -0
  217. vllm/entrypoints/openai/cli_args.py +302 -0
  218. vllm/entrypoints/openai/orca_metrics.py +120 -0
  219. vllm/entrypoints/openai/protocol.py +2465 -0
  220. vllm/entrypoints/openai/run_batch.py +631 -0
  221. vllm/entrypoints/openai/serving_chat.py +1782 -0
  222. vllm/entrypoints/openai/serving_completion.py +716 -0
  223. vllm/entrypoints/openai/serving_engine.py +1478 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_responses.py +2032 -0
  226. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  227. vllm/entrypoints/openai/serving_tokens.py +281 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  231. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  232. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  233. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  234. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  235. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  236. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  237. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  238. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  239. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  240. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  241. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +322 -0
  242. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  243. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  244. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +324 -0
  245. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  246. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  247. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  248. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  249. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  250. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  251. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  252. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  253. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  254. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  255. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  256. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  257. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  258. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  259. vllm/entrypoints/openai/utils.py +49 -0
  260. vllm/entrypoints/pooling/__init__.py +16 -0
  261. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  262. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  263. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  264. vllm/entrypoints/pooling/classify/serving.py +237 -0
  265. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  266. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  267. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  268. vllm/entrypoints/pooling/embed/serving.py +697 -0
  269. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  270. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  271. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  272. vllm/entrypoints/pooling/pooling/serving.py +348 -0
  273. vllm/entrypoints/pooling/score/__init__.py +0 -0
  274. vllm/entrypoints/pooling/score/api_router.py +149 -0
  275. vllm/entrypoints/pooling/score/protocol.py +145 -0
  276. vllm/entrypoints/pooling/score/serving.py +505 -0
  277. vllm/entrypoints/renderer.py +409 -0
  278. vllm/entrypoints/responses_utils.py +148 -0
  279. vllm/entrypoints/sagemaker/__init__.py +4 -0
  280. vllm/entrypoints/sagemaker/routes.py +118 -0
  281. vllm/entrypoints/score_utils.py +240 -0
  282. vllm/entrypoints/ssl.py +78 -0
  283. vllm/entrypoints/tool.py +143 -0
  284. vllm/entrypoints/tool_server.py +234 -0
  285. vllm/entrypoints/utils.py +319 -0
  286. vllm/env_override.py +378 -0
  287. vllm/envs.py +1710 -0
  288. vllm/forward_context.py +358 -0
  289. vllm/inputs/__init__.py +44 -0
  290. vllm/inputs/data.py +359 -0
  291. vllm/inputs/parse.py +137 -0
  292. vllm/inputs/preprocess.py +716 -0
  293. vllm/logger.py +298 -0
  294. vllm/logging_utils/__init__.py +13 -0
  295. vllm/logging_utils/dump_input.py +83 -0
  296. vllm/logging_utils/formatter.py +127 -0
  297. vllm/logging_utils/lazy.py +20 -0
  298. vllm/logging_utils/log_time.py +34 -0
  299. vllm/logits_process.py +121 -0
  300. vllm/logprobs.py +206 -0
  301. vllm/lora/__init__.py +0 -0
  302. vllm/lora/layers/__init__.py +42 -0
  303. vllm/lora/layers/base.py +66 -0
  304. vllm/lora/layers/base_linear.py +165 -0
  305. vllm/lora/layers/column_parallel_linear.py +577 -0
  306. vllm/lora/layers/fused_moe.py +747 -0
  307. vllm/lora/layers/logits_processor.py +203 -0
  308. vllm/lora/layers/replicated_linear.py +70 -0
  309. vllm/lora/layers/row_parallel_linear.py +176 -0
  310. vllm/lora/layers/utils.py +74 -0
  311. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  312. vllm/lora/lora_weights.py +227 -0
  313. vllm/lora/models.py +903 -0
  314. vllm/lora/ops/__init__.py +0 -0
  315. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  316. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  317. vllm/lora/ops/torch_ops/__init__.py +20 -0
  318. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  319. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  320. vllm/lora/ops/triton_ops/__init__.py +21 -0
  321. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +661 -0
  322. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  323. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  324. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  325. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  326. vllm/lora/ops/triton_ops/utils.py +295 -0
  327. vllm/lora/ops/xla_ops/__init__.py +6 -0
  328. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  329. vllm/lora/peft_helper.py +128 -0
  330. vllm/lora/punica_wrapper/__init__.py +10 -0
  331. vllm/lora/punica_wrapper/punica_base.py +493 -0
  332. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  333. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  334. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  335. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  336. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  337. vllm/lora/punica_wrapper/utils.py +150 -0
  338. vllm/lora/request.py +100 -0
  339. vllm/lora/resolver.py +88 -0
  340. vllm/lora/utils.py +306 -0
  341. vllm/lora/worker_manager.py +268 -0
  342. vllm/model_executor/__init__.py +11 -0
  343. vllm/model_executor/custom_op.py +194 -0
  344. vllm/model_executor/layers/__init__.py +0 -0
  345. vllm/model_executor/layers/activation.py +595 -0
  346. vllm/model_executor/layers/attention_layer_base.py +32 -0
  347. vllm/model_executor/layers/batch_invariant.py +1058 -0
  348. vllm/model_executor/layers/conv.py +256 -0
  349. vllm/model_executor/layers/fla/__init__.py +8 -0
  350. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  351. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  352. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  353. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  354. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  355. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  356. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  357. vllm/model_executor/layers/fla/ops/index.py +41 -0
  358. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  359. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  360. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  361. vllm/model_executor/layers/fla/ops/op.py +60 -0
  362. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  363. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  364. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  365. vllm/model_executor/layers/fused_moe/__init__.py +110 -0
  366. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  367. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  368. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  369. vllm/model_executor/layers/fused_moe/config.py +938 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  645. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  646. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  647. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  648. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  649. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  650. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  651. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  652. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  653. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  654. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  655. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  656. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +821 -0
  657. vllm/model_executor/layers/fused_moe/fused_moe.py +2172 -0
  658. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +121 -0
  659. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +136 -0
  660. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  661. vllm/model_executor/layers/fused_moe/layer.py +2152 -0
  662. vllm/model_executor/layers/fused_moe/modular_kernel.py +1332 -0
  663. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  664. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  665. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  666. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  667. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  668. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  669. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  670. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  671. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  672. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  673. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  674. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  675. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +559 -0
  676. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  677. vllm/model_executor/layers/kda.py +442 -0
  678. vllm/model_executor/layers/layernorm.py +442 -0
  679. vllm/model_executor/layers/lightning_attn.py +735 -0
  680. vllm/model_executor/layers/linear.py +1424 -0
  681. vllm/model_executor/layers/logits_processor.py +106 -0
  682. vllm/model_executor/layers/mamba/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/abstract.py +68 -0
  684. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  685. vllm/model_executor/layers/mamba/mamba_mixer.py +527 -0
  686. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  687. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  688. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  689. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  690. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  691. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  692. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  693. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  694. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  695. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  696. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  697. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  698. vllm/model_executor/layers/mla.py +176 -0
  699. vllm/model_executor/layers/pooler.py +817 -0
  700. vllm/model_executor/layers/quantization/__init__.py +179 -0
  701. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  702. vllm/model_executor/layers/quantization/awq.py +277 -0
  703. vllm/model_executor/layers/quantization/awq_marlin.py +718 -0
  704. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  705. vllm/model_executor/layers/quantization/base_config.py +170 -0
  706. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  707. vllm/model_executor/layers/quantization/bitsandbytes.py +644 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +963 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2387 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  725. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  726. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  727. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  728. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  729. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  730. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  731. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  732. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  733. vllm/model_executor/layers/quantization/experts_int8.py +225 -0
  734. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  735. vllm/model_executor/layers/quantization/fp8.py +1348 -0
  736. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  737. vllm/model_executor/layers/quantization/gguf.py +687 -0
  738. vllm/model_executor/layers/quantization/gptq.py +393 -0
  739. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  740. vllm/model_executor/layers/quantization/gptq_marlin.py +842 -0
  741. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  742. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  743. vllm/model_executor/layers/quantization/inc.py +65 -0
  744. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  745. vllm/model_executor/layers/quantization/ipex_quant.py +470 -0
  746. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  752. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  753. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  754. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  755. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  756. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  759. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  760. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  761. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  762. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  763. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  764. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  765. vllm/model_executor/layers/quantization/modelopt.py +1637 -0
  766. vllm/model_executor/layers/quantization/moe_wna16.py +528 -0
  767. vllm/model_executor/layers/quantization/mxfp4.py +1175 -0
  768. vllm/model_executor/layers/quantization/petit.py +319 -0
  769. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  770. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  771. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  772. vllm/model_executor/layers/quantization/quark/quark_moe.py +653 -0
  773. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  774. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  775. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  776. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  777. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  778. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  779. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  780. vllm/model_executor/layers/quantization/rtn.py +639 -0
  781. vllm/model_executor/layers/quantization/schema.py +90 -0
  782. vllm/model_executor/layers/quantization/torchao.py +380 -0
  783. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  784. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  785. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  786. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1002. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +333 -0
  1003. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +311 -0
  1004. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  1005. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1006. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  1007. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1008. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1009. vllm/model_executor/layers/quantization/utils/marlin_utils.py +674 -0
  1010. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1011. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1012. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1013. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1014. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +183 -0
  1015. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1016. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1017. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1018. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1019. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1020. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1021. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  1022. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  1023. vllm/model_executor/layers/resampler.py +283 -0
  1024. vllm/model_executor/layers/rotary_embedding/__init__.py +292 -0
  1025. vllm/model_executor/layers/rotary_embedding/base.py +240 -0
  1026. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1027. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1028. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1029. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1030. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1031. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1032. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1033. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1034. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1035. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1036. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1037. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1038. vllm/model_executor/layers/rotary_embedding/xdrope.py +102 -0
  1039. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1040. vllm/model_executor/layers/utils.py +251 -0
  1041. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1042. vllm/model_executor/model_loader/__init__.py +150 -0
  1043. vllm/model_executor/model_loader/base_loader.py +57 -0
  1044. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1045. vllm/model_executor/model_loader/default_loader.py +321 -0
  1046. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1047. vllm/model_executor/model_loader/gguf_loader.py +349 -0
  1048. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1049. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1050. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1051. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1052. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1053. vllm/model_executor/model_loader/tpu.py +118 -0
  1054. vllm/model_executor/model_loader/utils.py +296 -0
  1055. vllm/model_executor/model_loader/weight_utils.py +1147 -0
  1056. vllm/model_executor/models/__init__.py +44 -0
  1057. vllm/model_executor/models/adapters.py +543 -0
  1058. vllm/model_executor/models/afmoe.py +697 -0
  1059. vllm/model_executor/models/aimv2.py +248 -0
  1060. vllm/model_executor/models/apertus.py +569 -0
  1061. vllm/model_executor/models/arcee.py +428 -0
  1062. vllm/model_executor/models/arctic.py +634 -0
  1063. vllm/model_executor/models/aria.py +655 -0
  1064. vllm/model_executor/models/aya_vision.py +450 -0
  1065. vllm/model_executor/models/baichuan.py +494 -0
  1066. vllm/model_executor/models/bailing_moe.py +645 -0
  1067. vllm/model_executor/models/bamba.py +516 -0
  1068. vllm/model_executor/models/bee.py +157 -0
  1069. vllm/model_executor/models/bert.py +925 -0
  1070. vllm/model_executor/models/bert_with_rope.py +732 -0
  1071. vllm/model_executor/models/blip.py +350 -0
  1072. vllm/model_executor/models/blip2.py +695 -0
  1073. vllm/model_executor/models/bloom.py +390 -0
  1074. vllm/model_executor/models/chameleon.py +1098 -0
  1075. vllm/model_executor/models/chatglm.py +499 -0
  1076. vllm/model_executor/models/clip.py +1005 -0
  1077. vllm/model_executor/models/cohere2_vision.py +472 -0
  1078. vllm/model_executor/models/commandr.py +470 -0
  1079. vllm/model_executor/models/config.py +510 -0
  1080. vllm/model_executor/models/dbrx.py +485 -0
  1081. vllm/model_executor/models/deepencoder.py +676 -0
  1082. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1083. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1084. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1085. vllm/model_executor/models/deepseek_v2.py +1715 -0
  1086. vllm/model_executor/models/deepseek_vl2.py +644 -0
  1087. vllm/model_executor/models/dots1.py +566 -0
  1088. vllm/model_executor/models/dots_ocr.py +874 -0
  1089. vllm/model_executor/models/ernie45.py +53 -0
  1090. vllm/model_executor/models/ernie45_moe.py +755 -0
  1091. vllm/model_executor/models/ernie45_vl.py +1710 -0
  1092. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1093. vllm/model_executor/models/ernie_mtp.py +279 -0
  1094. vllm/model_executor/models/exaone.py +525 -0
  1095. vllm/model_executor/models/exaone4.py +517 -0
  1096. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1097. vllm/model_executor/models/falcon.py +544 -0
  1098. vllm/model_executor/models/falcon_h1.py +680 -0
  1099. vllm/model_executor/models/flex_olmo.py +155 -0
  1100. vllm/model_executor/models/fuyu.py +373 -0
  1101. vllm/model_executor/models/gemma.py +426 -0
  1102. vllm/model_executor/models/gemma2.py +436 -0
  1103. vllm/model_executor/models/gemma3.py +577 -0
  1104. vllm/model_executor/models/gemma3_mm.py +665 -0
  1105. vllm/model_executor/models/gemma3n.py +1167 -0
  1106. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1107. vllm/model_executor/models/glm.py +23 -0
  1108. vllm/model_executor/models/glm4.py +298 -0
  1109. vllm/model_executor/models/glm4_1v.py +1854 -0
  1110. vllm/model_executor/models/glm4_moe.py +738 -0
  1111. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1112. vllm/model_executor/models/glm4v.py +785 -0
  1113. vllm/model_executor/models/gpt2.py +397 -0
  1114. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1115. vllm/model_executor/models/gpt_j.py +345 -0
  1116. vllm/model_executor/models/gpt_neox.py +343 -0
  1117. vllm/model_executor/models/gpt_oss.py +745 -0
  1118. vllm/model_executor/models/granite.py +476 -0
  1119. vllm/model_executor/models/granite_speech.py +913 -0
  1120. vllm/model_executor/models/granitemoe.py +561 -0
  1121. vllm/model_executor/models/granitemoehybrid.py +704 -0
  1122. vllm/model_executor/models/granitemoeshared.py +328 -0
  1123. vllm/model_executor/models/gritlm.py +245 -0
  1124. vllm/model_executor/models/grok1.py +555 -0
  1125. vllm/model_executor/models/h2ovl.py +554 -0
  1126. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1127. vllm/model_executor/models/hunyuan_vision.py +1028 -0
  1128. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1129. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1130. vllm/model_executor/models/idefics3.py +718 -0
  1131. vllm/model_executor/models/interfaces.py +1148 -0
  1132. vllm/model_executor/models/interfaces_base.py +243 -0
  1133. vllm/model_executor/models/intern_vit.py +454 -0
  1134. vllm/model_executor/models/internlm2.py +454 -0
  1135. vllm/model_executor/models/internlm2_ve.py +139 -0
  1136. vllm/model_executor/models/interns1.py +830 -0
  1137. vllm/model_executor/models/interns1_vit.py +433 -0
  1138. vllm/model_executor/models/internvl.py +1452 -0
  1139. vllm/model_executor/models/jais.py +397 -0
  1140. vllm/model_executor/models/jamba.py +609 -0
  1141. vllm/model_executor/models/jina_vl.py +147 -0
  1142. vllm/model_executor/models/keye.py +1765 -0
  1143. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1144. vllm/model_executor/models/kimi_linear.py +658 -0
  1145. vllm/model_executor/models/kimi_vl.py +578 -0
  1146. vllm/model_executor/models/lfm2.py +516 -0
  1147. vllm/model_executor/models/lfm2_moe.py +746 -0
  1148. vllm/model_executor/models/lightonocr.py +195 -0
  1149. vllm/model_executor/models/llama.py +704 -0
  1150. vllm/model_executor/models/llama4.py +857 -0
  1151. vllm/model_executor/models/llama4_eagle.py +216 -0
  1152. vllm/model_executor/models/llama_eagle.py +213 -0
  1153. vllm/model_executor/models/llama_eagle3.py +375 -0
  1154. vllm/model_executor/models/llava.py +842 -0
  1155. vllm/model_executor/models/llava_next.py +583 -0
  1156. vllm/model_executor/models/llava_next_video.py +467 -0
  1157. vllm/model_executor/models/llava_onevision.py +923 -0
  1158. vllm/model_executor/models/longcat_flash.py +743 -0
  1159. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1160. vllm/model_executor/models/mamba.py +276 -0
  1161. vllm/model_executor/models/mamba2.py +288 -0
  1162. vllm/model_executor/models/medusa.py +179 -0
  1163. vllm/model_executor/models/midashenglm.py +828 -0
  1164. vllm/model_executor/models/mimo.py +188 -0
  1165. vllm/model_executor/models/mimo_mtp.py +294 -0
  1166. vllm/model_executor/models/minicpm.py +657 -0
  1167. vllm/model_executor/models/minicpm3.py +234 -0
  1168. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1169. vllm/model_executor/models/minicpmo.py +768 -0
  1170. vllm/model_executor/models/minicpmv.py +1744 -0
  1171. vllm/model_executor/models/minimax_m2.py +546 -0
  1172. vllm/model_executor/models/minimax_text_01.py +1010 -0
  1173. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1174. vllm/model_executor/models/mistral3.py +637 -0
  1175. vllm/model_executor/models/mistral_large_3.py +63 -0
  1176. vllm/model_executor/models/mistral_large_3_eagle.py +165 -0
  1177. vllm/model_executor/models/mixtral.py +599 -0
  1178. vllm/model_executor/models/mllama4.py +1151 -0
  1179. vllm/model_executor/models/mlp_speculator.py +235 -0
  1180. vllm/model_executor/models/modernbert.py +452 -0
  1181. vllm/model_executor/models/module_mapping.py +74 -0
  1182. vllm/model_executor/models/molmo.py +1553 -0
  1183. vllm/model_executor/models/moonvit.py +686 -0
  1184. vllm/model_executor/models/mpt.py +335 -0
  1185. vllm/model_executor/models/nano_nemotron_vl.py +1732 -0
  1186. vllm/model_executor/models/nemotron.py +502 -0
  1187. vllm/model_executor/models/nemotron_h.py +850 -0
  1188. vllm/model_executor/models/nemotron_nas.py +473 -0
  1189. vllm/model_executor/models/nemotron_vl.py +653 -0
  1190. vllm/model_executor/models/nvlm_d.py +216 -0
  1191. vllm/model_executor/models/olmo.py +413 -0
  1192. vllm/model_executor/models/olmo2.py +455 -0
  1193. vllm/model_executor/models/olmoe.py +494 -0
  1194. vllm/model_executor/models/opencua.py +271 -0
  1195. vllm/model_executor/models/openpangu.py +1051 -0
  1196. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1197. vllm/model_executor/models/opt.py +426 -0
  1198. vllm/model_executor/models/orion.py +366 -0
  1199. vllm/model_executor/models/ouro.py +508 -0
  1200. vllm/model_executor/models/ovis.py +559 -0
  1201. vllm/model_executor/models/ovis2_5.py +673 -0
  1202. vllm/model_executor/models/paddleocr_vl.py +1380 -0
  1203. vllm/model_executor/models/paligemma.py +412 -0
  1204. vllm/model_executor/models/persimmon.py +376 -0
  1205. vllm/model_executor/models/phi.py +370 -0
  1206. vllm/model_executor/models/phi3.py +18 -0
  1207. vllm/model_executor/models/phi3v.py +737 -0
  1208. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1209. vllm/model_executor/models/phi4mm.py +1253 -0
  1210. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1211. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1212. vllm/model_executor/models/phimoe.py +670 -0
  1213. vllm/model_executor/models/pixtral.py +1380 -0
  1214. vllm/model_executor/models/plamo2.py +966 -0
  1215. vllm/model_executor/models/plamo3.py +441 -0
  1216. vllm/model_executor/models/qwen.py +363 -0
  1217. vllm/model_executor/models/qwen2.py +569 -0
  1218. vllm/model_executor/models/qwen2_5_omni_thinker.py +1220 -0
  1219. vllm/model_executor/models/qwen2_5_vl.py +1594 -0
  1220. vllm/model_executor/models/qwen2_audio.py +473 -0
  1221. vllm/model_executor/models/qwen2_moe.py +590 -0
  1222. vllm/model_executor/models/qwen2_rm.py +123 -0
  1223. vllm/model_executor/models/qwen2_vl.py +1593 -0
  1224. vllm/model_executor/models/qwen3.py +332 -0
  1225. vllm/model_executor/models/qwen3_moe.py +738 -0
  1226. vllm/model_executor/models/qwen3_next.py +1390 -0
  1227. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1228. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1765 -0
  1229. vllm/model_executor/models/qwen3_vl.py +1686 -0
  1230. vllm/model_executor/models/qwen3_vl_moe.py +470 -0
  1231. vllm/model_executor/models/qwen_vl.py +803 -0
  1232. vllm/model_executor/models/radio.py +555 -0
  1233. vllm/model_executor/models/registry.py +1183 -0
  1234. vllm/model_executor/models/roberta.py +259 -0
  1235. vllm/model_executor/models/rvl.py +107 -0
  1236. vllm/model_executor/models/seed_oss.py +493 -0
  1237. vllm/model_executor/models/siglip.py +1245 -0
  1238. vllm/model_executor/models/siglip2navit.py +723 -0
  1239. vllm/model_executor/models/skyworkr1v.py +953 -0
  1240. vllm/model_executor/models/smolvlm.py +38 -0
  1241. vllm/model_executor/models/solar.py +485 -0
  1242. vllm/model_executor/models/stablelm.py +359 -0
  1243. vllm/model_executor/models/starcoder2.py +366 -0
  1244. vllm/model_executor/models/step3_text.py +555 -0
  1245. vllm/model_executor/models/step3_vl.py +1149 -0
  1246. vllm/model_executor/models/swin.py +514 -0
  1247. vllm/model_executor/models/tarsier.py +619 -0
  1248. vllm/model_executor/models/telechat2.py +153 -0
  1249. vllm/model_executor/models/teleflm.py +78 -0
  1250. vllm/model_executor/models/terratorch.py +319 -0
  1251. vllm/model_executor/models/transformers/__init__.py +127 -0
  1252. vllm/model_executor/models/transformers/base.py +464 -0
  1253. vllm/model_executor/models/transformers/causal.py +65 -0
  1254. vllm/model_executor/models/transformers/legacy.py +90 -0
  1255. vllm/model_executor/models/transformers/moe.py +325 -0
  1256. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1257. vllm/model_executor/models/transformers/pooling.py +119 -0
  1258. vllm/model_executor/models/transformers/utils.py +213 -0
  1259. vllm/model_executor/models/ultravox.py +686 -0
  1260. vllm/model_executor/models/utils.py +832 -0
  1261. vllm/model_executor/models/vision.py +552 -0
  1262. vllm/model_executor/models/voxtral.py +842 -0
  1263. vllm/model_executor/models/whisper.py +963 -0
  1264. vllm/model_executor/models/zamba2.py +980 -0
  1265. vllm/model_executor/parameter.py +642 -0
  1266. vllm/model_executor/utils.py +94 -0
  1267. vllm/model_executor/warmup/__init__.py +0 -0
  1268. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1269. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1270. vllm/multimodal/__init__.py +40 -0
  1271. vllm/multimodal/audio.py +142 -0
  1272. vllm/multimodal/base.py +26 -0
  1273. vllm/multimodal/cache.py +830 -0
  1274. vllm/multimodal/evs.py +294 -0
  1275. vllm/multimodal/hasher.py +106 -0
  1276. vllm/multimodal/image.py +130 -0
  1277. vllm/multimodal/inputs.py +1036 -0
  1278. vllm/multimodal/parse.py +544 -0
  1279. vllm/multimodal/processing.py +2240 -0
  1280. vllm/multimodal/profiling.py +369 -0
  1281. vllm/multimodal/registry.py +357 -0
  1282. vllm/multimodal/utils.py +523 -0
  1283. vllm/multimodal/video.py +333 -0
  1284. vllm/outputs.py +345 -0
  1285. vllm/platforms/__init__.py +277 -0
  1286. vllm/platforms/cpu.py +410 -0
  1287. vllm/platforms/cuda.py +642 -0
  1288. vllm/platforms/interface.py +656 -0
  1289. vllm/platforms/rocm.py +513 -0
  1290. vllm/platforms/tpu.py +275 -0
  1291. vllm/platforms/xpu.py +261 -0
  1292. vllm/plugins/__init__.py +81 -0
  1293. vllm/plugins/io_processors/__init__.py +68 -0
  1294. vllm/plugins/io_processors/interface.py +77 -0
  1295. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1296. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1297. vllm/pooling_params.py +230 -0
  1298. vllm/profiler/__init__.py +0 -0
  1299. vllm/profiler/gpu_profiler.py +216 -0
  1300. vllm/profiler/layerwise_profile.py +392 -0
  1301. vllm/profiler/utils.py +151 -0
  1302. vllm/py.typed +2 -0
  1303. vllm/ray/__init__.py +0 -0
  1304. vllm/ray/lazy_utils.py +30 -0
  1305. vllm/ray/ray_env.py +79 -0
  1306. vllm/reasoning/__init__.py +92 -0
  1307. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1308. vllm/reasoning/basic_parsers.py +162 -0
  1309. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1310. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1311. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1312. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1313. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1314. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1315. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1316. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1317. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1318. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1319. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1320. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1321. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1322. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1323. vllm/sampling_params.py +597 -0
  1324. vllm/scalar_type.py +355 -0
  1325. vllm/scripts.py +17 -0
  1326. vllm/sequence.py +98 -0
  1327. vllm/tasks.py +13 -0
  1328. vllm/third_party/__init__.py +0 -0
  1329. vllm/third_party/pynvml.py +6140 -0
  1330. vllm/tokenizers/__init__.py +24 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +124 -0
  1333. vllm/tokenizers/mistral.py +554 -0
  1334. vllm/tokenizers/protocol.py +111 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tracing.py +135 -0
  1337. vllm/transformers_utils/__init__.py +26 -0
  1338. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1339. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1340. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1341. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1342. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1343. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1344. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1345. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1346. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1347. vllm/transformers_utils/config.py +1081 -0
  1348. vllm/transformers_utils/config_parser_base.py +20 -0
  1349. vllm/transformers_utils/configs/__init__.py +84 -0
  1350. vllm/transformers_utils/configs/afmoe.py +87 -0
  1351. vllm/transformers_utils/configs/arctic.py +216 -0
  1352. vllm/transformers_utils/configs/chatglm.py +75 -0
  1353. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1354. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1355. vllm/transformers_utils/configs/eagle.py +90 -0
  1356. vllm/transformers_utils/configs/falcon.py +89 -0
  1357. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1358. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1359. vllm/transformers_utils/configs/jais.py +243 -0
  1360. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1361. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1362. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1363. vllm/transformers_utils/configs/medusa.py +65 -0
  1364. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1365. vllm/transformers_utils/configs/mistral.py +235 -0
  1366. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1367. vllm/transformers_utils/configs/moonvit.py +33 -0
  1368. vllm/transformers_utils/configs/nemotron.py +214 -0
  1369. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1370. vllm/transformers_utils/configs/olmo3.py +83 -0
  1371. vllm/transformers_utils/configs/ovis.py +182 -0
  1372. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1373. vllm/transformers_utils/configs/radio.py +89 -0
  1374. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1375. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1376. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1377. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1378. vllm/transformers_utils/configs/ultravox.py +118 -0
  1379. vllm/transformers_utils/dynamic_module.py +59 -0
  1380. vllm/transformers_utils/gguf_utils.py +209 -0
  1381. vllm/transformers_utils/processor.py +423 -0
  1382. vllm/transformers_utils/processors/__init__.py +23 -0
  1383. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1384. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1385. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1386. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1387. vllm/transformers_utils/processors/ovis.py +453 -0
  1388. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1389. vllm/transformers_utils/repo_utils.py +287 -0
  1390. vllm/transformers_utils/runai_utils.py +104 -0
  1391. vllm/transformers_utils/s3_utils.py +95 -0
  1392. vllm/transformers_utils/tokenizer.py +127 -0
  1393. vllm/transformers_utils/tokenizer_base.py +33 -0
  1394. vllm/transformers_utils/utils.py +184 -0
  1395. vllm/triton_utils/__init__.py +20 -0
  1396. vllm/triton_utils/importing.py +103 -0
  1397. vllm/usage/__init__.py +0 -0
  1398. vllm/usage/usage_lib.py +294 -0
  1399. vllm/utils/__init__.py +66 -0
  1400. vllm/utils/argparse_utils.py +504 -0
  1401. vllm/utils/async_utils.py +310 -0
  1402. vllm/utils/cache.py +214 -0
  1403. vllm/utils/collection_utils.py +112 -0
  1404. vllm/utils/counter.py +45 -0
  1405. vllm/utils/deep_gemm.py +399 -0
  1406. vllm/utils/flashinfer.py +532 -0
  1407. vllm/utils/func_utils.py +236 -0
  1408. vllm/utils/gc_utils.py +151 -0
  1409. vllm/utils/hashing.py +81 -0
  1410. vllm/utils/import_utils.py +449 -0
  1411. vllm/utils/jsontree.py +158 -0
  1412. vllm/utils/math_utils.py +32 -0
  1413. vllm/utils/mem_constants.py +13 -0
  1414. vllm/utils/mem_utils.py +232 -0
  1415. vllm/utils/nccl.py +64 -0
  1416. vllm/utils/network_utils.py +331 -0
  1417. vllm/utils/platform_utils.py +59 -0
  1418. vllm/utils/profiling.py +56 -0
  1419. vllm/utils/registry.py +51 -0
  1420. vllm/utils/serial_utils.py +169 -0
  1421. vllm/utils/system_utils.py +265 -0
  1422. vllm/utils/tensor_schema.py +255 -0
  1423. vllm/utils/torch_utils.py +647 -0
  1424. vllm/v1/__init__.py +0 -0
  1425. vllm/v1/attention/__init__.py +0 -0
  1426. vllm/v1/attention/backends/__init__.py +0 -0
  1427. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1428. vllm/v1/attention/backends/flash_attn.py +1050 -0
  1429. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1430. vllm/v1/attention/backends/flex_attention.py +945 -0
  1431. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1432. vllm/v1/attention/backends/linear_attn.py +77 -0
  1433. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1434. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1435. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1436. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1437. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1438. vllm/v1/attention/backends/mla/common.py +2069 -0
  1439. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1440. vllm/v1/attention/backends/mla/flashattn_mla.py +340 -0
  1441. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1442. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1443. vllm/v1/attention/backends/mla/flashmla_sparse.py +551 -0
  1444. vllm/v1/attention/backends/mla/indexer.py +369 -0
  1445. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1446. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1447. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1448. vllm/v1/attention/backends/pallas.py +436 -0
  1449. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1450. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1451. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1452. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1453. vllm/v1/attention/backends/tree_attn.py +428 -0
  1454. vllm/v1/attention/backends/triton_attn.py +377 -0
  1455. vllm/v1/attention/backends/utils.py +1149 -0
  1456. vllm/v1/core/__init__.py +0 -0
  1457. vllm/v1/core/block_pool.py +466 -0
  1458. vllm/v1/core/encoder_cache_manager.py +343 -0
  1459. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1460. vllm/v1/core/kv_cache_manager.py +408 -0
  1461. vllm/v1/core/kv_cache_metrics.py +96 -0
  1462. vllm/v1/core/kv_cache_utils.py +1471 -0
  1463. vllm/v1/core/sched/__init__.py +0 -0
  1464. vllm/v1/core/sched/async_scheduler.py +68 -0
  1465. vllm/v1/core/sched/interface.py +187 -0
  1466. vllm/v1/core/sched/output.py +230 -0
  1467. vllm/v1/core/sched/request_queue.py +217 -0
  1468. vllm/v1/core/sched/scheduler.py +1726 -0
  1469. vllm/v1/core/sched/utils.py +72 -0
  1470. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1471. vllm/v1/cudagraph_dispatcher.py +183 -0
  1472. vllm/v1/engine/__init__.py +214 -0
  1473. vllm/v1/engine/async_llm.py +874 -0
  1474. vllm/v1/engine/coordinator.py +377 -0
  1475. vllm/v1/engine/core.py +1421 -0
  1476. vllm/v1/engine/core_client.py +1406 -0
  1477. vllm/v1/engine/detokenizer.py +351 -0
  1478. vllm/v1/engine/exceptions.py +18 -0
  1479. vllm/v1/engine/input_processor.py +636 -0
  1480. vllm/v1/engine/llm_engine.py +416 -0
  1481. vllm/v1/engine/logprobs.py +189 -0
  1482. vllm/v1/engine/output_processor.py +658 -0
  1483. vllm/v1/engine/parallel_sampling.py +145 -0
  1484. vllm/v1/engine/processor.py +20 -0
  1485. vllm/v1/engine/utils.py +1068 -0
  1486. vllm/v1/executor/__init__.py +6 -0
  1487. vllm/v1/executor/abstract.py +352 -0
  1488. vllm/v1/executor/multiproc_executor.py +888 -0
  1489. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1490. vllm/v1/executor/ray_executor.py +626 -0
  1491. vllm/v1/executor/ray_utils.py +465 -0
  1492. vllm/v1/executor/uniproc_executor.py +183 -0
  1493. vllm/v1/kv_cache_interface.py +404 -0
  1494. vllm/v1/kv_offload/__init__.py +0 -0
  1495. vllm/v1/kv_offload/abstract.py +161 -0
  1496. vllm/v1/kv_offload/arc_manager.py +237 -0
  1497. vllm/v1/kv_offload/backend.py +97 -0
  1498. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1499. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1500. vllm/v1/kv_offload/cpu.py +86 -0
  1501. vllm/v1/kv_offload/factory.py +56 -0
  1502. vllm/v1/kv_offload/lru_manager.py +139 -0
  1503. vllm/v1/kv_offload/mediums.py +39 -0
  1504. vllm/v1/kv_offload/spec.py +66 -0
  1505. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1506. vllm/v1/kv_offload/worker/cpu_gpu.py +191 -0
  1507. vllm/v1/kv_offload/worker/worker.py +144 -0
  1508. vllm/v1/metrics/__init__.py +0 -0
  1509. vllm/v1/metrics/loggers.py +1268 -0
  1510. vllm/v1/metrics/prometheus.py +82 -0
  1511. vllm/v1/metrics/ray_wrappers.py +194 -0
  1512. vllm/v1/metrics/reader.py +257 -0
  1513. vllm/v1/metrics/stats.py +431 -0
  1514. vllm/v1/outputs.py +237 -0
  1515. vllm/v1/pool/__init__.py +0 -0
  1516. vllm/v1/pool/metadata.py +82 -0
  1517. vllm/v1/request.py +280 -0
  1518. vllm/v1/sample/__init__.py +0 -0
  1519. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1520. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1521. vllm/v1/sample/logits_processor/interface.py +106 -0
  1522. vllm/v1/sample/logits_processor/state.py +165 -0
  1523. vllm/v1/sample/metadata.py +44 -0
  1524. vllm/v1/sample/ops/__init__.py +0 -0
  1525. vllm/v1/sample/ops/bad_words.py +52 -0
  1526. vllm/v1/sample/ops/logprobs.py +25 -0
  1527. vllm/v1/sample/ops/penalties.py +57 -0
  1528. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1529. vllm/v1/sample/rejection_sampler.py +805 -0
  1530. vllm/v1/sample/sampler.py +319 -0
  1531. vllm/v1/sample/tpu/__init__.py +0 -0
  1532. vllm/v1/sample/tpu/metadata.py +120 -0
  1533. vllm/v1/sample/tpu/sampler.py +215 -0
  1534. vllm/v1/serial_utils.py +532 -0
  1535. vllm/v1/spec_decode/__init__.py +0 -0
  1536. vllm/v1/spec_decode/eagle.py +1325 -0
  1537. vllm/v1/spec_decode/medusa.py +73 -0
  1538. vllm/v1/spec_decode/metadata.py +66 -0
  1539. vllm/v1/spec_decode/metrics.py +225 -0
  1540. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1541. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1542. vllm/v1/spec_decode/utils.py +121 -0
  1543. vllm/v1/structured_output/__init__.py +338 -0
  1544. vllm/v1/structured_output/backend_guidance.py +265 -0
  1545. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1546. vllm/v1/structured_output/backend_outlines.py +324 -0
  1547. vllm/v1/structured_output/backend_types.py +136 -0
  1548. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1549. vllm/v1/structured_output/request.py +94 -0
  1550. vllm/v1/structured_output/utils.py +469 -0
  1551. vllm/v1/utils.py +414 -0
  1552. vllm/v1/worker/__init__.py +0 -0
  1553. vllm/v1/worker/block_table.py +343 -0
  1554. vllm/v1/worker/cpu_model_runner.py +122 -0
  1555. vllm/v1/worker/cpu_worker.py +210 -0
  1556. vllm/v1/worker/dp_utils.py +250 -0
  1557. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1558. vllm/v1/worker/gpu/README.md +4 -0
  1559. vllm/v1/worker/gpu/__init__.py +0 -0
  1560. vllm/v1/worker/gpu/async_utils.py +97 -0
  1561. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1562. vllm/v1/worker/gpu/block_table.py +314 -0
  1563. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1564. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1565. vllm/v1/worker/gpu/input_batch.py +430 -0
  1566. vllm/v1/worker/gpu/model_runner.py +1007 -0
  1567. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1568. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1569. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1570. vllm/v1/worker/gpu/sample/metadata.py +179 -0
  1571. vllm/v1/worker/gpu/sample/penalties.py +154 -0
  1572. vllm/v1/worker/gpu/sample/sampler.py +75 -0
  1573. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1574. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1575. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1576. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +83 -0
  1577. vllm/v1/worker/gpu/states.py +309 -0
  1578. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1579. vllm/v1/worker/gpu_input_batch.py +971 -0
  1580. vllm/v1/worker/gpu_model_runner.py +5360 -0
  1581. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1582. vllm/v1/worker/gpu_worker.py +922 -0
  1583. vllm/v1/worker/kv_connector_model_runner_mixin.py +309 -0
  1584. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1585. vllm/v1/worker/tpu_input_batch.py +583 -0
  1586. vllm/v1/worker/tpu_model_runner.py +2196 -0
  1587. vllm/v1/worker/tpu_worker.py +351 -0
  1588. vllm/v1/worker/ubatch_utils.py +73 -0
  1589. vllm/v1/worker/ubatching.py +231 -0
  1590. vllm/v1/worker/utils.py +365 -0
  1591. vllm/v1/worker/worker_base.py +377 -0
  1592. vllm/v1/worker/xpu_model_runner.py +48 -0
  1593. vllm/v1/worker/xpu_worker.py +198 -0
  1594. vllm/version.py +39 -0
  1595. vllm/vllm_flash_attn/.gitkeep +0 -0
  1596. vllm_cpu-0.12.0.dist-info/METADATA +300 -0
  1597. vllm_cpu-0.12.0.dist-info/RECORD +1600 -0
  1598. vllm_cpu-0.12.0.dist-info/WHEEL +5 -0
  1599. vllm_cpu-0.12.0.dist-info/entry_points.txt +5 -0
  1600. vllm_cpu-0.12.0.dist-info/top_level.txt +1 -0
vllm/envs.py ADDED
@@ -0,0 +1,1710 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import functools
5
+ import json
6
+ import logging
7
+ import os
8
+ import sys
9
+ import tempfile
10
+ from collections.abc import Callable
11
+ from typing import TYPE_CHECKING, Any, Literal
12
+
13
+ if TYPE_CHECKING:
14
+ VLLM_HOST_IP: str = ""
15
+ VLLM_PORT: int | None = None
16
+ VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
17
+ VLLM_USE_MODELSCOPE: bool = False
18
+ VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
19
+ VLLM_NCCL_SO_PATH: str | None = None
20
+ LD_LIBRARY_PATH: str | None = None
21
+ VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE: int = 256
22
+ VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
23
+ VLLM_FLASH_ATTN_VERSION: int | None = None
24
+ LOCAL_RANK: int = 0
25
+ CUDA_VISIBLE_DEVICES: str | None = None
26
+ VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
27
+ VLLM_API_KEY: str | None = None
28
+ VLLM_DEBUG_LOG_API_SERVER_RESPONSE: bool = False
29
+ S3_ACCESS_KEY_ID: str | None = None
30
+ S3_SECRET_ACCESS_KEY: str | None = None
31
+ S3_ENDPOINT_URL: str | None = None
32
+ VLLM_MODEL_REDIRECT_PATH: str | None = None
33
+ VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
34
+ VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
35
+ VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
36
+ VLLM_NO_USAGE_STATS: bool = False
37
+ VLLM_DISABLE_FLASHINFER_PREFILL: bool = False
38
+ VLLM_DO_NOT_TRACK: bool = False
39
+ VLLM_USAGE_SOURCE: str = ""
40
+ VLLM_CONFIGURE_LOGGING: int = 1
41
+ VLLM_LOGGING_LEVEL: str = "INFO"
42
+ VLLM_LOGGING_PREFIX: str = ""
43
+ VLLM_LOGGING_STREAM: str = "ext://sys.stdout"
44
+ VLLM_LOGGING_CONFIG_PATH: str | None = None
45
+ VLLM_LOGGING_COLOR: str = "auto"
46
+ NO_COLOR: bool = False
47
+ VLLM_LOG_STATS_INTERVAL: float = 10.0
48
+ VLLM_TRACE_FUNCTION: int = 0
49
+ VLLM_ATTENTION_BACKEND: str | None = None
50
+ VLLM_USE_FLASHINFER_SAMPLER: bool | None = None
51
+ VLLM_PP_LAYER_PARTITION: str | None = None
52
+ VLLM_CPU_KVCACHE_SPACE: int | None = 0
53
+ VLLM_CPU_OMP_THREADS_BIND: str = ""
54
+ VLLM_CPU_NUM_OF_RESERVED_CPU: int | None = None
55
+ VLLM_CPU_SGL_KERNEL: bool = False
56
+ VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
57
+ VLLM_XLA_CHECK_RECOMPILATION: bool = False
58
+ VLLM_FUSED_MOE_CHUNK_SIZE: int = 16 * 1024
59
+ VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True
60
+ VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: Literal["auto", "nccl", "shm"] = "auto"
61
+ VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
62
+ VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True
63
+ VLLM_XLA_USE_SPMD: bool = False
64
+ VLLM_WORKER_MULTIPROC_METHOD: Literal["fork", "spawn"] = "fork"
65
+ VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
66
+ VLLM_ASSETS_CACHE_MODEL_CLEAN: bool = False
67
+ VLLM_IMAGE_FETCH_TIMEOUT: int = 5
68
+ VLLM_VIDEO_FETCH_TIMEOUT: int = 30
69
+ VLLM_AUDIO_FETCH_TIMEOUT: int = 10
70
+ VLLM_MEDIA_URL_ALLOW_REDIRECTS: bool = True
71
+ VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
72
+ VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
73
+ VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
74
+ VLLM_MEDIA_CONNECTOR: str = "http"
75
+ VLLM_MM_INPUT_CACHE_GIB: int = 4
76
+ VLLM_TARGET_DEVICE: str = "cuda"
77
+ VLLM_MAIN_CUDA_VERSION: str = "12.9"
78
+ MAX_JOBS: str | None = None
79
+ NVCC_THREADS: str | None = None
80
+ VLLM_USE_PRECOMPILED: bool = False
81
+ VLLM_DOCKER_BUILD_CONTEXT: bool = False
82
+ VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False
83
+ VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
84
+ CMAKE_BUILD_TYPE: Literal["Debug", "Release", "RelWithDebInfo"] | None = None
85
+ VERBOSE: bool = False
86
+ VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
87
+ VLLM_RPC_TIMEOUT: int = 10000 # ms
88
+ VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds
89
+ VLLM_PLUGINS: list[str] | None = None
90
+ VLLM_LORA_RESOLVER_CACHE_DIR: str | None = None
91
+ VLLM_TORCH_CUDA_PROFILE: bool = False
92
+ VLLM_TORCH_PROFILER_DIR: str | None = None
93
+ VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False
94
+ VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False
95
+ VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM: bool = False
96
+ VLLM_USE_AOT_COMPILE: bool = False
97
+ VLLM_USE_BYTECODE_HOOK: bool = False
98
+ VLLM_FORCE_AOT_LOAD: bool = False
99
+ VLLM_TORCH_PROFILER_WITH_STACK: bool = True
100
+ VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
101
+ VLLM_PROFILER_DELAY_ITERS: int = 0
102
+ VLLM_PROFILER_MAX_ITERS: int = 0
103
+ VLLM_TORCH_PROFILER_USE_GZIP: bool = True
104
+ VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL: bool = True
105
+ VLLM_USE_TRITON_AWQ: bool = False
106
+ VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
107
+ VLLM_SKIP_P2P_CHECK: bool = False
108
+ VLLM_DISABLED_KERNELS: list[str] = []
109
+ VLLM_DISABLE_PYNCCL: bool = False
110
+ VLLM_ROCM_USE_AITER: bool = False
111
+ VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
112
+ VLLM_ROCM_USE_AITER_LINEAR: bool = True
113
+ VLLM_ROCM_USE_AITER_MOE: bool = True
114
+ VLLM_ROCM_USE_AITER_RMSNORM: bool = True
115
+ VLLM_ROCM_USE_AITER_MLA: bool = True
116
+ VLLM_ROCM_USE_AITER_MHA: bool = True
117
+ VLLM_ROCM_USE_AITER_FP4_ASM_GEMM: bool = False
118
+ VLLM_ROCM_USE_AITER_TRITON_ROPE: bool = False
119
+ VLLM_ROCM_USE_AITER_FP8BMM: bool = True
120
+ VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION: bool = False
121
+ VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS: bool = False
122
+ VLLM_ROCM_USE_AITER_TRITON_GEMM: bool = True
123
+ VLLM_ROCM_USE_SKINNY_GEMM: bool = True
124
+ VLLM_ROCM_FP8_PADDING: bool = True
125
+ VLLM_ROCM_MOE_PADDING: bool = True
126
+ VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
127
+ VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
128
+ VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
129
+ VLLM_DISABLE_COMPILE_CACHE: bool = False
130
+ Q_SCALE_CONSTANT: int = 200
131
+ K_SCALE_CONSTANT: int = 200
132
+ V_SCALE_CONSTANT: int = 100
133
+ VLLM_SERVER_DEV_MODE: bool = False
134
+ VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
135
+ VLLM_MLA_DISABLE: bool = False
136
+ VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH: int = 32
137
+ VLLM_RAY_PER_WORKER_GPUS: float = 1.0
138
+ VLLM_RAY_BUNDLE_INDICES: str = ""
139
+ VLLM_CUDART_SO_PATH: str | None = None
140
+ VLLM_DP_RANK: int = 0
141
+ VLLM_DP_RANK_LOCAL: int = -1
142
+ VLLM_DP_SIZE: int = 1
143
+ VLLM_USE_STANDALONE_COMPILE: bool = True
144
+ VLLM_DP_MASTER_IP: str = ""
145
+ VLLM_DP_MASTER_PORT: int = 0
146
+ VLLM_MOE_DP_CHUNK_SIZE: int = 256
147
+ VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False
148
+ VLLM_RAY_DP_PACK_STRATEGY: Literal["strict", "fill", "span"] = "strict"
149
+ VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
150
+ VLLM_MARLIN_INPUT_DTYPE: Literal["int8", "fp8"] | None = None
151
+ VLLM_MXFP4_USE_MARLIN: bool | None = None
152
+ VLLM_DEEPEPLL_NVFP4_DISPATCH: bool = False
153
+ VLLM_V1_USE_OUTLINES_CACHE: bool = False
154
+ VLLM_TPU_BUCKET_PADDING_GAP: int = 0
155
+ VLLM_TPU_MOST_MODEL_LEN: int | None = None
156
+ VLLM_TPU_USING_PATHWAYS: bool = False
157
+ VLLM_USE_DEEP_GEMM: bool = True
158
+ VLLM_MOE_USE_DEEP_GEMM: bool = True
159
+ VLLM_USE_DEEP_GEMM_E8M0: bool = True
160
+ VLLM_DEEP_GEMM_WARMUP: Literal[
161
+ "skip",
162
+ "full",
163
+ "relax",
164
+ ] = "relax"
165
+ VLLM_USE_FUSED_MOE_GROUPED_TOPK: bool = True
166
+ VLLM_USE_FLASHINFER_MOE_FP16: bool = False
167
+ VLLM_USE_FLASHINFER_MOE_FP8: bool = False
168
+ VLLM_USE_FLASHINFER_MOE_FP4: bool = False
169
+ VLLM_FLASHINFER_MOE_BACKEND: Literal["throughput", "latency", "masked_gemm"] = (
170
+ "latency"
171
+ )
172
+ VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE: int = 394 * 1024 * 1024
173
+ VLLM_XGRAMMAR_CACHE_MB: int = 0
174
+ VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
175
+ VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
176
+ VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost"
177
+ VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5600
178
+ VLLM_ALL2ALL_BACKEND: Literal[
179
+ "naive",
180
+ "pplx",
181
+ "deepep_high_throughput",
182
+ "deepep_low_latency",
183
+ "allgather_reducescatter",
184
+ "flashinfer_all2allv",
185
+ ] = "allgather_reducescatter"
186
+ VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840
187
+ VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
188
+ VLLM_SLEEP_WHEN_IDLE: bool = False
189
+ VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
190
+ VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300
191
+ VLLM_KV_CACHE_LAYOUT: Literal["NHD", "HND"] | None = None
192
+ VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
193
+ VLLM_USE_NVFP4_CT_EMULATIONS: bool = False
194
+ VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: Literal[
195
+ "FP", "INT8", "INT6", "INT4", "NONE"
196
+ ] = "NONE"
197
+ VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True
198
+ VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: int | None = None
199
+ VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 480
200
+ VLLM_USE_CUDNN_PREFILL: bool = False
201
+ VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL: bool = False
202
+ VLLM_ENABLE_CUDAGRAPH_GC: bool = False
203
+ VLLM_LOOPBACK_IP: str = ""
204
+ VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False
205
+ VLLM_ENABLE_RESPONSES_API_STORE: bool = False
206
+ VLLM_USE_TRTLLM_ATTENTION: str | None = None
207
+ VLLM_NVFP4_GEMM_BACKEND: str | None = None
208
+ VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION: bool = False
209
+ VLLM_HAS_FLASHINFER_CUBIN: bool = False
210
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False
211
+ VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False
212
+ VLLM_ROCM_FP8_MFMA_PAGE_ATTN: bool = False
213
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS: bool = False
214
+ VLLM_ALLREDUCE_USE_SYMM_MEM: bool = True
215
+ VLLM_TUNED_CONFIG_FOLDER: str | None = None
216
+ VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS: set[str] = set()
217
+ VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS: bool = False
218
+ VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY: bool = False
219
+ VLLM_CUSTOM_SCOPES_FOR_PROFILING: bool = False
220
+ VLLM_NVTX_SCOPES_FOR_PROFILING: bool = False
221
+ VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES: bool = True
222
+ VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME: str = "VLLM_OBJECT_STORAGE_SHM_BUFFER"
223
+ VLLM_DEEPEP_BUFFER_SIZE_MB: int = 1024
224
+ VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE: bool = False
225
+ VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL: bool = False
226
+ VLLM_DBO_COMM_SMS: int = 20
227
+ VLLM_PATTERN_MATCH_DEBUG: str | None = None
228
+ VLLM_DEBUG_DUMP_PATH: str | None = None
229
+ VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE: bool = True
230
+ VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING: bool = True
231
+ VLLM_USE_NCCL_SYMM_MEM: bool = False
232
+ VLLM_NCCL_INCLUDE_PATH: str | None = None
233
+ VLLM_USE_FBGEMM: bool = False
234
+ VLLM_GC_DEBUG: str = ""
235
+ VLLM_DISABLE_SHARED_EXPERTS_STREAM: bool = False
236
+ VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD: int = 256
237
+ VLLM_COMPILE_CACHE_SAVE_FORMAT: Literal["binary", "unpacked"] = "binary"
238
+ VLLM_USE_V2_MODEL_RUNNER: bool = False
239
+
240
+
241
+ def get_default_cache_root():
242
+ return os.getenv(
243
+ "XDG_CACHE_HOME",
244
+ os.path.join(os.path.expanduser("~"), ".cache"),
245
+ )
246
+
247
+
248
+ def get_default_config_root():
249
+ return os.getenv(
250
+ "XDG_CONFIG_HOME",
251
+ os.path.join(os.path.expanduser("~"), ".config"),
252
+ )
253
+
254
+
255
+ def maybe_convert_int(value: str | None) -> int | None:
256
+ if value is None:
257
+ return None
258
+ return int(value)
259
+
260
+
261
+ def maybe_convert_bool(value: str | None) -> bool | None:
262
+ if value is None:
263
+ return None
264
+ return bool(int(value))
265
+
266
+
267
+ def disable_compile_cache() -> bool:
268
+ return bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0")))
269
+
270
+
271
+ def use_aot_compile() -> bool:
272
+ from vllm.model_executor.layers.batch_invariant import (
273
+ vllm_is_batch_invariant,
274
+ )
275
+ from vllm.utils.torch_utils import is_torch_equal_or_newer
276
+
277
+ default_value = (
278
+ "1"
279
+ if is_torch_equal_or_newer("2.10.0.dev") and not disable_compile_cache()
280
+ else "0"
281
+ )
282
+
283
+ return (
284
+ not vllm_is_batch_invariant()
285
+ and os.environ.get("VLLM_USE_AOT_COMPILE", default_value) == "1"
286
+ )
287
+
288
+
289
+ def env_with_choices(
290
+ env_name: str,
291
+ default: str | None,
292
+ choices: list[str] | Callable[[], list[str]],
293
+ case_sensitive: bool = True,
294
+ ) -> Callable[[], str | None]:
295
+ """
296
+ Create a lambda that validates environment variable against allowed choices
297
+
298
+ Args:
299
+ env_name: Name of the environment variable
300
+ default: Default value if not set (can be None)
301
+ choices: List of valid string options or callable that returns list
302
+ case_sensitive: Whether validation should be case sensitive
303
+
304
+ Returns:
305
+ Lambda function for environment_variables dict
306
+ """
307
+
308
+ def _get_validated_env() -> str | None:
309
+ value = os.getenv(env_name)
310
+ if value is None:
311
+ return default
312
+
313
+ # Resolve choices if it's a callable (for lazy loading)
314
+ actual_choices = choices() if callable(choices) else choices
315
+
316
+ if not case_sensitive:
317
+ check_value = value.lower()
318
+ check_choices = [choice.lower() for choice in actual_choices]
319
+ else:
320
+ check_value = value
321
+ check_choices = actual_choices
322
+
323
+ if check_value not in check_choices:
324
+ raise ValueError(
325
+ f"Invalid value '{value}' for {env_name}. "
326
+ f"Valid options: {actual_choices}."
327
+ )
328
+
329
+ return value
330
+
331
+ return _get_validated_env
332
+
333
+
334
+ def env_list_with_choices(
335
+ env_name: str,
336
+ default: list[str],
337
+ choices: list[str] | Callable[[], list[str]],
338
+ case_sensitive: bool = True,
339
+ ) -> Callable[[], list[str]]:
340
+ """
341
+ Create a lambda that validates environment variable
342
+ containing comma-separated values against allowed choices
343
+
344
+ Args:
345
+ env_name: Name of the environment variable
346
+ default: Default list of values if not set
347
+ choices: List of valid string options or callable that returns list
348
+ case_sensitive: Whether validation should be case sensitive
349
+
350
+ Returns:
351
+ Lambda function for environment_variables
352
+ dict that returns list of strings
353
+ """
354
+
355
+ def _get_validated_env_list() -> list[str]:
356
+ value = os.getenv(env_name)
357
+ if value is None:
358
+ return default
359
+
360
+ # Split comma-separated values and strip whitespace
361
+ values = [v.strip() for v in value.split(",") if v.strip()]
362
+
363
+ if not values:
364
+ return default
365
+
366
+ # Resolve choices if it's a callable (for lazy loading)
367
+ actual_choices = choices() if callable(choices) else choices
368
+
369
+ # Validate each value
370
+ for val in values:
371
+ if not case_sensitive:
372
+ check_value = val.lower()
373
+ check_choices = [choice.lower() for choice in actual_choices]
374
+ else:
375
+ check_value = val
376
+ check_choices = actual_choices
377
+
378
+ if check_value not in check_choices:
379
+ raise ValueError(
380
+ f"Invalid value '{val}' in {env_name}. "
381
+ f"Valid options: {actual_choices}."
382
+ )
383
+
384
+ return values
385
+
386
+ return _get_validated_env_list
387
+
388
+
389
+ def env_set_with_choices(
390
+ env_name: str,
391
+ default: list[str],
392
+ choices: list[str] | Callable[[], list[str]],
393
+ case_sensitive: bool = True,
394
+ ) -> Callable[[], set[str]]:
395
+ """
396
+ Creates a lambda which that validates environment variable
397
+ containing comma-separated values against allowed choices which
398
+ returns choices as a set.
399
+ """
400
+
401
+ def _get_validated_env_set() -> set[str]:
402
+ return set(env_list_with_choices(env_name, default, choices, case_sensitive)())
403
+
404
+ return _get_validated_env_set
405
+
406
+
407
+ def get_vllm_port() -> int | None:
408
+ """Get the port from VLLM_PORT environment variable.
409
+
410
+ Returns:
411
+ The port number as an integer if VLLM_PORT is set, None otherwise.
412
+
413
+ Raises:
414
+ ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue.
415
+ """
416
+ if "VLLM_PORT" not in os.environ:
417
+ return None
418
+
419
+ port = os.getenv("VLLM_PORT", "0")
420
+
421
+ try:
422
+ return int(port)
423
+ except ValueError as err:
424
+ from urllib.parse import urlparse
425
+
426
+ parsed = urlparse(port)
427
+ if parsed.scheme:
428
+ raise ValueError(
429
+ f"VLLM_PORT '{port}' appears to be a URI. "
430
+ "This may be caused by a Kubernetes service discovery issue,"
431
+ "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html"
432
+ ) from None
433
+ raise ValueError(f"VLLM_PORT '{port}' must be a valid integer") from err
434
+
435
+
436
+ # The start-* and end* here are used by the documentation generator
437
+ # to extract the used env vars.
438
+
439
+ # --8<-- [start:env-vars-definition]
440
+
441
+ logger = logging.getLogger(__name__)
442
+
443
+ environment_variables: dict[str, Callable[[], Any]] = {
444
+ # ================== Installation Time Env Vars ==================
445
+ # Target device of vLLM, supporting [cuda (by default),
446
+ # rocm, cpu]
447
+ "VLLM_TARGET_DEVICE": lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
448
+ # Main CUDA version of vLLM. This follows PyTorch but can be overridden.
449
+ "VLLM_MAIN_CUDA_VERSION": lambda: os.getenv("VLLM_MAIN_CUDA_VERSION", "").lower()
450
+ or "12.9",
451
+ # Maximum number of compilation jobs to run in parallel.
452
+ # By default this is the number of CPUs
453
+ "MAX_JOBS": lambda: os.getenv("MAX_JOBS", None),
454
+ # Number of threads to use for nvcc
455
+ # By default this is 1.
456
+ # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
457
+ "NVCC_THREADS": lambda: os.getenv("NVCC_THREADS", None),
458
+ # If set, vllm will use precompiled binaries (*.so)
459
+ "VLLM_USE_PRECOMPILED": lambda: os.environ.get("VLLM_USE_PRECOMPILED", "")
460
+ .strip()
461
+ .lower()
462
+ in ("1", "true")
463
+ or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
464
+ # Used to mark that setup.py is running in a Docker build context,
465
+ # in order to force the use of precompiled binaries.
466
+ "VLLM_DOCKER_BUILD_CONTEXT": lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "")
467
+ .strip()
468
+ .lower()
469
+ in ("1", "true"),
470
+ # Whether to force using nightly wheel in python build.
471
+ # This is used for testing the nightly wheel in python build.
472
+ "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL": lambda: bool(
473
+ int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
474
+ ),
475
+ # CMake build type
476
+ # If not set, defaults to "Debug" or "RelWithDebInfo"
477
+ # Available options: "Debug", "Release", "RelWithDebInfo"
478
+ "CMAKE_BUILD_TYPE": env_with_choices(
479
+ "CMAKE_BUILD_TYPE", None, ["Debug", "Release", "RelWithDebInfo"]
480
+ ),
481
+ # If set, vllm will print verbose logs during installation
482
+ "VERBOSE": lambda: bool(int(os.getenv("VERBOSE", "0"))),
483
+ # Root directory for vLLM configuration files
484
+ # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
485
+ # Note that this not only affects how vllm finds its configuration files
486
+ # during runtime, but also affects how vllm installs its configuration
487
+ # files during **installation**.
488
+ "VLLM_CONFIG_ROOT": lambda: os.path.expanduser(
489
+ os.getenv(
490
+ "VLLM_CONFIG_ROOT",
491
+ os.path.join(get_default_config_root(), "vllm"),
492
+ )
493
+ ),
494
+ # ================== Runtime Env Vars ==================
495
+ # Root directory for vLLM cache files
496
+ # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
497
+ "VLLM_CACHE_ROOT": lambda: os.path.expanduser(
498
+ os.getenv(
499
+ "VLLM_CACHE_ROOT",
500
+ os.path.join(get_default_cache_root(), "vllm"),
501
+ )
502
+ ),
503
+ # used in distributed environment to determine the ip address
504
+ # of the current node, when the node has multiple network interfaces.
505
+ # If you are using multi-node inference, you should set this differently
506
+ # on each node.
507
+ "VLLM_HOST_IP": lambda: os.getenv("VLLM_HOST_IP", ""),
508
+ # used in distributed environment to manually set the communication port
509
+ # Note: if VLLM_PORT is set, and some code asks for multiple ports, the
510
+ # VLLM_PORT will be used as the first port, and the rest will be generated
511
+ # by incrementing the VLLM_PORT value.
512
+ "VLLM_PORT": get_vllm_port,
513
+ # path used for ipc when the frontend api server is running in
514
+ # multi-processing mode to communicate with the backend engine process.
515
+ "VLLM_RPC_BASE_PATH": lambda: os.getenv(
516
+ "VLLM_RPC_BASE_PATH", tempfile.gettempdir()
517
+ ),
518
+ # If true, will load models from ModelScope instead of Hugging Face Hub.
519
+ # note that the value is true or false, not numbers
520
+ "VLLM_USE_MODELSCOPE": lambda: os.environ.get(
521
+ "VLLM_USE_MODELSCOPE", "False"
522
+ ).lower()
523
+ == "true",
524
+ # Interval in seconds to log a warning message when the ring buffer is full
525
+ "VLLM_RINGBUFFER_WARNING_INTERVAL": lambda: int(
526
+ os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")
527
+ ),
528
+ # path to cudatoolkit home directory, under which should be bin, include,
529
+ # and lib directories.
530
+ "CUDA_HOME": lambda: os.environ.get("CUDA_HOME", None),
531
+ # Path to the NCCL library file. It is needed because nccl>=2.19 brought
532
+ # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
533
+ "VLLM_NCCL_SO_PATH": lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
534
+ # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
535
+ # library file in the locations specified by `LD_LIBRARY_PATH`
536
+ "LD_LIBRARY_PATH": lambda: os.environ.get("LD_LIBRARY_PATH", None),
537
+ # flag to control the chunk size (in MB) for sleeping memory allocations under ROCm
538
+ "VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE": lambda: int(
539
+ os.environ.get("VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE", "256")
540
+ ),
541
+ # Use separate prefill and decode kernels for V1 attention instead of
542
+ # the unified triton kernel.
543
+ "VLLM_V1_USE_PREFILL_DECODE_ATTENTION": lambda: (
544
+ os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower()
545
+ in ("true", "1")
546
+ ),
547
+ # Force vllm to use a specific flash-attention version (2 or 3), only valid
548
+ # when using the flash-attention backend.
549
+ "VLLM_FLASH_ATTN_VERSION": lambda: maybe_convert_int(
550
+ os.environ.get("VLLM_FLASH_ATTN_VERSION", None)
551
+ ),
552
+ # Feature flag to enable/disable Inductor standalone compile.
553
+ # In torch <= 2.7 we ignore this flag; in torch >= 2.9 this is
554
+ # enabled by default.
555
+ "VLLM_USE_STANDALONE_COMPILE": lambda: os.environ.get(
556
+ "VLLM_USE_STANDALONE_COMPILE", "1"
557
+ )
558
+ == "1",
559
+ # Debug pattern matching inside custom passes.
560
+ # Should be set to the fx.Node name (e.g. 'getitem_34' or 'scaled_mm_3').
561
+ "VLLM_PATTERN_MATCH_DEBUG": lambda: os.environ.get(
562
+ "VLLM_PATTERN_MATCH_DEBUG", None
563
+ ),
564
+ # Dump fx graphs to the given directory.
565
+ # It will override CompilationConfig.debug_dump_path if set.
566
+ "VLLM_DEBUG_DUMP_PATH": lambda: os.environ.get("VLLM_DEBUG_DUMP_PATH", None),
567
+ # Feature flag to enable/disable AOT compilation. This will ensure
568
+ # compilation is done in warmup phase and the compilation will be
569
+ # reused in subsequent calls.
570
+ "VLLM_USE_AOT_COMPILE": use_aot_compile,
571
+ # Feature flag to enable/disable bytecode in
572
+ # TorchCompileWithNoGuardsWrapper.
573
+ "VLLM_USE_BYTECODE_HOOK": lambda: bool(
574
+ int(os.environ.get("VLLM_USE_BYTECODE_HOOK", "1"))
575
+ ),
576
+ # Force vllm to always load AOT compiled models from disk. Failure
577
+ # to load will result in a hard error when this is enabled.
578
+ # Will be ignored when VLLM_USE_AOT_COMPILE is disabled.
579
+ "VLLM_FORCE_AOT_LOAD": lambda: os.environ.get("VLLM_FORCE_AOT_LOAD", "0") == "1",
580
+ # local rank of the process in the distributed setting, used to determine
581
+ # the GPU device id
582
+ "LOCAL_RANK": lambda: int(os.environ.get("LOCAL_RANK", "0")),
583
+ # used to control the visible devices in the distributed setting
584
+ "CUDA_VISIBLE_DEVICES": lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
585
+ # timeout for each iteration in the engine
586
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S": lambda: int(
587
+ os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")
588
+ ),
589
+ # API key for vLLM API server
590
+ "VLLM_API_KEY": lambda: os.environ.get("VLLM_API_KEY", None),
591
+ # Whether to log responses from API Server for debugging
592
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE": lambda: os.environ.get(
593
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
594
+ ).lower()
595
+ == "true",
596
+ # S3 access information, used for tensorizer to load model from S3
597
+ "S3_ACCESS_KEY_ID": lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
598
+ "S3_SECRET_ACCESS_KEY": lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
599
+ "S3_ENDPOINT_URL": lambda: os.environ.get("S3_ENDPOINT_URL", None),
600
+ # Usage stats collection
601
+ "VLLM_USAGE_STATS_SERVER": lambda: os.environ.get(
602
+ "VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"
603
+ ),
604
+ "VLLM_NO_USAGE_STATS": lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
605
+ "VLLM_DISABLE_FLASHINFER_PREFILL": lambda: os.environ.get(
606
+ "VLLM_DISABLE_FLASHINFER_PREFILL", "0"
607
+ )
608
+ == "1",
609
+ "VLLM_DO_NOT_TRACK": lambda: (
610
+ os.environ.get("VLLM_DO_NOT_TRACK", None)
611
+ or os.environ.get("DO_NOT_TRACK", None)
612
+ or "0"
613
+ )
614
+ == "1",
615
+ "VLLM_USAGE_SOURCE": lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
616
+ # Logging configuration
617
+ # If set to 0, vllm will not configure logging
618
+ # If set to 1, vllm will configure logging using the default configuration
619
+ # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
620
+ "VLLM_CONFIGURE_LOGGING": lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
621
+ "VLLM_LOGGING_CONFIG_PATH": lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
622
+ # this is used for configuring the default logging level
623
+ "VLLM_LOGGING_LEVEL": lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
624
+ # this is used for configuring the default logging stream
625
+ "VLLM_LOGGING_STREAM": lambda: os.getenv("VLLM_LOGGING_STREAM", "ext://sys.stdout"),
626
+ # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
627
+ "VLLM_LOGGING_PREFIX": lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
628
+ # Controls colored logging output. Options: "auto" (default, colors when terminal),
629
+ # "1" (always use colors), "0" (never use colors)
630
+ "VLLM_LOGGING_COLOR": lambda: os.getenv("VLLM_LOGGING_COLOR", "auto"),
631
+ # Standard unix flag for disabling ANSI color codes
632
+ "NO_COLOR": lambda: os.getenv("NO_COLOR", "0") != "0",
633
+ # If set, vllm will log stats at this interval in seconds
634
+ # If not set, vllm will log stats every 10 seconds.
635
+ "VLLM_LOG_STATS_INTERVAL": lambda: val
636
+ if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10."))) > 0.0
637
+ else 10.0,
638
+ # Trace function calls
639
+ # If set to 1, vllm will trace function calls
640
+ # Useful for debugging
641
+ "VLLM_TRACE_FUNCTION": lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
642
+ # Backend for attention computation
643
+ # Example options:
644
+ # - "TORCH_SDPA": use torch.nn.MultiheadAttention
645
+ # - "FLASH_ATTN": use FlashAttention
646
+ # - "FLASHINFER": use flashinfer
647
+ # - "FLASHMLA": use FlashMLA
648
+ # - "FLASH_ATTN_MLA": use FlashAttention for MLA
649
+ # - "FLASHINFER_MLA": use FlashInfer for MLA
650
+ # - "CUTLASS_MLA": use CUTLASS for MLA
651
+ # All possible options loaded dynamically from AttentionBackendEnum
652
+ "VLLM_ATTENTION_BACKEND": env_with_choices(
653
+ "VLLM_ATTENTION_BACKEND",
654
+ None,
655
+ lambda: list(
656
+ __import__(
657
+ "vllm.attention.backends.registry", fromlist=["AttentionBackendEnum"]
658
+ ).AttentionBackendEnum.__members__.keys()
659
+ ),
660
+ ),
661
+ # If set, vllm will use flashinfer sampler
662
+ "VLLM_USE_FLASHINFER_SAMPLER": lambda: bool(
663
+ int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"])
664
+ )
665
+ if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ
666
+ else None,
667
+ # Pipeline stage partition strategy
668
+ "VLLM_PP_LAYER_PARTITION": lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
669
+ # (CPU backend only) CPU key-value cache space.
670
+ # default is None and will be set as 4 GB
671
+ "VLLM_CPU_KVCACHE_SPACE": lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
672
+ if "VLLM_CPU_KVCACHE_SPACE" in os.environ
673
+ else None,
674
+ # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
675
+ # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
676
+ "VLLM_CPU_OMP_THREADS_BIND": lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),
677
+ # (CPU backend only) CPU cores not used by OMP threads .
678
+ # Those CPU cores will not be used by OMP threads of a rank.
679
+ "VLLM_CPU_NUM_OF_RESERVED_CPU": lambda: int(
680
+ os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0")
681
+ )
682
+ if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ
683
+ else None,
684
+ # (CPU backend only) whether to use SGL kernels, optimized for small batch.
685
+ "VLLM_CPU_SGL_KERNEL": lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),
686
+ # If the env var is set, Ray Compiled Graph uses the specified
687
+ # channel type to communicate between workers belonging to
688
+ # different pipeline-parallel stages.
689
+ # Available options:
690
+ # - "auto": use the default channel type
691
+ # - "nccl": use NCCL for communication
692
+ # - "shm": use shared memory and gRPC for communication
693
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE": env_with_choices(
694
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto", ["auto", "nccl", "shm"]
695
+ ),
696
+ # If the env var is set, it enables GPU communication overlap
697
+ # (experimental feature) in Ray's Compiled Graph.
698
+ "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM": lambda: bool(
699
+ int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
700
+ ),
701
+ # If the env var is set, it uses a Ray Communicator wrapping
702
+ # vLLM's pipeline parallelism communicator to interact with Ray's
703
+ # Compiled Graph. Otherwise, it uses Ray's NCCL communicator.
704
+ "VLLM_USE_RAY_WRAPPED_PP_COMM": lambda: bool(
705
+ int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1"))
706
+ ),
707
+ # Use dedicated multiprocess context for workers.
708
+ # Both spawn and fork work
709
+ "VLLM_WORKER_MULTIPROC_METHOD": env_with_choices(
710
+ "VLLM_WORKER_MULTIPROC_METHOD", "fork", ["spawn", "fork"]
711
+ ),
712
+ # Path to the cache for storing downloaded assets
713
+ "VLLM_ASSETS_CACHE": lambda: os.path.expanduser(
714
+ os.getenv(
715
+ "VLLM_ASSETS_CACHE",
716
+ os.path.join(get_default_cache_root(), "vllm", "assets"),
717
+ )
718
+ ),
719
+ # If the env var is set, we will clean model file in
720
+ # this path $VLLM_ASSETS_CACHE/model_streamer/$model_name
721
+ "VLLM_ASSETS_CACHE_MODEL_CLEAN": lambda: bool(
722
+ int(os.getenv("VLLM_ASSETS_CACHE_MODEL_CLEAN", "0"))
723
+ ),
724
+ # Timeout for fetching images when serving multimodal models
725
+ # Default is 5 seconds
726
+ "VLLM_IMAGE_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
727
+ # Timeout for fetching videos when serving multimodal models
728
+ # Default is 30 seconds
729
+ "VLLM_VIDEO_FETCH_TIMEOUT": lambda: int(
730
+ os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")
731
+ ),
732
+ # Timeout for fetching audio when serving multimodal models
733
+ # Default is 10 seconds
734
+ "VLLM_AUDIO_FETCH_TIMEOUT": lambda: int(
735
+ os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")
736
+ ),
737
+ # Whether to allow HTTP redirects when fetching from media URLs.
738
+ # Default to True
739
+ "VLLM_MEDIA_URL_ALLOW_REDIRECTS": lambda: bool(
740
+ int(os.getenv("VLLM_MEDIA_URL_ALLOW_REDIRECTS", "1"))
741
+ ),
742
+ # Max number of workers for the thread pool handling
743
+ # media bytes loading. Set to 1 to disable parallel processing.
744
+ # Default is 8
745
+ "VLLM_MEDIA_LOADING_THREAD_COUNT": lambda: int(
746
+ os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8")
747
+ ),
748
+ # Maximum filesize in MB for a single audio file when processing
749
+ # speech-to-text requests. Files larger than this will be rejected.
750
+ # Default is 25 MB
751
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB": lambda: int(
752
+ os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")
753
+ ),
754
+ # Backend for Video IO
755
+ # - "opencv": Default backend that uses OpenCV stream buffered backend.
756
+ #
757
+ # Custom backend implementations can be registered
758
+ # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
759
+ # imported at runtime.
760
+ # If a non-existing backend is used, an AssertionError will be thrown.
761
+ "VLLM_VIDEO_LOADER_BACKEND": lambda: os.getenv(
762
+ "VLLM_VIDEO_LOADER_BACKEND", "opencv"
763
+ ),
764
+ # Media connector implementation.
765
+ # - "http": Default connector that supports fetching media via HTTP.
766
+ #
767
+ # Custom implementations can be registered
768
+ # via `@MEDIA_CONNECTOR_REGISTRY.register("my_custom_media_connector")` and
769
+ # imported at runtime.
770
+ # If a non-existing backend is used, an AssertionError will be thrown.
771
+ "VLLM_MEDIA_CONNECTOR": lambda: os.getenv("VLLM_MEDIA_CONNECTOR", "http"),
772
+ # [DEPRECATED] Cache size (in GiB per process) for multimodal input cache
773
+ # Default is 4 GiB per API process + 4 GiB per engine core process
774
+ "VLLM_MM_INPUT_CACHE_GIB": lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),
775
+ # Path to the XLA persistent cache directory.
776
+ # Only used for XLA devices such as TPUs.
777
+ "VLLM_XLA_CACHE_PATH": lambda: os.path.expanduser(
778
+ os.getenv(
779
+ "VLLM_XLA_CACHE_PATH",
780
+ os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
781
+ )
782
+ ),
783
+ # If set, assert on XLA recompilation after each execution step.
784
+ "VLLM_XLA_CHECK_RECOMPILATION": lambda: bool(
785
+ int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))
786
+ ),
787
+ # Enable SPMD mode for TPU backend.
788
+ "VLLM_XLA_USE_SPMD": lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
789
+ "VLLM_FUSED_MOE_CHUNK_SIZE": lambda: int(
790
+ os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", str(16 * 1024))
791
+ ),
792
+ # Control whether to use fused MoE activation chunking. Current chunking
793
+ # logic is incompatible with torch.compile and causes IMA. See issue
794
+ # https://github.com/vllm-project/vllm/issues/19631.
795
+ "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING": lambda: bool(
796
+ int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))
797
+ ),
798
+ # If set, the OpenAI API server will stay alive even after the underlying
799
+ # AsyncLLMEngine errors and stops serving requests
800
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH": lambda: bool(
801
+ int(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", "0"))
802
+ ),
803
+ # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
804
+ # the user to specify a max sequence length greater than
805
+ # the max length derived from the model's config.json.
806
+ # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
807
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN": lambda: (
808
+ os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower()
809
+ in ("1", "true")
810
+ ),
811
+ # If set, forces FP8 Marlin to be used for FP8 quantization regardless
812
+ # of the hardware support for FP8 compute.
813
+ "VLLM_TEST_FORCE_FP8_MARLIN": lambda: (
814
+ os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower()
815
+ in ("1", "true")
816
+ ),
817
+ "VLLM_TEST_FORCE_LOAD_FORMAT": lambda: os.getenv(
818
+ "VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"
819
+ ),
820
+ # Time in ms for the zmq client to wait for a response from the backend
821
+ # server for simple data operations
822
+ "VLLM_RPC_TIMEOUT": lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
823
+ # Timeout in seconds for keeping HTTP connections alive in API server
824
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE": lambda: int(
825
+ os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")
826
+ ),
827
+ # a list of plugin names to load, separated by commas.
828
+ # if this is not set, it means all plugins will be loaded
829
+ # if this is set to an empty string, no plugins will be loaded
830
+ "VLLM_PLUGINS": lambda: None
831
+ if "VLLM_PLUGINS" not in os.environ
832
+ else os.environ["VLLM_PLUGINS"].split(","),
833
+ # a local directory to look in for unrecognized LoRA adapters.
834
+ # only works if plugins are enabled and
835
+ # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
836
+ "VLLM_LORA_RESOLVER_CACHE_DIR": lambda: os.getenv(
837
+ "VLLM_LORA_RESOLVER_CACHE_DIR", None
838
+ ),
839
+ # Enables torch CUDA profiling if set.
840
+ # On NVIDIA GPUs, this will start/stop cudaProfilerApi when triggered.
841
+ "VLLM_TORCH_CUDA_PROFILE": lambda: bool(
842
+ os.getenv("VLLM_TORCH_CUDA_PROFILE", "0") != "0"
843
+ ),
844
+ # Enables torch profiler if set.
845
+ # Both AsyncLLM's CPU traces as well as workers'
846
+ # traces (CPU & GPU) will be saved under this directory.
847
+ # Note that it must be an absolute path.
848
+ "VLLM_TORCH_PROFILER_DIR": lambda: (
849
+ None
850
+ if (val := os.getenv("VLLM_TORCH_PROFILER_DIR")) is None
851
+ else (
852
+ val
853
+ if val.startswith("gs://") and val[5:] and val[5] != "/"
854
+ else os.path.abspath(os.path.expanduser(val))
855
+ )
856
+ ),
857
+ # Enable torch profiler to record shapes if set
858
+ # VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will
859
+ # not record shapes.
860
+ "VLLM_TORCH_PROFILER_RECORD_SHAPES": lambda: bool(
861
+ os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0"
862
+ ),
863
+ # Enable torch profiler to profile memory if set
864
+ # VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler
865
+ # will not profile memory.
866
+ "VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY": lambda: bool(
867
+ os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0"
868
+ ),
869
+ # Enable torch profiler to profile stack if set
870
+ # VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL
871
+ # profile stack by default.
872
+ "VLLM_TORCH_PROFILER_WITH_STACK": lambda: bool(
873
+ os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0"
874
+ ),
875
+ # Enable torch profiler to profile flops if set
876
+ # VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will
877
+ # not profile flops.
878
+ "VLLM_TORCH_PROFILER_WITH_FLOPS": lambda: bool(
879
+ os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0"
880
+ ),
881
+ # Disable torch profiling of the AsyncLLMEngine process.
882
+ # If set to 1, will not profile the engine process.
883
+ "VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM": lambda: bool(
884
+ os.getenv("VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM", "0") != "0"
885
+ ),
886
+ # Delay number of iterations before starting profiling when using
887
+ # the torch/torch CUDA profiler. If set to 0, will start profiling immediately.
888
+ "VLLM_PROFILER_DELAY_ITERS": lambda: int(
889
+ os.getenv("VLLM_PROFILER_DELAY_ITERS", "0")
890
+ ),
891
+ # Maximum number of iterations to profile when using the torch/torch CUDA profiler.
892
+ # If set to 0, will not limit the number of iterations.
893
+ "VLLM_PROFILER_MAX_ITERS": lambda: int(os.getenv("VLLM_PROFILER_MAX_ITERS", "0")),
894
+ # Control whether torch profiler gzip-compresses profiling files.
895
+ # Set VLLM_TORCH_PROFILER_USE_GZIP=0 to disable gzip (enabled by default).
896
+ "VLLM_TORCH_PROFILER_USE_GZIP": lambda: bool(
897
+ os.getenv("VLLM_TORCH_PROFILER_USE_GZIP", "1") != "0"
898
+ ),
899
+ # Control whether torch profiler dumps the self_cuda_time_total table.
900
+ # Set VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL=0 to disable dumping
901
+ # (enabled by default).
902
+ "VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL": lambda: bool(
903
+ os.getenv("VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL", "1") != "0"
904
+ ),
905
+ # If set, vLLM will use Triton implementations of AWQ.
906
+ "VLLM_USE_TRITON_AWQ": lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
907
+ # If set, allow loading or unloading lora adapters in runtime,
908
+ "VLLM_ALLOW_RUNTIME_LORA_UPDATING": lambda: (
909
+ os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower()
910
+ in ("1", "true")
911
+ ),
912
+ # We assume drivers can report p2p status correctly.
913
+ # If the program hangs when using custom allreduce,
914
+ # potantially caused by a bug in the driver (535 series),
915
+ # if might be helpful to set VLLM_SKIP_P2P_CHECK=0
916
+ # so that vLLM can verify if p2p is actually working.
917
+ # See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
918
+ "VLLM_SKIP_P2P_CHECK": lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1",
919
+ # List of quantization kernels that should be disabled, used for testing
920
+ # and performance comparisons. Currently only affects MPLinearKernel
921
+ # selection
922
+ # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
923
+ "VLLM_DISABLED_KERNELS": lambda: []
924
+ if "VLLM_DISABLED_KERNELS" not in os.environ
925
+ else os.environ["VLLM_DISABLED_KERNELS"].split(","),
926
+ # Disable pynccl (using torch.distributed instead)
927
+ "VLLM_DISABLE_PYNCCL": lambda: (
928
+ os.getenv("VLLM_DISABLE_PYNCCL", "False").lower() in ("true", "1")
929
+ ),
930
+ # Disable aiter ops unless specifically enabled.
931
+ # Acts as a parent switch to enable the rest of the other operations.
932
+ "VLLM_ROCM_USE_AITER": lambda: (
933
+ os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in ("true", "1")
934
+ ),
935
+ # Whether to use aiter paged attention.
936
+ # By default is disabled.
937
+ "VLLM_ROCM_USE_AITER_PAGED_ATTN": lambda: (
938
+ os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in ("true", "1")
939
+ ),
940
+ # use aiter linear op if aiter ops are enabled
941
+ # The following list of related ops
942
+ # - scaled_mm (per-tensor / rowwise)
943
+ "VLLM_ROCM_USE_AITER_LINEAR": lambda: (
944
+ os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in ("true", "1")
945
+ ),
946
+ # Whether to use aiter moe ops.
947
+ # By default is enabled.
948
+ "VLLM_ROCM_USE_AITER_MOE": lambda: (
949
+ os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in ("true", "1")
950
+ ),
951
+ # use aiter rms norm op if aiter ops are enabled.
952
+ "VLLM_ROCM_USE_AITER_RMSNORM": lambda: (
953
+ os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in ("true", "1")
954
+ ),
955
+ # Whether to use aiter mla ops.
956
+ # By default is enabled.
957
+ "VLLM_ROCM_USE_AITER_MLA": lambda: (
958
+ os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in ("true", "1")
959
+ ),
960
+ # Whether to use aiter mha ops.
961
+ # By default is enabled.
962
+ "VLLM_ROCM_USE_AITER_MHA": lambda: (
963
+ os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in ("true", "1")
964
+ ),
965
+ # Whether to use aiter fp4 gemm asm.
966
+ # By default is disabled.
967
+ "VLLM_ROCM_USE_AITER_FP4_ASM_GEMM": lambda: (
968
+ os.getenv("VLLM_ROCM_USE_AITER_FP4_ASM_GEMM", "False").lower() in ("true", "1")
969
+ ),
970
+ # Whether to use aiter rope.
971
+ # By default is disabled.
972
+ "VLLM_ROCM_USE_AITER_TRITON_ROPE": lambda: (
973
+ os.getenv("VLLM_ROCM_USE_AITER_TRITON_ROPE", "False").lower() in ("true", "1")
974
+ ),
975
+ # Whether to use aiter triton fp8 bmm kernel
976
+ # By default is enabled.
977
+ "VLLM_ROCM_USE_AITER_FP8BMM": lambda: (
978
+ os.getenv("VLLM_ROCM_USE_AITER_FP8BMM", "True").lower() in ("true", "1")
979
+ ),
980
+ # Use AITER triton unified attention for V1 attention
981
+ "VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION": lambda: (
982
+ os.getenv("VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION", "False").lower()
983
+ in ("true", "1")
984
+ ),
985
+ # Whether to use aiter fusion shared experts ops.
986
+ # By default is disabled.
987
+ "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS": lambda: (
988
+ os.getenv("VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS", "False").lower()
989
+ in ("true", "1")
990
+ ),
991
+ # Whether to use aiter triton kernels for gemm ops.
992
+ # By default is enabled.
993
+ "VLLM_ROCM_USE_AITER_TRITON_GEMM": lambda: (
994
+ os.getenv("VLLM_ROCM_USE_AITER_TRITON_GEMM", "True").lower() in ("true", "1")
995
+ ),
996
+ # use rocm skinny gemms
997
+ "VLLM_ROCM_USE_SKINNY_GEMM": lambda: (
998
+ os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in ("true", "1")
999
+ ),
1000
+ # Pad the fp8 weights to 256 bytes for ROCm
1001
+ "VLLM_ROCM_FP8_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
1002
+ # Pad the weights for the moe kernel
1003
+ "VLLM_ROCM_MOE_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
1004
+ # custom paged attention kernel for MI3* cards
1005
+ "VLLM_ROCM_CUSTOM_PAGED_ATTN": lambda: (
1006
+ os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in ("true", "1")
1007
+ ),
1008
+ # Custom quick allreduce kernel for MI3* cards
1009
+ # Choice of quantization level: FP, INT8, INT6, INT4 or NONE
1010
+ # Recommended for large models to get allreduce
1011
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION": env_with_choices(
1012
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION",
1013
+ "NONE",
1014
+ ["FP", "INT8", "INT6", "INT4", "NONE"],
1015
+ ),
1016
+ # Custom quick allreduce kernel for MI3* cards
1017
+ # Due to the lack of the bfloat16 asm instruction, bfloat16
1018
+ # kernels are slower than fp16,
1019
+ # If environment variable is set to 1, the input is converted to fp16
1020
+ "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16": lambda: (
1021
+ os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower()
1022
+ in ("true", "1")
1023
+ ),
1024
+ # Custom quick allreduce kernel for MI3* cards.
1025
+ # Controls the maximum allowed number of data bytes(MB) for custom quick
1026
+ # allreduce communication.
1027
+ # Default: 2048 MB.
1028
+ # Data exceeding this size will use either custom allreduce or RCCL
1029
+ # communication.
1030
+ "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB": lambda: maybe_convert_int(
1031
+ os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)
1032
+ ),
1033
+ # Divisor for dynamic query scale factor calculation for FP8 KV Cache
1034
+ "Q_SCALE_CONSTANT": lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
1035
+ # Divisor for dynamic key scale factor calculation for FP8 KV Cache
1036
+ "K_SCALE_CONSTANT": lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
1037
+ # Divisor for dynamic value scale factor calculation for FP8 KV Cache
1038
+ "V_SCALE_CONSTANT": lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
1039
+ # If set, enable multiprocessing in LLM for the V1 code path.
1040
+ "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool(
1041
+ int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))
1042
+ ),
1043
+ "VLLM_LOG_BATCHSIZE_INTERVAL": lambda: float(
1044
+ os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")
1045
+ ),
1046
+ "VLLM_DISABLE_COMPILE_CACHE": disable_compile_cache,
1047
+ # If set, vllm will run in development mode, which will enable
1048
+ # some additional endpoints for developing and debugging,
1049
+ # e.g. `/reset_prefix_cache`
1050
+ "VLLM_SERVER_DEV_MODE": lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
1051
+ # Controls the maximum number of requests to handle in a
1052
+ # single asyncio task when processing per-token outputs in the
1053
+ # V1 AsyncLLM interface. It is applicable when handling a high
1054
+ # concurrency of streaming requests.
1055
+ # Setting this too high can result in a higher variance of
1056
+ # inter-message latencies. Setting it too low can negatively impact
1057
+ # TTFT and overall throughput.
1058
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE": lambda: int(
1059
+ os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")
1060
+ ),
1061
+ # If set, vLLM will disable the MLA attention optimizations.
1062
+ "VLLM_MLA_DISABLE": lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
1063
+ # If set, vLLM will pick up the provided Flash Attention MLA
1064
+ # max number splits for cuda graph decode
1065
+ "VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": lambda: int(
1066
+ os.getenv("VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH", "32")
1067
+ ),
1068
+ # Number of GPUs per worker in Ray, if it is set to be a fraction,
1069
+ # it allows ray to schedule multiple actors on a single GPU,
1070
+ # so that users can colocate other actors on the same GPUs as vLLM.
1071
+ "VLLM_RAY_PER_WORKER_GPUS": lambda: float(
1072
+ os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")
1073
+ ),
1074
+ # Bundle indices for Ray, if it is set, it can control precisely
1075
+ # which indices are used for the Ray bundle, for every worker.
1076
+ # Format: comma-separated list of integers, e.g. "0,1,2,3"
1077
+ "VLLM_RAY_BUNDLE_INDICES": lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
1078
+ # In some system, find_loaded_library() may not work. So we allow users to
1079
+ # specify the path through environment variable VLLM_CUDART_SO_PATH.
1080
+ "VLLM_CUDART_SO_PATH": lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
1081
+ # Rank of the process in the data parallel setting
1082
+ "VLLM_DP_RANK": lambda: int(os.getenv("VLLM_DP_RANK", "0")),
1083
+ # Rank of the process in the data parallel setting.
1084
+ # Defaults to VLLM_DP_RANK when not set.
1085
+ "VLLM_DP_RANK_LOCAL": lambda: int(
1086
+ os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)
1087
+ ),
1088
+ # World size of the data parallel setting
1089
+ "VLLM_DP_SIZE": lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
1090
+ # IP address of the master node in the data parallel setting
1091
+ "VLLM_DP_MASTER_IP": lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
1092
+ # Port of the master node in the data parallel setting
1093
+ "VLLM_DP_MASTER_PORT": lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
1094
+ # In the context of executing MoE models with Data-Parallel, Expert-Parallel
1095
+ # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
1096
+ # dictates the quantum of tokens that can be dispatched from a DP
1097
+ # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
1098
+ # units.
1099
+ "VLLM_MOE_DP_CHUNK_SIZE": lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),
1100
+ # Randomize inputs during dummy runs when using Data Parallel
1101
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS": lambda: os.environ.get(
1102
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0"
1103
+ )
1104
+ == "1",
1105
+ # Strategy to pack the data parallel ranks for Ray.
1106
+ # Available options:
1107
+ # - "fill":
1108
+ # for DP master node, allocate exactly data-parallel-size-local DP ranks,
1109
+ # for non-master nodes, allocate as many DP ranks as can fit;
1110
+ # - "strict":
1111
+ # allocate exactly data-parallel-size-local DP ranks to each picked node;
1112
+ # - "span":
1113
+ # Should be used only when a single DP rank requires multiple nodes.
1114
+ # allocate one DP rank over as many nodes as required for set world_size;
1115
+ # This environment variable is ignored if data-parallel-backend is not Ray.
1116
+ "VLLM_RAY_DP_PACK_STRATEGY": lambda: os.getenv(
1117
+ "VLLM_RAY_DP_PACK_STRATEGY", "strict"
1118
+ ),
1119
+ # Whether to use S3 path for model loading in CI via RunAI Streamer
1120
+ "VLLM_CI_USE_S3": lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
1121
+ # Use model_redirect to redirect the model name to a local folder.
1122
+ # `model_redirect` can be a json file mapping the model between
1123
+ # repo_id and local folder:
1124
+ # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
1125
+ # or a space separated values table file:
1126
+ # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
1127
+ "VLLM_MODEL_REDIRECT_PATH": lambda: os.environ.get(
1128
+ "VLLM_MODEL_REDIRECT_PATH", None
1129
+ ),
1130
+ # Whether to use atomicAdd reduce in gptq/awq marlin kernel.
1131
+ "VLLM_MARLIN_USE_ATOMIC_ADD": lambda: os.environ.get(
1132
+ "VLLM_MARLIN_USE_ATOMIC_ADD", "0"
1133
+ )
1134
+ == "1",
1135
+ # Whether to use marlin kernel in mxfp4 quantization method
1136
+ "VLLM_MXFP4_USE_MARLIN": lambda: maybe_convert_bool(
1137
+ os.environ.get("VLLM_MXFP4_USE_MARLIN", None)
1138
+ ),
1139
+ # The activation dtype for marlin kernel
1140
+ "VLLM_MARLIN_INPUT_DTYPE": env_with_choices(
1141
+ "VLLM_MARLIN_INPUT_DTYPE", None, ["int8", "fp8"]
1142
+ ),
1143
+ # Whether to use DeepEPLL kernels for NVFP4 quantization and dispatch method
1144
+ # only supported on Blackwell GPUs and with
1145
+ # https://github.com/deepseek-ai/DeepEP/pull/341
1146
+ "VLLM_DEEPEPLL_NVFP4_DISPATCH": lambda: bool(
1147
+ int(os.getenv("VLLM_DEEPEPLL_NVFP4_DISPATCH", "0"))
1148
+ ),
1149
+ # Whether to turn on the outlines cache for V1
1150
+ # This cache is unbounded and on disk, so it's not safe to use in
1151
+ # an environment with potentially malicious users.
1152
+ "VLLM_V1_USE_OUTLINES_CACHE": lambda: os.environ.get(
1153
+ "VLLM_V1_USE_OUTLINES_CACHE", "0"
1154
+ )
1155
+ == "1",
1156
+ # Gap between padding buckets for the forward pass. So we have
1157
+ # 8, we will run forward pass with [16, 24, 32, ...].
1158
+ "VLLM_TPU_BUCKET_PADDING_GAP": lambda: int(
1159
+ os.environ["VLLM_TPU_BUCKET_PADDING_GAP"]
1160
+ )
1161
+ if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ
1162
+ else 0,
1163
+ "VLLM_TPU_MOST_MODEL_LEN": lambda: maybe_convert_int(
1164
+ os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)
1165
+ ),
1166
+ # Whether using Pathways
1167
+ "VLLM_TPU_USING_PATHWAYS": lambda: bool(
1168
+ "proxy" in os.getenv("JAX_PLATFORMS", "").lower()
1169
+ ),
1170
+ # Allow use of DeepGemm kernels for fused moe ops.
1171
+ "VLLM_USE_DEEP_GEMM": lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "1"))),
1172
+ # Allow use of DeepGemm specifically for MoE fused ops (overrides only MoE).
1173
+ "VLLM_MOE_USE_DEEP_GEMM": lambda: bool(
1174
+ int(os.getenv("VLLM_MOE_USE_DEEP_GEMM", "1"))
1175
+ ),
1176
+ # Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs.
1177
+ "VLLM_USE_DEEP_GEMM_E8M0": lambda: bool(
1178
+ int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1"))
1179
+ ),
1180
+ # DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm
1181
+ # JIT all the required kernels before model execution so there is no
1182
+ # JIT'ing in the hot-path. However, this warmup increases the engine
1183
+ # startup time by a couple of minutes.
1184
+ # Available options:
1185
+ # - "skip" : Skip warmup.
1186
+ # - "full" : Warmup deepgemm by running all possible gemm shapes the
1187
+ # engine could encounter.
1188
+ # - "relax" : Select gemm shapes to run based on some heuristics. The
1189
+ # heuristic aims to have the same effect as running all possible gemm
1190
+ # shapes, but provides no guarantees.
1191
+ "VLLM_DEEP_GEMM_WARMUP": env_with_choices(
1192
+ "VLLM_DEEP_GEMM_WARMUP",
1193
+ "relax",
1194
+ [
1195
+ "skip",
1196
+ "full",
1197
+ "relax",
1198
+ ],
1199
+ ),
1200
+ # Whether to use fused grouped_topk used for MoE expert selection.
1201
+ "VLLM_USE_FUSED_MOE_GROUPED_TOPK": lambda: bool(
1202
+ int(os.getenv("VLLM_USE_FUSED_MOE_GROUPED_TOPK", "1"))
1203
+ ),
1204
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
1205
+ "VLLM_USE_FLASHINFER_MOE_FP16": lambda: bool(
1206
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP16", "0"))
1207
+ ),
1208
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
1209
+ "VLLM_USE_FLASHINFER_MOE_FP8": lambda: bool(
1210
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))
1211
+ ),
1212
+ # Allow use of FlashInfer CUTLASS kernels for fused moe ops.
1213
+ "VLLM_USE_FLASHINFER_MOE_FP4": lambda: bool(
1214
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))
1215
+ ),
1216
+ # If set to 1, use the FlashInfer
1217
+ # MXFP8 (activation) x MXFP4 (weight) MoE backend.
1218
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8": lambda: bool(
1219
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0"))
1220
+ ),
1221
+ # If set to 1, use the FlashInfer CUTLASS backend for
1222
+ # MXFP8 (activation) x MXFP4 (weight) MoE.
1223
+ # This is separate from the TRTLLMGEN path controlled by
1224
+ # VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8.
1225
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS": lambda: bool(
1226
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "0"))
1227
+ ),
1228
+ # If set to 1, use the FlashInfer
1229
+ # BF16 (activation) x MXFP4 (weight) MoE backend.
1230
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16": lambda: bool(
1231
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0"))
1232
+ ),
1233
+ # Control the cache sized used by the xgrammar compiler. The default
1234
+ # of 512 MB should be enough for roughly 1000 JSON schemas.
1235
+ # It can be changed with this variable if needed for some reason.
1236
+ "VLLM_XGRAMMAR_CACHE_MB": lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
1237
+ # Control the threshold for msgspec to use 'zero copy' for
1238
+ # serialization/deserialization of tensors. Tensors below
1239
+ # this limit will be encoded into the msgpack buffer, and
1240
+ # tensors above will instead be sent via a separate message.
1241
+ # While the sending side still actually copies the tensor
1242
+ # in all cases, on the receiving side, tensors above this
1243
+ # limit will actually be zero-copy decoded.
1244
+ "VLLM_MSGPACK_ZERO_COPY_THRESHOLD": lambda: int(
1245
+ os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")
1246
+ ),
1247
+ # If set, allow insecure serialization using pickle.
1248
+ # This is useful for environments where it is deemed safe to use the
1249
+ # insecure method and it is needed for some reason.
1250
+ "VLLM_ALLOW_INSECURE_SERIALIZATION": lambda: bool(
1251
+ int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))
1252
+ ),
1253
+ # IP address used for NIXL handshake between remote agents.
1254
+ "VLLM_NIXL_SIDE_CHANNEL_HOST": lambda: os.getenv(
1255
+ "VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"
1256
+ ),
1257
+ # Port used for NIXL handshake between remote agents.
1258
+ "VLLM_NIXL_SIDE_CHANNEL_PORT": lambda: int(
1259
+ os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5600")
1260
+ ),
1261
+ # all2all backend for vllm's expert parallel communication
1262
+ # Available options:
1263
+ # - "naive": naive all2all implementation using broadcasts
1264
+ # - "allgather_reducescatter": all2all implementation based on allgather and
1265
+ # reducescatter
1266
+ # - "pplx": use pplx kernels
1267
+ # - "deepep_high_throughput", use deepep high-throughput kernels
1268
+ # - "deepep_low_latency", use deepep low-latency kernels
1269
+ # - "flashinfer_all2allv", use flashinfer alltoallv kernels for mnnvl
1270
+ "VLLM_ALL2ALL_BACKEND": env_with_choices(
1271
+ "VLLM_ALL2ALL_BACKEND",
1272
+ "allgather_reducescatter",
1273
+ [
1274
+ "naive",
1275
+ "pplx",
1276
+ "deepep_high_throughput",
1277
+ "deepep_low_latency",
1278
+ "allgather_reducescatter",
1279
+ "flashinfer_all2allv",
1280
+ ],
1281
+ ),
1282
+ # Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support.
1283
+ # Both require compute capability 10.0 or above.
1284
+ # Available options:
1285
+ # - "throughput": [default]
1286
+ # Uses CUTLASS kernels optimized for high-throughput batch inference.
1287
+ # - "latency":
1288
+ # Uses TensorRT-LLM kernels optimized for low-latency inference.
1289
+ "VLLM_FLASHINFER_MOE_BACKEND": env_with_choices(
1290
+ "VLLM_FLASHINFER_MOE_BACKEND",
1291
+ "latency",
1292
+ ["throughput", "latency", "masked_gemm"],
1293
+ ),
1294
+ # Control the workspace buffer size for the FlashInfer backend.
1295
+ "VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE": lambda: int(
1296
+ os.getenv("VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE", str(394 * 1024 * 1024))
1297
+ ),
1298
+ # Control the maximum number of tokens per expert supported by the
1299
+ # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
1300
+ # the blockscale tensor of activations NVFP4 Quantization.
1301
+ # This is used to prevent the kernel from running out of memory.
1302
+ "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE": lambda: int(
1303
+ os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")
1304
+ ),
1305
+ # Specifies the thresholds of the communicated tensor sizes under which
1306
+ # vllm should use flashinfer fused allreduce. The variable should be a
1307
+ # JSON with the following format:
1308
+ # { <world size>: <max size in mb> }
1309
+ # Unspecified world sizes will fall back to
1310
+ # { 2: 64, 4: 1, <everything else>: 0.5 }
1311
+ "VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB": lambda: json.loads(
1312
+ os.getenv("VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB", "{}")
1313
+ ),
1314
+ # MoE routing strategy selector.
1315
+ # See `RoutingSimulator.get_available_strategies()` # for available
1316
+ # strategies.
1317
+ # Custom routing strategies can be registered by
1318
+ # RoutingSimulator.register_strategy()
1319
+ # Note: custom strategies may not produce correct model outputs
1320
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY": lambda: os.environ.get(
1321
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY", ""
1322
+ ).lower(),
1323
+ # Regex timeout for use by the vLLM tool parsing plugins.
1324
+ "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS": lambda: int(
1325
+ os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")
1326
+ ),
1327
+ # Reduce CPU usage when vLLM is idle. Enabling this will incur small
1328
+ # latency penalty when a request eventually comes.
1329
+ "VLLM_SLEEP_WHEN_IDLE": lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),
1330
+ # Control the max chunk bytes (in MB) for the rpc message queue.
1331
+ # Object larger than this threshold will be broadcast to worker
1332
+ # processes via zmq.
1333
+ "VLLM_MQ_MAX_CHUNK_BYTES_MB": lambda: int(
1334
+ os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")
1335
+ ),
1336
+ # Timeout in seconds for execute_model RPC calls in multiprocessing
1337
+ # executor (only applies when TP > 1).
1338
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS": lambda: int(
1339
+ os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")
1340
+ ),
1341
+ # KV Cache layout used throughout vllm.
1342
+ # Some common values are:
1343
+ # - NHD
1344
+ # - HND
1345
+ # Where N=num_blocks, H=num_heads and D=head_size. The default value will
1346
+ # leave the layout choice to the backend. Mind that backends may only
1347
+ # implement and support a subset of all possible layouts.
1348
+ "VLLM_KV_CACHE_LAYOUT": env_with_choices(
1349
+ "VLLM_KV_CACHE_LAYOUT", None, ["NHD", "HND"]
1350
+ ),
1351
+ # Enable checking whether the generated logits contain NaNs,
1352
+ # indicating corrupted output. Useful for debugging low level bugs
1353
+ # or bad hardware but it may add compute overhead.
1354
+ "VLLM_COMPUTE_NANS_IN_LOGITS": lambda: bool(
1355
+ int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))
1356
+ ),
1357
+ # Controls whether or not emulations are used for NVFP4
1358
+ # generations on machines < 100 for compressed-tensors
1359
+ # models
1360
+ "VLLM_USE_NVFP4_CT_EMULATIONS": lambda: bool(
1361
+ int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))
1362
+ ),
1363
+ # Time (in seconds) after which the KV cache on the producer side is
1364
+ # automatically cleared if no READ notification is received from the
1365
+ # consumer. This is only applicable when using NixlConnector in a
1366
+ # disaggregated decode-prefill setup.
1367
+ "VLLM_NIXL_ABORT_REQUEST_TIMEOUT": lambda: int(
1368
+ os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "480")
1369
+ ),
1370
+ # Controls whether or not to use cudnn prefill
1371
+ "VLLM_USE_CUDNN_PREFILL": lambda: bool(
1372
+ int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))
1373
+ ),
1374
+ # Controls whether to use TRT-LLM ragged DeepSeek prefill
1375
+ "VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL": lambda: bool(
1376
+ int(os.getenv("VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL", "0"))
1377
+ ),
1378
+ # If set to 1/True, use the TRTLLM attention backend in flashinfer.
1379
+ # If set to 0/False, use the default attention backend in flashinfer.
1380
+ # If not set, auto-detect the attention backend in flashinfer.
1381
+ "VLLM_USE_TRTLLM_ATTENTION": lambda: (
1382
+ None
1383
+ if "VLLM_USE_TRTLLM_ATTENTION" not in os.environ
1384
+ else os.environ["VLLM_USE_TRTLLM_ATTENTION"].lower() in ("1", "true")
1385
+ ),
1386
+ # If set to 1, when we use fp8 kv, we do not quantize Q to fp8
1387
+ "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION": lambda: bool(
1388
+ int(os.getenv("VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION", "0"))
1389
+ ),
1390
+ # If set, it means we pre-downloaded cubin files and flashinfer will
1391
+ # read the cubin files directly.
1392
+ "VLLM_HAS_FLASHINFER_CUBIN": lambda: bool(
1393
+ int(os.getenv("VLLM_HAS_FLASHINFER_CUBIN", "0"))
1394
+ ),
1395
+ # Supported options:
1396
+ # - "flashinfer-cudnn": use flashinfer cudnn GEMM backend
1397
+ # - "flashinfer-trtllm": use flashinfer trtllm GEMM backend
1398
+ # - "flashinfer-cutlass": use flashinfer cutlass GEMM backend
1399
+ # - <none>: automatically pick an available backend
1400
+ "VLLM_NVFP4_GEMM_BACKEND": env_with_choices(
1401
+ "VLLM_NVFP4_GEMM_BACKEND",
1402
+ None,
1403
+ ["flashinfer-cudnn", "flashinfer-trtllm", "flashinfer-cutlass", "cutlass"],
1404
+ ),
1405
+ # Controls garbage collection during CUDA graph capture.
1406
+ # If set to 0 (default), enables GC freezing to speed up capture time.
1407
+ # If set to 1, allows GC to run during capture.
1408
+ "VLLM_ENABLE_CUDAGRAPH_GC": lambda: bool(
1409
+ int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))
1410
+ ),
1411
+ # Used to force set up loopback IP
1412
+ "VLLM_LOOPBACK_IP": lambda: os.getenv("VLLM_LOOPBACK_IP", ""),
1413
+ # Used to set the process name prefix for vLLM processes.
1414
+ # This is useful for debugging and monitoring purposes.
1415
+ # The default value is "VLLM".
1416
+ "VLLM_PROCESS_NAME_PREFIX": lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
1417
+ # Allow chunked local attention with hybrid kv cache manager.
1418
+ # Currently using the Hybrid KV cache manager with chunked local attention
1419
+ # in the Llama4 models (the only models currently using chunked local attn)
1420
+ # causes a latency regression. For this reason, we disable it by default.
1421
+ # This flag is used to allow users to enable it if they want to (to save on
1422
+ # kv-cache memory usage and enable longer contexts)
1423
+ # TODO(lucas): Remove this flag once latency regression is resolved.
1424
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE": lambda: bool(
1425
+ int(os.getenv("VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0"))
1426
+ ),
1427
+ # Enables support for the "store" option in the OpenAI Responses API.
1428
+ # When set to 1, vLLM's OpenAI server will retain the input and output
1429
+ # messages for those requests in memory. By default, this is disabled (0),
1430
+ # and the "store" option is ignored.
1431
+ # NOTE/WARNING:
1432
+ # 1. Messages are kept in memory only (not persisted to disk) and will be
1433
+ # lost when the vLLM server shuts down.
1434
+ # 2. Enabling this option will cause a memory leak, as stored messages are
1435
+ # never removed from memory until the server terminates.
1436
+ "VLLM_ENABLE_RESPONSES_API_STORE": lambda: bool(
1437
+ int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0"))
1438
+ ),
1439
+ # If set, use the fp8 mfma in rocm paged attention.
1440
+ "VLLM_ROCM_FP8_MFMA_PAGE_ATTN": lambda: bool(
1441
+ int(os.getenv("VLLM_ROCM_FP8_MFMA_PAGE_ATTN", "0"))
1442
+ ),
1443
+ # Whether to use pytorch symmetric memory for allreduce
1444
+ "VLLM_ALLREDUCE_USE_SYMM_MEM": lambda: bool(
1445
+ int(os.getenv("VLLM_ALLREDUCE_USE_SYMM_MEM", "1"))
1446
+ ),
1447
+ # Allows vllm to find tuned config under customized folder
1448
+ "VLLM_TUNED_CONFIG_FOLDER": lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None),
1449
+ # Valid values are container,code_interpreter,web_search_preview
1450
+ # ex VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS=container,code_interpreter
1451
+ # If the server_label of your mcp tool is not in this list it will
1452
+ # be completely ignored.
1453
+ "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS": env_set_with_choices(
1454
+ "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS",
1455
+ default=[],
1456
+ choices=["container", "code_interpreter", "web_search_preview"],
1457
+ ),
1458
+ # Allows harmony instructions to be injected on system messages
1459
+ "VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS": lambda: bool(
1460
+ int(os.getenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "0"))
1461
+ ),
1462
+ # Enable automatic retry when tool call JSON parsing fails
1463
+ # If enabled, returns an error message to the model to retry
1464
+ # If disabled (default), raises an exception and fails the request
1465
+ "VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY": lambda: bool(
1466
+ int(os.getenv("VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY", "0"))
1467
+ ),
1468
+ # Add optional custom scopes for profiling, disable to avoid overheads
1469
+ "VLLM_CUSTOM_SCOPES_FOR_PROFILING": lambda: bool(
1470
+ int(os.getenv("VLLM_CUSTOM_SCOPES_FOR_PROFILING", "0"))
1471
+ ),
1472
+ # Add optional nvtx scopes for profiling, disable to avoid overheads
1473
+ "VLLM_NVTX_SCOPES_FOR_PROFILING": lambda: bool(
1474
+ int(os.getenv("VLLM_NVTX_SCOPES_FOR_PROFILING", "0"))
1475
+ ),
1476
+ # Represent block hashes in KV cache events as 64-bit integers instead of
1477
+ # raw bytes. Defaults to True for backward compatibility.
1478
+ "VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES": lambda: bool(
1479
+ int(os.getenv("VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES", "1"))
1480
+ ),
1481
+ # Name of the shared memory buffer used for object storage.
1482
+ # Only effective when mm_config.mm_processor_cache_type == "shm".
1483
+ "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME": lambda: os.getenv(
1484
+ "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME", "VLLM_OBJECT_STORAGE_SHM_BUFFER"
1485
+ ),
1486
+ # The size in MB of the buffers (NVL and RDMA) used by DeepEP
1487
+ "VLLM_DEEPEP_BUFFER_SIZE_MB": lambda: int(
1488
+ os.getenv("VLLM_DEEPEP_BUFFER_SIZE_MB", "1024")
1489
+ ),
1490
+ # Force DeepEP to use intranode kernel for inter-node communication in
1491
+ # high throughput mode. This is useful archive higher prefill throuhgput
1492
+ # on system supports multi-node nvlink (e.g GB200).
1493
+ "VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE": lambda: bool(
1494
+ int(os.getenv("VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE", "0"))
1495
+ ),
1496
+ # Allow DeepEP to use MNNVL (multi-node nvlink) for internode_ll kernel,
1497
+ # turn this for better latency on GB200 like system
1498
+ "VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL": lambda: bool(
1499
+ int(os.getenv("VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL", "0"))
1500
+ ),
1501
+ # The number of SMs to allocate for communication kernels when running DBO
1502
+ # the rest of the SMs on the device will be allocated to compute
1503
+ "VLLM_DBO_COMM_SMS": lambda: int(os.getenv("VLLM_DBO_COMM_SMS", "20")),
1504
+ # Enable max_autotune & coordinate_descent_tuning in inductor_config
1505
+ # to compile static shapes passed from compile_sizes in compilation_config
1506
+ # If set to 1, enable max_autotune; By default, this is enabled (1)
1507
+ "VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE": lambda: bool(
1508
+ int(os.getenv("VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE", "1"))
1509
+ ),
1510
+ # If set to 1, enable coordinate_descent_tuning;
1511
+ # By default, this is enabled (1)
1512
+ "VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING": lambda: bool(
1513
+ int(os.getenv("VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING", "1"))
1514
+ ),
1515
+ # Flag to enable NCCL symmetric memory allocation and registration
1516
+ "VLLM_USE_NCCL_SYMM_MEM": lambda: bool(
1517
+ int(os.getenv("VLLM_USE_NCCL_SYMM_MEM", "0"))
1518
+ ),
1519
+ # NCCL header path
1520
+ "VLLM_NCCL_INCLUDE_PATH": lambda: os.environ.get("VLLM_NCCL_INCLUDE_PATH", None),
1521
+ # Flag to enable FBGemm kernels on model execution
1522
+ "VLLM_USE_FBGEMM": lambda: bool(int(os.getenv("VLLM_USE_FBGEMM", "0"))),
1523
+ # GC debug config
1524
+ # - VLLM_GC_DEBUG=0: disable GC debugger
1525
+ # - VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
1526
+ # - VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger with
1527
+ # top 5 collected objects
1528
+ "VLLM_GC_DEBUG": lambda: os.getenv("VLLM_GC_DEBUG", ""),
1529
+ # Disables parallel execution of shared_experts via separate cuda stream
1530
+ "VLLM_DISABLE_SHARED_EXPERTS_STREAM": lambda: bool(
1531
+ int(os.getenv("VLLM_DISABLE_SHARED_EXPERTS_STREAM", "0"))
1532
+ ),
1533
+ # Limits when we run shared_experts in a separate stream.
1534
+ # We found out that for large batch sizes, the separate stream
1535
+ # execution is not beneficial (most likely because of the input clone)
1536
+ # TODO(alexm-redhat): Tune to be more dynamic based on GPU type
1537
+ "VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD": lambda: int(
1538
+ int(os.getenv("VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD", 256))
1539
+ ),
1540
+ # Format for saving torch.compile cache artifacts
1541
+ # - "binary": saves as binary file
1542
+ # Safe for multiple vllm serve processes accessing the same torch compile cache.
1543
+ # - "unpacked": saves as directory structure (for inspection/debugging)
1544
+ # NOT multiprocess safe - race conditions may occur with multiple processes.
1545
+ # Allows viewing and setting breakpoints in Inductor's code output files.
1546
+ "VLLM_COMPILE_CACHE_SAVE_FORMAT": env_with_choices(
1547
+ "VLLM_COMPILE_CACHE_SAVE_FORMAT", "binary", ["binary", "unpacked"]
1548
+ ),
1549
+ # Flag to enable v2 model runner.
1550
+ "VLLM_USE_V2_MODEL_RUNNER": lambda: bool(
1551
+ int(os.getenv("VLLM_USE_V2_MODEL_RUNNER", "0"))
1552
+ ),
1553
+ }
1554
+
1555
+ # --8<-- [end:env-vars-definition]
1556
+
1557
+
1558
+ def __getattr__(name: str):
1559
+ """
1560
+ Gets environment variables lazily.
1561
+
1562
+ NOTE: After enable_envs_cache() invocation (which triggered after service
1563
+ initialization), all environment variables will be cached.
1564
+ """
1565
+ if name in environment_variables:
1566
+ return environment_variables[name]()
1567
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1568
+
1569
+
1570
+ def enable_envs_cache() -> None:
1571
+ """
1572
+ Enables caching of environment variables. This is useful for performance
1573
+ reasons, as it avoids the need to re-evaluate environment variables on
1574
+ every call.
1575
+
1576
+ NOTE: Currently, it's invoked after service initialization to reduce
1577
+ runtime overhead. This also means that environment variables should NOT
1578
+ be updated after the service is initialized.
1579
+ """
1580
+ # Tag __getattr__ with functools.cache
1581
+ global __getattr__
1582
+ __getattr__ = functools.cache(__getattr__)
1583
+
1584
+ # Cache all environment variables
1585
+ for key in environment_variables:
1586
+ __getattr__(key)
1587
+
1588
+
1589
+ def __dir__():
1590
+ return list(environment_variables.keys())
1591
+
1592
+
1593
+ def is_set(name: str):
1594
+ """Check if an environment variable is explicitly set."""
1595
+ if name in environment_variables:
1596
+ return name in os.environ
1597
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1598
+
1599
+
1600
+ def compile_factors() -> dict[str, object]:
1601
+ """Return env vars used for torch.compile cache keys.
1602
+
1603
+ Start with every known vLLM env var; drop entries in `ignored_factors`;
1604
+ hash everything else. This keeps the cache key aligned across workers."""
1605
+
1606
+ ignored_factors: set[str] = {
1607
+ "MAX_JOBS",
1608
+ "VLLM_RPC_BASE_PATH",
1609
+ "VLLM_USE_MODELSCOPE",
1610
+ "VLLM_RINGBUFFER_WARNING_INTERVAL",
1611
+ "VLLM_DEBUG_DUMP_PATH",
1612
+ "VLLM_PORT",
1613
+ "VLLM_CACHE_ROOT",
1614
+ "LD_LIBRARY_PATH",
1615
+ "VLLM_SERVER_DEV_MODE",
1616
+ "VLLM_DP_MASTER_IP",
1617
+ "VLLM_DP_MASTER_PORT",
1618
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS",
1619
+ "VLLM_CI_USE_S3",
1620
+ "VLLM_MODEL_REDIRECT_PATH",
1621
+ "VLLM_HOST_IP",
1622
+ "S3_ACCESS_KEY_ID",
1623
+ "S3_SECRET_ACCESS_KEY",
1624
+ "S3_ENDPOINT_URL",
1625
+ "VLLM_USAGE_STATS_SERVER",
1626
+ "VLLM_NO_USAGE_STATS",
1627
+ "VLLM_DO_NOT_TRACK",
1628
+ "VLLM_LOGGING_LEVEL",
1629
+ "VLLM_LOGGING_PREFIX",
1630
+ "VLLM_LOGGING_STREAM",
1631
+ "VLLM_LOGGING_CONFIG_PATH",
1632
+ "VLLM_LOGGING_COLOR",
1633
+ "VLLM_LOG_STATS_INTERVAL",
1634
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE",
1635
+ "VLLM_TUNED_CONFIG_FOLDER",
1636
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S",
1637
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE",
1638
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS",
1639
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH",
1640
+ "VLLM_SLEEP_WHEN_IDLE",
1641
+ "VLLM_IMAGE_FETCH_TIMEOUT",
1642
+ "VLLM_VIDEO_FETCH_TIMEOUT",
1643
+ "VLLM_AUDIO_FETCH_TIMEOUT",
1644
+ "VLLM_MEDIA_URL_ALLOW_REDIRECTS",
1645
+ "VLLM_MEDIA_LOADING_THREAD_COUNT",
1646
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB",
1647
+ "VLLM_VIDEO_LOADER_BACKEND",
1648
+ "VLLM_MEDIA_CONNECTOR",
1649
+ "VLLM_ASSETS_CACHE",
1650
+ "VLLM_ASSETS_CACHE_MODEL_CLEAN",
1651
+ "VLLM_MM_INPUT_CACHE_GIB",
1652
+ "VLLM_WORKER_MULTIPROC_METHOD",
1653
+ "VLLM_ENABLE_V1_MULTIPROCESSING",
1654
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE",
1655
+ "VLLM_CPU_KVCACHE_SPACE",
1656
+ "VLLM_CPU_OMP_THREADS_BIND",
1657
+ "VLLM_CPU_NUM_OF_RESERVED_CPU",
1658
+ "VLLM_CPU_MOE_PREPACK",
1659
+ "VLLM_CPU_SGL_KERNEL",
1660
+ "VLLM_TEST_FORCE_LOAD_FORMAT",
1661
+ "LOCAL_RANK",
1662
+ "CUDA_VISIBLE_DEVICES",
1663
+ "NO_COLOR",
1664
+ }
1665
+
1666
+ from vllm.config.utils import normalize_value
1667
+
1668
+ factors: dict[str, object] = {}
1669
+ for factor, getter in environment_variables.items():
1670
+ if factor in ignored_factors:
1671
+ continue
1672
+
1673
+ try:
1674
+ raw = getter()
1675
+ except Exception as exc: # pragma: no cover - defensive logging
1676
+ logger.warning(
1677
+ "Skipping environment variable %s while hashing compile factors: %s",
1678
+ factor,
1679
+ exc,
1680
+ )
1681
+ continue
1682
+
1683
+ factors[factor] = normalize_value(raw)
1684
+
1685
+ ray_noset_env_vars = [
1686
+ # Refer to
1687
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/nvidia_gpu.py#L11
1688
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/amd_gpu.py#L11
1689
+ # https://github.com/ray-project/ray/blob/b97d21dab233c2bd8ed7db749a82a1e594222b5c/python/ray/_private/accelerators/amd_gpu.py#L10
1690
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/npu.py#L12
1691
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/hpu.py#L12
1692
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/neuron.py#L14
1693
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/tpu.py#L38
1694
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/intel_gpu.py#L10
1695
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/rbln.py#L10
1696
+ "RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES",
1697
+ "RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES",
1698
+ "RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES",
1699
+ "RAY_EXPERIMENTAL_NOSET_ASCEND_RT_VISIBLE_DEVICES",
1700
+ "RAY_EXPERIMENTAL_NOSET_HABANA_VISIBLE_MODULES",
1701
+ "RAY_EXPERIMENTAL_NOSET_NEURON_RT_VISIBLE_CORES",
1702
+ "RAY_EXPERIMENTAL_NOSET_TPU_VISIBLE_CHIPS",
1703
+ "RAY_EXPERIMENTAL_NOSET_ONEAPI_DEVICE_SELECTOR",
1704
+ "RAY_EXPERIMENTAL_NOSET_RBLN_RT_VISIBLE_DEVICES",
1705
+ ]
1706
+
1707
+ for var in ray_noset_env_vars:
1708
+ factors[var] = normalize_value(os.getenv(var))
1709
+
1710
+ return factors