scipy 1.16.2__cp312-cp312-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp312-win_arm64.lib +0 -0
- scipy/_cyutility.cp312-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp312-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp312-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp312-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp312-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp312-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp312-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp312-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp312-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp312-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp312-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp312-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp312-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp312-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp312-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp312-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp312-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp312-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp312-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp312-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp312-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp312-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp312-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp312-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp312-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp312-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp312-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp312-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp312-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp312-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp312-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp312-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp312-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp312-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp312-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp312-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp312-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp312-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp312-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp312-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp312-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp312-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp312-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp312-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp312-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp312-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp312-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp312-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp312-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp312-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp312-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp312-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp312-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp312-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp312-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp312-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp312-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp312-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp312-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp312-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp312-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp312-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp312-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp312-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp312-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp312-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp312-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp312-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp312-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp312-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp312-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp312-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp312-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp312-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp312-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp312-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp312-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp312-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp312-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp312-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp312-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp312-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp312-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp312-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp312-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp312-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp312-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp312-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp312-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp312-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp312-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp312-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp312-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp312-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp312-win_arm64.lib +0 -0
- scipy/signal/_spline.cp312-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp312-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp312-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp312-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp312-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp312-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp312-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp312-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp312-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp312-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp312-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp312-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp312-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp312-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp312-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp312-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp312-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp312-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp312-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp312-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp312-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp312-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp312-win_arm64.lib +0 -0
- scipy/special/_comb.cp312-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp312-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp312-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp312-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp312-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp312-win_arm64.lib +0 -0
- scipy/special/_specfun.cp312-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp312-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp312-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp312-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp312-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp312-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp312-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp312-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp312-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp312-win_arm64.lib +0 -0
- scipy/special/cython_special.cp312-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp312-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp312-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp312-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp312-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp312-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp312-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp312-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp312-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp312-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp312-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp312-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp312-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp312-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp312-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp312-win_arm64.lib +0 -0
- scipy/stats/_stats.cp312-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp312-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp312-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp312-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp312-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2592 @@
|
|
1
|
+
"""
|
2
|
+
A collection of functions to find the weights and abscissas for
|
3
|
+
Gaussian Quadrature.
|
4
|
+
|
5
|
+
These calculations are done by finding the eigenvalues of a
|
6
|
+
tridiagonal matrix whose entries are dependent on the coefficients
|
7
|
+
in the recursion formula for the orthogonal polynomials with the
|
8
|
+
corresponding weighting function over the interval.
|
9
|
+
|
10
|
+
Many recursion relations for orthogonal polynomials are given:
|
11
|
+
|
12
|
+
.. math::
|
13
|
+
|
14
|
+
a1n f_{n+1} (x) = (a2n + a3n x ) f_n (x) - a4n f_{n-1} (x)
|
15
|
+
|
16
|
+
The recursion relation of interest is
|
17
|
+
|
18
|
+
.. math::
|
19
|
+
|
20
|
+
P_{n+1} (x) = (x - A_n) P_n (x) - B_n P_{n-1} (x)
|
21
|
+
|
22
|
+
where :math:`P` has a different normalization than :math:`f`.
|
23
|
+
|
24
|
+
The coefficients can be found as:
|
25
|
+
|
26
|
+
.. math::
|
27
|
+
|
28
|
+
A_n = -a2n / a3n
|
29
|
+
\\qquad
|
30
|
+
B_n = ( a4n / a3n \\sqrt{h_n-1 / h_n})^2
|
31
|
+
|
32
|
+
where
|
33
|
+
|
34
|
+
.. math::
|
35
|
+
|
36
|
+
h_n = \\int_a^b w(x) f_n(x)^2
|
37
|
+
|
38
|
+
assume:
|
39
|
+
|
40
|
+
.. math::
|
41
|
+
|
42
|
+
P_0 (x) = 1
|
43
|
+
\\qquad
|
44
|
+
P_{-1} (x) == 0
|
45
|
+
|
46
|
+
For the mathematical background, see [golub.welsch-1969-mathcomp]_ and
|
47
|
+
[abramowitz.stegun-1965]_.
|
48
|
+
|
49
|
+
References
|
50
|
+
----------
|
51
|
+
.. [golub.welsch-1969-mathcomp]
|
52
|
+
Golub, Gene H, and John H Welsch. 1969. Calculation of Gauss
|
53
|
+
Quadrature Rules. *Mathematics of Computation* 23, 221-230+s1--s10.
|
54
|
+
|
55
|
+
.. [abramowitz.stegun-1965]
|
56
|
+
Abramowitz, Milton, and Irene A Stegun. (1965) *Handbook of
|
57
|
+
Mathematical Functions: with Formulas, Graphs, and Mathematical
|
58
|
+
Tables*. Gaithersburg, MD: National Bureau of Standards.
|
59
|
+
http://www.math.sfu.ca/~cbm/aands/
|
60
|
+
|
61
|
+
.. [townsend.trogdon.olver-2014]
|
62
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
63
|
+
*Fast computation of Gauss quadrature nodes and
|
64
|
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
65
|
+
|
66
|
+
.. [townsend.trogdon.olver-2015]
|
67
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
68
|
+
*Fast computation of Gauss quadrature nodes and
|
69
|
+
weights on the whole real line*.
|
70
|
+
IMA Journal of Numerical Analysis
|
71
|
+
:doi:`10.1093/imanum/drv002`.
|
72
|
+
"""
|
73
|
+
#
|
74
|
+
# Author: Travis Oliphant 2000
|
75
|
+
# Updated Sep. 2003 (fixed bugs --- tested to be accurate)
|
76
|
+
|
77
|
+
# SciPy imports.
|
78
|
+
import numpy as np
|
79
|
+
from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around,
|
80
|
+
hstack, arccos, arange)
|
81
|
+
from scipy import linalg
|
82
|
+
from scipy.special import airy
|
83
|
+
|
84
|
+
# Local imports.
|
85
|
+
# There is no .pyi file for _specfun
|
86
|
+
from . import _specfun # type: ignore
|
87
|
+
from . import _ufuncs
|
88
|
+
_gam = _ufuncs.gamma
|
89
|
+
|
90
|
+
_polyfuns = ['legendre', 'chebyt', 'chebyu', 'chebyc', 'chebys',
|
91
|
+
'jacobi', 'laguerre', 'genlaguerre', 'hermite',
|
92
|
+
'hermitenorm', 'gegenbauer', 'sh_legendre', 'sh_chebyt',
|
93
|
+
'sh_chebyu', 'sh_jacobi']
|
94
|
+
|
95
|
+
# Correspondence between new and old names of root functions
|
96
|
+
_rootfuns_map = {'roots_legendre': 'p_roots',
|
97
|
+
'roots_chebyt': 't_roots',
|
98
|
+
'roots_chebyu': 'u_roots',
|
99
|
+
'roots_chebyc': 'c_roots',
|
100
|
+
'roots_chebys': 's_roots',
|
101
|
+
'roots_jacobi': 'j_roots',
|
102
|
+
'roots_laguerre': 'l_roots',
|
103
|
+
'roots_genlaguerre': 'la_roots',
|
104
|
+
'roots_hermite': 'h_roots',
|
105
|
+
'roots_hermitenorm': 'he_roots',
|
106
|
+
'roots_gegenbauer': 'cg_roots',
|
107
|
+
'roots_sh_legendre': 'ps_roots',
|
108
|
+
'roots_sh_chebyt': 'ts_roots',
|
109
|
+
'roots_sh_chebyu': 'us_roots',
|
110
|
+
'roots_sh_jacobi': 'js_roots'}
|
111
|
+
|
112
|
+
__all__ = _polyfuns + list(_rootfuns_map.keys())
|
113
|
+
|
114
|
+
|
115
|
+
class orthopoly1d(np.poly1d):
|
116
|
+
|
117
|
+
def __init__(self, roots, weights=None, hn=1.0, kn=1.0, wfunc=None,
|
118
|
+
limits=None, monic=False, eval_func=None):
|
119
|
+
equiv_weights = [weights[k] / wfunc(roots[k]) for
|
120
|
+
k in range(len(roots))]
|
121
|
+
mu = sqrt(hn)
|
122
|
+
if monic:
|
123
|
+
evf = eval_func
|
124
|
+
if evf:
|
125
|
+
knn = kn
|
126
|
+
def eval_func(x):
|
127
|
+
return evf(x) / knn
|
128
|
+
mu = mu / abs(kn)
|
129
|
+
kn = 1.0
|
130
|
+
|
131
|
+
# compute coefficients from roots, then scale
|
132
|
+
poly = np.poly1d(roots, r=True)
|
133
|
+
np.poly1d.__init__(self, poly.coeffs * float(kn))
|
134
|
+
|
135
|
+
self.weights = np.array(list(zip(roots, weights, equiv_weights)))
|
136
|
+
self.weight_func = wfunc
|
137
|
+
self.limits = limits
|
138
|
+
self.normcoef = mu
|
139
|
+
|
140
|
+
# Note: eval_func will be discarded on arithmetic
|
141
|
+
self._eval_func = eval_func
|
142
|
+
|
143
|
+
def __call__(self, v):
|
144
|
+
if self._eval_func and not isinstance(v, np.poly1d):
|
145
|
+
return self._eval_func(v)
|
146
|
+
else:
|
147
|
+
return np.poly1d.__call__(self, v)
|
148
|
+
|
149
|
+
def _scale(self, p):
|
150
|
+
if p == 1.0:
|
151
|
+
return
|
152
|
+
self._coeffs *= p
|
153
|
+
|
154
|
+
evf = self._eval_func
|
155
|
+
if evf:
|
156
|
+
self._eval_func = lambda x: evf(x) * p
|
157
|
+
self.normcoef *= p
|
158
|
+
|
159
|
+
|
160
|
+
def _gen_roots_and_weights(n, mu0, an_func, bn_func, f, df, symmetrize, mu):
|
161
|
+
"""[x,w] = gen_roots_and_weights(n,an_func,sqrt_bn_func,mu)
|
162
|
+
|
163
|
+
Returns the roots (x) of an nth order orthogonal polynomial,
|
164
|
+
and weights (w) to use in appropriate Gaussian quadrature with that
|
165
|
+
orthogonal polynomial.
|
166
|
+
|
167
|
+
The polynomials have the recurrence relation
|
168
|
+
P_n+1(x) = (x - A_n) P_n(x) - B_n P_n-1(x)
|
169
|
+
|
170
|
+
an_func(n) should return A_n
|
171
|
+
sqrt_bn_func(n) should return sqrt(B_n)
|
172
|
+
mu ( = h_0 ) is the integral of the weight over the orthogonal
|
173
|
+
interval
|
174
|
+
"""
|
175
|
+
k = np.arange(n, dtype='d')
|
176
|
+
c = np.zeros((2, n))
|
177
|
+
c[0,1:] = bn_func(k[1:])
|
178
|
+
c[1,:] = an_func(k)
|
179
|
+
x = linalg.eigvals_banded(c, overwrite_a_band=True)
|
180
|
+
|
181
|
+
# improve roots by one application of Newton's method
|
182
|
+
y = f(n, x)
|
183
|
+
dy = df(n, x)
|
184
|
+
x -= y/dy
|
185
|
+
|
186
|
+
# fm and dy may contain very large/small values, so we
|
187
|
+
# log-normalize them to maintain precision in the product fm*dy
|
188
|
+
fm = f(n-1, x)
|
189
|
+
log_fm = np.log(np.abs(fm))
|
190
|
+
log_dy = np.log(np.abs(dy))
|
191
|
+
fm /= np.exp((log_fm.max() + log_fm.min()) / 2.)
|
192
|
+
dy /= np.exp((log_dy.max() + log_dy.min()) / 2.)
|
193
|
+
w = 1.0 / (fm * dy)
|
194
|
+
|
195
|
+
if symmetrize:
|
196
|
+
w = (w + w[::-1]) / 2
|
197
|
+
x = (x - x[::-1]) / 2
|
198
|
+
|
199
|
+
w *= mu0 / w.sum()
|
200
|
+
|
201
|
+
if mu:
|
202
|
+
return x, w, mu0
|
203
|
+
else:
|
204
|
+
return x, w
|
205
|
+
|
206
|
+
# Jacobi Polynomials 1 P^(alpha,beta)_n(x)
|
207
|
+
|
208
|
+
|
209
|
+
def roots_jacobi(n, alpha, beta, mu=False):
|
210
|
+
r"""Gauss-Jacobi quadrature.
|
211
|
+
|
212
|
+
Compute the sample points and weights for Gauss-Jacobi
|
213
|
+
quadrature. The sample points are the roots of the nth degree
|
214
|
+
Jacobi polynomial, :math:`P^{\alpha, \beta}_n(x)`. These sample
|
215
|
+
points and weights correctly integrate polynomials of degree
|
216
|
+
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
217
|
+
weight function :math:`w(x) = (1 - x)^{\alpha} (1 +
|
218
|
+
x)^{\beta}`. See 22.2.1 in [AS]_ for details.
|
219
|
+
|
220
|
+
Parameters
|
221
|
+
----------
|
222
|
+
n : int
|
223
|
+
quadrature order
|
224
|
+
alpha : float
|
225
|
+
alpha must be > -1
|
226
|
+
beta : float
|
227
|
+
beta must be > -1
|
228
|
+
mu : bool, optional
|
229
|
+
If True, return the sum of the weights, optional.
|
230
|
+
|
231
|
+
Returns
|
232
|
+
-------
|
233
|
+
x : ndarray
|
234
|
+
Sample points
|
235
|
+
w : ndarray
|
236
|
+
Weights
|
237
|
+
mu : float
|
238
|
+
Sum of the weights
|
239
|
+
|
240
|
+
See Also
|
241
|
+
--------
|
242
|
+
scipy.integrate.fixed_quad
|
243
|
+
|
244
|
+
References
|
245
|
+
----------
|
246
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
247
|
+
Handbook of Mathematical Functions with Formulas,
|
248
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
249
|
+
|
250
|
+
"""
|
251
|
+
m = int(n)
|
252
|
+
if n < 1 or n != m:
|
253
|
+
raise ValueError("n must be a positive integer.")
|
254
|
+
if alpha <= -1 or beta <= -1:
|
255
|
+
raise ValueError("alpha and beta must be greater than -1.")
|
256
|
+
|
257
|
+
if alpha == 0.0 and beta == 0.0:
|
258
|
+
return roots_legendre(m, mu)
|
259
|
+
if alpha == beta:
|
260
|
+
return roots_gegenbauer(m, alpha+0.5, mu)
|
261
|
+
|
262
|
+
if (alpha + beta) <= 1000:
|
263
|
+
mu0 = 2.0**(alpha+beta+1) * _ufuncs.beta(alpha+1, beta+1)
|
264
|
+
else:
|
265
|
+
# Avoid overflows in pow and beta for very large parameters
|
266
|
+
mu0 = np.exp((alpha + beta + 1) * np.log(2.0)
|
267
|
+
+ _ufuncs.betaln(alpha+1, beta+1))
|
268
|
+
a = alpha
|
269
|
+
b = beta
|
270
|
+
if a + b == 0.0:
|
271
|
+
def an_func(k):
|
272
|
+
return np.where(k == 0, (b - a) / (2 + a + b), 0.0)
|
273
|
+
else:
|
274
|
+
def an_func(k):
|
275
|
+
return np.where(
|
276
|
+
k == 0,
|
277
|
+
(b - a) / (2 + a + b),
|
278
|
+
(b * b - a * a) / ((2.0 * k + a + b) * (2.0 * k + a + b + 2))
|
279
|
+
)
|
280
|
+
|
281
|
+
def bn_func(k):
|
282
|
+
return (
|
283
|
+
2.0 / (2.0 * k + a + b)
|
284
|
+
* np.sqrt((k + a) * (k + b) / (2 * k + a + b + 1))
|
285
|
+
* np.where(k == 1, 1.0, np.sqrt(k * (k + a + b) / (2.0 * k + a + b - 1)))
|
286
|
+
)
|
287
|
+
|
288
|
+
def f(n, x):
|
289
|
+
return _ufuncs.eval_jacobi(n, a, b, x)
|
290
|
+
def df(n, x):
|
291
|
+
return 0.5 * (n + a + b + 1) * _ufuncs.eval_jacobi(n - 1, a + 1, b + 1, x)
|
292
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
293
|
+
|
294
|
+
|
295
|
+
def jacobi(n, alpha, beta, monic=False):
|
296
|
+
r"""Jacobi polynomial.
|
297
|
+
|
298
|
+
Defined to be the solution of
|
299
|
+
|
300
|
+
.. math::
|
301
|
+
(1 - x^2)\frac{d^2}{dx^2}P_n^{(\alpha, \beta)}
|
302
|
+
+ (\beta - \alpha - (\alpha + \beta + 2)x)
|
303
|
+
\frac{d}{dx}P_n^{(\alpha, \beta)}
|
304
|
+
+ n(n + \alpha + \beta + 1)P_n^{(\alpha, \beta)} = 0
|
305
|
+
|
306
|
+
for :math:`\alpha, \beta > -1`; :math:`P_n^{(\alpha, \beta)}` is a
|
307
|
+
polynomial of degree :math:`n`.
|
308
|
+
|
309
|
+
Parameters
|
310
|
+
----------
|
311
|
+
n : int
|
312
|
+
Degree of the polynomial.
|
313
|
+
alpha : float
|
314
|
+
Parameter, must be greater than -1.
|
315
|
+
beta : float
|
316
|
+
Parameter, must be greater than -1.
|
317
|
+
monic : bool, optional
|
318
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
319
|
+
`False`.
|
320
|
+
|
321
|
+
Returns
|
322
|
+
-------
|
323
|
+
P : orthopoly1d
|
324
|
+
Jacobi polynomial.
|
325
|
+
|
326
|
+
Notes
|
327
|
+
-----
|
328
|
+
For fixed :math:`\alpha, \beta`, the polynomials
|
329
|
+
:math:`P_n^{(\alpha, \beta)}` are orthogonal over :math:`[-1, 1]`
|
330
|
+
with weight function :math:`(1 - x)^\alpha(1 + x)^\beta`.
|
331
|
+
|
332
|
+
References
|
333
|
+
----------
|
334
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
335
|
+
Handbook of Mathematical Functions with Formulas,
|
336
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
337
|
+
|
338
|
+
Examples
|
339
|
+
--------
|
340
|
+
The Jacobi polynomials satisfy the recurrence relation:
|
341
|
+
|
342
|
+
.. math::
|
343
|
+
P_n^{(\alpha, \beta-1)}(x) - P_n^{(\alpha-1, \beta)}(x)
|
344
|
+
= P_{n-1}^{(\alpha, \beta)}(x)
|
345
|
+
|
346
|
+
This can be verified, for example, for :math:`\alpha = \beta = 2`
|
347
|
+
and :math:`n = 1` over the interval :math:`[-1, 1]`:
|
348
|
+
|
349
|
+
>>> import numpy as np
|
350
|
+
>>> from scipy.special import jacobi
|
351
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
352
|
+
>>> np.allclose(jacobi(0, 2, 2)(x),
|
353
|
+
... jacobi(1, 2, 1)(x) - jacobi(1, 1, 2)(x))
|
354
|
+
True
|
355
|
+
|
356
|
+
Plot of the Jacobi polynomial :math:`P_5^{(\alpha, -0.5)}` for
|
357
|
+
different values of :math:`\alpha`:
|
358
|
+
|
359
|
+
>>> import matplotlib.pyplot as plt
|
360
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
361
|
+
>>> fig, ax = plt.subplots()
|
362
|
+
>>> ax.set_ylim(-2.0, 2.0)
|
363
|
+
>>> ax.set_title(r'Jacobi polynomials $P_5^{(\alpha, -0.5)}$')
|
364
|
+
>>> for alpha in np.arange(0, 4, 1):
|
365
|
+
... ax.plot(x, jacobi(5, alpha, -0.5)(x), label=rf'$\alpha={alpha}$')
|
366
|
+
>>> plt.legend(loc='best')
|
367
|
+
>>> plt.show()
|
368
|
+
|
369
|
+
"""
|
370
|
+
if n < 0:
|
371
|
+
raise ValueError("n must be nonnegative.")
|
372
|
+
|
373
|
+
def wfunc(x):
|
374
|
+
return (1 - x) ** alpha * (1 + x) ** beta
|
375
|
+
if n == 0:
|
376
|
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
377
|
+
eval_func=np.ones_like)
|
378
|
+
x, w, mu = roots_jacobi(n, alpha, beta, mu=True)
|
379
|
+
ab1 = alpha + beta + 1.0
|
380
|
+
hn = 2**ab1 / (2 * n + ab1) * _gam(n + alpha + 1)
|
381
|
+
hn *= _gam(n + beta + 1.0) / _gam(n + 1) / _gam(n + ab1)
|
382
|
+
kn = _gam(2 * n + ab1) / 2.0**n / _gam(n + 1) / _gam(n + ab1)
|
383
|
+
# here kn = coefficient on x^n term
|
384
|
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
385
|
+
lambda x: _ufuncs.eval_jacobi(n, alpha, beta, x))
|
386
|
+
return p
|
387
|
+
|
388
|
+
# Jacobi Polynomials shifted G_n(p,q,x)
|
389
|
+
|
390
|
+
|
391
|
+
def roots_sh_jacobi(n, p1, q1, mu=False):
|
392
|
+
"""Gauss-Jacobi (shifted) quadrature.
|
393
|
+
|
394
|
+
Compute the sample points and weights for Gauss-Jacobi (shifted)
|
395
|
+
quadrature. The sample points are the roots of the nth degree
|
396
|
+
shifted Jacobi polynomial, :math:`G^{p,q}_n(x)`. These sample
|
397
|
+
points and weights correctly integrate polynomials of degree
|
398
|
+
:math:`2n - 1` or less over the interval :math:`[0, 1]` with
|
399
|
+
weight function :math:`w(x) = (1 - x)^{p-q} x^{q-1}`. See 22.2.2
|
400
|
+
in [AS]_ for details.
|
401
|
+
|
402
|
+
Parameters
|
403
|
+
----------
|
404
|
+
n : int
|
405
|
+
quadrature order
|
406
|
+
p1 : float
|
407
|
+
(p1 - q1) must be > -1
|
408
|
+
q1 : float
|
409
|
+
q1 must be > 0
|
410
|
+
mu : bool, optional
|
411
|
+
If True, return the sum of the weights, optional.
|
412
|
+
|
413
|
+
Returns
|
414
|
+
-------
|
415
|
+
x : ndarray
|
416
|
+
Sample points
|
417
|
+
w : ndarray
|
418
|
+
Weights
|
419
|
+
mu : float
|
420
|
+
Sum of the weights
|
421
|
+
|
422
|
+
See Also
|
423
|
+
--------
|
424
|
+
scipy.integrate.fixed_quad
|
425
|
+
|
426
|
+
References
|
427
|
+
----------
|
428
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
429
|
+
Handbook of Mathematical Functions with Formulas,
|
430
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
431
|
+
|
432
|
+
"""
|
433
|
+
if (p1-q1) <= -1 or q1 <= 0:
|
434
|
+
message = "(p - q) must be greater than -1, and q must be greater than 0."
|
435
|
+
raise ValueError(message)
|
436
|
+
x, w, m = roots_jacobi(n, p1-q1, q1-1, True)
|
437
|
+
x = (x + 1) / 2
|
438
|
+
scale = 2.0**p1
|
439
|
+
w /= scale
|
440
|
+
m /= scale
|
441
|
+
if mu:
|
442
|
+
return x, w, m
|
443
|
+
else:
|
444
|
+
return x, w
|
445
|
+
|
446
|
+
|
447
|
+
def sh_jacobi(n, p, q, monic=False):
|
448
|
+
r"""Shifted Jacobi polynomial.
|
449
|
+
|
450
|
+
Defined by
|
451
|
+
|
452
|
+
.. math::
|
453
|
+
|
454
|
+
G_n^{(p, q)}(x)
|
455
|
+
= \binom{2n + p - 1}{n}^{-1}P_n^{(p - q, q - 1)}(2x - 1),
|
456
|
+
|
457
|
+
where :math:`P_n^{(\cdot, \cdot)}` is the nth Jacobi polynomial.
|
458
|
+
|
459
|
+
Parameters
|
460
|
+
----------
|
461
|
+
n : int
|
462
|
+
Degree of the polynomial.
|
463
|
+
p : float
|
464
|
+
Parameter, must have :math:`p > q - 1`.
|
465
|
+
q : float
|
466
|
+
Parameter, must be greater than 0.
|
467
|
+
monic : bool, optional
|
468
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
469
|
+
`False`.
|
470
|
+
|
471
|
+
Returns
|
472
|
+
-------
|
473
|
+
G : orthopoly1d
|
474
|
+
Shifted Jacobi polynomial.
|
475
|
+
|
476
|
+
Notes
|
477
|
+
-----
|
478
|
+
For fixed :math:`p, q`, the polynomials :math:`G_n^{(p, q)}` are
|
479
|
+
orthogonal over :math:`[0, 1]` with weight function :math:`(1 -
|
480
|
+
x)^{p - q}x^{q - 1}`.
|
481
|
+
|
482
|
+
"""
|
483
|
+
if n < 0:
|
484
|
+
raise ValueError("n must be nonnegative.")
|
485
|
+
|
486
|
+
def wfunc(x):
|
487
|
+
return (1.0 - x) ** (p - q) * x ** (q - 1.0)
|
488
|
+
if n == 0:
|
489
|
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
490
|
+
eval_func=np.ones_like)
|
491
|
+
n1 = n
|
492
|
+
x, w = roots_sh_jacobi(n1, p, q)
|
493
|
+
hn = _gam(n + 1) * _gam(n + q) * _gam(n + p) * _gam(n + p - q + 1)
|
494
|
+
hn /= (2 * n + p) * (_gam(2 * n + p)**2)
|
495
|
+
# kn = 1.0 in standard form so monic is redundant. Kept for compatibility.
|
496
|
+
kn = 1.0
|
497
|
+
pp = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(0, 1), monic=monic,
|
498
|
+
eval_func=lambda x: _ufuncs.eval_sh_jacobi(n, p, q, x))
|
499
|
+
return pp
|
500
|
+
|
501
|
+
# Generalized Laguerre L^(alpha)_n(x)
|
502
|
+
|
503
|
+
|
504
|
+
def roots_genlaguerre(n, alpha, mu=False):
|
505
|
+
r"""Gauss-generalized Laguerre quadrature.
|
506
|
+
|
507
|
+
Compute the sample points and weights for Gauss-generalized
|
508
|
+
Laguerre quadrature. The sample points are the roots of the nth
|
509
|
+
degree generalized Laguerre polynomial, :math:`L^{\alpha}_n(x)`.
|
510
|
+
These sample points and weights correctly integrate polynomials of
|
511
|
+
degree :math:`2n - 1` or less over the interval :math:`[0,
|
512
|
+
\infty]` with weight function :math:`w(x) = x^{\alpha}
|
513
|
+
e^{-x}`. See 22.3.9 in [AS]_ for details.
|
514
|
+
|
515
|
+
Parameters
|
516
|
+
----------
|
517
|
+
n : int
|
518
|
+
quadrature order
|
519
|
+
alpha : float
|
520
|
+
alpha must be > -1
|
521
|
+
mu : bool, optional
|
522
|
+
If True, return the sum of the weights, optional.
|
523
|
+
|
524
|
+
Returns
|
525
|
+
-------
|
526
|
+
x : ndarray
|
527
|
+
Sample points
|
528
|
+
w : ndarray
|
529
|
+
Weights
|
530
|
+
mu : float
|
531
|
+
Sum of the weights
|
532
|
+
|
533
|
+
See Also
|
534
|
+
--------
|
535
|
+
scipy.integrate.fixed_quad
|
536
|
+
|
537
|
+
References
|
538
|
+
----------
|
539
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
540
|
+
Handbook of Mathematical Functions with Formulas,
|
541
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
542
|
+
|
543
|
+
"""
|
544
|
+
m = int(n)
|
545
|
+
if n < 1 or n != m:
|
546
|
+
raise ValueError("n must be a positive integer.")
|
547
|
+
if alpha < -1:
|
548
|
+
raise ValueError("alpha must be greater than -1.")
|
549
|
+
|
550
|
+
mu0 = _ufuncs.gamma(alpha + 1)
|
551
|
+
|
552
|
+
if m == 1:
|
553
|
+
x = np.array([alpha+1.0], 'd')
|
554
|
+
w = np.array([mu0], 'd')
|
555
|
+
if mu:
|
556
|
+
return x, w, mu0
|
557
|
+
else:
|
558
|
+
return x, w
|
559
|
+
|
560
|
+
def an_func(k):
|
561
|
+
return 2 * k + alpha + 1
|
562
|
+
def bn_func(k):
|
563
|
+
return -np.sqrt(k * (k + alpha))
|
564
|
+
def f(n, x):
|
565
|
+
return _ufuncs.eval_genlaguerre(n, alpha, x)
|
566
|
+
def df(n, x):
|
567
|
+
return (n * _ufuncs.eval_genlaguerre(n, alpha, x)
|
568
|
+
- (n + alpha) * _ufuncs.eval_genlaguerre(n - 1, alpha, x)) / x
|
569
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
570
|
+
|
571
|
+
|
572
|
+
def genlaguerre(n, alpha, monic=False):
|
573
|
+
r"""Generalized (associated) Laguerre polynomial.
|
574
|
+
|
575
|
+
Defined to be the solution of
|
576
|
+
|
577
|
+
.. math::
|
578
|
+
x\frac{d^2}{dx^2}L_n^{(\alpha)}
|
579
|
+
+ (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)}
|
580
|
+
+ nL_n^{(\alpha)} = 0,
|
581
|
+
|
582
|
+
where :math:`\alpha > -1`; :math:`L_n^{(\alpha)}` is a polynomial
|
583
|
+
of degree :math:`n`.
|
584
|
+
|
585
|
+
Parameters
|
586
|
+
----------
|
587
|
+
n : int
|
588
|
+
Degree of the polynomial.
|
589
|
+
alpha : float
|
590
|
+
Parameter, must be greater than -1.
|
591
|
+
monic : bool, optional
|
592
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
593
|
+
`False`.
|
594
|
+
|
595
|
+
Returns
|
596
|
+
-------
|
597
|
+
L : orthopoly1d
|
598
|
+
Generalized Laguerre polynomial.
|
599
|
+
|
600
|
+
See Also
|
601
|
+
--------
|
602
|
+
laguerre : Laguerre polynomial.
|
603
|
+
hyp1f1 : confluent hypergeometric function
|
604
|
+
|
605
|
+
Notes
|
606
|
+
-----
|
607
|
+
For fixed :math:`\alpha`, the polynomials :math:`L_n^{(\alpha)}`
|
608
|
+
are orthogonal over :math:`[0, \infty)` with weight function
|
609
|
+
:math:`e^{-x}x^\alpha`.
|
610
|
+
|
611
|
+
The Laguerre polynomials are the special case where :math:`\alpha
|
612
|
+
= 0`.
|
613
|
+
|
614
|
+
References
|
615
|
+
----------
|
616
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
617
|
+
Handbook of Mathematical Functions with Formulas,
|
618
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
619
|
+
|
620
|
+
Examples
|
621
|
+
--------
|
622
|
+
The generalized Laguerre polynomials are closely related to the confluent
|
623
|
+
hypergeometric function :math:`{}_1F_1`:
|
624
|
+
|
625
|
+
.. math::
|
626
|
+
L_n^{(\alpha)} = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha +1, x)
|
627
|
+
|
628
|
+
This can be verified, for example, for :math:`n = \alpha = 3` over the
|
629
|
+
interval :math:`[-1, 1]`:
|
630
|
+
|
631
|
+
>>> import numpy as np
|
632
|
+
>>> from scipy.special import binom
|
633
|
+
>>> from scipy.special import genlaguerre
|
634
|
+
>>> from scipy.special import hyp1f1
|
635
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
636
|
+
>>> np.allclose(genlaguerre(3, 3)(x), binom(6, 3) * hyp1f1(-3, 4, x))
|
637
|
+
True
|
638
|
+
|
639
|
+
This is the plot of the generalized Laguerre polynomials
|
640
|
+
:math:`L_3^{(\alpha)}` for some values of :math:`\alpha`:
|
641
|
+
|
642
|
+
>>> import matplotlib.pyplot as plt
|
643
|
+
>>> x = np.arange(-4.0, 12.0, 0.01)
|
644
|
+
>>> fig, ax = plt.subplots()
|
645
|
+
>>> ax.set_ylim(-5.0, 10.0)
|
646
|
+
>>> ax.set_title(r'Generalized Laguerre polynomials $L_3^{\alpha}$')
|
647
|
+
>>> for alpha in np.arange(0, 5):
|
648
|
+
... ax.plot(x, genlaguerre(3, alpha)(x), label=rf'$L_3^{(alpha)}$')
|
649
|
+
>>> plt.legend(loc='best')
|
650
|
+
>>> plt.show()
|
651
|
+
|
652
|
+
"""
|
653
|
+
if alpha <= -1:
|
654
|
+
raise ValueError("alpha must be > -1")
|
655
|
+
if n < 0:
|
656
|
+
raise ValueError("n must be nonnegative.")
|
657
|
+
|
658
|
+
if n == 0:
|
659
|
+
n1 = n + 1
|
660
|
+
else:
|
661
|
+
n1 = n
|
662
|
+
x, w = roots_genlaguerre(n1, alpha)
|
663
|
+
def wfunc(x):
|
664
|
+
return exp(-x) * x ** alpha
|
665
|
+
if n == 0:
|
666
|
+
x, w = [], []
|
667
|
+
hn = _gam(n + alpha + 1) / _gam(n + 1)
|
668
|
+
kn = (-1)**n / _gam(n + 1)
|
669
|
+
p = orthopoly1d(x, w, hn, kn, wfunc, (0, inf), monic,
|
670
|
+
lambda x: _ufuncs.eval_genlaguerre(n, alpha, x))
|
671
|
+
return p
|
672
|
+
|
673
|
+
# Laguerre L_n(x)
|
674
|
+
|
675
|
+
|
676
|
+
def roots_laguerre(n, mu=False):
|
677
|
+
r"""Gauss-Laguerre quadrature.
|
678
|
+
|
679
|
+
Compute the sample points and weights for Gauss-Laguerre
|
680
|
+
quadrature. The sample points are the roots of the nth degree
|
681
|
+
Laguerre polynomial, :math:`L_n(x)`. These sample points and
|
682
|
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
683
|
+
or less over the interval :math:`[0, \infty]` with weight function
|
684
|
+
:math:`w(x) = e^{-x}`. See 22.2.13 in [AS]_ for details.
|
685
|
+
|
686
|
+
Parameters
|
687
|
+
----------
|
688
|
+
n : int
|
689
|
+
quadrature order
|
690
|
+
mu : bool, optional
|
691
|
+
If True, return the sum of the weights, optional.
|
692
|
+
|
693
|
+
Returns
|
694
|
+
-------
|
695
|
+
x : ndarray
|
696
|
+
Sample points
|
697
|
+
w : ndarray
|
698
|
+
Weights
|
699
|
+
mu : float
|
700
|
+
Sum of the weights
|
701
|
+
|
702
|
+
See Also
|
703
|
+
--------
|
704
|
+
scipy.integrate.fixed_quad
|
705
|
+
numpy.polynomial.laguerre.laggauss
|
706
|
+
|
707
|
+
References
|
708
|
+
----------
|
709
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
710
|
+
Handbook of Mathematical Functions with Formulas,
|
711
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
712
|
+
|
713
|
+
"""
|
714
|
+
return roots_genlaguerre(n, 0.0, mu=mu)
|
715
|
+
|
716
|
+
|
717
|
+
def laguerre(n, monic=False):
|
718
|
+
r"""Laguerre polynomial.
|
719
|
+
|
720
|
+
Defined to be the solution of
|
721
|
+
|
722
|
+
.. math::
|
723
|
+
x\frac{d^2}{dx^2}L_n + (1 - x)\frac{d}{dx}L_n + nL_n = 0;
|
724
|
+
|
725
|
+
:math:`L_n` is a polynomial of degree :math:`n`.
|
726
|
+
|
727
|
+
Parameters
|
728
|
+
----------
|
729
|
+
n : int
|
730
|
+
Degree of the polynomial.
|
731
|
+
monic : bool, optional
|
732
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
733
|
+
`False`.
|
734
|
+
|
735
|
+
Returns
|
736
|
+
-------
|
737
|
+
L : orthopoly1d
|
738
|
+
Laguerre Polynomial.
|
739
|
+
|
740
|
+
See Also
|
741
|
+
--------
|
742
|
+
genlaguerre : Generalized (associated) Laguerre polynomial.
|
743
|
+
|
744
|
+
Notes
|
745
|
+
-----
|
746
|
+
The polynomials :math:`L_n` are orthogonal over :math:`[0,
|
747
|
+
\infty)` with weight function :math:`e^{-x}`.
|
748
|
+
|
749
|
+
References
|
750
|
+
----------
|
751
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
752
|
+
Handbook of Mathematical Functions with Formulas,
|
753
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
754
|
+
|
755
|
+
Examples
|
756
|
+
--------
|
757
|
+
The Laguerre polynomials :math:`L_n` are the special case
|
758
|
+
:math:`\alpha = 0` of the generalized Laguerre polynomials
|
759
|
+
:math:`L_n^{(\alpha)}`.
|
760
|
+
Let's verify it on the interval :math:`[-1, 1]`:
|
761
|
+
|
762
|
+
>>> import numpy as np
|
763
|
+
>>> from scipy.special import genlaguerre
|
764
|
+
>>> from scipy.special import laguerre
|
765
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
766
|
+
>>> np.allclose(genlaguerre(3, 0)(x), laguerre(3)(x))
|
767
|
+
True
|
768
|
+
|
769
|
+
The polynomials :math:`L_n` also satisfy the recurrence relation:
|
770
|
+
|
771
|
+
.. math::
|
772
|
+
(n + 1)L_{n+1}(x) = (2n +1 -x)L_n(x) - nL_{n-1}(x)
|
773
|
+
|
774
|
+
This can be easily checked on :math:`[0, 1]` for :math:`n = 3`:
|
775
|
+
|
776
|
+
>>> x = np.arange(0.0, 1.0, 0.01)
|
777
|
+
>>> np.allclose(4 * laguerre(4)(x),
|
778
|
+
... (7 - x) * laguerre(3)(x) - 3 * laguerre(2)(x))
|
779
|
+
True
|
780
|
+
|
781
|
+
This is the plot of the first few Laguerre polynomials :math:`L_n`:
|
782
|
+
|
783
|
+
>>> import matplotlib.pyplot as plt
|
784
|
+
>>> x = np.arange(-1.0, 5.0, 0.01)
|
785
|
+
>>> fig, ax = plt.subplots()
|
786
|
+
>>> ax.set_ylim(-5.0, 5.0)
|
787
|
+
>>> ax.set_title(r'Laguerre polynomials $L_n$')
|
788
|
+
>>> for n in np.arange(0, 5):
|
789
|
+
... ax.plot(x, laguerre(n)(x), label=rf'$L_{n}$')
|
790
|
+
>>> plt.legend(loc='best')
|
791
|
+
>>> plt.show()
|
792
|
+
|
793
|
+
"""
|
794
|
+
if n < 0:
|
795
|
+
raise ValueError("n must be nonnegative.")
|
796
|
+
|
797
|
+
if n == 0:
|
798
|
+
n1 = n + 1
|
799
|
+
else:
|
800
|
+
n1 = n
|
801
|
+
x, w = roots_laguerre(n1)
|
802
|
+
if n == 0:
|
803
|
+
x, w = [], []
|
804
|
+
hn = 1.0
|
805
|
+
kn = (-1)**n / _gam(n + 1)
|
806
|
+
p = orthopoly1d(x, w, hn, kn, lambda x: exp(-x), (0, inf), monic,
|
807
|
+
lambda x: _ufuncs.eval_laguerre(n, x))
|
808
|
+
return p
|
809
|
+
|
810
|
+
# Hermite 1 H_n(x)
|
811
|
+
|
812
|
+
|
813
|
+
def roots_hermite(n, mu=False):
|
814
|
+
r"""Gauss-Hermite (physicist's) quadrature.
|
815
|
+
|
816
|
+
Compute the sample points and weights for Gauss-Hermite
|
817
|
+
quadrature. The sample points are the roots of the nth degree
|
818
|
+
Hermite polynomial, :math:`H_n(x)`. These sample points and
|
819
|
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
820
|
+
or less over the interval :math:`[-\infty, \infty]` with weight
|
821
|
+
function :math:`w(x) = e^{-x^2}`. See 22.2.14 in [AS]_ for
|
822
|
+
details.
|
823
|
+
|
824
|
+
Parameters
|
825
|
+
----------
|
826
|
+
n : int
|
827
|
+
quadrature order
|
828
|
+
mu : bool, optional
|
829
|
+
If True, return the sum of the weights, optional.
|
830
|
+
|
831
|
+
Returns
|
832
|
+
-------
|
833
|
+
x : ndarray
|
834
|
+
Sample points
|
835
|
+
w : ndarray
|
836
|
+
Weights
|
837
|
+
mu : float
|
838
|
+
Sum of the weights
|
839
|
+
|
840
|
+
See Also
|
841
|
+
--------
|
842
|
+
scipy.integrate.fixed_quad
|
843
|
+
numpy.polynomial.hermite.hermgauss
|
844
|
+
roots_hermitenorm
|
845
|
+
|
846
|
+
Notes
|
847
|
+
-----
|
848
|
+
For small n up to 150 a modified version of the Golub-Welsch
|
849
|
+
algorithm is used. Nodes are computed from the eigenvalue
|
850
|
+
problem and improved by one step of a Newton iteration.
|
851
|
+
The weights are computed from the well-known analytical formula.
|
852
|
+
|
853
|
+
For n larger than 150 an optimal asymptotic algorithm is applied
|
854
|
+
which computes nodes and weights in a numerically stable manner.
|
855
|
+
The algorithm has linear runtime making computation for very
|
856
|
+
large n (several thousand or more) feasible.
|
857
|
+
|
858
|
+
References
|
859
|
+
----------
|
860
|
+
.. [townsend.trogdon.olver-2014]
|
861
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
862
|
+
*Fast computation of Gauss quadrature nodes and
|
863
|
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
864
|
+
.. [townsend.trogdon.olver-2015]
|
865
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
866
|
+
*Fast computation of Gauss quadrature nodes and
|
867
|
+
weights on the whole real line*.
|
868
|
+
IMA Journal of Numerical Analysis
|
869
|
+
:doi:`10.1093/imanum/drv002`.
|
870
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
871
|
+
Handbook of Mathematical Functions with Formulas,
|
872
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
873
|
+
|
874
|
+
"""
|
875
|
+
m = int(n)
|
876
|
+
if n < 1 or n != m:
|
877
|
+
raise ValueError("n must be a positive integer.")
|
878
|
+
|
879
|
+
mu0 = np.sqrt(np.pi)
|
880
|
+
if n <= 150:
|
881
|
+
def an_func(k):
|
882
|
+
return 0.0 * k
|
883
|
+
def bn_func(k):
|
884
|
+
return np.sqrt(k / 2.0)
|
885
|
+
f = _ufuncs.eval_hermite
|
886
|
+
def df(n, x):
|
887
|
+
return 2.0 * n * _ufuncs.eval_hermite(n - 1, x)
|
888
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
889
|
+
else:
|
890
|
+
nodes, weights = _roots_hermite_asy(m)
|
891
|
+
if mu:
|
892
|
+
return nodes, weights, mu0
|
893
|
+
else:
|
894
|
+
return nodes, weights
|
895
|
+
|
896
|
+
|
897
|
+
def _compute_tauk(n, k, maxit=5):
|
898
|
+
"""Helper function for Tricomi initial guesses
|
899
|
+
|
900
|
+
For details, see formula 3.1 in lemma 3.1 in the
|
901
|
+
original paper.
|
902
|
+
|
903
|
+
Parameters
|
904
|
+
----------
|
905
|
+
n : int
|
906
|
+
Quadrature order
|
907
|
+
k : ndarray of type int
|
908
|
+
Index of roots :math:`\tau_k` to compute
|
909
|
+
maxit : int
|
910
|
+
Number of Newton maxit performed, the default
|
911
|
+
value of 5 is sufficient.
|
912
|
+
|
913
|
+
Returns
|
914
|
+
-------
|
915
|
+
tauk : ndarray
|
916
|
+
Roots of equation 3.1
|
917
|
+
|
918
|
+
See Also
|
919
|
+
--------
|
920
|
+
initial_nodes_a
|
921
|
+
roots_hermite_asy
|
922
|
+
"""
|
923
|
+
a = n % 2 - 0.5
|
924
|
+
c = (4.0*floor(n/2.0) - 4.0*k + 3.0)*pi / (4.0*floor(n/2.0) + 2.0*a + 2.0)
|
925
|
+
def f(x):
|
926
|
+
return x - sin(x) - c
|
927
|
+
def df(x):
|
928
|
+
return 1.0 - cos(x)
|
929
|
+
xi = 0.5*pi
|
930
|
+
for i in range(maxit):
|
931
|
+
xi = xi - f(xi)/df(xi)
|
932
|
+
return xi
|
933
|
+
|
934
|
+
|
935
|
+
def _initial_nodes_a(n, k):
|
936
|
+
r"""Tricomi initial guesses
|
937
|
+
|
938
|
+
Computes an initial approximation to the square of the `k`-th
|
939
|
+
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
940
|
+
of order :math:`n`. The formula is the one from lemma 3.1 in the
|
941
|
+
original paper. The guesses are accurate except in the region
|
942
|
+
near :math:`\sqrt{2n + 1}`.
|
943
|
+
|
944
|
+
Parameters
|
945
|
+
----------
|
946
|
+
n : int
|
947
|
+
Quadrature order
|
948
|
+
k : ndarray of type int
|
949
|
+
Index of roots to compute
|
950
|
+
|
951
|
+
Returns
|
952
|
+
-------
|
953
|
+
xksq : ndarray
|
954
|
+
Square of the approximate roots
|
955
|
+
|
956
|
+
See Also
|
957
|
+
--------
|
958
|
+
initial_nodes
|
959
|
+
roots_hermite_asy
|
960
|
+
"""
|
961
|
+
tauk = _compute_tauk(n, k)
|
962
|
+
sigk = cos(0.5*tauk)**2
|
963
|
+
a = n % 2 - 0.5
|
964
|
+
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
965
|
+
# Initial approximation of Hermite roots (square)
|
966
|
+
xksq = nu*sigk - 1.0/(3.0*nu) * (5.0/(4.0*(1.0-sigk)**2) - 1.0/(1.0-sigk) - 0.25)
|
967
|
+
return xksq
|
968
|
+
|
969
|
+
|
970
|
+
def _initial_nodes_b(n, k):
|
971
|
+
r"""Gatteschi initial guesses
|
972
|
+
|
973
|
+
Computes an initial approximation to the square of the kth
|
974
|
+
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
975
|
+
of order :math:`n`. The formula is the one from lemma 3.2 in the
|
976
|
+
original paper. The guesses are accurate in the region just
|
977
|
+
below :math:`\sqrt{2n + 1}`.
|
978
|
+
|
979
|
+
Parameters
|
980
|
+
----------
|
981
|
+
n : int
|
982
|
+
Quadrature order
|
983
|
+
k : ndarray of type int
|
984
|
+
Index of roots to compute
|
985
|
+
|
986
|
+
Returns
|
987
|
+
-------
|
988
|
+
xksq : ndarray
|
989
|
+
Square of the approximate root
|
990
|
+
|
991
|
+
See Also
|
992
|
+
--------
|
993
|
+
initial_nodes
|
994
|
+
roots_hermite_asy
|
995
|
+
"""
|
996
|
+
a = n % 2 - 0.5
|
997
|
+
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
998
|
+
# Airy roots by approximation
|
999
|
+
ak = _specfun.airyzo(k.max(), 1)[0][::-1]
|
1000
|
+
# Initial approximation of Hermite roots (square)
|
1001
|
+
xksq = (nu
|
1002
|
+
+ 2.0**(2.0/3.0) * ak * nu**(1.0/3.0)
|
1003
|
+
+ 1.0/5.0 * 2.0**(4.0/3.0) * ak**2 * nu**(-1.0/3.0)
|
1004
|
+
+ (9.0/140.0 - 12.0/175.0 * ak**3) * nu**(-1.0)
|
1005
|
+
+ (16.0/1575.0 * ak + 92.0/7875.0 * ak**4) * 2.0**(2.0/3.0) * nu**(-5.0/3.0)
|
1006
|
+
- (15152.0/3031875.0 * ak**5 + 1088.0/121275.0 * ak**2)
|
1007
|
+
* 2.0**(1.0/3.0) * nu**(-7.0/3.0))
|
1008
|
+
return xksq
|
1009
|
+
|
1010
|
+
|
1011
|
+
def _initial_nodes(n):
|
1012
|
+
"""Initial guesses for the Hermite roots
|
1013
|
+
|
1014
|
+
Computes an initial approximation to the non-negative
|
1015
|
+
roots :math:`x_k` of the Hermite polynomial :math:`H_n`
|
1016
|
+
of order :math:`n`. The Tricomi and Gatteschi initial
|
1017
|
+
guesses are used in the region where they are accurate.
|
1018
|
+
|
1019
|
+
Parameters
|
1020
|
+
----------
|
1021
|
+
n : int
|
1022
|
+
Quadrature order
|
1023
|
+
|
1024
|
+
Returns
|
1025
|
+
-------
|
1026
|
+
xk : ndarray
|
1027
|
+
Approximate roots
|
1028
|
+
|
1029
|
+
See Also
|
1030
|
+
--------
|
1031
|
+
roots_hermite_asy
|
1032
|
+
"""
|
1033
|
+
# Turnover point
|
1034
|
+
# linear polynomial fit to error of 10, 25, 40, ..., 1000 point rules
|
1035
|
+
fit = 0.49082003*n - 4.37859653
|
1036
|
+
turnover = around(fit).astype(int)
|
1037
|
+
# Compute all approximations
|
1038
|
+
ia = arange(1, int(floor(n*0.5)+1))
|
1039
|
+
ib = ia[::-1]
|
1040
|
+
xasq = _initial_nodes_a(n, ia[:turnover+1])
|
1041
|
+
xbsq = _initial_nodes_b(n, ib[turnover+1:])
|
1042
|
+
# Combine
|
1043
|
+
iv = sqrt(hstack([xasq, xbsq]))
|
1044
|
+
# Central node is always zero
|
1045
|
+
if n % 2 == 1:
|
1046
|
+
iv = hstack([0.0, iv])
|
1047
|
+
return iv
|
1048
|
+
|
1049
|
+
|
1050
|
+
def _pbcf(n, theta):
|
1051
|
+
r"""Asymptotic series expansion of parabolic cylinder function
|
1052
|
+
|
1053
|
+
The implementation is based on sections 3.2 and 3.3 from the
|
1054
|
+
original paper. Compared to the published version this code
|
1055
|
+
adds one more term to the asymptotic series. The detailed
|
1056
|
+
formulas can be found at [parabolic-asymptotics]_. The evaluation
|
1057
|
+
is done in a transformed variable :math:`\theta := \arccos(t)`
|
1058
|
+
where :math:`t := x / \mu` and :math:`\mu := \sqrt{2n + 1}`.
|
1059
|
+
|
1060
|
+
Parameters
|
1061
|
+
----------
|
1062
|
+
n : int
|
1063
|
+
Quadrature order
|
1064
|
+
theta : ndarray
|
1065
|
+
Transformed position variable
|
1066
|
+
|
1067
|
+
Returns
|
1068
|
+
-------
|
1069
|
+
U : ndarray
|
1070
|
+
Value of the parabolic cylinder function :math:`U(a, \theta)`.
|
1071
|
+
Ud : ndarray
|
1072
|
+
Value of the derivative :math:`U^{\prime}(a, \theta)` of
|
1073
|
+
the parabolic cylinder function.
|
1074
|
+
|
1075
|
+
See Also
|
1076
|
+
--------
|
1077
|
+
roots_hermite_asy
|
1078
|
+
|
1079
|
+
References
|
1080
|
+
----------
|
1081
|
+
.. [parabolic-asymptotics]
|
1082
|
+
https://dlmf.nist.gov/12.10#vii
|
1083
|
+
"""
|
1084
|
+
st = sin(theta)
|
1085
|
+
ct = cos(theta)
|
1086
|
+
# https://dlmf.nist.gov/12.10#vii
|
1087
|
+
mu = 2.0*n + 1.0
|
1088
|
+
# https://dlmf.nist.gov/12.10#E23
|
1089
|
+
eta = 0.5*theta - 0.5*st*ct
|
1090
|
+
# https://dlmf.nist.gov/12.10#E39
|
1091
|
+
zeta = -(3.0*eta/2.0) ** (2.0/3.0)
|
1092
|
+
# https://dlmf.nist.gov/12.10#E40
|
1093
|
+
phi = (-zeta / st**2) ** (0.25)
|
1094
|
+
# Coefficients
|
1095
|
+
# https://dlmf.nist.gov/12.10#E43
|
1096
|
+
a0 = 1.0
|
1097
|
+
a1 = 0.10416666666666666667
|
1098
|
+
a2 = 0.08355034722222222222
|
1099
|
+
a3 = 0.12822657455632716049
|
1100
|
+
a4 = 0.29184902646414046425
|
1101
|
+
a5 = 0.88162726744375765242
|
1102
|
+
b0 = 1.0
|
1103
|
+
b1 = -0.14583333333333333333
|
1104
|
+
b2 = -0.09874131944444444444
|
1105
|
+
b3 = -0.14331205391589506173
|
1106
|
+
b4 = -0.31722720267841354810
|
1107
|
+
b5 = -0.94242914795712024914
|
1108
|
+
# Polynomials
|
1109
|
+
# https://dlmf.nist.gov/12.10#E9
|
1110
|
+
# https://dlmf.nist.gov/12.10#E10
|
1111
|
+
ctp = ct ** arange(16).reshape((-1,1))
|
1112
|
+
u0 = 1.0
|
1113
|
+
u1 = (1.0*ctp[3,:] - 6.0*ct) / 24.0
|
1114
|
+
u2 = (-9.0*ctp[4,:] + 249.0*ctp[2,:] + 145.0) / 1152.0
|
1115
|
+
u3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 28287.0*ctp[5,:]
|
1116
|
+
- 151995.0*ctp[3,:] - 259290.0*ct) / 414720.0
|
1117
|
+
u4 = (72756.0*ctp[10,:] - 321339.0*ctp[8,:] - 154982.0*ctp[6,:]
|
1118
|
+
+ 50938215.0*ctp[4,:] + 122602962.0*ctp[2,:] + 12773113.0) / 39813120.0
|
1119
|
+
u5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 1994971575.0*ctp[11,:]
|
1120
|
+
- 3630137104.0*ctp[9,:] + 4433574213.0*ctp[7,:] - 37370295816.0*ctp[5,:]
|
1121
|
+
- 119582875013.0*ctp[3,:] - 34009066266.0*ct) / 6688604160.0
|
1122
|
+
v0 = 1.0
|
1123
|
+
v1 = (1.0*ctp[3,:] + 6.0*ct) / 24.0
|
1124
|
+
v2 = (15.0*ctp[4,:] - 327.0*ctp[2,:] - 143.0) / 1152.0
|
1125
|
+
v3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 36387.0*ctp[5,:]
|
1126
|
+
+ 238425.0*ctp[3,:] + 259290.0*ct) / 414720.0
|
1127
|
+
v4 = (-121260.0*ctp[10,:] + 551733.0*ctp[8,:] - 151958.0*ctp[6,:]
|
1128
|
+
- 57484425.0*ctp[4,:] - 132752238.0*ctp[2,:] - 12118727) / 39813120.0
|
1129
|
+
v5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 2025529095.0*ctp[11,:]
|
1130
|
+
- 3750839308.0*ctp[9,:] + 3832454253.0*ctp[7,:] + 35213253348.0*ctp[5,:]
|
1131
|
+
+ 130919230435.0*ctp[3,:] + 34009066266*ct) / 6688604160.0
|
1132
|
+
# Airy Evaluation (Bi and Bip unused)
|
1133
|
+
Ai, Aip, Bi, Bip = airy(mu**(4.0/6.0) * zeta)
|
1134
|
+
# Prefactor for U
|
1135
|
+
P = 2.0*sqrt(pi) * mu**(1.0/6.0) * phi
|
1136
|
+
# Terms for U
|
1137
|
+
# https://dlmf.nist.gov/12.10#E42
|
1138
|
+
phip = phi ** arange(6, 31, 6).reshape((-1,1))
|
1139
|
+
A0 = b0*u0
|
1140
|
+
A1 = (b2*u0 + phip[0,:]*b1*u1 + phip[1,:]*b0*u2) / zeta**3
|
1141
|
+
A2 = (b4*u0 + phip[0,:]*b3*u1 + phip[1,:]*b2*u2 + phip[2,:]*b1*u3
|
1142
|
+
+ phip[3,:]*b0*u4) / zeta**6
|
1143
|
+
B0 = -(a1*u0 + phip[0,:]*a0*u1) / zeta**2
|
1144
|
+
B1 = -(a3*u0 + phip[0,:]*a2*u1 + phip[1,:]*a1*u2 + phip[2,:]*a0*u3) / zeta**5
|
1145
|
+
B2 = -(a5*u0 + phip[0,:]*a4*u1 + phip[1,:]*a3*u2 + phip[2,:]*a2*u3
|
1146
|
+
+ phip[3,:]*a1*u4 + phip[4,:]*a0*u5) / zeta**8
|
1147
|
+
# U
|
1148
|
+
# https://dlmf.nist.gov/12.10#E35
|
1149
|
+
U = P * (Ai * (A0 + A1/mu**2.0 + A2/mu**4.0) +
|
1150
|
+
Aip * (B0 + B1/mu**2.0 + B2/mu**4.0) / mu**(8.0/6.0))
|
1151
|
+
# Prefactor for derivative of U
|
1152
|
+
Pd = sqrt(2.0*pi) * mu**(2.0/6.0) / phi
|
1153
|
+
# Terms for derivative of U
|
1154
|
+
# https://dlmf.nist.gov/12.10#E46
|
1155
|
+
C0 = -(b1*v0 + phip[0,:]*b0*v1) / zeta
|
1156
|
+
C1 = -(b3*v0 + phip[0,:]*b2*v1 + phip[1,:]*b1*v2 + phip[2,:]*b0*v3) / zeta**4
|
1157
|
+
C2 = -(b5*v0 + phip[0,:]*b4*v1 + phip[1,:]*b3*v2 + phip[2,:]*b2*v3
|
1158
|
+
+ phip[3,:]*b1*v4 + phip[4,:]*b0*v5) / zeta**7
|
1159
|
+
D0 = a0*v0
|
1160
|
+
D1 = (a2*v0 + phip[0,:]*a1*v1 + phip[1,:]*a0*v2) / zeta**3
|
1161
|
+
D2 = (a4*v0 + phip[0,:]*a3*v1 + phip[1,:]*a2*v2 + phip[2,:]*a1*v3
|
1162
|
+
+ phip[3,:]*a0*v4) / zeta**6
|
1163
|
+
# Derivative of U
|
1164
|
+
# https://dlmf.nist.gov/12.10#E36
|
1165
|
+
Ud = Pd * (Ai * (C0 + C1/mu**2.0 + C2/mu**4.0) / mu**(4.0/6.0) +
|
1166
|
+
Aip * (D0 + D1/mu**2.0 + D2/mu**4.0))
|
1167
|
+
return U, Ud
|
1168
|
+
|
1169
|
+
|
1170
|
+
def _newton(n, x_initial, maxit=5):
|
1171
|
+
"""Newton iteration for polishing the asymptotic approximation
|
1172
|
+
to the zeros of the Hermite polynomials.
|
1173
|
+
|
1174
|
+
Parameters
|
1175
|
+
----------
|
1176
|
+
n : int
|
1177
|
+
Quadrature order
|
1178
|
+
x_initial : ndarray
|
1179
|
+
Initial guesses for the roots
|
1180
|
+
maxit : int
|
1181
|
+
Maximal number of Newton iterations.
|
1182
|
+
The default 5 is sufficient, usually
|
1183
|
+
only one or two steps are needed.
|
1184
|
+
|
1185
|
+
Returns
|
1186
|
+
-------
|
1187
|
+
nodes : ndarray
|
1188
|
+
Quadrature nodes
|
1189
|
+
weights : ndarray
|
1190
|
+
Quadrature weights
|
1191
|
+
|
1192
|
+
See Also
|
1193
|
+
--------
|
1194
|
+
roots_hermite_asy
|
1195
|
+
"""
|
1196
|
+
# Variable transformation
|
1197
|
+
mu = sqrt(2.0*n + 1.0)
|
1198
|
+
t = x_initial / mu
|
1199
|
+
theta = arccos(t)
|
1200
|
+
# Newton iteration
|
1201
|
+
for i in range(maxit):
|
1202
|
+
u, ud = _pbcf(n, theta)
|
1203
|
+
dtheta = u / (sqrt(2.0) * mu * sin(theta) * ud)
|
1204
|
+
theta = theta + dtheta
|
1205
|
+
if max(abs(dtheta)) < 1e-14:
|
1206
|
+
break
|
1207
|
+
# Undo variable transformation
|
1208
|
+
x = mu * cos(theta)
|
1209
|
+
# Central node is always zero
|
1210
|
+
if n % 2 == 1:
|
1211
|
+
x[0] = 0.0
|
1212
|
+
# Compute weights
|
1213
|
+
w = exp(-x**2) / (2.0*ud**2)
|
1214
|
+
return x, w
|
1215
|
+
|
1216
|
+
|
1217
|
+
def _roots_hermite_asy(n):
|
1218
|
+
r"""Gauss-Hermite (physicist's) quadrature for large n.
|
1219
|
+
|
1220
|
+
Computes the sample points and weights for Gauss-Hermite quadrature.
|
1221
|
+
The sample points are the roots of the nth degree Hermite polynomial,
|
1222
|
+
:math:`H_n(x)`. These sample points and weights correctly integrate
|
1223
|
+
polynomials of degree :math:`2n - 1` or less over the interval
|
1224
|
+
:math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-x^2}`.
|
1225
|
+
|
1226
|
+
This method relies on asymptotic expansions which work best for n > 150.
|
1227
|
+
The algorithm has linear runtime making computation for very large n
|
1228
|
+
feasible.
|
1229
|
+
|
1230
|
+
Parameters
|
1231
|
+
----------
|
1232
|
+
n : int
|
1233
|
+
quadrature order
|
1234
|
+
|
1235
|
+
Returns
|
1236
|
+
-------
|
1237
|
+
nodes : ndarray
|
1238
|
+
Quadrature nodes
|
1239
|
+
weights : ndarray
|
1240
|
+
Quadrature weights
|
1241
|
+
|
1242
|
+
See Also
|
1243
|
+
--------
|
1244
|
+
roots_hermite
|
1245
|
+
|
1246
|
+
References
|
1247
|
+
----------
|
1248
|
+
.. [townsend.trogdon.olver-2014]
|
1249
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
1250
|
+
*Fast computation of Gauss quadrature nodes and
|
1251
|
+
weights on the whole real line*. :arXiv:`1410.5286`.
|
1252
|
+
|
1253
|
+
.. [townsend.trogdon.olver-2015]
|
1254
|
+
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
1255
|
+
*Fast computation of Gauss quadrature nodes and
|
1256
|
+
weights on the whole real line*.
|
1257
|
+
IMA Journal of Numerical Analysis
|
1258
|
+
:doi:`10.1093/imanum/drv002`.
|
1259
|
+
"""
|
1260
|
+
iv = _initial_nodes(n)
|
1261
|
+
nodes, weights = _newton(n, iv)
|
1262
|
+
# Combine with negative parts
|
1263
|
+
if n % 2 == 0:
|
1264
|
+
nodes = hstack([-nodes[::-1], nodes])
|
1265
|
+
weights = hstack([weights[::-1], weights])
|
1266
|
+
else:
|
1267
|
+
nodes = hstack([-nodes[-1:0:-1], nodes])
|
1268
|
+
weights = hstack([weights[-1:0:-1], weights])
|
1269
|
+
# Scale weights
|
1270
|
+
weights *= sqrt(pi) / sum(weights)
|
1271
|
+
return nodes, weights
|
1272
|
+
|
1273
|
+
|
1274
|
+
def hermite(n, monic=False):
|
1275
|
+
r"""Physicist's Hermite polynomial.
|
1276
|
+
|
1277
|
+
Defined by
|
1278
|
+
|
1279
|
+
.. math::
|
1280
|
+
|
1281
|
+
H_n(x) = (-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2};
|
1282
|
+
|
1283
|
+
:math:`H_n` is a polynomial of degree :math:`n`.
|
1284
|
+
|
1285
|
+
Parameters
|
1286
|
+
----------
|
1287
|
+
n : int
|
1288
|
+
Degree of the polynomial.
|
1289
|
+
monic : bool, optional
|
1290
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
1291
|
+
`False`.
|
1292
|
+
|
1293
|
+
Returns
|
1294
|
+
-------
|
1295
|
+
H : orthopoly1d
|
1296
|
+
Hermite polynomial.
|
1297
|
+
|
1298
|
+
Notes
|
1299
|
+
-----
|
1300
|
+
The polynomials :math:`H_n` are orthogonal over :math:`(-\infty,
|
1301
|
+
\infty)` with weight function :math:`e^{-x^2}`.
|
1302
|
+
|
1303
|
+
Examples
|
1304
|
+
--------
|
1305
|
+
>>> from scipy import special
|
1306
|
+
>>> import matplotlib.pyplot as plt
|
1307
|
+
>>> import numpy as np
|
1308
|
+
|
1309
|
+
>>> p_monic = special.hermite(3, monic=True)
|
1310
|
+
>>> p_monic
|
1311
|
+
poly1d([ 1. , 0. , -1.5, 0. ])
|
1312
|
+
>>> p_monic(1)
|
1313
|
+
-0.49999999999999983
|
1314
|
+
>>> x = np.linspace(-3, 3, 400)
|
1315
|
+
>>> y = p_monic(x)
|
1316
|
+
>>> plt.plot(x, y)
|
1317
|
+
>>> plt.title("Monic Hermite polynomial of degree 3")
|
1318
|
+
>>> plt.xlabel("x")
|
1319
|
+
>>> plt.ylabel("H_3(x)")
|
1320
|
+
>>> plt.show()
|
1321
|
+
|
1322
|
+
"""
|
1323
|
+
if n < 0:
|
1324
|
+
raise ValueError("n must be nonnegative.")
|
1325
|
+
|
1326
|
+
if n == 0:
|
1327
|
+
n1 = n + 1
|
1328
|
+
else:
|
1329
|
+
n1 = n
|
1330
|
+
x, w = roots_hermite(n1)
|
1331
|
+
def wfunc(x):
|
1332
|
+
return exp(-x * x)
|
1333
|
+
if n == 0:
|
1334
|
+
x, w = [], []
|
1335
|
+
hn = 2**n * _gam(n + 1) * sqrt(pi)
|
1336
|
+
kn = 2**n
|
1337
|
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-inf, inf), monic,
|
1338
|
+
lambda x: _ufuncs.eval_hermite(n, x))
|
1339
|
+
return p
|
1340
|
+
|
1341
|
+
# Hermite 2 He_n(x)
|
1342
|
+
|
1343
|
+
|
1344
|
+
def roots_hermitenorm(n, mu=False):
|
1345
|
+
r"""Gauss-Hermite (statistician's) quadrature.
|
1346
|
+
|
1347
|
+
Compute the sample points and weights for Gauss-Hermite
|
1348
|
+
quadrature. The sample points are the roots of the nth degree
|
1349
|
+
Hermite polynomial, :math:`He_n(x)`. These sample points and
|
1350
|
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
1351
|
+
or less over the interval :math:`[-\infty, \infty]` with weight
|
1352
|
+
function :math:`w(x) = e^{-x^2/2}`. See 22.2.15 in [AS]_ for more
|
1353
|
+
details.
|
1354
|
+
|
1355
|
+
Parameters
|
1356
|
+
----------
|
1357
|
+
n : int
|
1358
|
+
quadrature order
|
1359
|
+
mu : bool, optional
|
1360
|
+
If True, return the sum of the weights, optional.
|
1361
|
+
|
1362
|
+
Returns
|
1363
|
+
-------
|
1364
|
+
x : ndarray
|
1365
|
+
Sample points
|
1366
|
+
w : ndarray
|
1367
|
+
Weights
|
1368
|
+
mu : float
|
1369
|
+
Sum of the weights
|
1370
|
+
|
1371
|
+
See Also
|
1372
|
+
--------
|
1373
|
+
scipy.integrate.fixed_quad
|
1374
|
+
numpy.polynomial.hermite_e.hermegauss
|
1375
|
+
|
1376
|
+
Notes
|
1377
|
+
-----
|
1378
|
+
For small n up to 150 a modified version of the Golub-Welsch
|
1379
|
+
algorithm is used. Nodes are computed from the eigenvalue
|
1380
|
+
problem and improved by one step of a Newton iteration.
|
1381
|
+
The weights are computed from the well-known analytical formula.
|
1382
|
+
|
1383
|
+
For n larger than 150 an optimal asymptotic algorithm is used
|
1384
|
+
which computes nodes and weights in a numerical stable manner.
|
1385
|
+
The algorithm has linear runtime making computation for very
|
1386
|
+
large n (several thousand or more) feasible.
|
1387
|
+
|
1388
|
+
References
|
1389
|
+
----------
|
1390
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1391
|
+
Handbook of Mathematical Functions with Formulas,
|
1392
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1393
|
+
|
1394
|
+
"""
|
1395
|
+
m = int(n)
|
1396
|
+
if n < 1 or n != m:
|
1397
|
+
raise ValueError("n must be a positive integer.")
|
1398
|
+
|
1399
|
+
mu0 = np.sqrt(2.0*np.pi)
|
1400
|
+
if n <= 150:
|
1401
|
+
def an_func(k):
|
1402
|
+
return 0.0 * k
|
1403
|
+
def bn_func(k):
|
1404
|
+
return np.sqrt(k)
|
1405
|
+
f = _ufuncs.eval_hermitenorm
|
1406
|
+
def df(n, x):
|
1407
|
+
return n * _ufuncs.eval_hermitenorm(n - 1, x)
|
1408
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
1409
|
+
else:
|
1410
|
+
nodes, weights = _roots_hermite_asy(m)
|
1411
|
+
# Transform
|
1412
|
+
nodes *= sqrt(2)
|
1413
|
+
weights *= sqrt(2)
|
1414
|
+
if mu:
|
1415
|
+
return nodes, weights, mu0
|
1416
|
+
else:
|
1417
|
+
return nodes, weights
|
1418
|
+
|
1419
|
+
|
1420
|
+
def hermitenorm(n, monic=False):
|
1421
|
+
r"""Normalized (probabilist's) Hermite polynomial.
|
1422
|
+
|
1423
|
+
Defined by
|
1424
|
+
|
1425
|
+
.. math::
|
1426
|
+
|
1427
|
+
He_n(x) = (-1)^ne^{x^2/2}\frac{d^n}{dx^n}e^{-x^2/2};
|
1428
|
+
|
1429
|
+
:math:`He_n` is a polynomial of degree :math:`n`.
|
1430
|
+
|
1431
|
+
Parameters
|
1432
|
+
----------
|
1433
|
+
n : int
|
1434
|
+
Degree of the polynomial.
|
1435
|
+
monic : bool, optional
|
1436
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
1437
|
+
`False`.
|
1438
|
+
|
1439
|
+
Returns
|
1440
|
+
-------
|
1441
|
+
He : orthopoly1d
|
1442
|
+
Hermite polynomial.
|
1443
|
+
|
1444
|
+
Notes
|
1445
|
+
-----
|
1446
|
+
|
1447
|
+
The polynomials :math:`He_n` are orthogonal over :math:`(-\infty,
|
1448
|
+
\infty)` with weight function :math:`e^{-x^2/2}`.
|
1449
|
+
|
1450
|
+
"""
|
1451
|
+
if n < 0:
|
1452
|
+
raise ValueError("n must be nonnegative.")
|
1453
|
+
|
1454
|
+
if n == 0:
|
1455
|
+
n1 = n + 1
|
1456
|
+
else:
|
1457
|
+
n1 = n
|
1458
|
+
x, w = roots_hermitenorm(n1)
|
1459
|
+
def wfunc(x):
|
1460
|
+
return exp(-x * x / 2.0)
|
1461
|
+
if n == 0:
|
1462
|
+
x, w = [], []
|
1463
|
+
hn = sqrt(2 * pi) * _gam(n + 1)
|
1464
|
+
kn = 1.0
|
1465
|
+
p = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(-inf, inf), monic=monic,
|
1466
|
+
eval_func=lambda x: _ufuncs.eval_hermitenorm(n, x))
|
1467
|
+
return p
|
1468
|
+
|
1469
|
+
# The remainder of the polynomials can be derived from the ones above.
|
1470
|
+
|
1471
|
+
# Ultraspherical (Gegenbauer) C^(alpha)_n(x)
|
1472
|
+
|
1473
|
+
|
1474
|
+
def roots_gegenbauer(n, alpha, mu=False):
|
1475
|
+
r"""Gauss-Gegenbauer quadrature.
|
1476
|
+
|
1477
|
+
Compute the sample points and weights for Gauss-Gegenbauer
|
1478
|
+
quadrature. The sample points are the roots of the nth degree
|
1479
|
+
Gegenbauer polynomial, :math:`C^{\alpha}_n(x)`. These sample
|
1480
|
+
points and weights correctly integrate polynomials of degree
|
1481
|
+
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
1482
|
+
weight function :math:`w(x) = (1 - x^2)^{\alpha - 1/2}`. See
|
1483
|
+
22.2.3 in [AS]_ for more details.
|
1484
|
+
|
1485
|
+
Parameters
|
1486
|
+
----------
|
1487
|
+
n : int
|
1488
|
+
quadrature order
|
1489
|
+
alpha : float
|
1490
|
+
alpha must be > -0.5
|
1491
|
+
mu : bool, optional
|
1492
|
+
If True, return the sum of the weights, optional.
|
1493
|
+
|
1494
|
+
Returns
|
1495
|
+
-------
|
1496
|
+
x : ndarray
|
1497
|
+
Sample points
|
1498
|
+
w : ndarray
|
1499
|
+
Weights
|
1500
|
+
mu : float
|
1501
|
+
Sum of the weights
|
1502
|
+
|
1503
|
+
See Also
|
1504
|
+
--------
|
1505
|
+
scipy.integrate.fixed_quad
|
1506
|
+
|
1507
|
+
References
|
1508
|
+
----------
|
1509
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1510
|
+
Handbook of Mathematical Functions with Formulas,
|
1511
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1512
|
+
|
1513
|
+
"""
|
1514
|
+
m = int(n)
|
1515
|
+
if n < 1 or n != m:
|
1516
|
+
raise ValueError("n must be a positive integer.")
|
1517
|
+
if alpha < -0.5:
|
1518
|
+
raise ValueError("alpha must be greater than -0.5.")
|
1519
|
+
elif alpha == 0.0:
|
1520
|
+
# C(n,0,x) == 0 uniformly, however, as alpha->0, C(n,alpha,x)->T(n,x)
|
1521
|
+
# strictly, we should just error out here, since the roots are not
|
1522
|
+
# really defined, but we used to return something useful, so let's
|
1523
|
+
# keep doing so.
|
1524
|
+
return roots_chebyt(n, mu)
|
1525
|
+
|
1526
|
+
if alpha <= 170:
|
1527
|
+
mu0 = (np.sqrt(np.pi) * _ufuncs.gamma(alpha + 0.5)) \
|
1528
|
+
/ _ufuncs.gamma(alpha + 1)
|
1529
|
+
else:
|
1530
|
+
# For large alpha we use a Taylor series expansion around inf,
|
1531
|
+
# expressed as a 6th order polynomial of a^-1 and using Horner's
|
1532
|
+
# method to minimize computation and maximize precision
|
1533
|
+
inv_alpha = 1. / alpha
|
1534
|
+
coeffs = np.array([0.000207186, -0.00152206, -0.000640869,
|
1535
|
+
0.00488281, 0.0078125, -0.125, 1.])
|
1536
|
+
mu0 = coeffs[0]
|
1537
|
+
for term in range(1, len(coeffs)):
|
1538
|
+
mu0 = mu0 * inv_alpha + coeffs[term]
|
1539
|
+
mu0 = mu0 * np.sqrt(np.pi / alpha)
|
1540
|
+
def an_func(k):
|
1541
|
+
return 0.0 * k
|
1542
|
+
def bn_func(k):
|
1543
|
+
return np.sqrt(k * (k + 2 * alpha - 1) / (4 * (k + alpha) * (k + alpha - 1)))
|
1544
|
+
def f(n, x):
|
1545
|
+
return _ufuncs.eval_gegenbauer(n, alpha, x)
|
1546
|
+
def df(n, x):
|
1547
|
+
return (
|
1548
|
+
-n * x * _ufuncs.eval_gegenbauer(n, alpha, x)
|
1549
|
+
+ (n + 2 * alpha - 1) * _ufuncs.eval_gegenbauer(n - 1, alpha, x)
|
1550
|
+
) / (1 - x ** 2)
|
1551
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
1552
|
+
|
1553
|
+
|
1554
|
+
def gegenbauer(n, alpha, monic=False):
|
1555
|
+
r"""Gegenbauer (ultraspherical) polynomial.
|
1556
|
+
|
1557
|
+
Defined to be the solution of
|
1558
|
+
|
1559
|
+
.. math::
|
1560
|
+
(1 - x^2)\frac{d^2}{dx^2}C_n^{(\alpha)}
|
1561
|
+
- (2\alpha + 1)x\frac{d}{dx}C_n^{(\alpha)}
|
1562
|
+
+ n(n + 2\alpha)C_n^{(\alpha)} = 0
|
1563
|
+
|
1564
|
+
for :math:`\alpha > -1/2`; :math:`C_n^{(\alpha)}` is a polynomial
|
1565
|
+
of degree :math:`n`.
|
1566
|
+
|
1567
|
+
Parameters
|
1568
|
+
----------
|
1569
|
+
n : int
|
1570
|
+
Degree of the polynomial.
|
1571
|
+
alpha : float
|
1572
|
+
Parameter, must be greater than -0.5.
|
1573
|
+
monic : bool, optional
|
1574
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
1575
|
+
`False`.
|
1576
|
+
|
1577
|
+
Returns
|
1578
|
+
-------
|
1579
|
+
C : orthopoly1d
|
1580
|
+
Gegenbauer polynomial.
|
1581
|
+
|
1582
|
+
Notes
|
1583
|
+
-----
|
1584
|
+
The polynomials :math:`C_n^{(\alpha)}` are orthogonal over
|
1585
|
+
:math:`[-1,1]` with weight function :math:`(1 - x^2)^{(\alpha -
|
1586
|
+
1/2)}`.
|
1587
|
+
|
1588
|
+
Examples
|
1589
|
+
--------
|
1590
|
+
>>> import numpy as np
|
1591
|
+
>>> from scipy import special
|
1592
|
+
>>> import matplotlib.pyplot as plt
|
1593
|
+
|
1594
|
+
We can initialize a variable ``p`` as a Gegenbauer polynomial using the
|
1595
|
+
`gegenbauer` function and evaluate at a point ``x = 1``.
|
1596
|
+
|
1597
|
+
>>> p = special.gegenbauer(3, 0.5, monic=False)
|
1598
|
+
>>> p
|
1599
|
+
poly1d([ 2.5, 0. , -1.5, 0. ])
|
1600
|
+
>>> p(1)
|
1601
|
+
1.0
|
1602
|
+
|
1603
|
+
To evaluate ``p`` at various points ``x`` in the interval ``(-3, 3)``,
|
1604
|
+
simply pass an array ``x`` to ``p`` as follows:
|
1605
|
+
|
1606
|
+
>>> x = np.linspace(-3, 3, 400)
|
1607
|
+
>>> y = p(x)
|
1608
|
+
|
1609
|
+
We can then visualize ``x, y`` using `matplotlib.pyplot`.
|
1610
|
+
|
1611
|
+
>>> fig, ax = plt.subplots()
|
1612
|
+
>>> ax.plot(x, y)
|
1613
|
+
>>> ax.set_title("Gegenbauer (ultraspherical) polynomial of degree 3")
|
1614
|
+
>>> ax.set_xlabel("x")
|
1615
|
+
>>> ax.set_ylabel("G_3(x)")
|
1616
|
+
>>> plt.show()
|
1617
|
+
|
1618
|
+
"""
|
1619
|
+
if not np.isfinite(alpha) or alpha <= -0.5 :
|
1620
|
+
raise ValueError("`alpha` must be a finite number greater than -1/2")
|
1621
|
+
base = jacobi(n, alpha - 0.5, alpha - 0.5, monic=monic)
|
1622
|
+
if monic or n == 0:
|
1623
|
+
return base
|
1624
|
+
# Abrahmowitz and Stegan 22.5.20
|
1625
|
+
factor = (_gam(2*alpha + n) * _gam(alpha + 0.5) /
|
1626
|
+
_gam(2*alpha) / _gam(alpha + 0.5 + n))
|
1627
|
+
base._scale(factor)
|
1628
|
+
base.__dict__['_eval_func'] = lambda x: _ufuncs.eval_gegenbauer(float(n),
|
1629
|
+
alpha, x)
|
1630
|
+
return base
|
1631
|
+
|
1632
|
+
# Chebyshev of the first kind: T_n(x) =
|
1633
|
+
# n! sqrt(pi) / _gam(n+1./2)* P^(-1/2,-1/2)_n(x)
|
1634
|
+
# Computed anew.
|
1635
|
+
|
1636
|
+
|
1637
|
+
def roots_chebyt(n, mu=False):
|
1638
|
+
r"""Gauss-Chebyshev (first kind) quadrature.
|
1639
|
+
|
1640
|
+
Computes the sample points and weights for Gauss-Chebyshev
|
1641
|
+
quadrature. The sample points are the roots of the nth degree
|
1642
|
+
Chebyshev polynomial of the first kind, :math:`T_n(x)`. These
|
1643
|
+
sample points and weights correctly integrate polynomials of
|
1644
|
+
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
1645
|
+
with weight function :math:`w(x) = 1/\sqrt{1 - x^2}`. See 22.2.4
|
1646
|
+
in [AS]_ for more details.
|
1647
|
+
|
1648
|
+
Parameters
|
1649
|
+
----------
|
1650
|
+
n : int
|
1651
|
+
quadrature order
|
1652
|
+
mu : bool, optional
|
1653
|
+
If True, return the sum of the weights, optional.
|
1654
|
+
|
1655
|
+
Returns
|
1656
|
+
-------
|
1657
|
+
x : ndarray
|
1658
|
+
Sample points
|
1659
|
+
w : ndarray
|
1660
|
+
Weights
|
1661
|
+
mu : float
|
1662
|
+
Sum of the weights
|
1663
|
+
|
1664
|
+
See Also
|
1665
|
+
--------
|
1666
|
+
scipy.integrate.fixed_quad
|
1667
|
+
numpy.polynomial.chebyshev.chebgauss
|
1668
|
+
|
1669
|
+
References
|
1670
|
+
----------
|
1671
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1672
|
+
Handbook of Mathematical Functions with Formulas,
|
1673
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1674
|
+
|
1675
|
+
"""
|
1676
|
+
m = int(n)
|
1677
|
+
if n < 1 or n != m:
|
1678
|
+
raise ValueError('n must be a positive integer.')
|
1679
|
+
x = _ufuncs._sinpi(np.arange(-m + 1, m, 2) / (2*m))
|
1680
|
+
w = np.full_like(x, pi/m)
|
1681
|
+
if mu:
|
1682
|
+
return x, w, pi
|
1683
|
+
else:
|
1684
|
+
return x, w
|
1685
|
+
|
1686
|
+
|
1687
|
+
def chebyt(n, monic=False):
|
1688
|
+
r"""Chebyshev polynomial of the first kind.
|
1689
|
+
|
1690
|
+
Defined to be the solution of
|
1691
|
+
|
1692
|
+
.. math::
|
1693
|
+
(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;
|
1694
|
+
|
1695
|
+
:math:`T_n` is a polynomial of degree :math:`n`.
|
1696
|
+
|
1697
|
+
Parameters
|
1698
|
+
----------
|
1699
|
+
n : int
|
1700
|
+
Degree of the polynomial.
|
1701
|
+
monic : bool, optional
|
1702
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
1703
|
+
`False`.
|
1704
|
+
|
1705
|
+
Returns
|
1706
|
+
-------
|
1707
|
+
T : orthopoly1d
|
1708
|
+
Chebyshev polynomial of the first kind.
|
1709
|
+
|
1710
|
+
See Also
|
1711
|
+
--------
|
1712
|
+
chebyu : Chebyshev polynomial of the second kind.
|
1713
|
+
|
1714
|
+
Notes
|
1715
|
+
-----
|
1716
|
+
The polynomials :math:`T_n` are orthogonal over :math:`[-1, 1]`
|
1717
|
+
with weight function :math:`(1 - x^2)^{-1/2}`.
|
1718
|
+
|
1719
|
+
References
|
1720
|
+
----------
|
1721
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1722
|
+
Handbook of Mathematical Functions with Formulas,
|
1723
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1724
|
+
|
1725
|
+
Examples
|
1726
|
+
--------
|
1727
|
+
Chebyshev polynomials of the first kind of order :math:`n` can
|
1728
|
+
be obtained as the determinant of specific :math:`n \times n`
|
1729
|
+
matrices. As an example we can check how the points obtained from
|
1730
|
+
the determinant of the following :math:`3 \times 3` matrix
|
1731
|
+
lay exactly on :math:`T_3`:
|
1732
|
+
|
1733
|
+
>>> import numpy as np
|
1734
|
+
>>> import matplotlib.pyplot as plt
|
1735
|
+
>>> from scipy.linalg import det
|
1736
|
+
>>> from scipy.special import chebyt
|
1737
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1738
|
+
>>> fig, ax = plt.subplots()
|
1739
|
+
>>> ax.set_ylim(-2.0, 2.0)
|
1740
|
+
>>> ax.set_title(r'Chebyshev polynomial $T_3$')
|
1741
|
+
>>> ax.plot(x, chebyt(3)(x), label=rf'$T_3$')
|
1742
|
+
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
1743
|
+
... ax.plot(p,
|
1744
|
+
... det(np.array([[p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
1745
|
+
... 'rx')
|
1746
|
+
>>> plt.legend(loc='best')
|
1747
|
+
>>> plt.show()
|
1748
|
+
|
1749
|
+
They are also related to the Jacobi Polynomials
|
1750
|
+
:math:`P_n^{(-0.5, -0.5)}` through the relation:
|
1751
|
+
|
1752
|
+
.. math::
|
1753
|
+
P_n^{(-0.5, -0.5)}(x) = \frac{1}{4^n} \binom{2n}{n} T_n(x)
|
1754
|
+
|
1755
|
+
Let's verify it for :math:`n = 3`:
|
1756
|
+
|
1757
|
+
>>> from scipy.special import binom
|
1758
|
+
>>> from scipy.special import jacobi
|
1759
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1760
|
+
>>> np.allclose(jacobi(3, -0.5, -0.5)(x),
|
1761
|
+
... 1/64 * binom(6, 3) * chebyt(3)(x))
|
1762
|
+
True
|
1763
|
+
|
1764
|
+
We can plot the Chebyshev polynomials :math:`T_n` for some values
|
1765
|
+
of :math:`n`:
|
1766
|
+
|
1767
|
+
>>> x = np.arange(-1.5, 1.5, 0.01)
|
1768
|
+
>>> fig, ax = plt.subplots()
|
1769
|
+
>>> ax.set_ylim(-4.0, 4.0)
|
1770
|
+
>>> ax.set_title(r'Chebyshev polynomials $T_n$')
|
1771
|
+
>>> for n in np.arange(2,5):
|
1772
|
+
... ax.plot(x, chebyt(n)(x), label=rf'$T_n={n}$')
|
1773
|
+
>>> plt.legend(loc='best')
|
1774
|
+
>>> plt.show()
|
1775
|
+
|
1776
|
+
"""
|
1777
|
+
if n < 0:
|
1778
|
+
raise ValueError("n must be nonnegative.")
|
1779
|
+
|
1780
|
+
def wfunc(x):
|
1781
|
+
return 1.0 / sqrt(1 - x * x)
|
1782
|
+
if n == 0:
|
1783
|
+
return orthopoly1d([], [], pi, 1.0, wfunc, (-1, 1), monic,
|
1784
|
+
lambda x: _ufuncs.eval_chebyt(n, x))
|
1785
|
+
n1 = n
|
1786
|
+
x, w, mu = roots_chebyt(n1, mu=True)
|
1787
|
+
hn = pi / 2
|
1788
|
+
kn = 2**(n - 1)
|
1789
|
+
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
1790
|
+
lambda x: _ufuncs.eval_chebyt(n, x))
|
1791
|
+
return p
|
1792
|
+
|
1793
|
+
# Chebyshev of the second kind
|
1794
|
+
# U_n(x) = (n+1)! sqrt(pi) / (2*_gam(n+3./2)) * P^(1/2,1/2)_n(x)
|
1795
|
+
|
1796
|
+
|
1797
|
+
def roots_chebyu(n, mu=False):
|
1798
|
+
r"""Gauss-Chebyshev (second kind) quadrature.
|
1799
|
+
|
1800
|
+
Computes the sample points and weights for Gauss-Chebyshev
|
1801
|
+
quadrature. The sample points are the roots of the nth degree
|
1802
|
+
Chebyshev polynomial of the second kind, :math:`U_n(x)`. These
|
1803
|
+
sample points and weights correctly integrate polynomials of
|
1804
|
+
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
1805
|
+
with weight function :math:`w(x) = \sqrt{1 - x^2}`. See 22.2.5 in
|
1806
|
+
[AS]_ for details.
|
1807
|
+
|
1808
|
+
Parameters
|
1809
|
+
----------
|
1810
|
+
n : int
|
1811
|
+
quadrature order
|
1812
|
+
mu : bool, optional
|
1813
|
+
If True, return the sum of the weights, optional.
|
1814
|
+
|
1815
|
+
Returns
|
1816
|
+
-------
|
1817
|
+
x : ndarray
|
1818
|
+
Sample points
|
1819
|
+
w : ndarray
|
1820
|
+
Weights
|
1821
|
+
mu : float
|
1822
|
+
Sum of the weights
|
1823
|
+
|
1824
|
+
See Also
|
1825
|
+
--------
|
1826
|
+
scipy.integrate.fixed_quad
|
1827
|
+
|
1828
|
+
References
|
1829
|
+
----------
|
1830
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1831
|
+
Handbook of Mathematical Functions with Formulas,
|
1832
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1833
|
+
|
1834
|
+
"""
|
1835
|
+
m = int(n)
|
1836
|
+
if n < 1 or n != m:
|
1837
|
+
raise ValueError('n must be a positive integer.')
|
1838
|
+
t = np.arange(m, 0, -1) * pi / (m + 1)
|
1839
|
+
x = np.cos(t)
|
1840
|
+
w = pi * np.sin(t)**2 / (m + 1)
|
1841
|
+
if mu:
|
1842
|
+
return x, w, pi / 2
|
1843
|
+
else:
|
1844
|
+
return x, w
|
1845
|
+
|
1846
|
+
|
1847
|
+
def chebyu(n, monic=False):
|
1848
|
+
r"""Chebyshev polynomial of the second kind.
|
1849
|
+
|
1850
|
+
Defined to be the solution of
|
1851
|
+
|
1852
|
+
.. math::
|
1853
|
+
(1 - x^2)\frac{d^2}{dx^2}U_n - 3x\frac{d}{dx}U_n
|
1854
|
+
+ n(n + 2)U_n = 0;
|
1855
|
+
|
1856
|
+
:math:`U_n` is a polynomial of degree :math:`n`.
|
1857
|
+
|
1858
|
+
Parameters
|
1859
|
+
----------
|
1860
|
+
n : int
|
1861
|
+
Degree of the polynomial.
|
1862
|
+
monic : bool, optional
|
1863
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
1864
|
+
`False`.
|
1865
|
+
|
1866
|
+
Returns
|
1867
|
+
-------
|
1868
|
+
U : orthopoly1d
|
1869
|
+
Chebyshev polynomial of the second kind.
|
1870
|
+
|
1871
|
+
See Also
|
1872
|
+
--------
|
1873
|
+
chebyt : Chebyshev polynomial of the first kind.
|
1874
|
+
|
1875
|
+
Notes
|
1876
|
+
-----
|
1877
|
+
The polynomials :math:`U_n` are orthogonal over :math:`[-1, 1]`
|
1878
|
+
with weight function :math:`(1 - x^2)^{1/2}`.
|
1879
|
+
|
1880
|
+
References
|
1881
|
+
----------
|
1882
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1883
|
+
Handbook of Mathematical Functions with Formulas,
|
1884
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1885
|
+
|
1886
|
+
Examples
|
1887
|
+
--------
|
1888
|
+
Chebyshev polynomials of the second kind of order :math:`n` can
|
1889
|
+
be obtained as the determinant of specific :math:`n \times n`
|
1890
|
+
matrices. As an example we can check how the points obtained from
|
1891
|
+
the determinant of the following :math:`3 \times 3` matrix
|
1892
|
+
lay exactly on :math:`U_3`:
|
1893
|
+
|
1894
|
+
>>> import numpy as np
|
1895
|
+
>>> import matplotlib.pyplot as plt
|
1896
|
+
>>> from scipy.linalg import det
|
1897
|
+
>>> from scipy.special import chebyu
|
1898
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1899
|
+
>>> fig, ax = plt.subplots()
|
1900
|
+
>>> ax.set_ylim(-2.0, 2.0)
|
1901
|
+
>>> ax.set_title(r'Chebyshev polynomial $U_3$')
|
1902
|
+
>>> ax.plot(x, chebyu(3)(x), label=rf'$U_3$')
|
1903
|
+
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
1904
|
+
... ax.plot(p,
|
1905
|
+
... det(np.array([[2*p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
1906
|
+
... 'rx')
|
1907
|
+
>>> plt.legend(loc='best')
|
1908
|
+
>>> plt.show()
|
1909
|
+
|
1910
|
+
They satisfy the recurrence relation:
|
1911
|
+
|
1912
|
+
.. math::
|
1913
|
+
U_{2n-1}(x) = 2 T_n(x)U_{n-1}(x)
|
1914
|
+
|
1915
|
+
where the :math:`T_n` are the Chebyshev polynomial of the first kind.
|
1916
|
+
Let's verify it for :math:`n = 2`:
|
1917
|
+
|
1918
|
+
>>> from scipy.special import chebyt
|
1919
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1920
|
+
>>> np.allclose(chebyu(3)(x), 2 * chebyt(2)(x) * chebyu(1)(x))
|
1921
|
+
True
|
1922
|
+
|
1923
|
+
We can plot the Chebyshev polynomials :math:`U_n` for some values
|
1924
|
+
of :math:`n`:
|
1925
|
+
|
1926
|
+
>>> x = np.arange(-1.0, 1.0, 0.01)
|
1927
|
+
>>> fig, ax = plt.subplots()
|
1928
|
+
>>> ax.set_ylim(-1.5, 1.5)
|
1929
|
+
>>> ax.set_title(r'Chebyshev polynomials $U_n$')
|
1930
|
+
>>> for n in np.arange(1,5):
|
1931
|
+
... ax.plot(x, chebyu(n)(x), label=rf'$U_n={n}$')
|
1932
|
+
>>> plt.legend(loc='best')
|
1933
|
+
>>> plt.show()
|
1934
|
+
|
1935
|
+
"""
|
1936
|
+
base = jacobi(n, 0.5, 0.5, monic=monic)
|
1937
|
+
if monic:
|
1938
|
+
return base
|
1939
|
+
factor = sqrt(pi) / 2.0 * _gam(n + 2) / _gam(n + 1.5)
|
1940
|
+
base._scale(factor)
|
1941
|
+
return base
|
1942
|
+
|
1943
|
+
# Chebyshev of the first kind C_n(x)
|
1944
|
+
|
1945
|
+
|
1946
|
+
def roots_chebyc(n, mu=False):
|
1947
|
+
r"""Gauss-Chebyshev (first kind) quadrature.
|
1948
|
+
|
1949
|
+
Compute the sample points and weights for Gauss-Chebyshev
|
1950
|
+
quadrature. The sample points are the roots of the nth degree
|
1951
|
+
Chebyshev polynomial of the first kind, :math:`C_n(x)`. These
|
1952
|
+
sample points and weights correctly integrate polynomials of
|
1953
|
+
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
1954
|
+
with weight function :math:`w(x) = 1 / \sqrt{1 - (x/2)^2}`. See
|
1955
|
+
22.2.6 in [AS]_ for more details.
|
1956
|
+
|
1957
|
+
Parameters
|
1958
|
+
----------
|
1959
|
+
n : int
|
1960
|
+
quadrature order
|
1961
|
+
mu : bool, optional
|
1962
|
+
If True, return the sum of the weights, optional.
|
1963
|
+
|
1964
|
+
Returns
|
1965
|
+
-------
|
1966
|
+
x : ndarray
|
1967
|
+
Sample points
|
1968
|
+
w : ndarray
|
1969
|
+
Weights
|
1970
|
+
mu : float
|
1971
|
+
Sum of the weights
|
1972
|
+
|
1973
|
+
See Also
|
1974
|
+
--------
|
1975
|
+
scipy.integrate.fixed_quad
|
1976
|
+
|
1977
|
+
References
|
1978
|
+
----------
|
1979
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
1980
|
+
Handbook of Mathematical Functions with Formulas,
|
1981
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
1982
|
+
|
1983
|
+
"""
|
1984
|
+
x, w, m = roots_chebyt(n, True)
|
1985
|
+
x *= 2
|
1986
|
+
w *= 2
|
1987
|
+
m *= 2
|
1988
|
+
if mu:
|
1989
|
+
return x, w, m
|
1990
|
+
else:
|
1991
|
+
return x, w
|
1992
|
+
|
1993
|
+
|
1994
|
+
def chebyc(n, monic=False):
|
1995
|
+
r"""Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
1996
|
+
|
1997
|
+
Defined as :math:`C_n(x) = 2T_n(x/2)`, where :math:`T_n` is the
|
1998
|
+
nth Chebychev polynomial of the first kind.
|
1999
|
+
|
2000
|
+
Parameters
|
2001
|
+
----------
|
2002
|
+
n : int
|
2003
|
+
Degree of the polynomial.
|
2004
|
+
monic : bool, optional
|
2005
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2006
|
+
`False`.
|
2007
|
+
|
2008
|
+
Returns
|
2009
|
+
-------
|
2010
|
+
C : orthopoly1d
|
2011
|
+
Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
2012
|
+
|
2013
|
+
See Also
|
2014
|
+
--------
|
2015
|
+
chebyt : Chebyshev polynomial of the first kind.
|
2016
|
+
|
2017
|
+
Notes
|
2018
|
+
-----
|
2019
|
+
The polynomials :math:`C_n(x)` are orthogonal over :math:`[-2, 2]`
|
2020
|
+
with weight function :math:`1/\sqrt{1 - (x/2)^2}`.
|
2021
|
+
|
2022
|
+
References
|
2023
|
+
----------
|
2024
|
+
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
2025
|
+
Section 22. National Bureau of Standards, 1972.
|
2026
|
+
|
2027
|
+
"""
|
2028
|
+
if n < 0:
|
2029
|
+
raise ValueError("n must be nonnegative.")
|
2030
|
+
|
2031
|
+
if n == 0:
|
2032
|
+
n1 = n + 1
|
2033
|
+
else:
|
2034
|
+
n1 = n
|
2035
|
+
x, w = roots_chebyc(n1)
|
2036
|
+
if n == 0:
|
2037
|
+
x, w = [], []
|
2038
|
+
hn = 4 * pi * ((n == 0) + 1)
|
2039
|
+
kn = 1.0
|
2040
|
+
p = orthopoly1d(x, w, hn, kn,
|
2041
|
+
wfunc=lambda x: 1.0 / sqrt(1 - x * x / 4.0),
|
2042
|
+
limits=(-2, 2), monic=monic)
|
2043
|
+
if not monic:
|
2044
|
+
p._scale(2.0 / p(2))
|
2045
|
+
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebyc(n, x)
|
2046
|
+
return p
|
2047
|
+
|
2048
|
+
# Chebyshev of the second kind S_n(x)
|
2049
|
+
|
2050
|
+
|
2051
|
+
def roots_chebys(n, mu=False):
|
2052
|
+
r"""Gauss-Chebyshev (second kind) quadrature.
|
2053
|
+
|
2054
|
+
Compute the sample points and weights for Gauss-Chebyshev
|
2055
|
+
quadrature. The sample points are the roots of the nth degree
|
2056
|
+
Chebyshev polynomial of the second kind, :math:`S_n(x)`. These
|
2057
|
+
sample points and weights correctly integrate polynomials of
|
2058
|
+
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
2059
|
+
with weight function :math:`w(x) = \sqrt{1 - (x/2)^2}`. See 22.2.7
|
2060
|
+
in [AS]_ for more details.
|
2061
|
+
|
2062
|
+
Parameters
|
2063
|
+
----------
|
2064
|
+
n : int
|
2065
|
+
quadrature order
|
2066
|
+
mu : bool, optional
|
2067
|
+
If True, return the sum of the weights, optional.
|
2068
|
+
|
2069
|
+
Returns
|
2070
|
+
-------
|
2071
|
+
x : ndarray
|
2072
|
+
Sample points
|
2073
|
+
w : ndarray
|
2074
|
+
Weights
|
2075
|
+
mu : float
|
2076
|
+
Sum of the weights
|
2077
|
+
|
2078
|
+
See Also
|
2079
|
+
--------
|
2080
|
+
scipy.integrate.fixed_quad
|
2081
|
+
|
2082
|
+
References
|
2083
|
+
----------
|
2084
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2085
|
+
Handbook of Mathematical Functions with Formulas,
|
2086
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2087
|
+
|
2088
|
+
"""
|
2089
|
+
x, w, m = roots_chebyu(n, True)
|
2090
|
+
x *= 2
|
2091
|
+
w *= 2
|
2092
|
+
m *= 2
|
2093
|
+
if mu:
|
2094
|
+
return x, w, m
|
2095
|
+
else:
|
2096
|
+
return x, w
|
2097
|
+
|
2098
|
+
|
2099
|
+
def chebys(n, monic=False):
|
2100
|
+
r"""Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
2101
|
+
|
2102
|
+
Defined as :math:`S_n(x) = U_n(x/2)` where :math:`U_n` is the
|
2103
|
+
nth Chebychev polynomial of the second kind.
|
2104
|
+
|
2105
|
+
Parameters
|
2106
|
+
----------
|
2107
|
+
n : int
|
2108
|
+
Degree of the polynomial.
|
2109
|
+
monic : bool, optional
|
2110
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2111
|
+
`False`.
|
2112
|
+
|
2113
|
+
Returns
|
2114
|
+
-------
|
2115
|
+
S : orthopoly1d
|
2116
|
+
Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
2117
|
+
|
2118
|
+
See Also
|
2119
|
+
--------
|
2120
|
+
chebyu : Chebyshev polynomial of the second kind
|
2121
|
+
|
2122
|
+
Notes
|
2123
|
+
-----
|
2124
|
+
The polynomials :math:`S_n(x)` are orthogonal over :math:`[-2, 2]`
|
2125
|
+
with weight function :math:`\sqrt{1 - (x/2)}^2`.
|
2126
|
+
|
2127
|
+
References
|
2128
|
+
----------
|
2129
|
+
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
2130
|
+
Section 22. National Bureau of Standards, 1972.
|
2131
|
+
|
2132
|
+
"""
|
2133
|
+
if n < 0:
|
2134
|
+
raise ValueError("n must be nonnegative.")
|
2135
|
+
|
2136
|
+
if n == 0:
|
2137
|
+
n1 = n + 1
|
2138
|
+
else:
|
2139
|
+
n1 = n
|
2140
|
+
x, w = roots_chebys(n1)
|
2141
|
+
if n == 0:
|
2142
|
+
x, w = [], []
|
2143
|
+
hn = pi
|
2144
|
+
kn = 1.0
|
2145
|
+
p = orthopoly1d(x, w, hn, kn,
|
2146
|
+
wfunc=lambda x: sqrt(1 - x * x / 4.0),
|
2147
|
+
limits=(-2, 2), monic=monic)
|
2148
|
+
if not monic:
|
2149
|
+
factor = (n + 1.0) / p(2)
|
2150
|
+
p._scale(factor)
|
2151
|
+
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebys(n, x)
|
2152
|
+
return p
|
2153
|
+
|
2154
|
+
# Shifted Chebyshev of the first kind T^*_n(x)
|
2155
|
+
|
2156
|
+
|
2157
|
+
def roots_sh_chebyt(n, mu=False):
|
2158
|
+
r"""Gauss-Chebyshev (first kind, shifted) quadrature.
|
2159
|
+
|
2160
|
+
Compute the sample points and weights for Gauss-Chebyshev
|
2161
|
+
quadrature. The sample points are the roots of the nth degree
|
2162
|
+
shifted Chebyshev polynomial of the first kind, :math:`T_n(x)`.
|
2163
|
+
These sample points and weights correctly integrate polynomials of
|
2164
|
+
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
2165
|
+
with weight function :math:`w(x) = 1/\sqrt{x - x^2}`. See 22.2.8
|
2166
|
+
in [AS]_ for more details.
|
2167
|
+
|
2168
|
+
Parameters
|
2169
|
+
----------
|
2170
|
+
n : int
|
2171
|
+
quadrature order
|
2172
|
+
mu : bool, optional
|
2173
|
+
If True, return the sum of the weights, optional.
|
2174
|
+
|
2175
|
+
Returns
|
2176
|
+
-------
|
2177
|
+
x : ndarray
|
2178
|
+
Sample points
|
2179
|
+
w : ndarray
|
2180
|
+
Weights
|
2181
|
+
mu : float
|
2182
|
+
Sum of the weights
|
2183
|
+
|
2184
|
+
See Also
|
2185
|
+
--------
|
2186
|
+
scipy.integrate.fixed_quad
|
2187
|
+
|
2188
|
+
References
|
2189
|
+
----------
|
2190
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2191
|
+
Handbook of Mathematical Functions with Formulas,
|
2192
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2193
|
+
|
2194
|
+
"""
|
2195
|
+
xw = roots_chebyt(n, mu)
|
2196
|
+
return ((xw[0] + 1) / 2,) + xw[1:]
|
2197
|
+
|
2198
|
+
|
2199
|
+
def sh_chebyt(n, monic=False):
|
2200
|
+
r"""Shifted Chebyshev polynomial of the first kind.
|
2201
|
+
|
2202
|
+
Defined as :math:`T^*_n(x) = T_n(2x - 1)` for :math:`T_n` the nth
|
2203
|
+
Chebyshev polynomial of the first kind.
|
2204
|
+
|
2205
|
+
Parameters
|
2206
|
+
----------
|
2207
|
+
n : int
|
2208
|
+
Degree of the polynomial.
|
2209
|
+
monic : bool, optional
|
2210
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2211
|
+
`False`.
|
2212
|
+
|
2213
|
+
Returns
|
2214
|
+
-------
|
2215
|
+
T : orthopoly1d
|
2216
|
+
Shifted Chebyshev polynomial of the first kind.
|
2217
|
+
|
2218
|
+
Notes
|
2219
|
+
-----
|
2220
|
+
The polynomials :math:`T^*_n` are orthogonal over :math:`[0, 1]`
|
2221
|
+
with weight function :math:`(x - x^2)^{-1/2}`.
|
2222
|
+
|
2223
|
+
"""
|
2224
|
+
base = sh_jacobi(n, 0.0, 0.5, monic=monic)
|
2225
|
+
if monic:
|
2226
|
+
return base
|
2227
|
+
if n > 0:
|
2228
|
+
factor = 4**n / 2.0
|
2229
|
+
else:
|
2230
|
+
factor = 1.0
|
2231
|
+
base._scale(factor)
|
2232
|
+
return base
|
2233
|
+
|
2234
|
+
|
2235
|
+
# Shifted Chebyshev of the second kind U^*_n(x)
|
2236
|
+
def roots_sh_chebyu(n, mu=False):
|
2237
|
+
r"""Gauss-Chebyshev (second kind, shifted) quadrature.
|
2238
|
+
|
2239
|
+
Computes the sample points and weights for Gauss-Chebyshev
|
2240
|
+
quadrature. The sample points are the roots of the nth degree
|
2241
|
+
shifted Chebyshev polynomial of the second kind, :math:`U_n(x)`.
|
2242
|
+
These sample points and weights correctly integrate polynomials of
|
2243
|
+
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
2244
|
+
with weight function :math:`w(x) = \sqrt{x - x^2}`. See 22.2.9 in
|
2245
|
+
[AS]_ for more details.
|
2246
|
+
|
2247
|
+
Parameters
|
2248
|
+
----------
|
2249
|
+
n : int
|
2250
|
+
quadrature order
|
2251
|
+
mu : bool, optional
|
2252
|
+
If True, return the sum of the weights, optional.
|
2253
|
+
|
2254
|
+
Returns
|
2255
|
+
-------
|
2256
|
+
x : ndarray
|
2257
|
+
Sample points
|
2258
|
+
w : ndarray
|
2259
|
+
Weights
|
2260
|
+
mu : float
|
2261
|
+
Sum of the weights
|
2262
|
+
|
2263
|
+
See Also
|
2264
|
+
--------
|
2265
|
+
scipy.integrate.fixed_quad
|
2266
|
+
|
2267
|
+
References
|
2268
|
+
----------
|
2269
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2270
|
+
Handbook of Mathematical Functions with Formulas,
|
2271
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2272
|
+
|
2273
|
+
"""
|
2274
|
+
x, w, m = roots_chebyu(n, True)
|
2275
|
+
x = (x + 1) / 2
|
2276
|
+
m_us = _ufuncs.beta(1.5, 1.5)
|
2277
|
+
w *= m_us / m
|
2278
|
+
if mu:
|
2279
|
+
return x, w, m_us
|
2280
|
+
else:
|
2281
|
+
return x, w
|
2282
|
+
|
2283
|
+
|
2284
|
+
def sh_chebyu(n, monic=False):
|
2285
|
+
r"""Shifted Chebyshev polynomial of the second kind.
|
2286
|
+
|
2287
|
+
Defined as :math:`U^*_n(x) = U_n(2x - 1)` for :math:`U_n` the nth
|
2288
|
+
Chebyshev polynomial of the second kind.
|
2289
|
+
|
2290
|
+
Parameters
|
2291
|
+
----------
|
2292
|
+
n : int
|
2293
|
+
Degree of the polynomial.
|
2294
|
+
monic : bool, optional
|
2295
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2296
|
+
`False`.
|
2297
|
+
|
2298
|
+
Returns
|
2299
|
+
-------
|
2300
|
+
U : orthopoly1d
|
2301
|
+
Shifted Chebyshev polynomial of the second kind.
|
2302
|
+
|
2303
|
+
Notes
|
2304
|
+
-----
|
2305
|
+
The polynomials :math:`U^*_n` are orthogonal over :math:`[0, 1]`
|
2306
|
+
with weight function :math:`(x - x^2)^{1/2}`.
|
2307
|
+
|
2308
|
+
"""
|
2309
|
+
base = sh_jacobi(n, 2.0, 1.5, monic=monic)
|
2310
|
+
if monic:
|
2311
|
+
return base
|
2312
|
+
factor = 4**n
|
2313
|
+
base._scale(factor)
|
2314
|
+
return base
|
2315
|
+
|
2316
|
+
# Legendre
|
2317
|
+
|
2318
|
+
|
2319
|
+
def roots_legendre(n, mu=False):
|
2320
|
+
r"""Gauss-Legendre quadrature.
|
2321
|
+
|
2322
|
+
Compute the sample points and weights for Gauss-Legendre
|
2323
|
+
quadrature [GL]_. The sample points are the roots of the nth degree
|
2324
|
+
Legendre polynomial :math:`P_n(x)`. These sample points and
|
2325
|
+
weights correctly integrate polynomials of degree :math:`2n - 1`
|
2326
|
+
or less over the interval :math:`[-1, 1]` with weight function
|
2327
|
+
:math:`w(x) = 1`. See 2.2.10 in [AS]_ for more details.
|
2328
|
+
|
2329
|
+
Parameters
|
2330
|
+
----------
|
2331
|
+
n : int
|
2332
|
+
quadrature order
|
2333
|
+
mu : bool, optional
|
2334
|
+
If True, return the sum of the weights, optional.
|
2335
|
+
|
2336
|
+
Returns
|
2337
|
+
-------
|
2338
|
+
x : ndarray
|
2339
|
+
Sample points
|
2340
|
+
w : ndarray
|
2341
|
+
Weights
|
2342
|
+
mu : float
|
2343
|
+
Sum of the weights
|
2344
|
+
|
2345
|
+
See Also
|
2346
|
+
--------
|
2347
|
+
scipy.integrate.fixed_quad
|
2348
|
+
numpy.polynomial.legendre.leggauss
|
2349
|
+
|
2350
|
+
References
|
2351
|
+
----------
|
2352
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2353
|
+
Handbook of Mathematical Functions with Formulas,
|
2354
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2355
|
+
.. [GL] Gauss-Legendre quadrature, Wikipedia,
|
2356
|
+
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
|
2357
|
+
|
2358
|
+
Examples
|
2359
|
+
--------
|
2360
|
+
>>> import numpy as np
|
2361
|
+
>>> from scipy.special import roots_legendre, eval_legendre
|
2362
|
+
>>> roots, weights = roots_legendre(9)
|
2363
|
+
|
2364
|
+
``roots`` holds the roots, and ``weights`` holds the weights for
|
2365
|
+
Gauss-Legendre quadrature.
|
2366
|
+
|
2367
|
+
>>> roots
|
2368
|
+
array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0. ,
|
2369
|
+
0.32425342, 0.61337143, 0.83603111, 0.96816024])
|
2370
|
+
>>> weights
|
2371
|
+
array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936,
|
2372
|
+
0.31234708, 0.2606107 , 0.18064816, 0.08127439])
|
2373
|
+
|
2374
|
+
Verify that we have the roots by evaluating the degree 9 Legendre
|
2375
|
+
polynomial at ``roots``. All the values are approximately zero:
|
2376
|
+
|
2377
|
+
>>> eval_legendre(9, roots)
|
2378
|
+
array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16,
|
2379
|
+
0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16,
|
2380
|
+
-8.32667268e-17])
|
2381
|
+
|
2382
|
+
Here we'll show how the above values can be used to estimate the
|
2383
|
+
integral from 1 to 2 of f(t) = t + 1/t with Gauss-Legendre
|
2384
|
+
quadrature [GL]_. First define the function and the integration
|
2385
|
+
limits.
|
2386
|
+
|
2387
|
+
>>> def f(t):
|
2388
|
+
... return t + 1/t
|
2389
|
+
...
|
2390
|
+
>>> a = 1
|
2391
|
+
>>> b = 2
|
2392
|
+
|
2393
|
+
We'll use ``integral(f(t), t=a, t=b)`` to denote the definite integral
|
2394
|
+
of f from t=a to t=b. The sample points in ``roots`` are from the
|
2395
|
+
interval [-1, 1], so we'll rewrite the integral with the simple change
|
2396
|
+
of variable::
|
2397
|
+
|
2398
|
+
x = 2/(b - a) * t - (a + b)/(b - a)
|
2399
|
+
|
2400
|
+
with inverse::
|
2401
|
+
|
2402
|
+
t = (b - a)/2 * x + (a + b)/2
|
2403
|
+
|
2404
|
+
Then::
|
2405
|
+
|
2406
|
+
integral(f(t), a, b) =
|
2407
|
+
(b - a)/2 * integral(f((b-a)/2*x + (a+b)/2), x=-1, x=1)
|
2408
|
+
|
2409
|
+
We can approximate the latter integral with the values returned
|
2410
|
+
by `roots_legendre`.
|
2411
|
+
|
2412
|
+
Map the roots computed above from [-1, 1] to [a, b].
|
2413
|
+
|
2414
|
+
>>> t = (b - a)/2 * roots + (a + b)/2
|
2415
|
+
|
2416
|
+
Approximate the integral as the weighted sum of the function values.
|
2417
|
+
|
2418
|
+
>>> (b - a)/2 * f(t).dot(weights)
|
2419
|
+
2.1931471805599276
|
2420
|
+
|
2421
|
+
Compare that to the exact result, which is 3/2 + log(2):
|
2422
|
+
|
2423
|
+
>>> 1.5 + np.log(2)
|
2424
|
+
2.1931471805599454
|
2425
|
+
|
2426
|
+
"""
|
2427
|
+
m = int(n)
|
2428
|
+
if n < 1 or n != m:
|
2429
|
+
raise ValueError("n must be a positive integer.")
|
2430
|
+
|
2431
|
+
mu0 = 2.0
|
2432
|
+
def an_func(k):
|
2433
|
+
return 0.0 * k
|
2434
|
+
def bn_func(k):
|
2435
|
+
return k * np.sqrt(1.0 / (4 * k * k - 1))
|
2436
|
+
f = _ufuncs.eval_legendre
|
2437
|
+
def df(n, x):
|
2438
|
+
return (-n * x * _ufuncs.eval_legendre(n, x)
|
2439
|
+
+ n * _ufuncs.eval_legendre(n - 1, x)) / (1 - x ** 2)
|
2440
|
+
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
2441
|
+
|
2442
|
+
|
2443
|
+
def legendre(n, monic=False):
|
2444
|
+
r"""Legendre polynomial.
|
2445
|
+
|
2446
|
+
Defined to be the solution of
|
2447
|
+
|
2448
|
+
.. math::
|
2449
|
+
\frac{d}{dx}\left[(1 - x^2)\frac{d}{dx}P_n(x)\right]
|
2450
|
+
+ n(n + 1)P_n(x) = 0;
|
2451
|
+
|
2452
|
+
:math:`P_n(x)` is a polynomial of degree :math:`n`.
|
2453
|
+
|
2454
|
+
Parameters
|
2455
|
+
----------
|
2456
|
+
n : int
|
2457
|
+
Degree of the polynomial.
|
2458
|
+
monic : bool, optional
|
2459
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2460
|
+
`False`.
|
2461
|
+
|
2462
|
+
Returns
|
2463
|
+
-------
|
2464
|
+
P : orthopoly1d
|
2465
|
+
Legendre polynomial.
|
2466
|
+
|
2467
|
+
Notes
|
2468
|
+
-----
|
2469
|
+
The polynomials :math:`P_n` are orthogonal over :math:`[-1, 1]`
|
2470
|
+
with weight function 1.
|
2471
|
+
|
2472
|
+
Examples
|
2473
|
+
--------
|
2474
|
+
Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):
|
2475
|
+
|
2476
|
+
>>> from scipy.special import legendre
|
2477
|
+
>>> legendre(3)
|
2478
|
+
poly1d([ 2.5, 0. , -1.5, 0. ])
|
2479
|
+
|
2480
|
+
"""
|
2481
|
+
if n < 0:
|
2482
|
+
raise ValueError("n must be nonnegative.")
|
2483
|
+
|
2484
|
+
if n == 0:
|
2485
|
+
n1 = n + 1
|
2486
|
+
else:
|
2487
|
+
n1 = n
|
2488
|
+
x, w = roots_legendre(n1)
|
2489
|
+
if n == 0:
|
2490
|
+
x, w = [], []
|
2491
|
+
hn = 2.0 / (2 * n + 1)
|
2492
|
+
kn = _gam(2 * n + 1) / _gam(n + 1)**2 / 2.0**n
|
2493
|
+
p = orthopoly1d(x, w, hn, kn, wfunc=lambda x: 1.0, limits=(-1, 1),
|
2494
|
+
monic=monic,
|
2495
|
+
eval_func=lambda x: _ufuncs.eval_legendre(n, x))
|
2496
|
+
return p
|
2497
|
+
|
2498
|
+
# Shifted Legendre P^*_n(x)
|
2499
|
+
|
2500
|
+
|
2501
|
+
def roots_sh_legendre(n, mu=False):
|
2502
|
+
r"""Gauss-Legendre (shifted) quadrature.
|
2503
|
+
|
2504
|
+
Compute the sample points and weights for Gauss-Legendre
|
2505
|
+
quadrature. The sample points are the roots of the nth degree
|
2506
|
+
shifted Legendre polynomial :math:`P^*_n(x)`. These sample points
|
2507
|
+
and weights correctly integrate polynomials of degree :math:`2n -
|
2508
|
+
1` or less over the interval :math:`[0, 1]` with weight function
|
2509
|
+
:math:`w(x) = 1.0`. See 2.2.11 in [AS]_ for details.
|
2510
|
+
|
2511
|
+
Parameters
|
2512
|
+
----------
|
2513
|
+
n : int
|
2514
|
+
quadrature order
|
2515
|
+
mu : bool, optional
|
2516
|
+
If True, return the sum of the weights, optional.
|
2517
|
+
|
2518
|
+
Returns
|
2519
|
+
-------
|
2520
|
+
x : ndarray
|
2521
|
+
Sample points
|
2522
|
+
w : ndarray
|
2523
|
+
Weights
|
2524
|
+
mu : float
|
2525
|
+
Sum of the weights
|
2526
|
+
|
2527
|
+
See Also
|
2528
|
+
--------
|
2529
|
+
scipy.integrate.fixed_quad
|
2530
|
+
|
2531
|
+
References
|
2532
|
+
----------
|
2533
|
+
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
2534
|
+
Handbook of Mathematical Functions with Formulas,
|
2535
|
+
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
2536
|
+
|
2537
|
+
"""
|
2538
|
+
x, w = roots_legendre(n)
|
2539
|
+
x = (x + 1) / 2
|
2540
|
+
w /= 2
|
2541
|
+
if mu:
|
2542
|
+
return x, w, 1.0
|
2543
|
+
else:
|
2544
|
+
return x, w
|
2545
|
+
|
2546
|
+
|
2547
|
+
def sh_legendre(n, monic=False):
|
2548
|
+
r"""Shifted Legendre polynomial.
|
2549
|
+
|
2550
|
+
Defined as :math:`P^*_n(x) = P_n(2x - 1)` for :math:`P_n` the nth
|
2551
|
+
Legendre polynomial.
|
2552
|
+
|
2553
|
+
Parameters
|
2554
|
+
----------
|
2555
|
+
n : int
|
2556
|
+
Degree of the polynomial.
|
2557
|
+
monic : bool, optional
|
2558
|
+
If `True`, scale the leading coefficient to be 1. Default is
|
2559
|
+
`False`.
|
2560
|
+
|
2561
|
+
Returns
|
2562
|
+
-------
|
2563
|
+
P : orthopoly1d
|
2564
|
+
Shifted Legendre polynomial.
|
2565
|
+
|
2566
|
+
Notes
|
2567
|
+
-----
|
2568
|
+
The polynomials :math:`P^*_n` are orthogonal over :math:`[0, 1]`
|
2569
|
+
with weight function 1.
|
2570
|
+
|
2571
|
+
"""
|
2572
|
+
if n < 0:
|
2573
|
+
raise ValueError("n must be nonnegative.")
|
2574
|
+
|
2575
|
+
def wfunc(x):
|
2576
|
+
return 0.0 * x + 1.0
|
2577
|
+
if n == 0:
|
2578
|
+
return orthopoly1d([], [], 1.0, 1.0, wfunc, (0, 1), monic,
|
2579
|
+
lambda x: _ufuncs.eval_sh_legendre(n, x))
|
2580
|
+
x, w = roots_sh_legendre(n)
|
2581
|
+
hn = 1.0 / (2 * n + 1.0)
|
2582
|
+
kn = _gam(2 * n + 1) / _gam(n + 1)**2
|
2583
|
+
p = orthopoly1d(x, w, hn, kn, wfunc, limits=(0, 1), monic=monic,
|
2584
|
+
eval_func=lambda x: _ufuncs.eval_sh_legendre(n, x))
|
2585
|
+
return p
|
2586
|
+
|
2587
|
+
|
2588
|
+
# Make the old root function names an alias for the new ones
|
2589
|
+
_modattrs = globals()
|
2590
|
+
for newfun, oldfun in _rootfuns_map.items():
|
2591
|
+
_modattrs[oldfun] = _modattrs[newfun]
|
2592
|
+
__all__.append(oldfun)
|