scipy 1.16.2__cp312-cp312-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp312-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp312-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp312-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp312-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp312-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp312-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp312-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp312-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp312-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp312-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp312-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp312-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp312-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp312-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp312-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp312-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp312-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp312-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp312-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp312-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp312-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp312-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp312-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp312-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp312-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp312-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp312-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp312-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp312-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp312-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp312-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp312-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp312-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp312-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp312-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp312-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp312-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp312-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp312-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp312-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp312-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp312-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp312-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp312-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp312-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp312-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp312-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp312-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp312-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp312-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp312-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp312-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp312-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp312-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp312-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp312-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp312-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp312-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp312-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp312-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp312-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp312-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp312-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp312-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp312-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp312-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp312-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp312-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp312-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp312-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp312-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp312-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp312-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp312-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp312-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp312-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp312-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp312-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp312-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp312-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp312-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp312-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp312-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp312-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp312-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp312-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp312-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp312-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp312-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp312-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp312-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp312-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp312-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp312-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp312-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp312-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp312-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp312-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp312-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp312-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp312-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp312-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp312-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp312-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp312-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp312-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp312-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp312-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp312-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp312-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp312-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp312-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp312-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp312-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp312-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp312-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp312-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp312-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp312-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp312-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp312-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp312-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp312-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp312-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp312-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp312-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp312-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp312-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp312-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp312-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp312-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp312-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp312-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp312-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp312-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp312-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp312-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp312-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp312-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp312-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp312-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp312-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp312-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp312-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp312-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp312-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp312-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp312-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp312-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp312-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp312-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp312-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp312-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp312-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp312-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp312-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp312-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp312-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp312-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp312-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp312-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp312-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp312-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp312-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp312-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp312-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp312-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp312-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp312-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp312-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp312-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp312-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp312-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp312-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp312-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp312-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp312-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp312-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp312-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp312-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp312-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp312-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp312-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp312-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp312-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp312-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp312-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp312-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp312-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp312-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp312-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp312-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp312-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp312-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp312-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp312-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp312-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp312-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp312-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp312-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp312-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp312-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp312-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp312-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp312-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp312-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp312-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp312-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp312-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp312-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp312-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp312-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp312-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp312-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp312-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp312-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp312-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp312-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp312-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp312-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp312-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp312-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp312-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp312-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp312-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp312-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp312-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp312-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,3083 @@
1
+ ''' Some tests for filters '''
2
+ import functools
3
+ import itertools
4
+ import re
5
+ import contextlib
6
+
7
+ import numpy as np
8
+ import pytest
9
+ from numpy.testing import suppress_warnings, assert_allclose, assert_array_equal
10
+ from hypothesis import strategies as st
11
+ from hypothesis import given
12
+ import hypothesis.extra.numpy as npst
13
+ from pytest import raises as assert_raises
14
+ from scipy import ndimage
15
+ from scipy._lib._array_api import (
16
+ assert_almost_equal,
17
+ assert_array_almost_equal,
18
+ xp_assert_close,
19
+ xp_assert_equal,
20
+ )
21
+ from scipy._lib._array_api import (is_cupy, is_torch, is_dask, is_jax, array_namespace,
22
+ is_array_api_strict, xp_copy)
23
+ from scipy.ndimage._filters import _gaussian_kernel1d
24
+
25
+ from . import types, float_types, complex_types
26
+
27
+
28
+ skip_xp_backends = pytest.mark.skip_xp_backends
29
+ xfail_xp_backends = pytest.mark.xfail_xp_backends
30
+ pytestmark = [skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'])]
31
+
32
+ uses_output_dtype = skip_xp_backends(
33
+ np_only=True, exceptions=["cupy"],
34
+ reason="output=dtype is numpy-specific"
35
+ )
36
+
37
+
38
+ def uses_output_array(f):
39
+ return skip_xp_backends("dask.array", reason="output=array requires buffer view")(
40
+ skip_xp_backends("jax.numpy", reason="output=array requires buffer view")(f))
41
+
42
+
43
+
44
+ def sumsq(a, b, xp=None):
45
+ xp = array_namespace(a, b) if xp is None else xp
46
+ return xp.sqrt(xp.sum((a - b)**2))
47
+
48
+
49
+ def _complex_correlate(xp, array, kernel, real_dtype, convolve=False,
50
+ mode="reflect", cval=0, ):
51
+ """Utility to perform a reference complex-valued convolutions.
52
+
53
+ When convolve==False, correlation is performed instead
54
+ """
55
+ array = xp.asarray(array)
56
+ kernel = xp.asarray(kernel)
57
+ complex_array = xp.isdtype(array.dtype, 'complex floating')
58
+ complex_kernel = xp.isdtype(kernel.dtype, 'complex floating')
59
+ if array.ndim == 1:
60
+ func = ndimage.convolve1d if convolve else ndimage.correlate1d
61
+ else:
62
+ func = ndimage.convolve if convolve else ndimage.correlate
63
+ if not convolve:
64
+ kernel = xp.conj(kernel)
65
+ if complex_array and complex_kernel:
66
+ # use: real(cval) for array.real component
67
+ # imag(cval) for array.imag component
68
+ re_cval = cval.real if isinstance(cval, complex) else xp.real(cval)
69
+ im_cval = cval.imag if isinstance(cval, complex) else xp.imag(cval)
70
+
71
+ output = (
72
+ func(xp.real(array), xp.real(kernel), output=real_dtype,
73
+ mode=mode, cval=re_cval) -
74
+ func(xp.imag(array), xp.imag(kernel), output=real_dtype,
75
+ mode=mode, cval=im_cval) +
76
+ 1j * func(xp.imag(array), xp.real(kernel), output=real_dtype,
77
+ mode=mode, cval=im_cval) +
78
+ 1j * func(xp.real(array), xp.imag(kernel), output=real_dtype,
79
+ mode=mode, cval=re_cval)
80
+ )
81
+ elif complex_array:
82
+ re_cval = xp.real(cval)
83
+ re_cval = re_cval.item() if isinstance(re_cval, xp.ndarray) else re_cval
84
+ im_cval = xp.imag(cval)
85
+ im_cval = im_cval.item() if isinstance(im_cval, xp.ndarray) else im_cval
86
+
87
+ output = (
88
+ func(xp.real(array), kernel, output=real_dtype, mode=mode,
89
+ cval=re_cval) +
90
+ 1j * func(xp.imag(array), kernel, output=real_dtype, mode=mode,
91
+ cval=im_cval)
92
+ )
93
+ elif complex_kernel:
94
+ # real array so cval is real too
95
+ output = (
96
+ func(array, xp.real(kernel), output=real_dtype, mode=mode, cval=cval) +
97
+ 1j * func(array, xp.imag(kernel), output=real_dtype, mode=mode,
98
+ cval=cval)
99
+ )
100
+ return output
101
+
102
+
103
+ def _cases_axes_tuple_length_mismatch():
104
+ # Generate combinations of filter function, valid kwargs, and
105
+ # keyword-value pairs for which the value will become with mismatched
106
+ # (invalid) size
107
+ filter_func = ndimage.gaussian_filter
108
+ kwargs = dict(radius=3, mode='constant', sigma=1.0, order=0)
109
+ for key, val in kwargs.items():
110
+ yield filter_func, kwargs, key, val
111
+
112
+ filter_funcs = [ndimage.uniform_filter, ndimage.minimum_filter,
113
+ ndimage.maximum_filter]
114
+ kwargs = dict(size=3, mode='constant', origin=0)
115
+ for filter_func in filter_funcs:
116
+ for key, val in kwargs.items():
117
+ yield filter_func, kwargs, key, val
118
+
119
+ filter_funcs = [ndimage.correlate, ndimage.convolve]
120
+ # sequence of mode not supported for correlate or convolve
121
+ kwargs = dict(origin=0)
122
+ for filter_func in filter_funcs:
123
+ for key, val in kwargs.items():
124
+ yield filter_func, kwargs, key, val
125
+
126
+
127
+ class TestNdimageFilters:
128
+
129
+ def _validate_complex(self, xp, array, kernel, type2, mode='reflect',
130
+ cval=0, check_warnings=True):
131
+ # utility for validating complex-valued correlations
132
+ real_dtype = xp.real(xp.asarray([], dtype=type2)).dtype
133
+ expected = _complex_correlate(
134
+ xp, array, kernel, real_dtype, convolve=False, mode=mode, cval=cval
135
+ )
136
+
137
+ if array.ndim == 1:
138
+ correlate = functools.partial(ndimage.correlate1d, axis=-1,
139
+ mode=mode, cval=cval)
140
+ convolve = functools.partial(ndimage.convolve1d, axis=-1,
141
+ mode=mode, cval=cval)
142
+ else:
143
+ correlate = functools.partial(ndimage.correlate, mode=mode,
144
+ cval=cval)
145
+ convolve = functools.partial(ndimage.convolve, mode=mode,
146
+ cval=cval)
147
+
148
+ # test correlate output dtype
149
+ output = correlate(array, kernel, output=type2)
150
+ assert_array_almost_equal(expected, output)
151
+ assert output.dtype.type == type2
152
+
153
+ # test correlate with pre-allocated output
154
+ output = xp.zeros_like(array, dtype=type2)
155
+ correlate(array, kernel, output=output)
156
+ assert_array_almost_equal(expected, output)
157
+
158
+ # test convolve output dtype
159
+ output = convolve(array, kernel, output=type2)
160
+ expected = _complex_correlate(
161
+ xp, array, kernel, real_dtype, convolve=True, mode=mode, cval=cval,
162
+ )
163
+ assert_array_almost_equal(expected, output)
164
+ assert output.dtype.type == type2
165
+
166
+ # convolve with pre-allocated output
167
+ convolve(array, kernel, output=output)
168
+ assert_array_almost_equal(expected, output)
169
+ assert output.dtype.type == type2
170
+
171
+ if check_warnings:
172
+ # warns if the output is not a complex dtype
173
+ with pytest.warns(UserWarning,
174
+ match="promoting specified output dtype to "
175
+ "complex"):
176
+ correlate(array, kernel, output=real_dtype)
177
+
178
+ with pytest.warns(UserWarning,
179
+ match="promoting specified output dtype to "
180
+ "complex"):
181
+ convolve(array, kernel, output=real_dtype)
182
+
183
+ # raises if output array is provided, but is not complex-valued
184
+ output_real = xp.zeros_like(array, dtype=real_dtype)
185
+ with assert_raises(RuntimeError):
186
+ correlate(array, kernel, output=output_real)
187
+
188
+ with assert_raises(RuntimeError):
189
+ convolve(array, kernel, output=output_real)
190
+
191
+ def test_correlate01(self, xp):
192
+ array = xp.asarray([1, 2])
193
+ weights = xp.asarray([2])
194
+ expected = xp.asarray([2, 4])
195
+
196
+ output = ndimage.correlate(array, weights)
197
+ assert_array_almost_equal(output, expected)
198
+
199
+ output = ndimage.convolve(array, weights)
200
+ assert_array_almost_equal(output, expected)
201
+
202
+ output = ndimage.correlate1d(array, weights)
203
+ assert_array_almost_equal(output, expected)
204
+
205
+ output = ndimage.convolve1d(array, weights)
206
+ assert_array_almost_equal(output, expected)
207
+
208
+ @xfail_xp_backends('cupy', reason="Differs by a factor of two?")
209
+ @uses_output_array
210
+ def test_correlate01_overlap(self, xp):
211
+ array = xp.reshape(xp.arange(256), (16, 16))
212
+ weights = xp.asarray([2])
213
+ expected = 2 * array
214
+
215
+ ndimage.correlate1d(array, weights, output=array)
216
+ assert_array_almost_equal(array, expected)
217
+
218
+ def test_correlate02(self, xp):
219
+ array = xp.asarray([1, 2, 3])
220
+ kernel = xp.asarray([1])
221
+
222
+ output = ndimage.correlate(array, kernel)
223
+ assert_array_almost_equal(array, output)
224
+
225
+ output = ndimage.convolve(array, kernel)
226
+ assert_array_almost_equal(array, output)
227
+
228
+ output = ndimage.correlate1d(array, kernel)
229
+ assert_array_almost_equal(array, output)
230
+
231
+ output = ndimage.convolve1d(array, kernel)
232
+ assert_array_almost_equal(array, output)
233
+
234
+ def test_correlate03(self, xp):
235
+ array = xp.asarray([1])
236
+ weights = xp.asarray([1, 1])
237
+ expected = xp.asarray([2])
238
+
239
+ output = ndimage.correlate(array, weights)
240
+ assert_array_almost_equal(output, expected)
241
+
242
+ output = ndimage.convolve(array, weights)
243
+ assert_array_almost_equal(output, expected)
244
+
245
+ output = ndimage.correlate1d(array, weights)
246
+ assert_array_almost_equal(output, expected)
247
+
248
+ output = ndimage.convolve1d(array, weights)
249
+ assert_array_almost_equal(output, expected)
250
+
251
+ def test_correlate04(self, xp):
252
+ array = xp.asarray([1, 2])
253
+ tcor = xp.asarray([2, 3])
254
+ tcov = xp.asarray([3, 4])
255
+ weights = xp.asarray([1, 1])
256
+ output = ndimage.correlate(array, weights)
257
+ assert_array_almost_equal(output, tcor)
258
+ output = ndimage.convolve(array, weights)
259
+ assert_array_almost_equal(output, tcov)
260
+ output = ndimage.correlate1d(array, weights)
261
+ assert_array_almost_equal(output, tcor)
262
+ output = ndimage.convolve1d(array, weights)
263
+ assert_array_almost_equal(output, tcov)
264
+
265
+ def test_correlate05(self, xp):
266
+ array = xp.asarray([1, 2, 3])
267
+ tcor = xp.asarray([2, 3, 5])
268
+ tcov = xp.asarray([3, 5, 6])
269
+ kernel = xp.asarray([1, 1])
270
+ output = ndimage.correlate(array, kernel)
271
+ assert_array_almost_equal(tcor, output)
272
+ output = ndimage.convolve(array, kernel)
273
+ assert_array_almost_equal(tcov, output)
274
+ output = ndimage.correlate1d(array, kernel)
275
+ assert_array_almost_equal(tcor, output)
276
+ output = ndimage.convolve1d(array, kernel)
277
+ assert_array_almost_equal(tcov, output)
278
+
279
+ def test_correlate06(self, xp):
280
+ array = xp.asarray([1, 2, 3])
281
+ tcor = xp.asarray([9, 14, 17])
282
+ tcov = xp.asarray([7, 10, 15])
283
+ weights = xp.asarray([1, 2, 3])
284
+ output = ndimage.correlate(array, weights)
285
+ assert_array_almost_equal(output, tcor)
286
+ output = ndimage.convolve(array, weights)
287
+ assert_array_almost_equal(output, tcov)
288
+ output = ndimage.correlate1d(array, weights)
289
+ assert_array_almost_equal(output, tcor)
290
+ output = ndimage.convolve1d(array, weights)
291
+ assert_array_almost_equal(output, tcov)
292
+
293
+ def test_correlate07(self, xp):
294
+ array = xp.asarray([1, 2, 3])
295
+ expected = xp.asarray([5, 8, 11])
296
+ weights = xp.asarray([1, 2, 1])
297
+ output = ndimage.correlate(array, weights)
298
+ assert_array_almost_equal(output, expected)
299
+ output = ndimage.convolve(array, weights)
300
+ assert_array_almost_equal(output, expected)
301
+ output = ndimage.correlate1d(array, weights)
302
+ assert_array_almost_equal(output, expected)
303
+ output = ndimage.convolve1d(array, weights)
304
+ assert_array_almost_equal(output, expected)
305
+
306
+ def test_correlate08(self, xp):
307
+ array = xp.asarray([1, 2, 3])
308
+ tcor = xp.asarray([1, 2, 5])
309
+ tcov = xp.asarray([3, 6, 7])
310
+ weights = xp.asarray([1, 2, -1])
311
+ output = ndimage.correlate(array, weights)
312
+ assert_array_almost_equal(output, tcor)
313
+ output = ndimage.convolve(array, weights)
314
+ assert_array_almost_equal(output, tcov)
315
+ output = ndimage.correlate1d(array, weights)
316
+ assert_array_almost_equal(output, tcor)
317
+ output = ndimage.convolve1d(array, weights)
318
+ assert_array_almost_equal(output, tcov)
319
+
320
+ def test_correlate09(self, xp):
321
+ array = xp.asarray([])
322
+ kernel = xp.asarray([1, 1])
323
+ output = ndimage.correlate(array, kernel)
324
+ assert_array_almost_equal(array, output)
325
+ output = ndimage.convolve(array, kernel)
326
+ assert_array_almost_equal(array, output)
327
+ output = ndimage.correlate1d(array, kernel)
328
+ assert_array_almost_equal(array, output)
329
+ output = ndimage.convolve1d(array, kernel)
330
+ assert_array_almost_equal(array, output)
331
+
332
+ def test_correlate10(self, xp):
333
+ array = xp.asarray([[]])
334
+ kernel = xp.asarray([[1, 1]])
335
+ output = ndimage.correlate(array, kernel)
336
+ assert_array_almost_equal(array, output)
337
+ output = ndimage.convolve(array, kernel)
338
+ assert_array_almost_equal(array, output)
339
+
340
+ def test_correlate11(self, xp):
341
+ array = xp.asarray([[1, 2, 3],
342
+ [4, 5, 6]])
343
+ kernel = xp.asarray([[1, 1],
344
+ [1, 1]])
345
+ output = ndimage.correlate(array, kernel)
346
+ assert_array_almost_equal(xp.asarray([[4, 6, 10], [10, 12, 16]]), output)
347
+ output = ndimage.convolve(array, kernel)
348
+ assert_array_almost_equal(xp.asarray([[12, 16, 18], [18, 22, 24]]), output)
349
+
350
+ def test_correlate12(self, xp):
351
+ array = xp.asarray([[1, 2, 3],
352
+ [4, 5, 6]])
353
+ kernel = xp.asarray([[1, 0],
354
+ [0, 1]])
355
+ output = ndimage.correlate(array, kernel)
356
+ assert_array_almost_equal(xp.asarray([[2, 3, 5], [5, 6, 8]]), output)
357
+ output = ndimage.convolve(array, kernel)
358
+ assert_array_almost_equal(xp.asarray([[6, 8, 9], [9, 11, 12]]), output)
359
+
360
+ @uses_output_dtype
361
+ @pytest.mark.parametrize('dtype_array', types)
362
+ @pytest.mark.parametrize('dtype_kernel', types)
363
+ def test_correlate13(self, dtype_array, dtype_kernel, xp):
364
+ dtype_array = getattr(xp, dtype_array)
365
+ dtype_kernel = getattr(xp, dtype_kernel)
366
+
367
+ kernel = xp.asarray([[1, 0],
368
+ [0, 1]])
369
+ array = xp.asarray([[1, 2, 3],
370
+ [4, 5, 6]], dtype=dtype_array)
371
+ output = ndimage.correlate(array, kernel, output=dtype_kernel)
372
+ assert_array_almost_equal(xp.asarray([[2, 3, 5], [5, 6, 8]]), output)
373
+ assert output.dtype.type == dtype_kernel
374
+
375
+ output = ndimage.convolve(array, kernel,
376
+ output=dtype_kernel)
377
+ assert_array_almost_equal(xp.asarray([[6, 8, 9], [9, 11, 12]]), output)
378
+ assert output.dtype.type == dtype_kernel
379
+
380
+ @uses_output_array
381
+ @pytest.mark.parametrize('dtype_array', types)
382
+ @pytest.mark.parametrize('dtype_output', types)
383
+ def test_correlate14(self, dtype_array, dtype_output, xp):
384
+ dtype_array = getattr(xp, dtype_array)
385
+ dtype_output = getattr(xp, dtype_output)
386
+
387
+ kernel = xp.asarray([[1, 0],
388
+ [0, 1]])
389
+ array = xp.asarray([[1, 2, 3],
390
+ [4, 5, 6]], dtype=dtype_array)
391
+ output = xp.zeros(array.shape, dtype=dtype_output)
392
+ ndimage.correlate(array, kernel, output=output)
393
+ assert_array_almost_equal(xp.asarray([[2, 3, 5], [5, 6, 8]]), output)
394
+ assert output.dtype == dtype_output
395
+
396
+ ndimage.convolve(array, kernel, output=output)
397
+ assert_array_almost_equal(xp.asarray([[6, 8, 9], [9, 11, 12]]), output)
398
+ assert output.dtype == dtype_output
399
+
400
+ @uses_output_dtype
401
+ @pytest.mark.parametrize('dtype_array', types)
402
+ def test_correlate15(self, dtype_array, xp):
403
+ dtype_array = getattr(xp, dtype_array)
404
+
405
+ kernel = xp.asarray([[1, 0],
406
+ [0, 1]])
407
+ array = xp.asarray([[1, 2, 3],
408
+ [4, 5, 6]], dtype=dtype_array)
409
+ output = ndimage.correlate(array, kernel, output=xp.float32)
410
+ assert_array_almost_equal(xp.asarray([[2, 3, 5], [5, 6, 8]]), output)
411
+ assert output.dtype.type == xp.float32
412
+
413
+ output = ndimage.convolve(array, kernel, output=xp.float32)
414
+ assert_array_almost_equal(xp.asarray([[6, 8, 9], [9, 11, 12]]), output)
415
+ assert output.dtype.type == xp.float32
416
+
417
+ @uses_output_dtype
418
+ @pytest.mark.parametrize('dtype_array', types)
419
+ def test_correlate16(self, dtype_array, xp):
420
+ dtype_array = getattr(xp, dtype_array)
421
+
422
+ kernel = xp.asarray([[0.5, 0],
423
+ [0, 0.5]])
424
+ array = xp.asarray([[1, 2, 3], [4, 5, 6]], dtype=dtype_array)
425
+ output = ndimage.correlate(array, kernel, output=xp.float32)
426
+ assert_array_almost_equal(xp.asarray([[1, 1.5, 2.5], [2.5, 3, 4]]), output)
427
+ assert output.dtype.type == xp.float32
428
+
429
+ output = ndimage.convolve(array, kernel, output=xp.float32)
430
+ assert_array_almost_equal(xp.asarray([[3, 4, 4.5], [4.5, 5.5, 6]]), output)
431
+ assert output.dtype.type == xp.float32
432
+
433
+ def test_correlate17(self, xp):
434
+ array = xp.asarray([1, 2, 3])
435
+ tcor = xp.asarray([3, 5, 6])
436
+ tcov = xp.asarray([2, 3, 5])
437
+ kernel = xp.asarray([1, 1])
438
+ output = ndimage.correlate(array, kernel, origin=-1)
439
+ assert_array_almost_equal(tcor, output)
440
+ output = ndimage.convolve(array, kernel, origin=-1)
441
+ assert_array_almost_equal(tcov, output)
442
+ output = ndimage.correlate1d(array, kernel, origin=-1)
443
+ assert_array_almost_equal(tcor, output)
444
+ output = ndimage.convolve1d(array, kernel, origin=-1)
445
+ assert_array_almost_equal(tcov, output)
446
+
447
+ @uses_output_dtype
448
+ @pytest.mark.parametrize('dtype_array', types)
449
+ def test_correlate18(self, dtype_array, xp):
450
+ dtype_array = getattr(xp, dtype_array)
451
+
452
+ kernel = xp.asarray([[1, 0],
453
+ [0, 1]])
454
+ array = xp.asarray([[1, 2, 3],
455
+ [4, 5, 6]], dtype=dtype_array)
456
+ output = ndimage.correlate(array, kernel,
457
+ output=xp.float32,
458
+ mode='nearest', origin=-1)
459
+ assert_array_almost_equal(xp.asarray([[6, 8, 9], [9, 11, 12]]), output)
460
+ assert output.dtype.type == xp.float32
461
+
462
+ output = ndimage.convolve(array, kernel,
463
+ output=xp.float32,
464
+ mode='nearest', origin=-1)
465
+ assert_array_almost_equal(xp.asarray([[2, 3, 5], [5, 6, 8]]), output)
466
+ assert output.dtype.type == xp.float32
467
+
468
+ def test_correlate_mode_sequence(self, xp):
469
+ kernel = xp.ones((2, 2))
470
+ array = xp.ones((3, 3), dtype=xp.float64)
471
+ with assert_raises(RuntimeError):
472
+ ndimage.correlate(array, kernel, mode=['nearest', 'reflect'])
473
+ with assert_raises(RuntimeError):
474
+ ndimage.convolve(array, kernel, mode=['nearest', 'reflect'])
475
+
476
+ @uses_output_dtype
477
+ @pytest.mark.parametrize('dtype_array', types)
478
+ def test_correlate19(self, dtype_array, xp):
479
+ dtype_array = getattr(xp, dtype_array)
480
+
481
+ kernel = xp.asarray([[1, 0],
482
+ [0, 1]])
483
+ array = xp.asarray([[1, 2, 3],
484
+ [4, 5, 6]], dtype=dtype_array)
485
+ output = ndimage.correlate(array, kernel,
486
+ output=xp.float32,
487
+ mode='nearest', origin=[-1, 0])
488
+ assert_array_almost_equal(xp.asarray([[5, 6, 8], [8, 9, 11]]), output)
489
+ assert output.dtype.type == xp.float32
490
+
491
+ output = ndimage.convolve(array, kernel,
492
+ output=xp.float32,
493
+ mode='nearest', origin=[-1, 0])
494
+ assert_array_almost_equal(xp.asarray([[3, 5, 6], [6, 8, 9]]), output)
495
+ assert output.dtype.type == xp.float32
496
+
497
+ @uses_output_array
498
+ @pytest.mark.parametrize('dtype_array', types)
499
+ @pytest.mark.parametrize('dtype_output', types)
500
+ def test_correlate20(self, dtype_array, dtype_output, xp):
501
+ dtype_array = getattr(xp, dtype_array)
502
+ dtype_output = getattr(xp, dtype_output)
503
+
504
+ weights = xp.asarray([1, 2, 1])
505
+ expected = xp.asarray([[5, 10, 15], [7, 14, 21]])
506
+ array = xp.asarray([[1, 2, 3],
507
+ [2, 4, 6]], dtype=dtype_array)
508
+ output = xp.zeros((2, 3), dtype=dtype_output)
509
+ ndimage.correlate1d(array, weights, axis=0, output=output)
510
+ assert_array_almost_equal(output, expected)
511
+ ndimage.convolve1d(array, weights, axis=0, output=output)
512
+ assert_array_almost_equal(output, expected)
513
+
514
+ def test_correlate21(self, xp):
515
+ array = xp.asarray([[1, 2, 3],
516
+ [2, 4, 6]])
517
+ expected = xp.asarray([[5, 10, 15], [7, 14, 21]])
518
+ weights = xp.asarray([1, 2, 1])
519
+ output = ndimage.correlate1d(array, weights, axis=0)
520
+ assert_array_almost_equal(output, expected)
521
+ output = ndimage.convolve1d(array, weights, axis=0)
522
+ assert_array_almost_equal(output, expected)
523
+
524
+ @uses_output_array
525
+ @pytest.mark.parametrize('dtype_array', types)
526
+ @pytest.mark.parametrize('dtype_output', types)
527
+ def test_correlate22(self, dtype_array, dtype_output, xp):
528
+ dtype_array = getattr(xp, dtype_array)
529
+ dtype_output = getattr(xp, dtype_output)
530
+
531
+ weights = xp.asarray([1, 2, 1])
532
+ expected = xp.asarray([[6, 12, 18], [6, 12, 18]])
533
+ array = xp.asarray([[1, 2, 3],
534
+ [2, 4, 6]], dtype=dtype_array)
535
+ output = xp.zeros((2, 3), dtype=dtype_output)
536
+ ndimage.correlate1d(array, weights, axis=0,
537
+ mode='wrap', output=output)
538
+ assert_array_almost_equal(output, expected)
539
+ ndimage.convolve1d(array, weights, axis=0,
540
+ mode='wrap', output=output)
541
+ assert_array_almost_equal(output, expected)
542
+
543
+ @uses_output_array
544
+ @pytest.mark.parametrize('dtype_array', types)
545
+ @pytest.mark.parametrize('dtype_output', types)
546
+ def test_correlate23(self, dtype_array, dtype_output, xp):
547
+ dtype_array = getattr(xp, dtype_array)
548
+ dtype_output = getattr(xp, dtype_output)
549
+
550
+ weights = xp.asarray([1, 2, 1])
551
+ expected = xp.asarray([[5, 10, 15], [7, 14, 21]])
552
+ array = xp.asarray([[1, 2, 3],
553
+ [2, 4, 6]], dtype=dtype_array)
554
+ output = xp.zeros((2, 3), dtype=dtype_output)
555
+ ndimage.correlate1d(array, weights, axis=0,
556
+ mode='nearest', output=output)
557
+ assert_array_almost_equal(output, expected)
558
+ ndimage.convolve1d(array, weights, axis=0,
559
+ mode='nearest', output=output)
560
+ assert_array_almost_equal(output, expected)
561
+
562
+ @uses_output_array
563
+ @pytest.mark.parametrize('dtype_array', types)
564
+ @pytest.mark.parametrize('dtype_output', types)
565
+ def test_correlate24(self, dtype_array, dtype_output, xp):
566
+ dtype_array = getattr(xp, dtype_array)
567
+ dtype_output = getattr(xp, dtype_output)
568
+
569
+ weights = xp.asarray([1, 2, 1])
570
+ tcor = xp.asarray([[7, 14, 21], [8, 16, 24]])
571
+ tcov = xp.asarray([[4, 8, 12], [5, 10, 15]])
572
+ array = xp.asarray([[1, 2, 3],
573
+ [2, 4, 6]], dtype=dtype_array)
574
+ output = xp.zeros((2, 3), dtype=dtype_output)
575
+ ndimage.correlate1d(array, weights, axis=0,
576
+ mode='nearest', output=output, origin=-1)
577
+ assert_array_almost_equal(output, tcor)
578
+ ndimage.convolve1d(array, weights, axis=0,
579
+ mode='nearest', output=output, origin=-1)
580
+ assert_array_almost_equal(output, tcov)
581
+
582
+ @uses_output_array
583
+ @pytest.mark.parametrize('dtype_array', types)
584
+ @pytest.mark.parametrize('dtype_output', types)
585
+ def test_correlate25(self, dtype_array, dtype_output, xp):
586
+ dtype_array = getattr(xp, dtype_array)
587
+ dtype_output = getattr(xp, dtype_output)
588
+
589
+ weights = xp.asarray([1, 2, 1])
590
+ tcor = xp.asarray([[4, 8, 12], [5, 10, 15]])
591
+ tcov = xp.asarray([[7, 14, 21], [8, 16, 24]])
592
+ array = xp.asarray([[1, 2, 3],
593
+ [2, 4, 6]], dtype=dtype_array)
594
+ output = xp.zeros((2, 3), dtype=dtype_output)
595
+ ndimage.correlate1d(array, weights, axis=0,
596
+ mode='nearest', output=output, origin=1)
597
+ assert_array_almost_equal(output, tcor)
598
+ ndimage.convolve1d(array, weights, axis=0,
599
+ mode='nearest', output=output, origin=1)
600
+ assert_array_almost_equal(output, tcov)
601
+
602
+ def test_correlate26(self, xp):
603
+ # test fix for gh-11661 (mirror extension of a length 1 signal)
604
+ y = ndimage.convolve1d(xp.ones(1), xp.ones(5), mode='mirror')
605
+ xp_assert_equal(y, xp.asarray([5.]))
606
+
607
+ y = ndimage.correlate1d(xp.ones(1), xp.ones(5), mode='mirror')
608
+ xp_assert_equal(y, xp.asarray([5.]))
609
+
610
+ @uses_output_dtype
611
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
612
+ @pytest.mark.parametrize('dtype_input', types)
613
+ @pytest.mark.parametrize('dtype_output', complex_types)
614
+ def test_correlate_complex_kernel(self, dtype_input, dtype_kernel,
615
+ dtype_output, xp, num_parallel_threads):
616
+ dtype_input = getattr(xp, dtype_input)
617
+ dtype_kernel = getattr(xp, dtype_kernel)
618
+ dtype_output = getattr(xp, dtype_output)
619
+
620
+ kernel = xp.asarray([[1, 0],
621
+ [0, 1 + 1j]], dtype=dtype_kernel)
622
+ array = xp.asarray([[1, 2, 3],
623
+ [4, 5, 6]], dtype=dtype_input)
624
+ self._validate_complex(xp, array, kernel, dtype_output,
625
+ check_warnings=num_parallel_threads == 1)
626
+
627
+ @uses_output_dtype
628
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
629
+ @pytest.mark.parametrize('dtype_input', types)
630
+ @pytest.mark.parametrize('dtype_output', complex_types)
631
+ @pytest.mark.parametrize('mode', ['grid-constant', 'constant'])
632
+ def test_correlate_complex_kernel_cval(self, dtype_input, dtype_kernel,
633
+ dtype_output, mode, xp,
634
+ num_parallel_threads):
635
+ dtype_input = getattr(xp, dtype_input)
636
+ dtype_kernel = getattr(xp, dtype_kernel)
637
+ dtype_output = getattr(xp, dtype_output)
638
+
639
+ if is_cupy(xp) and mode == 'grid-constant':
640
+ pytest.xfail('cupy/cupy#8404')
641
+
642
+ # test use of non-zero cval with complex inputs
643
+ # also verifies that mode 'grid-constant' does not segfault
644
+ kernel = xp.asarray([[1, 0],
645
+ [0, 1 + 1j]], dtype=dtype_kernel)
646
+ array = xp.asarray([[1, 2, 3],
647
+ [4, 5, 6]], dtype=dtype_input)
648
+ self._validate_complex(xp, array, kernel, dtype_output, mode=mode,
649
+ cval=5.0,
650
+ check_warnings=num_parallel_threads == 1)
651
+
652
+ @xfail_xp_backends('cupy', reason="cupy/cupy#8405")
653
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
654
+ @pytest.mark.parametrize('dtype_input', types)
655
+ @pytest.mark.thread_unsafe
656
+ def test_correlate_complex_kernel_invalid_cval(self, dtype_input,
657
+ dtype_kernel, xp):
658
+ dtype_input = getattr(xp, dtype_input)
659
+ dtype_kernel = getattr(xp, dtype_kernel)
660
+
661
+ # cannot give complex cval with a real image
662
+ kernel = xp.asarray([[1, 0],
663
+ [0, 1 + 1j]], dtype=dtype_kernel)
664
+ array = xp.asarray([[1, 2, 3],
665
+ [4, 5, 6]], dtype=dtype_input)
666
+ for func in [ndimage.convolve, ndimage.correlate, ndimage.convolve1d,
667
+ ndimage.correlate1d]:
668
+ with pytest.raises((ValueError, TypeError)):
669
+ func(array, kernel, mode='constant', cval=5.0 + 1.0j,
670
+ output=xp.complex64)
671
+
672
+ @uses_output_dtype
673
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
674
+ @pytest.mark.parametrize('dtype_input', types)
675
+ @pytest.mark.parametrize('dtype_output', complex_types)
676
+ def test_correlate1d_complex_kernel(self, dtype_input, dtype_kernel,
677
+ dtype_output, xp, num_parallel_threads):
678
+ dtype_input = getattr(xp, dtype_input)
679
+ dtype_kernel = getattr(xp, dtype_kernel)
680
+ dtype_output = getattr(xp, dtype_output)
681
+
682
+ kernel = xp.asarray([1, 1 + 1j], dtype=dtype_kernel)
683
+ array = xp.asarray([1, 2, 3, 4, 5, 6], dtype=dtype_input)
684
+ self._validate_complex(xp, array, kernel, dtype_output,
685
+ check_warnings=num_parallel_threads == 1)
686
+
687
+ @uses_output_dtype
688
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
689
+ @pytest.mark.parametrize('dtype_input', types)
690
+ @pytest.mark.parametrize('dtype_output', complex_types)
691
+ def test_correlate1d_complex_kernel_cval(self, dtype_input, dtype_kernel,
692
+ dtype_output, xp,
693
+ num_parallel_threads):
694
+ dtype_input = getattr(xp, dtype_input)
695
+ dtype_kernel = getattr(xp, dtype_kernel)
696
+ dtype_output = getattr(xp, dtype_output)
697
+
698
+ kernel = xp.asarray([1, 1 + 1j], dtype=dtype_kernel)
699
+ array = xp.asarray([1, 2, 3, 4, 5, 6], dtype=dtype_input)
700
+ self._validate_complex(xp, array, kernel, dtype_output, mode='constant',
701
+ cval=5.0,
702
+ check_warnings=num_parallel_threads == 1)
703
+
704
+ @uses_output_dtype
705
+ @pytest.mark.parametrize('dtype_kernel', types)
706
+ @pytest.mark.parametrize('dtype_input', complex_types)
707
+ @pytest.mark.parametrize('dtype_output', complex_types)
708
+ def test_correlate_complex_input(self, dtype_input, dtype_kernel,
709
+ dtype_output, xp, num_parallel_threads):
710
+ dtype_input = getattr(xp, dtype_input)
711
+ dtype_kernel = getattr(xp, dtype_kernel)
712
+ dtype_output = getattr(xp, dtype_output)
713
+
714
+ kernel = xp.asarray([[1, 0],
715
+ [0, 1]], dtype=dtype_kernel)
716
+ array = xp.asarray([[1, 2j, 3],
717
+ [1 + 4j, 5, 6j]], dtype=dtype_input)
718
+ self._validate_complex(xp, array, kernel, dtype_output,
719
+ check_warnings=num_parallel_threads == 1)
720
+
721
+ @uses_output_dtype
722
+ @pytest.mark.parametrize('dtype_kernel', types)
723
+ @pytest.mark.parametrize('dtype_input', complex_types)
724
+ @pytest.mark.parametrize('dtype_output', complex_types)
725
+ def test_correlate1d_complex_input(self, dtype_input, dtype_kernel,
726
+ dtype_output, xp, num_parallel_threads):
727
+ dtype_input = getattr(xp, dtype_input)
728
+ dtype_kernel = getattr(xp, dtype_kernel)
729
+ dtype_output = getattr(xp, dtype_output)
730
+
731
+ kernel = xp.asarray([1, 0, 1], dtype=dtype_kernel)
732
+ array = xp.asarray([1, 2j, 3, 1 + 4j, 5, 6j], dtype=dtype_input)
733
+ self._validate_complex(xp, array, kernel, dtype_output,
734
+ check_warnings=num_parallel_threads == 1)
735
+
736
+ @uses_output_dtype
737
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8405")
738
+ @pytest.mark.parametrize('dtype_kernel', types)
739
+ @pytest.mark.parametrize('dtype_input', complex_types)
740
+ @pytest.mark.parametrize('dtype_output', complex_types)
741
+ def test_correlate1d_complex_input_cval(self, dtype_input, dtype_kernel,
742
+ dtype_output, xp,
743
+ num_parallel_threads):
744
+ dtype_input = getattr(xp, dtype_input)
745
+ dtype_kernel = getattr(xp, dtype_kernel)
746
+ dtype_output = getattr(xp, dtype_output)
747
+
748
+ kernel = xp.asarray([1, 0, 1], dtype=dtype_kernel)
749
+ array = xp.asarray([1, 2j, 3, 1 + 4j, 5, 6j], dtype=dtype_input)
750
+ self._validate_complex(xp, array, kernel, dtype_output, mode='constant',
751
+ cval=5 - 3j,
752
+ check_warnings=num_parallel_threads == 1)
753
+
754
+ @uses_output_dtype
755
+ @xfail_xp_backends("cupy", reason="unhashable type: 'ndarray'")
756
+ @pytest.mark.parametrize('dtype', complex_types)
757
+ @pytest.mark.parametrize('dtype_output', complex_types)
758
+ def test_correlate_complex_input_and_kernel(self, dtype, dtype_output, xp,
759
+ num_parallel_threads):
760
+ dtype = getattr(xp, dtype)
761
+ dtype_output = getattr(xp, dtype_output)
762
+
763
+ kernel = xp.asarray([[1, 0],
764
+ [0, 1 + 1j]], dtype=dtype)
765
+ array = xp.asarray([[1, 2j, 3],
766
+ [1 + 4j, 5, 6j]], dtype=dtype)
767
+ self._validate_complex(xp, array, kernel, dtype_output,
768
+ check_warnings=num_parallel_threads == 1)
769
+
770
+ @uses_output_dtype
771
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8405")
772
+ @pytest.mark.parametrize('dtype', complex_types)
773
+ @pytest.mark.parametrize('dtype_output', complex_types)
774
+ def test_correlate_complex_input_and_kernel_cval(self, dtype,
775
+ dtype_output, xp,
776
+ num_parallel_threads):
777
+ dtype = getattr(xp, dtype)
778
+ dtype_output = getattr(xp, dtype_output)
779
+
780
+ kernel = xp.asarray([[1, 0],
781
+ [0, 1 + 1j]], dtype=dtype)
782
+ array = xp.asarray([[1, 2, 3],
783
+ [4, 5, 6]], dtype=dtype)
784
+ self._validate_complex(xp, array, kernel, dtype_output, mode='constant',
785
+ cval=5.0 + 2.0j,
786
+ check_warnings=num_parallel_threads == 1)
787
+
788
+ @uses_output_dtype
789
+ @xfail_xp_backends("cupy", reason="unhashable type: 'ndarray'")
790
+ @pytest.mark.parametrize('dtype', complex_types)
791
+ @pytest.mark.parametrize('dtype_output', complex_types)
792
+ @pytest.mark.thread_unsafe
793
+ def test_correlate1d_complex_input_and_kernel(self, dtype, dtype_output, xp,
794
+ num_parallel_threads):
795
+ dtype = getattr(xp, dtype)
796
+ dtype_output = getattr(xp, dtype_output)
797
+
798
+ kernel = xp.asarray([1, 1 + 1j], dtype=dtype)
799
+ array = xp.asarray([1, 2j, 3, 1 + 4j, 5, 6j], dtype=dtype)
800
+ self._validate_complex(xp, array, kernel, dtype_output,
801
+ check_warnings=num_parallel_threads == 1)
802
+
803
+ @uses_output_dtype
804
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8405")
805
+ @pytest.mark.parametrize('dtype', complex_types)
806
+ @pytest.mark.parametrize('dtype_output', complex_types)
807
+ def test_correlate1d_complex_input_and_kernel_cval(self, dtype,
808
+ dtype_output, xp,
809
+ num_parallel_threads):
810
+
811
+ dtype = getattr(xp, dtype)
812
+ dtype_output = getattr(xp, dtype_output)
813
+
814
+ kernel = xp.asarray([1, 1 + 1j], dtype=dtype)
815
+ array = xp.asarray([1, 2j, 3, 1 + 4j, 5, 6j], dtype=dtype)
816
+ self._validate_complex(xp, array, kernel, dtype_output, mode='constant',
817
+ cval=5.0 + 2.0j,
818
+ check_warnings=num_parallel_threads == 1)
819
+
820
+ def test_gauss01(self, xp):
821
+ input = xp.asarray([[1, 2, 3],
822
+ [2, 4, 6]], dtype=xp.float32)
823
+ output = ndimage.gaussian_filter(input, 0)
824
+ assert_array_almost_equal(output, input)
825
+
826
+ def test_gauss02(self, xp):
827
+ input = xp.asarray([[1, 2, 3],
828
+ [2, 4, 6]], dtype=xp.float32)
829
+ output = ndimage.gaussian_filter(input, 1.0)
830
+ assert input.dtype == output.dtype
831
+ assert input.shape == output.shape
832
+
833
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8403")
834
+ def test_gauss03(self, xp):
835
+ # single precision data
836
+ input = xp.arange(100 * 100, dtype=xp.float32)
837
+ input = xp.reshape(input, (100, 100))
838
+ output = ndimage.gaussian_filter(input, [1.0, 1.0])
839
+
840
+ assert input.dtype == output.dtype
841
+ assert input.shape == output.shape
842
+
843
+ # input.sum() is 49995000.0. With single precision floats, we can't
844
+ # expect more than 8 digits of accuracy, so use decimal=0 in this test.
845
+ o_sum = xp.sum(output, dtype=xp.float64)
846
+ i_sum = xp.sum(input, dtype=xp.float64)
847
+ assert_almost_equal(o_sum, i_sum, decimal=0)
848
+ assert sumsq(input, output) > 1.0
849
+
850
+ @uses_output_dtype
851
+ def test_gauss04(self, xp):
852
+ input = xp.arange(100 * 100, dtype=xp.float32)
853
+ input = xp.reshape(input, (100, 100))
854
+ otype = xp.float64
855
+ output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
856
+ assert output.dtype.type == xp.float64
857
+ assert input.shape == output.shape
858
+ assert sumsq(input, output) > 1.0
859
+
860
+ @uses_output_dtype
861
+ def test_gauss05(self, xp):
862
+ input = xp.arange(100 * 100, dtype=xp.float32)
863
+ input = xp.reshape(input, (100, 100))
864
+ otype = xp.float64
865
+ output = ndimage.gaussian_filter(input, [1.0, 1.0],
866
+ order=1, output=otype)
867
+ assert output.dtype.type == xp.float64
868
+ assert input.shape == output.shape
869
+ assert sumsq(input, output) > 1.0
870
+
871
+ @uses_output_dtype
872
+ def test_gauss06(self, xp):
873
+ input = xp.arange(100 * 100, dtype=xp.float32)
874
+ input = xp.reshape(input, (100, 100))
875
+ otype = xp.float64
876
+ output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
877
+ output2 = ndimage.gaussian_filter(input, 1.0, output=otype)
878
+ assert_array_almost_equal(output1, output2)
879
+
880
+ @uses_output_array
881
+ def test_gauss_memory_overlap(self, xp):
882
+ input = xp.arange(100 * 100, dtype=xp.float32)
883
+ input = xp.reshape(input, (100, 100))
884
+ output1 = ndimage.gaussian_filter(input, 1.0)
885
+ ndimage.gaussian_filter(input, 1.0, output=input)
886
+ assert_array_almost_equal(output1, input)
887
+
888
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
889
+ @pytest.mark.parametrize(('filter_func', 'extra_args', 'size0', 'size'),
890
+ [(ndimage.gaussian_filter, (), 0, 1.0),
891
+ (ndimage.uniform_filter, (), 1, 3),
892
+ (ndimage.minimum_filter, (), 1, 3),
893
+ (ndimage.maximum_filter, (), 1, 3),
894
+ (ndimage.median_filter, (), 1, 3),
895
+ (ndimage.rank_filter, (1,), 1, 3),
896
+ (ndimage.percentile_filter, (40,), 1, 3)])
897
+ @pytest.mark.parametrize(
898
+ 'axes',
899
+ tuple(itertools.combinations(range(-3, 3), 1))
900
+ + tuple(itertools.combinations(range(-3, 3), 2))
901
+ + ((0, 1, 2),))
902
+ def test_filter_axes(self, filter_func, extra_args, size0, size, axes, xp):
903
+ # Note: `size` is called `sigma` in `gaussian_filter`
904
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
905
+ array = xp.reshape(array, (6, 8, 12))
906
+
907
+ if len(set(ax % array.ndim for ax in axes)) != len(axes):
908
+ # parametrized cases with duplicate axes raise an error
909
+ with pytest.raises(ValueError, match="axes must be unique"):
910
+ filter_func(array, *extra_args, size, axes=axes)
911
+ return
912
+ output = filter_func(array, *extra_args, size, axes=axes)
913
+
914
+ # result should be equivalent to sigma=0.0/size=1 on unfiltered axes
915
+ axes = xp.asarray(axes)
916
+ all_sizes = tuple(size if ax in (axes % array.ndim) else size0
917
+ for ax in range(array.ndim))
918
+ expected = filter_func(array, *extra_args, all_sizes)
919
+ xp_assert_close(output, expected)
920
+
921
+ @skip_xp_backends("cupy",
922
+ reason="these filters do not yet have axes support")
923
+ @pytest.mark.parametrize(('filter_func', 'kwargs'),
924
+ [(ndimage.laplace, {}),
925
+ (ndimage.gaussian_gradient_magnitude,
926
+ {"sigma": 1.0}),
927
+ (ndimage.gaussian_laplace, {"sigma": 0.5})])
928
+ def test_derivative_filter_axes(self, xp, filter_func, kwargs):
929
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
930
+ array = xp.reshape(array, (6, 8, 12))
931
+
932
+ # duplicate axes raises an error
933
+ with pytest.raises(ValueError, match="axes must be unique"):
934
+ filter_func(array, axes=(1, 1), **kwargs)
935
+
936
+ # compare results to manually looping over the non-filtered axes
937
+ output = filter_func(array, axes=(1, 2), **kwargs)
938
+ expected = xp.empty_like(output)
939
+ expected = []
940
+ for i in range(array.shape[0]):
941
+ expected.append(filter_func(array[i, ...], **kwargs))
942
+ expected = xp.stack(expected, axis=0)
943
+ xp_assert_close(output, expected)
944
+
945
+ output = filter_func(array, axes=(0, -1), **kwargs)
946
+ expected = []
947
+ for i in range(array.shape[1]):
948
+ expected.append(filter_func(array[:, i, :], **kwargs))
949
+ expected = xp.stack(expected, axis=1)
950
+ xp_assert_close(output, expected)
951
+
952
+ output = filter_func(array, axes=(1), **kwargs)
953
+ expected = []
954
+ for i in range(array.shape[0]):
955
+ exp_inner = []
956
+ for j in range(array.shape[2]):
957
+ exp_inner.append(filter_func(array[i, :, j], **kwargs))
958
+ expected.append(xp.stack(exp_inner, axis=-1))
959
+ expected = xp.stack(expected, axis=0)
960
+ xp_assert_close(output, expected)
961
+
962
+ @skip_xp_backends("cupy",
963
+ reason="generic_filter does not yet have axes support")
964
+ @pytest.mark.parametrize(
965
+ 'axes',
966
+ tuple(itertools.combinations(range(-3, 3), 1))
967
+ + tuple(itertools.combinations(range(-3, 3), 2))
968
+ + ((0, 1, 2),))
969
+ def test_generic_filter_axes(self, xp, axes):
970
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
971
+ array = xp.reshape(array, (6, 8, 12))
972
+ size = 3
973
+ if len(set(ax % array.ndim for ax in axes)) != len(axes):
974
+ # parametrized cases with duplicate axes raise an error
975
+ with pytest.raises(ValueError, match="axes must be unique"):
976
+ ndimage.generic_filter(array, np.amax, size=size, axes=axes)
977
+ return
978
+
979
+ # choose np.amax as the function so we can compare to maximum_filter
980
+ output = ndimage.generic_filter(array, np.amax, size=size, axes=axes)
981
+ expected = ndimage.maximum_filter(array, size=size, axes=axes)
982
+ xp_assert_close(output, expected)
983
+
984
+ @skip_xp_backends("cupy",
985
+ reason="https://github.com/cupy/cupy/pull/8339")
986
+ @pytest.mark.parametrize('func', [ndimage.correlate, ndimage.convolve])
987
+ @pytest.mark.parametrize(
988
+ 'dtype', [np.float32, np.float64, np.complex64, np.complex128]
989
+ )
990
+ @pytest.mark.parametrize(
991
+ 'axes', tuple(itertools.combinations(range(-3, 3), 2))
992
+ )
993
+ @pytest.mark.parametrize('origin', [(0, 0), (-1, 1)])
994
+ def test_correlate_convolve_axes(self, xp, func, dtype, axes, origin):
995
+ array = xp.asarray(np.arange(6 * 8 * 12, dtype=dtype).reshape(6, 8, 12))
996
+ weights = xp.arange(3 * 5)
997
+ weights = xp.reshape(weights, (3, 5))
998
+ axes = tuple(ax % array.ndim for ax in axes)
999
+ if len(tuple(set(axes))) != len(axes):
1000
+ # parametrized cases with duplicate axes raise an error
1001
+ with pytest.raises(ValueError):
1002
+ func(array, weights=weights, axes=axes, origin=origin)
1003
+ return
1004
+ output = func(array, weights=weights, axes=axes, origin=origin)
1005
+
1006
+ missing_axis = tuple(set(range(3)) - set(axes))[0]
1007
+ # module 'torch' has no attribute 'expand_dims' so use reshape instead
1008
+ # weights_3d = xp.expand_dims(weights, axis=missing_axis)
1009
+ shape_3d = (
1010
+ weights.shape[:missing_axis] + (1,) + weights.shape[missing_axis:]
1011
+ )
1012
+ weights_3d = xp.reshape(weights, shape_3d)
1013
+ origin_3d = [0, 0, 0]
1014
+ for i, ax in enumerate(axes):
1015
+ origin_3d[ax] = origin[i]
1016
+ expected = func(array, weights=weights_3d, origin=origin_3d)
1017
+ xp_assert_close(output, expected)
1018
+
1019
+ kwargs_gauss = dict(radius=[4, 2, 3], order=[0, 1, 2],
1020
+ mode=['reflect', 'nearest', 'constant'])
1021
+ kwargs_other = dict(origin=(-1, 0, 1),
1022
+ mode=['reflect', 'nearest', 'constant'])
1023
+ kwargs_rank = dict(origin=(-1, 0, 1))
1024
+
1025
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1026
+ @pytest.mark.parametrize("filter_func, size0, size, kwargs",
1027
+ [(ndimage.gaussian_filter, 0, 1.0, kwargs_gauss),
1028
+ (ndimage.uniform_filter, 1, 3, kwargs_other),
1029
+ (ndimage.maximum_filter, 1, 3, kwargs_other),
1030
+ (ndimage.minimum_filter, 1, 3, kwargs_other),
1031
+ (ndimage.median_filter, 1, 3, kwargs_rank),
1032
+ (ndimage.rank_filter, 1, 3, kwargs_rank),
1033
+ (ndimage.percentile_filter, 1, 3, kwargs_rank)])
1034
+ @pytest.mark.parametrize('axes', itertools.combinations(range(-3, 3), 2))
1035
+ def test_filter_axes_kwargs(self, filter_func, size0, size, kwargs, axes, xp):
1036
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
1037
+ array = xp.reshape(array, (6, 8, 12))
1038
+
1039
+ kwargs = {key: np.array(val) for key, val in kwargs.items()}
1040
+ axes = np.array(axes)
1041
+ n_axes = axes.size
1042
+
1043
+ if filter_func == ndimage.rank_filter:
1044
+ args = (2,) # (rank,)
1045
+ elif filter_func == ndimage.percentile_filter:
1046
+ args = (30,) # (percentile,)
1047
+ else:
1048
+ args = ()
1049
+
1050
+ # form kwargs that specify only the axes in `axes`
1051
+ reduced_kwargs = {key: val[axes] for key, val in kwargs.items()}
1052
+ if len(set(axes % array.ndim)) != len(axes):
1053
+ # parametrized cases with duplicate axes raise an error
1054
+ with pytest.raises(ValueError, match="axes must be unique"):
1055
+ filter_func(array, *args, [size]*n_axes, axes=axes,
1056
+ **reduced_kwargs)
1057
+ return
1058
+
1059
+ output = filter_func(array, *args, [size]*n_axes, axes=axes,
1060
+ **reduced_kwargs)
1061
+
1062
+ # result should be equivalent to sigma=0.0/size=1 on unfiltered axes
1063
+ size_3d = np.full(array.ndim, fill_value=size0)
1064
+ size_3d[axes] = size
1065
+ size_3d = [size_3d[i] for i in range(size_3d.shape[0])]
1066
+ if 'origin' in kwargs:
1067
+ # origin should be zero on the axis that has size 0
1068
+ origin = np.asarray([0, 0, 0])
1069
+ origin[axes] = reduced_kwargs['origin']
1070
+ origin = xp.asarray(origin)
1071
+ kwargs['origin'] = origin
1072
+ expected = filter_func(array, *args, size_3d, **kwargs)
1073
+ xp_assert_close(output, expected)
1074
+
1075
+
1076
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1077
+ @pytest.mark.parametrize("filter_func, kwargs",
1078
+ [(ndimage.convolve, {}),
1079
+ (ndimage.correlate, {}),
1080
+ (ndimage.minimum_filter, {}),
1081
+ (ndimage.maximum_filter, {}),
1082
+ (ndimage.median_filter, {}),
1083
+ (ndimage.rank_filter, {"rank": 1}),
1084
+ (ndimage.percentile_filter, {"percentile": 30})])
1085
+ def test_filter_weights_subset_axes_origins(self, filter_func, kwargs, xp):
1086
+ axes = (-2, -1)
1087
+ origins = (0, 1)
1088
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
1089
+ array = xp.reshape(array, (6, 8, 12))
1090
+
1091
+ # weights with ndim matching len(axes)
1092
+ footprint = np.ones((3, 5), dtype=bool)
1093
+ footprint[0, 1] = 0 # make non-separable
1094
+ footprint = xp.asarray(footprint)
1095
+
1096
+ if filter_func in (ndimage.convolve, ndimage.correlate):
1097
+ kwargs["weights"] = footprint
1098
+ else:
1099
+ kwargs["footprint"] = footprint
1100
+ kwargs["axes"] = axes
1101
+
1102
+ output = filter_func(array, origin=origins, **kwargs)
1103
+
1104
+ output0 = filter_func(array, origin=0, **kwargs)
1105
+
1106
+ # output has origin shift on last axis relative to output0, so
1107
+ # expect shifted arrays to be equal.
1108
+ if filter_func == ndimage.convolve:
1109
+ # shift is in the opposite direction for convolve because it
1110
+ # flips the weights array and negates the origin values.
1111
+ xp_assert_equal(
1112
+ output[:, :, :-origins[1]], output0[:, :, origins[1]:])
1113
+ else:
1114
+ xp_assert_equal(
1115
+ output[:, :, origins[1]:], output0[:, :, :-origins[1]])
1116
+
1117
+
1118
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1119
+ @pytest.mark.parametrize(
1120
+ 'filter_func, args',
1121
+ [(ndimage.convolve, (np.ones((3, 3, 3)),)), # args = (weights,)
1122
+ (ndimage.correlate,(np.ones((3, 3, 3)),)), # args = (weights,)
1123
+ (ndimage.gaussian_filter, (1.0,)), # args = (sigma,)
1124
+ (ndimage.uniform_filter, (3,)), # args = (size,)
1125
+ (ndimage.minimum_filter, (3,)), # args = (size,)
1126
+ (ndimage.maximum_filter, (3,)), # args = (size,)
1127
+ (ndimage.median_filter, (3,)), # args = (size,)
1128
+ (ndimage.rank_filter, (2, 3)), # args = (rank, size)
1129
+ (ndimage.percentile_filter, (30, 3))]) # args = (percentile, size)
1130
+ @pytest.mark.parametrize(
1131
+ 'axes', [(1.5,), (0, 1, 2, 3), (3,), (-4,)]
1132
+ )
1133
+ def test_filter_invalid_axes(self, filter_func, args, axes, xp):
1134
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
1135
+ array = xp.reshape(array, (6, 8, 12))
1136
+ args = [
1137
+ xp.asarray(arg) if isinstance(arg, np.ndarray) else arg
1138
+ for arg in args
1139
+ ]
1140
+ if any(isinstance(ax, float) for ax in axes):
1141
+ error_class = TypeError
1142
+ match = "cannot be interpreted as an integer"
1143
+ else:
1144
+ error_class = ValueError
1145
+ match = "out of range"
1146
+ with pytest.raises(error_class, match=match):
1147
+ filter_func(array, *args, axes=axes)
1148
+
1149
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1150
+ @pytest.mark.parametrize(
1151
+ 'filter_func, kwargs',
1152
+ [(ndimage.convolve, {}),
1153
+ (ndimage.correlate, {}),
1154
+ (ndimage.minimum_filter, {}),
1155
+ (ndimage.maximum_filter, {}),
1156
+ (ndimage.median_filter, {}),
1157
+ (ndimage.rank_filter, dict(rank=3)),
1158
+ (ndimage.percentile_filter, dict(percentile=30))])
1159
+ @pytest.mark.parametrize(
1160
+ 'axes', [(0, ), (1, 2), (0, 1, 2)]
1161
+ )
1162
+ @pytest.mark.parametrize('separable_footprint', [False, True])
1163
+ def test_filter_invalid_footprint_ndim(self, filter_func, kwargs, axes,
1164
+ separable_footprint, xp):
1165
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
1166
+ array = xp.reshape(array, (6, 8, 12))
1167
+ # create a footprint with one too many dimensions
1168
+ footprint = np.ones((3,) * (len(axes) + 1))
1169
+ if not separable_footprint:
1170
+ footprint[(0,) * footprint.ndim] = 0
1171
+ footprint = xp.asarray(footprint)
1172
+ if (filter_func in [ndimage.minimum_filter, ndimage.maximum_filter]
1173
+ and separable_footprint):
1174
+ match = "sequence argument must have length equal to input rank"
1175
+ elif filter_func in [ndimage.convolve, ndimage.correlate]:
1176
+ match = re.escape(f"weights.ndim ({footprint.ndim}) must match "
1177
+ f"len(axes) ({len(axes)})")
1178
+ else:
1179
+ match = re.escape(f"footprint.ndim ({footprint.ndim}) must match "
1180
+ f"len(axes) ({len(axes)})")
1181
+ if filter_func in [ndimage.convolve, ndimage.correlate]:
1182
+ kwargs["weights"] = footprint
1183
+ else:
1184
+ kwargs["footprint"] = footprint
1185
+ with pytest.raises(RuntimeError, match=match):
1186
+ filter_func(array, axes=axes, **kwargs)
1187
+
1188
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1189
+ @pytest.mark.parametrize('n_mismatch', [1, 3])
1190
+ @pytest.mark.parametrize('filter_func, kwargs, key, val',
1191
+ _cases_axes_tuple_length_mismatch())
1192
+ def test_filter_tuple_length_mismatch(self, n_mismatch, filter_func,
1193
+ kwargs, key, val, xp):
1194
+ # Test for the intended RuntimeError when a kwargs has an invalid size
1195
+ array = xp.arange(6 * 8 * 12, dtype=xp.float64)
1196
+ array = xp.reshape(array, (6, 8, 12))
1197
+ axes = (0, 1)
1198
+ kwargs = dict(**kwargs, axes=axes)
1199
+ kwargs[key] = (val,) * n_mismatch
1200
+ if filter_func in [ndimage.convolve, ndimage.correlate]:
1201
+ kwargs["weights"] = xp.ones((5,) * len(axes))
1202
+ err_msg = "sequence argument must have length equal to input rank"
1203
+ with pytest.raises(RuntimeError, match=err_msg):
1204
+ filter_func(array, **kwargs)
1205
+
1206
+ @pytest.mark.parametrize('dtype', types + complex_types)
1207
+ def test_prewitt01(self, dtype, xp):
1208
+ dtype = getattr(xp, dtype)
1209
+ array = xp.asarray([[3, 2, 5, 1, 4],
1210
+ [5, 8, 3, 7, 1],
1211
+ [5, 6, 9, 3, 5]], dtype=dtype)
1212
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 0)
1213
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 1.0, 1.0]), 1)
1214
+ output = ndimage.prewitt(array, 0)
1215
+ assert_array_almost_equal(t, output)
1216
+
1217
+ @uses_output_array
1218
+ @pytest.mark.parametrize('dtype', types + complex_types)
1219
+ def test_prewitt02(self, dtype, xp):
1220
+ dtype = getattr(xp, dtype)
1221
+ array = xp.asarray([[3, 2, 5, 1, 4],
1222
+ [5, 8, 3, 7, 1],
1223
+ [5, 6, 9, 3, 5]], dtype=dtype)
1224
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 0)
1225
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 1.0, 1.0]), 1)
1226
+ output = xp.zeros(array.shape, dtype=dtype)
1227
+ ndimage.prewitt(array, 0, output)
1228
+ assert_array_almost_equal(t, output)
1229
+
1230
+ @pytest.mark.parametrize('dtype', types + complex_types)
1231
+ def test_prewitt03(self, dtype, xp):
1232
+ dtype = getattr(xp, dtype)
1233
+ if is_cupy(xp) and dtype in [xp.uint32, xp.uint64]:
1234
+ pytest.xfail("uint UB? XXX")
1235
+
1236
+ array = xp.asarray([[3, 2, 5, 1, 4],
1237
+ [5, 8, 3, 7, 1],
1238
+ [5, 6, 9, 3, 5]], dtype=dtype)
1239
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 1)
1240
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 1.0, 1.0]), 0)
1241
+ output = ndimage.prewitt(array, 1)
1242
+ assert_array_almost_equal(t, output)
1243
+
1244
+ @pytest.mark.parametrize('dtype', types + complex_types)
1245
+ def test_prewitt04(self, dtype, xp):
1246
+ dtype = getattr(xp, dtype)
1247
+ array = xp.asarray([[3, 2, 5, 1, 4],
1248
+ [5, 8, 3, 7, 1],
1249
+ [5, 6, 9, 3, 5]], dtype=dtype)
1250
+ t = ndimage.prewitt(array, -1)
1251
+ output = ndimage.prewitt(array, 1)
1252
+ assert_array_almost_equal(t, output)
1253
+
1254
+ @pytest.mark.parametrize('dtype', types + complex_types)
1255
+ def test_sobel01(self, dtype, xp):
1256
+ dtype = getattr(xp, dtype)
1257
+ array = xp.asarray([[3, 2, 5, 1, 4],
1258
+ [5, 8, 3, 7, 1],
1259
+ [5, 6, 9, 3, 5]], dtype=dtype)
1260
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 0)
1261
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 2.0, 1.0]), 1)
1262
+ output = ndimage.sobel(array, 0)
1263
+ assert_array_almost_equal(t, output)
1264
+
1265
+ @uses_output_array
1266
+ @pytest.mark.parametrize('dtype', types + complex_types)
1267
+ def test_sobel02(self, dtype, xp):
1268
+ dtype = getattr(xp, dtype)
1269
+ array = xp.asarray([[3, 2, 5, 1, 4],
1270
+ [5, 8, 3, 7, 1],
1271
+ [5, 6, 9, 3, 5]], dtype=dtype)
1272
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 0)
1273
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 2.0, 1.0]), 1)
1274
+ output = xp.zeros(array.shape, dtype=dtype)
1275
+ ndimage.sobel(array, 0, output)
1276
+ assert_array_almost_equal(t, output)
1277
+
1278
+ @pytest.mark.parametrize('dtype', types + complex_types)
1279
+ def test_sobel03(self, dtype, xp):
1280
+ if is_cupy(xp) and dtype in ["uint32", "uint64"]:
1281
+ pytest.xfail("uint UB? XXX")
1282
+
1283
+ dtype = getattr(xp, dtype)
1284
+ array = xp.asarray([[3, 2, 5, 1, 4],
1285
+ [5, 8, 3, 7, 1],
1286
+ [5, 6, 9, 3, 5]], dtype=dtype)
1287
+ t = ndimage.correlate1d(array, xp.asarray([-1.0, 0.0, 1.0]), 1)
1288
+ t = ndimage.correlate1d(t, xp.asarray([1.0, 2.0, 1.0]), 0)
1289
+ output = xp.zeros(array.shape, dtype=dtype)
1290
+ output = ndimage.sobel(array, 1)
1291
+ assert_array_almost_equal(t, output)
1292
+
1293
+ @pytest.mark.parametrize('dtype', types + complex_types)
1294
+ def test_sobel04(self, dtype, xp):
1295
+ dtype = getattr(xp, dtype)
1296
+ array = xp.asarray([[3, 2, 5, 1, 4],
1297
+ [5, 8, 3, 7, 1],
1298
+ [5, 6, 9, 3, 5]], dtype=dtype)
1299
+ t = ndimage.sobel(array, -1)
1300
+ output = ndimage.sobel(array, 1)
1301
+ assert_array_almost_equal(t, output)
1302
+
1303
+ @pytest.mark.parametrize('dtype',
1304
+ ["int32", "float32", "float64",
1305
+ "complex64", "complex128"])
1306
+ def test_laplace01(self, dtype, xp):
1307
+ dtype = getattr(xp, dtype)
1308
+
1309
+ array = xp.asarray([[3, 2, 5, 1, 4],
1310
+ [5, 8, 3, 7, 1],
1311
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1312
+ tmp1 = ndimage.correlate1d(array, xp.asarray([1, -2, 1]), 0)
1313
+ tmp2 = ndimage.correlate1d(array, xp.asarray([1, -2, 1]), 1)
1314
+ output = ndimage.laplace(array)
1315
+ assert_array_almost_equal(tmp1 + tmp2, output)
1316
+
1317
+ @uses_output_array
1318
+ @pytest.mark.parametrize('dtype',
1319
+ ["int32", "float32", "float64",
1320
+ "complex64", "complex128"])
1321
+ def test_laplace02(self, dtype, xp):
1322
+ dtype = getattr(xp, dtype)
1323
+
1324
+ array = xp.asarray([[3, 2, 5, 1, 4],
1325
+ [5, 8, 3, 7, 1],
1326
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1327
+ tmp1 = ndimage.correlate1d(array, xp.asarray([1, -2, 1]), 0)
1328
+ tmp2 = ndimage.correlate1d(array, xp.asarray([1, -2, 1]), 1)
1329
+ output = xp.zeros(array.shape, dtype=dtype)
1330
+ ndimage.laplace(array, output=output)
1331
+ assert_array_almost_equal(tmp1 + tmp2, output)
1332
+
1333
+ @pytest.mark.parametrize('dtype',
1334
+ ["int32", "float32", "float64",
1335
+ "complex64", "complex128"])
1336
+ def test_gaussian_laplace01(self, dtype, xp):
1337
+ dtype = getattr(xp, dtype)
1338
+
1339
+ array = xp.asarray([[3, 2, 5, 1, 4],
1340
+ [5, 8, 3, 7, 1],
1341
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1342
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
1343
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
1344
+ output = ndimage.gaussian_laplace(array, 1.0)
1345
+ assert_array_almost_equal(tmp1 + tmp2, output)
1346
+
1347
+ @uses_output_array
1348
+ @pytest.mark.parametrize('dtype',
1349
+ ["int32", "float32", "float64",
1350
+ "complex64", "complex128"])
1351
+ def test_gaussian_laplace02(self, dtype, xp):
1352
+ dtype = getattr(xp, dtype)
1353
+
1354
+ array = xp.asarray([[3, 2, 5, 1, 4],
1355
+ [5, 8, 3, 7, 1],
1356
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1357
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
1358
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
1359
+ output = xp.zeros(array.shape, dtype=dtype)
1360
+ ndimage.gaussian_laplace(array, 1.0, output)
1361
+ assert_array_almost_equal(tmp1 + tmp2, output)
1362
+
1363
+ @uses_output_array
1364
+ @pytest.mark.parametrize('dtype', types + complex_types)
1365
+ def test_generic_laplace01(self, dtype, xp):
1366
+ def derivative2(input, axis, output, mode, cval, a, b):
1367
+ sigma = np.asarray([a, b / 2.0])
1368
+ order = [0] * input.ndim
1369
+ order[axis] = 2
1370
+ return ndimage.gaussian_filter(input, sigma, order,
1371
+ output, mode, cval)
1372
+
1373
+ dtype = getattr(xp, dtype)
1374
+
1375
+ array = xp.asarray([[3, 2, 5, 1, 4],
1376
+ [5, 8, 3, 7, 1],
1377
+ [5, 6, 9, 3, 5]], dtype=dtype)
1378
+ output = xp.zeros(array.shape, dtype=dtype)
1379
+ tmp = ndimage.generic_laplace(array, derivative2,
1380
+ extra_arguments=(1.0,),
1381
+ extra_keywords={'b': 2.0})
1382
+ ndimage.gaussian_laplace(array, 1.0, output)
1383
+ assert_array_almost_equal(tmp, output)
1384
+
1385
+ @pytest.mark.parametrize('dtype',
1386
+ ["int32", "float32", "float64",
1387
+ "complex64", "complex128"])
1388
+ def test_gaussian_gradient_magnitude01(self, dtype, xp):
1389
+ is_int_dtype = dtype == "int32"
1390
+ dtype = getattr(xp, dtype)
1391
+
1392
+ array = xp.asarray([[3, 2, 5, 1, 4],
1393
+ [5, 8, 3, 7, 1],
1394
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1395
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
1396
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
1397
+ output = ndimage.gaussian_gradient_magnitude(array, 1.0)
1398
+ expected = tmp1 * tmp1 + tmp2 * tmp2
1399
+
1400
+ expected_float = xp.astype(expected, xp.float64) if is_int_dtype else expected
1401
+ expected = xp.astype(xp.sqrt(expected_float), dtype)
1402
+ xp_assert_close(output, expected, rtol=1e-6, atol=1e-6)
1403
+
1404
+ @uses_output_array
1405
+ @pytest.mark.parametrize('dtype',
1406
+ ["int32", "float32", "float64",
1407
+ "complex64", "complex128"])
1408
+ def test_gaussian_gradient_magnitude02(self, dtype, xp):
1409
+ is_int_dtype = dtype == 'int32'
1410
+ dtype = getattr(xp, dtype)
1411
+
1412
+ array = xp.asarray([[3, 2, 5, 1, 4],
1413
+ [5, 8, 3, 7, 1],
1414
+ [5, 6, 9, 3, 5]], dtype=dtype) * 100
1415
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
1416
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
1417
+ output = xp.zeros(array.shape, dtype=dtype)
1418
+ ndimage.gaussian_gradient_magnitude(array, 1.0, output)
1419
+ expected = tmp1 * tmp1 + tmp2 * tmp2
1420
+
1421
+ fl_expected = xp.astype(expected, xp.float64) if is_int_dtype else expected
1422
+
1423
+ expected = xp.astype(xp.sqrt(fl_expected), dtype)
1424
+ xp_assert_close(output, expected, rtol=1e-6, atol=1e-6)
1425
+
1426
+ def test_generic_gradient_magnitude01(self, xp):
1427
+ array = xp.asarray([[3, 2, 5, 1, 4],
1428
+ [5, 8, 3, 7, 1],
1429
+ [5, 6, 9, 3, 5]], dtype=xp.float64)
1430
+
1431
+ def derivative(input, axis, output, mode, cval, a, b):
1432
+ sigma = [a, b / 2.0]
1433
+ order = [0] * input.ndim
1434
+ order[axis] = 1
1435
+ return ndimage.gaussian_filter(input, sigma, order, output, mode, cval)
1436
+
1437
+ tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0)
1438
+ tmp2 = ndimage.generic_gradient_magnitude(
1439
+ array, derivative, extra_arguments=(1.0,),
1440
+ extra_keywords={'b': 2.0})
1441
+ assert_array_almost_equal(tmp1, tmp2)
1442
+
1443
+ def test_uniform01(self, xp):
1444
+ array = xp.asarray([2, 4, 6])
1445
+ size = 2
1446
+ output = ndimage.uniform_filter1d(array, size, origin=-1)
1447
+ assert_array_almost_equal(xp.asarray([3, 5, 6]), output)
1448
+
1449
+ def test_uniform01_complex(self, xp):
1450
+ array = xp.asarray([2 + 1j, 4 + 2j, 6 + 3j], dtype=xp.complex128)
1451
+ size = 2
1452
+ output = ndimage.uniform_filter1d(array, size, origin=-1)
1453
+ assert_array_almost_equal(xp.real(output), xp.asarray([3., 5, 6]))
1454
+ assert_array_almost_equal(xp.imag(output), xp.asarray([1.5, 2.5, 3]))
1455
+
1456
+ def test_uniform02(self, xp):
1457
+ array = xp.asarray([1, 2, 3])
1458
+ filter_shape = [0]
1459
+ output = ndimage.uniform_filter(array, filter_shape)
1460
+ assert_array_almost_equal(array, output)
1461
+
1462
+ def test_uniform03(self, xp):
1463
+ array = xp.asarray([1, 2, 3])
1464
+ filter_shape = [1]
1465
+ output = ndimage.uniform_filter(array, filter_shape)
1466
+ assert_array_almost_equal(array, output)
1467
+
1468
+ def test_uniform04(self, xp):
1469
+ array = xp.asarray([2, 4, 6])
1470
+ filter_shape = [2]
1471
+ output = ndimage.uniform_filter(array, filter_shape)
1472
+ assert_array_almost_equal(xp.asarray([2, 3, 5]), output)
1473
+
1474
+ def test_uniform05(self, xp):
1475
+ array = xp.asarray([])
1476
+ filter_shape = [1]
1477
+ output = ndimage.uniform_filter(array, filter_shape)
1478
+ assert_array_almost_equal(xp.asarray([]), output)
1479
+
1480
+ @uses_output_dtype
1481
+ @pytest.mark.parametrize('dtype_array', types)
1482
+ @pytest.mark.parametrize('dtype_output', types)
1483
+ def test_uniform06(self, dtype_array, dtype_output, xp):
1484
+ dtype_array = getattr(xp, dtype_array)
1485
+ dtype_output = getattr(xp, dtype_output)
1486
+
1487
+ filter_shape = [2, 2]
1488
+ array = xp.asarray([[4, 8, 12],
1489
+ [16, 20, 24]], dtype=dtype_array)
1490
+ output = ndimage.uniform_filter(
1491
+ array, filter_shape, output=dtype_output)
1492
+ assert_array_almost_equal(xp.asarray([[4, 6, 10], [10, 12, 16]]), output)
1493
+ assert output.dtype.type == dtype_output
1494
+
1495
+ @uses_output_dtype
1496
+ @pytest.mark.parametrize('dtype_array', complex_types)
1497
+ @pytest.mark.parametrize('dtype_output', complex_types)
1498
+ def test_uniform06_complex(self, dtype_array, dtype_output, xp):
1499
+ dtype_array = getattr(xp, dtype_array)
1500
+ dtype_output = getattr(xp, dtype_output)
1501
+
1502
+ filter_shape = [2, 2]
1503
+ array = xp.asarray([[4, 8 + 5j, 12],
1504
+ [16, 20, 24]], dtype=dtype_array)
1505
+ output = ndimage.uniform_filter(
1506
+ array, filter_shape, output=dtype_output)
1507
+ assert_array_almost_equal(xp.asarray([[4, 6, 10], [10, 12, 16]]), output.real)
1508
+ assert output.dtype.type == dtype_output
1509
+
1510
+ def test_minimum_filter01(self, xp):
1511
+ array = xp.asarray([1, 2, 3, 4, 5])
1512
+ filter_shape = xp.asarray([2])
1513
+ output = ndimage.minimum_filter(array, filter_shape)
1514
+ assert_array_almost_equal(xp.asarray([1, 1, 2, 3, 4]), output)
1515
+
1516
+ def test_minimum_filter02(self, xp):
1517
+ array = xp.asarray([1, 2, 3, 4, 5])
1518
+ filter_shape = xp.asarray([3])
1519
+ output = ndimage.minimum_filter(array, filter_shape)
1520
+ assert_array_almost_equal(xp.asarray([1, 1, 2, 3, 4]), output)
1521
+
1522
+ def test_minimum_filter03(self, xp):
1523
+ array = xp.asarray([3, 2, 5, 1, 4])
1524
+ filter_shape = xp.asarray([2])
1525
+ output = ndimage.minimum_filter(array, filter_shape)
1526
+ assert_array_almost_equal(xp.asarray([3, 2, 2, 1, 1]), output)
1527
+
1528
+ def test_minimum_filter04(self, xp):
1529
+ array = xp.asarray([3, 2, 5, 1, 4])
1530
+ filter_shape = xp.asarray([3])
1531
+ output = ndimage.minimum_filter(array, filter_shape)
1532
+ assert_array_almost_equal(xp.asarray([2, 2, 1, 1, 1]), output)
1533
+
1534
+ def test_minimum_filter05(self, xp):
1535
+ array = xp.asarray([[3, 2, 5, 1, 4],
1536
+ [7, 6, 9, 3, 5],
1537
+ [5, 8, 3, 7, 1]])
1538
+ filter_shape = xp.asarray([2, 3])
1539
+ output = ndimage.minimum_filter(array, filter_shape)
1540
+ assert_array_almost_equal(xp.asarray([[2, 2, 1, 1, 1],
1541
+ [2, 2, 1, 1, 1],
1542
+ [5, 3, 3, 1, 1]]), output)
1543
+
1544
+ @uses_output_array
1545
+ def test_minimum_filter05_overlap(self, xp):
1546
+ array = xp.asarray([[3, 2, 5, 1, 4],
1547
+ [7, 6, 9, 3, 5],
1548
+ [5, 8, 3, 7, 1]])
1549
+ filter_shape = xp.asarray([2, 3])
1550
+ ndimage.minimum_filter(array, filter_shape, output=array)
1551
+ assert_array_almost_equal(xp.asarray([[2, 2, 1, 1, 1],
1552
+ [2, 2, 1, 1, 1],
1553
+ [5, 3, 3, 1, 1]]), array)
1554
+
1555
+ def test_minimum_filter06(self, xp):
1556
+ array = xp.asarray([[3, 2, 5, 1, 4],
1557
+ [7, 6, 9, 3, 5],
1558
+ [5, 8, 3, 7, 1]])
1559
+ footprint = xp.asarray([[1, 1, 1], [1, 1, 1]])
1560
+ output = ndimage.minimum_filter(array, footprint=footprint)
1561
+ assert_array_almost_equal(xp.asarray([[2, 2, 1, 1, 1],
1562
+ [2, 2, 1, 1, 1],
1563
+ [5, 3, 3, 1, 1]]), output)
1564
+ # separable footprint should allow mode sequence
1565
+ output2 = ndimage.minimum_filter(array, footprint=footprint,
1566
+ mode=['reflect', 'reflect'])
1567
+ assert_array_almost_equal(output2, output)
1568
+
1569
+ def test_minimum_filter07(self, xp):
1570
+ array = xp.asarray([[3, 2, 5, 1, 4],
1571
+ [7, 6, 9, 3, 5],
1572
+ [5, 8, 3, 7, 1]])
1573
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1574
+ output = ndimage.minimum_filter(array, footprint=footprint)
1575
+ assert_array_almost_equal(xp.asarray([[2, 2, 1, 1, 1],
1576
+ [2, 3, 1, 3, 1],
1577
+ [5, 5, 3, 3, 1]]), output)
1578
+ with assert_raises(RuntimeError):
1579
+ ndimage.minimum_filter(array, footprint=footprint,
1580
+ mode=['reflect', 'constant'])
1581
+
1582
+ def test_minimum_filter08(self, xp):
1583
+ array = xp.asarray([[3, 2, 5, 1, 4],
1584
+ [7, 6, 9, 3, 5],
1585
+ [5, 8, 3, 7, 1]])
1586
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1587
+ output = ndimage.minimum_filter(array, footprint=footprint, origin=-1)
1588
+ assert_array_almost_equal(xp.asarray([[3, 1, 3, 1, 1],
1589
+ [5, 3, 3, 1, 1],
1590
+ [3, 3, 1, 1, 1]]), output)
1591
+
1592
+ def test_minimum_filter09(self, xp):
1593
+ array = xp.asarray([[3, 2, 5, 1, 4],
1594
+ [7, 6, 9, 3, 5],
1595
+ [5, 8, 3, 7, 1]])
1596
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1597
+ output = ndimage.minimum_filter(array, footprint=footprint,
1598
+ origin=[-1, 0])
1599
+ assert_array_almost_equal(xp.asarray([[2, 3, 1, 3, 1],
1600
+ [5, 5, 3, 3, 1],
1601
+ [5, 3, 3, 1, 1]]), output)
1602
+
1603
+ def test_maximum_filter01(self, xp):
1604
+ array = xp.asarray([1, 2, 3, 4, 5])
1605
+ filter_shape = xp.asarray([2])
1606
+ output = ndimage.maximum_filter(array, filter_shape)
1607
+ assert_array_almost_equal(xp.asarray([1, 2, 3, 4, 5]), output)
1608
+
1609
+ def test_maximum_filter02(self, xp):
1610
+ array = xp.asarray([1, 2, 3, 4, 5])
1611
+ filter_shape = xp.asarray([3])
1612
+ output = ndimage.maximum_filter(array, filter_shape)
1613
+ assert_array_almost_equal(xp.asarray([2, 3, 4, 5, 5]), output)
1614
+
1615
+ def test_maximum_filter03(self, xp):
1616
+ array = xp.asarray([3, 2, 5, 1, 4])
1617
+ filter_shape = xp.asarray([2])
1618
+ output = ndimage.maximum_filter(array, filter_shape)
1619
+ assert_array_almost_equal(xp.asarray([3, 3, 5, 5, 4]), output)
1620
+
1621
+ def test_maximum_filter04(self, xp):
1622
+ array = xp.asarray([3, 2, 5, 1, 4])
1623
+ filter_shape = xp.asarray([3])
1624
+ output = ndimage.maximum_filter(array, filter_shape)
1625
+ assert_array_almost_equal(xp.asarray([3, 5, 5, 5, 4]), output)
1626
+
1627
+ def test_maximum_filter05(self, xp):
1628
+ array = xp.asarray([[3, 2, 5, 1, 4],
1629
+ [7, 6, 9, 3, 5],
1630
+ [5, 8, 3, 7, 1]])
1631
+ filter_shape = xp.asarray([2, 3])
1632
+ output = ndimage.maximum_filter(array, filter_shape)
1633
+ assert_array_almost_equal(xp.asarray([[3, 5, 5, 5, 4],
1634
+ [7, 9, 9, 9, 5],
1635
+ [8, 9, 9, 9, 7]]), output)
1636
+
1637
+ def test_maximum_filter06(self, xp):
1638
+ array = xp.asarray([[3, 2, 5, 1, 4],
1639
+ [7, 6, 9, 3, 5],
1640
+ [5, 8, 3, 7, 1]])
1641
+ footprint = xp.asarray([[1, 1, 1], [1, 1, 1]])
1642
+ output = ndimage.maximum_filter(array, footprint=footprint)
1643
+ assert_array_almost_equal(xp.asarray([[3, 5, 5, 5, 4],
1644
+ [7, 9, 9, 9, 5],
1645
+ [8, 9, 9, 9, 7]]), output)
1646
+ # separable footprint should allow mode sequence
1647
+ output2 = ndimage.maximum_filter(array, footprint=footprint,
1648
+ mode=['reflect', 'reflect'])
1649
+ assert_array_almost_equal(output2, output)
1650
+
1651
+ def test_maximum_filter07(self, xp):
1652
+ array = xp.asarray([[3, 2, 5, 1, 4],
1653
+ [7, 6, 9, 3, 5],
1654
+ [5, 8, 3, 7, 1]])
1655
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1656
+ output = ndimage.maximum_filter(array, footprint=footprint)
1657
+ assert_array_almost_equal(xp.asarray([[3, 5, 5, 5, 4],
1658
+ [7, 7, 9, 9, 5],
1659
+ [7, 9, 8, 9, 7]]), output)
1660
+ # non-separable footprint should not allow mode sequence
1661
+ with assert_raises(RuntimeError):
1662
+ ndimage.maximum_filter(array, footprint=footprint,
1663
+ mode=['reflect', 'reflect'])
1664
+
1665
+ def test_maximum_filter08(self, xp):
1666
+ array = xp.asarray([[3, 2, 5, 1, 4],
1667
+ [7, 6, 9, 3, 5],
1668
+ [5, 8, 3, 7, 1]])
1669
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1670
+ output = ndimage.maximum_filter(array, footprint=footprint, origin=-1)
1671
+ assert_array_almost_equal(xp.asarray([[7, 9, 9, 5, 5],
1672
+ [9, 8, 9, 7, 5],
1673
+ [8, 8, 7, 7, 7]]), output)
1674
+
1675
+ def test_maximum_filter09(self, xp):
1676
+ array = xp.asarray([[3, 2, 5, 1, 4],
1677
+ [7, 6, 9, 3, 5],
1678
+ [5, 8, 3, 7, 1]])
1679
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1680
+ output = ndimage.maximum_filter(array, footprint=footprint,
1681
+ origin=[-1, 0])
1682
+ assert_array_almost_equal(xp.asarray([[7, 7, 9, 9, 5],
1683
+ [7, 9, 8, 9, 7],
1684
+ [8, 8, 8, 7, 7]]), output)
1685
+
1686
+ @xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8339")
1687
+ @pytest.mark.parametrize(
1688
+ 'axes', tuple(itertools.combinations(range(-3, 3), 2))
1689
+ )
1690
+ @pytest.mark.parametrize(
1691
+ 'filter_func, kwargs',
1692
+ [(ndimage.minimum_filter, {}),
1693
+ (ndimage.maximum_filter, {}),
1694
+ (ndimage.median_filter, {}),
1695
+ (ndimage.rank_filter, dict(rank=3)),
1696
+ (ndimage.percentile_filter, dict(percentile=60))]
1697
+ )
1698
+ def test_minmax_nonseparable_axes(self, filter_func, axes, kwargs, xp):
1699
+ array = xp.arange(6 * 8 * 12, dtype=xp.float32)
1700
+ array = xp.reshape(array, (6, 8, 12))
1701
+ # use 2D triangular footprint because it is non-separable
1702
+ footprint = xp.asarray(np.tri(5))
1703
+ axes = np.asarray(axes)
1704
+
1705
+ if len(set(axes % array.ndim)) != len(axes):
1706
+ # parametrized cases with duplicate axes raise an error
1707
+ with pytest.raises(ValueError):
1708
+ filter_func(array, footprint=footprint, axes=axes, **kwargs)
1709
+ return
1710
+ output = filter_func(array, footprint=footprint, axes=axes, **kwargs)
1711
+
1712
+ missing_axis = tuple(set(range(3)) - set(axes % array.ndim))[0]
1713
+
1714
+ footprint_3d = xp.expand_dims(footprint, axis=missing_axis)
1715
+ expected = filter_func(array, footprint=footprint_3d, **kwargs)
1716
+ xp_assert_close(output, expected)
1717
+
1718
+ def test_rank01(self, xp):
1719
+ array = xp.asarray([1, 2, 3, 4, 5])
1720
+ output = ndimage.rank_filter(array, 1, size=2)
1721
+ xp_assert_equal(array, output)
1722
+ output = ndimage.percentile_filter(array, 100, size=2)
1723
+ xp_assert_equal(array, output)
1724
+ output = ndimage.median_filter(array, 2)
1725
+ xp_assert_equal(array, output)
1726
+
1727
+ def test_rank02(self, xp):
1728
+ array = xp.asarray([1, 2, 3, 4, 5])
1729
+ output = ndimage.rank_filter(array, 1, size=[3])
1730
+ xp_assert_equal(array, output)
1731
+ output = ndimage.percentile_filter(array, 50, size=3)
1732
+ xp_assert_equal(array, output)
1733
+ output = ndimage.median_filter(array, (3,))
1734
+ xp_assert_equal(array, output)
1735
+
1736
+ def test_rank03(self, xp):
1737
+ array = xp.asarray([3, 2, 5, 1, 4])
1738
+ output = ndimage.rank_filter(array, 1, size=[2])
1739
+ xp_assert_equal(xp.asarray([3, 3, 5, 5, 4]), output)
1740
+ output = ndimage.percentile_filter(array, 100, size=2)
1741
+ xp_assert_equal(xp.asarray([3, 3, 5, 5, 4]), output)
1742
+
1743
+ def test_rank04(self, xp):
1744
+ array = xp.asarray([3, 2, 5, 1, 4])
1745
+ expected = xp.asarray([3, 3, 2, 4, 4])
1746
+ output = ndimage.rank_filter(array, 1, size=3)
1747
+ xp_assert_equal(expected, output)
1748
+ output = ndimage.percentile_filter(array, 50, size=3)
1749
+ xp_assert_equal(expected, output)
1750
+ output = ndimage.median_filter(array, size=3)
1751
+ xp_assert_equal(expected, output)
1752
+
1753
+ def test_rank05(self, xp):
1754
+ array = xp.asarray([3, 2, 5, 1, 4])
1755
+ expected = xp.asarray([3, 3, 2, 4, 4])
1756
+ output = ndimage.rank_filter(array, -2, size=3)
1757
+ xp_assert_equal(expected, output)
1758
+
1759
+ def test_rank06(self, xp):
1760
+ array = xp.asarray([[3, 2, 5, 1, 4],
1761
+ [5, 8, 3, 7, 1],
1762
+ [5, 6, 9, 3, 5]])
1763
+ expected = [[2, 2, 1, 1, 1],
1764
+ [3, 3, 2, 1, 1],
1765
+ [5, 5, 3, 3, 1]]
1766
+ expected = xp.asarray(expected)
1767
+ output = ndimage.rank_filter(array, 1, size=[2, 3])
1768
+ xp_assert_equal(expected, output)
1769
+ output = ndimage.percentile_filter(array, 17, size=(2, 3))
1770
+ xp_assert_equal(expected, output)
1771
+
1772
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8406")
1773
+ @uses_output_array
1774
+ def test_rank06_overlap(self, xp):
1775
+ array = xp.asarray([[3, 2, 5, 1, 4],
1776
+ [5, 8, 3, 7, 1],
1777
+ [5, 6, 9, 3, 5]])
1778
+
1779
+ array_copy = xp.asarray(array, copy=True)
1780
+ expected = [[2, 2, 1, 1, 1],
1781
+ [3, 3, 2, 1, 1],
1782
+ [5, 5, 3, 3, 1]]
1783
+ expected = xp.asarray(expected)
1784
+ ndimage.rank_filter(array, 1, size=[2, 3], output=array)
1785
+ xp_assert_equal(expected, array)
1786
+
1787
+ ndimage.percentile_filter(array_copy, 17, size=(2, 3),
1788
+ output=array_copy)
1789
+ xp_assert_equal(expected, array_copy)
1790
+
1791
+ def test_rank07(self, xp):
1792
+ array = xp.asarray([[3, 2, 5, 1, 4],
1793
+ [5, 8, 3, 7, 1],
1794
+ [5, 6, 9, 3, 5]])
1795
+ expected = [[3, 5, 5, 5, 4],
1796
+ [5, 5, 7, 5, 4],
1797
+ [6, 8, 8, 7, 5]]
1798
+ expected = xp.asarray(expected)
1799
+ output = ndimage.rank_filter(array, -2, size=[2, 3])
1800
+ xp_assert_equal(expected, output)
1801
+
1802
+ def test_rank08(self, xp):
1803
+ array = xp.asarray([[3, 2, 5, 1, 4],
1804
+ [5, 8, 3, 7, 1],
1805
+ [5, 6, 9, 3, 5]])
1806
+ expected = [[3, 3, 2, 4, 4],
1807
+ [5, 5, 5, 4, 4],
1808
+ [5, 6, 7, 5, 5]]
1809
+ expected = xp.asarray(expected)
1810
+ output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
1811
+ xp_assert_equal(expected, output)
1812
+ output = ndimage.rank_filter(array, 3, size=(2, 3))
1813
+ xp_assert_equal(expected, output)
1814
+ output = ndimage.median_filter(array, size=(2, 3))
1815
+ xp_assert_equal(expected, output)
1816
+
1817
+ # non-separable: does not allow mode sequence
1818
+ with assert_raises(RuntimeError):
1819
+ ndimage.percentile_filter(array, 50.0, size=(2, 3),
1820
+ mode=['reflect', 'constant'])
1821
+ with assert_raises(RuntimeError):
1822
+ ndimage.rank_filter(array, 3, size=(2, 3), mode=['reflect']*2)
1823
+ with assert_raises(RuntimeError):
1824
+ ndimage.median_filter(array, size=(2, 3), mode=['reflect']*2)
1825
+
1826
+ @pytest.mark.parametrize('dtype', types)
1827
+ def test_rank09(self, dtype, xp):
1828
+ dtype = getattr(xp, dtype)
1829
+ expected = [[3, 3, 2, 4, 4],
1830
+ [3, 5, 2, 5, 1],
1831
+ [5, 5, 8, 3, 5]]
1832
+ expected = xp.asarray(expected)
1833
+ footprint = xp.asarray([[1, 0, 1], [0, 1, 0]])
1834
+ array = xp.asarray([[3, 2, 5, 1, 4],
1835
+ [5, 8, 3, 7, 1],
1836
+ [5, 6, 9, 3, 5]], dtype=dtype)
1837
+ output = ndimage.rank_filter(array, 1, footprint=footprint)
1838
+ assert_array_almost_equal(expected, output)
1839
+ output = ndimage.percentile_filter(array, 35, footprint=footprint)
1840
+ assert_array_almost_equal(expected, output)
1841
+
1842
+ def test_rank10(self, xp):
1843
+ array = xp.asarray([[3, 2, 5, 1, 4],
1844
+ [7, 6, 9, 3, 5],
1845
+ [5, 8, 3, 7, 1]])
1846
+ expected = [[2, 2, 1, 1, 1],
1847
+ [2, 3, 1, 3, 1],
1848
+ [5, 5, 3, 3, 1]]
1849
+ expected = xp.asarray(expected)
1850
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1851
+ output = ndimage.rank_filter(array, 0, footprint=footprint)
1852
+ xp_assert_equal(expected, output)
1853
+ output = ndimage.percentile_filter(array, 0.0, footprint=footprint)
1854
+ xp_assert_equal(expected, output)
1855
+
1856
+ def test_rank11(self, xp):
1857
+ array = xp.asarray([[3, 2, 5, 1, 4],
1858
+ [7, 6, 9, 3, 5],
1859
+ [5, 8, 3, 7, 1]])
1860
+ expected = [[3, 5, 5, 5, 4],
1861
+ [7, 7, 9, 9, 5],
1862
+ [7, 9, 8, 9, 7]]
1863
+ expected = xp.asarray(expected)
1864
+ footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
1865
+ output = ndimage.rank_filter(array, -1, footprint=footprint)
1866
+ xp_assert_equal(expected, output)
1867
+ output = ndimage.percentile_filter(array, 100.0, footprint=footprint)
1868
+ xp_assert_equal(expected, output)
1869
+
1870
+ @pytest.mark.parametrize('dtype', types)
1871
+ def test_rank12(self, dtype, xp):
1872
+ dtype = getattr(xp, dtype)
1873
+ expected = [[3, 3, 2, 4, 4],
1874
+ [3, 5, 2, 5, 1],
1875
+ [5, 5, 8, 3, 5]]
1876
+ expected = xp.asarray(expected, dtype=dtype)
1877
+ footprint = xp.asarray([[1, 0, 1], [0, 1, 0]])
1878
+ array = xp.asarray([[3, 2, 5, 1, 4],
1879
+ [5, 8, 3, 7, 1],
1880
+ [5, 6, 9, 3, 5]], dtype=dtype)
1881
+ output = ndimage.rank_filter(array, 1, footprint=footprint)
1882
+ assert_array_almost_equal(expected, output)
1883
+ output = ndimage.percentile_filter(array, 50.0,
1884
+ footprint=footprint)
1885
+ xp_assert_equal(expected, output)
1886
+ output = ndimage.median_filter(array, footprint=footprint)
1887
+ xp_assert_equal(expected, output)
1888
+
1889
+ @pytest.mark.parametrize('dtype', types)
1890
+ def test_rank13(self, dtype, xp):
1891
+ dtype = getattr(xp, dtype)
1892
+ expected = [[5, 2, 5, 1, 1],
1893
+ [5, 8, 3, 5, 5],
1894
+ [6, 6, 5, 5, 5]]
1895
+ expected = xp.asarray(expected, dtype=dtype)
1896
+ footprint = xp.asarray([[1, 0, 1], [0, 1, 0]])
1897
+ array = xp.asarray([[3, 2, 5, 1, 4],
1898
+ [5, 8, 3, 7, 1],
1899
+ [5, 6, 9, 3, 5]], dtype=dtype)
1900
+ output = ndimage.rank_filter(array, 1, footprint=footprint,
1901
+ origin=-1)
1902
+ xp_assert_equal(expected, output)
1903
+
1904
+ @pytest.mark.parametrize('dtype', types)
1905
+ def test_rank14(self, dtype, xp):
1906
+ dtype = getattr(xp, dtype)
1907
+ expected = [[3, 5, 2, 5, 1],
1908
+ [5, 5, 8, 3, 5],
1909
+ [5, 6, 6, 5, 5]]
1910
+ expected = xp.asarray(expected, dtype=dtype)
1911
+ footprint = xp.asarray([[1, 0, 1], [0, 1, 0]])
1912
+ array = xp.asarray([[3, 2, 5, 1, 4],
1913
+ [5, 8, 3, 7, 1],
1914
+ [5, 6, 9, 3, 5]], dtype=dtype)
1915
+ output = ndimage.rank_filter(array, 1, footprint=footprint,
1916
+ origin=[-1, 0])
1917
+ xp_assert_equal(expected, output)
1918
+
1919
+ @pytest.mark.parametrize('dtype', types)
1920
+ def test_rank15(self, dtype, xp):
1921
+ dtype = getattr(xp, dtype)
1922
+ expected = [[2, 3, 1, 4, 1],
1923
+ [5, 3, 7, 1, 1],
1924
+ [5, 5, 3, 3, 3]]
1925
+ expected = xp.asarray(expected, dtype=dtype)
1926
+ footprint = xp.asarray([[1, 0, 1], [0, 1, 0]])
1927
+ array = xp.asarray([[3, 2, 5, 1, 4],
1928
+ [5, 8, 3, 7, 1],
1929
+ [5, 6, 9, 3, 5]], dtype=dtype)
1930
+ output = ndimage.rank_filter(array, 0, footprint=footprint,
1931
+ origin=[-1, 0])
1932
+ xp_assert_equal(expected, output)
1933
+
1934
+ # NumPy-only because test is for list input
1935
+ def test_rank16(self):
1936
+ # test that lists are accepted and interpreted as numpy arrays
1937
+ array = [3, 2, 5, 1, 4]
1938
+ # expected values are: median(3, 2, 5) = 3, median(2, 5, 1) = 2, etc
1939
+ expected = np.asarray([3, 3, 2, 4, 4])
1940
+ output = ndimage.rank_filter(array, -2, size=3)
1941
+ xp_assert_equal(expected, output)
1942
+
1943
+ def test_rank17(self, xp):
1944
+ array = xp.asarray([3, 2, 5, 1, 4])
1945
+ if not hasattr(array, 'flags'):
1946
+ return
1947
+ array.flags.writeable = False
1948
+ expected = xp.asarray([3, 3, 2, 4, 4])
1949
+ output = ndimage.rank_filter(array, -2, size=3)
1950
+ xp_assert_equal(expected, output)
1951
+
1952
+ def test_rank18(self, xp):
1953
+ # module 'array_api_strict' has no attribute 'float16'
1954
+ tested_dtypes = ['int8', 'int16', 'int32', 'int64', 'float32', 'float64',
1955
+ 'uint8', 'uint16', 'uint32', 'uint64']
1956
+ for dtype_str in tested_dtypes:
1957
+ dtype = getattr(xp, dtype_str)
1958
+ x = xp.asarray([3, 2, 5, 1, 4], dtype=dtype)
1959
+ y = ndimage.rank_filter(x, -2, size=3)
1960
+ assert y.dtype == x.dtype
1961
+
1962
+ def test_rank19(self, xp):
1963
+ # module 'array_api_strict' has no attribute 'float16'
1964
+ tested_dtypes = ['int8', 'int16', 'int32', 'int64', 'float32', 'float64',
1965
+ 'uint8', 'uint16', 'uint32', 'uint64']
1966
+ for dtype_str in tested_dtypes:
1967
+ dtype = getattr(xp, dtype_str)
1968
+ x = xp.asarray([[3, 2, 5, 1, 4], [3, 2, 5, 1, 4]], dtype=dtype)
1969
+ y = ndimage.rank_filter(x, -2, size=3)
1970
+ assert y.dtype == x.dtype
1971
+
1972
+ @skip_xp_backends(np_only=True, exceptions=["cupy"],
1973
+ reason="off-by-ones on alt backends")
1974
+ @xfail_xp_backends("cupy", reason="does not support extra_arguments")
1975
+ @pytest.mark.parametrize('dtype', types)
1976
+ def test_generic_filter1d01(self, dtype, xp):
1977
+ weights = xp.asarray([1.1, 2.2, 3.3])
1978
+
1979
+ def _filter_func(input, output, fltr, total):
1980
+ fltr = fltr / total
1981
+ for ii in range(input.shape[0] - 2):
1982
+ output[ii] = input[ii] * fltr[0]
1983
+ output[ii] += input[ii + 1] * fltr[1]
1984
+ output[ii] += input[ii + 2] * fltr[2]
1985
+
1986
+ a = np.arange(12, dtype=dtype).reshape(3, 4)
1987
+ a = xp.asarray(a)
1988
+ dtype = getattr(xp, dtype)
1989
+
1990
+ r1 = ndimage.correlate1d(a, weights / xp.sum(weights), 0, origin=-1)
1991
+ r2 = ndimage.generic_filter1d(
1992
+ a, _filter_func, 3, axis=0, origin=-1,
1993
+ extra_arguments=(weights,),
1994
+ extra_keywords={'total': xp.sum(weights)})
1995
+ assert_array_almost_equal(r1, r2)
1996
+
1997
+ @xfail_xp_backends("cupy", reason="does not support extra_arguments")
1998
+ @pytest.mark.parametrize('dtype', types)
1999
+ def test_generic_filter01(self, dtype, xp):
2000
+ if is_torch(xp) and dtype in ("uint16", "uint32", "uint64"):
2001
+ pytest.xfail("https://github.com/pytorch/pytorch/issues/58734")
2002
+
2003
+ dtype_str = dtype
2004
+ dtype = getattr(xp, dtype_str)
2005
+
2006
+ filter_ = xp.asarray([[1.0, 2.0], [3.0, 4.0]])
2007
+ footprint = xp.asarray([[1.0, 0.0], [0.0, 1.0]])
2008
+ cf = xp.asarray([1., 4.])
2009
+
2010
+ def _filter_func(buffer, weights, total=1.0):
2011
+ weights = np.asarray(cf) / np.asarray(total)
2012
+ return np.sum(buffer * weights)
2013
+
2014
+ a = np.arange(12, dtype=dtype_str).reshape(3, 4)
2015
+ a = xp.asarray(a)
2016
+ r1 = ndimage.correlate(a, filter_ * footprint)
2017
+ if dtype_str in float_types:
2018
+ r1 /= 5
2019
+ else:
2020
+ r1 //= 5
2021
+ r2 = ndimage.generic_filter(
2022
+ a, _filter_func, footprint=footprint, extra_arguments=(cf,),
2023
+ extra_keywords={'total': xp.sum(cf)})
2024
+ assert_array_almost_equal(r1, r2)
2025
+
2026
+ # generic_filter doesn't allow mode sequence
2027
+ with assert_raises(RuntimeError):
2028
+ r2 = ndimage.generic_filter(
2029
+ a, _filter_func, mode=['reflect', 'reflect'],
2030
+ footprint=footprint, extra_arguments=(cf,),
2031
+ extra_keywords={'total': xp.sum(cf)})
2032
+
2033
+ @pytest.mark.parametrize(
2034
+ 'mode, expected_value',
2035
+ [('nearest', [1, 1, 2]),
2036
+ ('wrap', [3, 1, 2]),
2037
+ ('reflect', [1, 1, 2]),
2038
+ ('mirror', [2, 1, 2]),
2039
+ ('constant', [0, 1, 2])]
2040
+ )
2041
+ def test_extend01(self, mode, expected_value, xp):
2042
+ array = xp.asarray([1, 2, 3])
2043
+ weights = xp.asarray([1, 0])
2044
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
2045
+ expected_value = xp.asarray(expected_value)
2046
+ xp_assert_equal(output, expected_value)
2047
+
2048
+ @pytest.mark.parametrize(
2049
+ 'mode, expected_value',
2050
+ [('nearest', [1, 1, 1]),
2051
+ ('wrap', [3, 1, 2]),
2052
+ ('reflect', [3, 3, 2]),
2053
+ ('mirror', [1, 2, 3]),
2054
+ ('constant', [0, 0, 0])]
2055
+ )
2056
+ def test_extend02(self, mode, expected_value, xp):
2057
+ array = xp.asarray([1, 2, 3])
2058
+ weights = xp.asarray([1, 0, 0, 0, 0, 0, 0, 0])
2059
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
2060
+ expected_value = xp.asarray(expected_value)
2061
+ xp_assert_equal(output, expected_value)
2062
+
2063
+ @pytest.mark.parametrize(
2064
+ 'mode, expected_value',
2065
+ [('nearest', [2, 3, 3]),
2066
+ ('wrap', [2, 3, 1]),
2067
+ ('reflect', [2, 3, 3]),
2068
+ ('mirror', [2, 3, 2]),
2069
+ ('constant', [2, 3, 0])]
2070
+ )
2071
+ def test_extend03(self, mode, expected_value, xp):
2072
+ array = xp.asarray([1, 2, 3])
2073
+ weights = xp.asarray([0, 0, 1])
2074
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
2075
+ expected_value = xp.asarray(expected_value)
2076
+ xp_assert_equal(output, expected_value)
2077
+
2078
+ @pytest.mark.parametrize(
2079
+ 'mode, expected_value',
2080
+ [('nearest', [3, 3, 3]),
2081
+ ('wrap', [2, 3, 1]),
2082
+ ('reflect', [2, 1, 1]),
2083
+ ('mirror', [1, 2, 3]),
2084
+ ('constant', [0, 0, 0])]
2085
+ )
2086
+ def test_extend04(self, mode, expected_value, xp):
2087
+ array = xp.asarray([1, 2, 3])
2088
+ weights = xp.asarray([0, 0, 0, 0, 0, 0, 0, 0, 1])
2089
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
2090
+ expected_value = xp.asarray(expected_value)
2091
+ xp_assert_equal(output, expected_value)
2092
+
2093
+ @pytest.mark.parametrize(
2094
+ 'mode, expected_value',
2095
+ [('nearest', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
2096
+ ('wrap', [[9, 7, 8], [3, 1, 2], [6, 4, 5]]),
2097
+ ('reflect', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
2098
+ ('mirror', [[5, 4, 5], [2, 1, 2], [5, 4, 5]]),
2099
+ ('constant', [[0, 0, 0], [0, 1, 2], [0, 4, 5]])]
2100
+ )
2101
+ def test_extend05(self, mode, expected_value, xp):
2102
+ array = xp.asarray([[1, 2, 3],
2103
+ [4, 5, 6],
2104
+ [7, 8, 9]])
2105
+ weights = xp.asarray([[1, 0], [0, 0]])
2106
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2107
+ expected_value = xp.asarray(expected_value)
2108
+ xp_assert_equal(output, expected_value)
2109
+
2110
+ @pytest.mark.parametrize(
2111
+ 'mode, expected_value',
2112
+ [('nearest', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
2113
+ ('wrap', [[5, 6, 4], [8, 9, 7], [2, 3, 1]]),
2114
+ ('reflect', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
2115
+ ('mirror', [[5, 6, 5], [8, 9, 8], [5, 6, 5]]),
2116
+ ('constant', [[5, 6, 0], [8, 9, 0], [0, 0, 0]])]
2117
+ )
2118
+ def test_extend06(self, mode, expected_value, xp):
2119
+ array = xp.asarray([[1, 2, 3],
2120
+ [4, 5, 6],
2121
+ [7, 8, 9]])
2122
+ weights = xp.asarray([[0, 0, 0], [0, 0, 0], [0, 0, 1]])
2123
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2124
+ expected_value = xp.asarray(expected_value)
2125
+ xp_assert_equal(output, expected_value)
2126
+
2127
+ @pytest.mark.parametrize(
2128
+ 'mode, expected_value',
2129
+ [('nearest', [3, 3, 3]),
2130
+ ('wrap', [2, 3, 1]),
2131
+ ('reflect', [2, 1, 1]),
2132
+ ('mirror', [1, 2, 3]),
2133
+ ('constant', [0, 0, 0])]
2134
+ )
2135
+ def test_extend07(self, mode, expected_value, xp):
2136
+ array = xp.asarray([1, 2, 3])
2137
+ weights = xp.asarray([0, 0, 0, 0, 0, 0, 0, 0, 1])
2138
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2139
+ expected_value = xp.asarray(expected_value)
2140
+ xp_assert_equal(output, expected_value)
2141
+
2142
+ @pytest.mark.parametrize(
2143
+ 'mode, expected_value',
2144
+ [('nearest', [[3], [3], [3]]),
2145
+ ('wrap', [[2], [3], [1]]),
2146
+ ('reflect', [[2], [1], [1]]),
2147
+ ('mirror', [[1], [2], [3]]),
2148
+ ('constant', [[0], [0], [0]])]
2149
+ )
2150
+ def test_extend08(self, mode, expected_value, xp):
2151
+ array = xp.asarray([[1], [2], [3]])
2152
+ weights = xp.asarray([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
2153
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2154
+ expected_value = xp.asarray(expected_value)
2155
+ xp_assert_equal(output, expected_value)
2156
+
2157
+ @pytest.mark.parametrize(
2158
+ 'mode, expected_value',
2159
+ [('nearest', [3, 3, 3]),
2160
+ ('wrap', [2, 3, 1]),
2161
+ ('reflect', [2, 1, 1]),
2162
+ ('mirror', [1, 2, 3]),
2163
+ ('constant', [0, 0, 0])]
2164
+ )
2165
+ def test_extend09(self, mode, expected_value, xp):
2166
+ array = xp.asarray([1, 2, 3])
2167
+ weights = xp.asarray([0, 0, 0, 0, 0, 0, 0, 0, 1])
2168
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2169
+ expected_value = xp.asarray(expected_value)
2170
+ xp_assert_equal(output, expected_value)
2171
+
2172
+ @pytest.mark.parametrize(
2173
+ 'mode, expected_value',
2174
+ [('nearest', [[3], [3], [3]]),
2175
+ ('wrap', [[2], [3], [1]]),
2176
+ ('reflect', [[2], [1], [1]]),
2177
+ ('mirror', [[1], [2], [3]]),
2178
+ ('constant', [[0], [0], [0]])]
2179
+ )
2180
+ def test_extend10(self, mode, expected_value, xp):
2181
+ array = xp.asarray([[1], [2], [3]])
2182
+ weights = xp.asarray([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
2183
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
2184
+ expected_value = xp.asarray(expected_value)
2185
+ xp_assert_equal(output, expected_value)
2186
+
2187
+
2188
+ @xfail_xp_backends("cupy", reason="TypeError")
2189
+ def test_ticket_701(xp):
2190
+ # Test generic filter sizes
2191
+ arr = xp.asarray(np.arange(4).reshape(2, 2))
2192
+ def func(x):
2193
+ return np.min(x) # NB: np.min not xp.min for callables
2194
+ res = ndimage.generic_filter(arr, func, size=(1, 1))
2195
+ # The following raises an error unless ticket 701 is fixed
2196
+ res2 = ndimage.generic_filter(arr, func, size=1)
2197
+ xp_assert_equal(res, res2)
2198
+
2199
+
2200
+ def test_gh_5430():
2201
+ # At least one of these raises an error unless gh-5430 is
2202
+ # fixed. In py2k an int is implemented using a C long, so
2203
+ # which one fails depends on your system. In py3k there is only
2204
+ # one arbitrary precision integer type, so both should fail.
2205
+ sigma = np.int32(1)
2206
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
2207
+ assert out == [sigma]
2208
+ sigma = np.int64(1)
2209
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
2210
+ assert out == [sigma]
2211
+ # This worked before; make sure it still works
2212
+ sigma = 1
2213
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
2214
+ assert out == [sigma]
2215
+ # This worked before; make sure it still works
2216
+ sigma = [1, 1]
2217
+ out = ndimage._ni_support._normalize_sequence(sigma, 2)
2218
+ assert out == sigma
2219
+ # Also include the OPs original example to make sure we fixed the issue
2220
+ x = np.random.normal(size=(256, 256))
2221
+ perlin = np.zeros_like(x)
2222
+ for i in 2**np.arange(6):
2223
+ perlin += ndimage.gaussian_filter(x, i, mode="wrap") * i**2
2224
+ # This also fixes gh-4106, show that the OPs example now runs.
2225
+ x = np.int64(21)
2226
+ ndimage._ni_support._normalize_sequence(x, 0)
2227
+
2228
+
2229
+ @skip_xp_backends("cupy", reason="tests a private scipy utility")
2230
+ def test_gaussian_kernel1d(xp):
2231
+ radius = 10
2232
+ sigma = 2
2233
+ sigma2 = sigma * sigma
2234
+ x = np.arange(-radius, radius + 1, dtype=np.float64)
2235
+ x = xp.asarray(x)
2236
+ phi_x = xp.exp(-0.5 * x * x / sigma2)
2237
+ phi_x /= xp.sum(phi_x)
2238
+ xp_assert_close(phi_x,
2239
+ xp.asarray(_gaussian_kernel1d(sigma, 0, radius)))
2240
+ xp_assert_close(-phi_x * x / sigma2,
2241
+ xp.asarray(_gaussian_kernel1d(sigma, 1, radius)))
2242
+ xp_assert_close(phi_x * (x * x / sigma2 - 1) / sigma2,
2243
+ xp.asarray(_gaussian_kernel1d(sigma, 2, radius)))
2244
+ xp_assert_close(phi_x * (3 - x * x / sigma2) * x / (sigma2 * sigma2),
2245
+ xp.asarray(_gaussian_kernel1d(sigma, 3, radius)))
2246
+
2247
+
2248
+ def test_orders_gauss(xp):
2249
+ # Check order inputs to Gaussians
2250
+ arr = xp.zeros((1,))
2251
+ xp_assert_equal(ndimage.gaussian_filter(arr, 1, order=0), xp.asarray([0.]))
2252
+ xp_assert_equal(ndimage.gaussian_filter(arr, 1, order=3), xp.asarray([0.]))
2253
+ assert_raises(ValueError, ndimage.gaussian_filter, arr, 1, -1)
2254
+ xp_assert_equal(ndimage.gaussian_filter1d(arr, 1, axis=-1, order=0),
2255
+ xp.asarray([0.]))
2256
+ xp_assert_equal(ndimage.gaussian_filter1d(arr, 1, axis=-1, order=3),
2257
+ xp.asarray([0.]))
2258
+ assert_raises(ValueError, ndimage.gaussian_filter1d, arr, 1, -1, -1)
2259
+
2260
+
2261
+ @xfail_xp_backends("cupy", reason="TypeError")
2262
+ def test_valid_origins(xp):
2263
+ """Regression test for #1311."""
2264
+ def func(x):
2265
+ return xp.mean(x)
2266
+
2267
+ data = xp.asarray([1, 2, 3, 4, 5], dtype=xp.float64)
2268
+ assert_raises(ValueError, ndimage.generic_filter, data, func, size=3,
2269
+ origin=2)
2270
+ assert_raises(ValueError, ndimage.generic_filter1d, data, func,
2271
+ filter_size=3, origin=2)
2272
+ assert_raises(ValueError, ndimage.percentile_filter, data, 0.2, size=3,
2273
+ origin=2)
2274
+
2275
+ for filter in [ndimage.uniform_filter, ndimage.minimum_filter,
2276
+ ndimage.maximum_filter, ndimage.maximum_filter1d,
2277
+ ndimage.median_filter, ndimage.minimum_filter1d]:
2278
+ # This should work, since for size == 3, the valid range for origin is
2279
+ # -1 to 1.
2280
+ list(filter(data, 3, origin=-1))
2281
+ list(filter(data, 3, origin=1))
2282
+ # Just check this raises an error instead of silently accepting or
2283
+ # segfaulting.
2284
+ assert_raises(ValueError, filter, data, 3, origin=2)
2285
+
2286
+
2287
+ def test_bad_convolve_and_correlate_origins(xp):
2288
+ """Regression test for gh-822."""
2289
+ # Before gh-822 was fixed, these would generate seg. faults or
2290
+ # other crashes on many system.
2291
+ assert_raises(ValueError, ndimage.correlate1d,
2292
+ [0, 1, 2, 3, 4, 5], [1, 1, 2, 0], origin=2)
2293
+ assert_raises(ValueError, ndimage.correlate,
2294
+ [0, 1, 2, 3, 4, 5], [0, 1, 2], origin=[2])
2295
+ assert_raises(ValueError, ndimage.correlate,
2296
+ xp.ones((3, 5)), xp.ones((2, 2)), origin=[0, 1])
2297
+
2298
+ assert_raises(ValueError, ndimage.convolve1d,
2299
+ xp.arange(10), xp.ones(3), origin=-2)
2300
+ assert_raises(ValueError, ndimage.convolve,
2301
+ xp.arange(10), xp.ones(3), origin=[-2])
2302
+ assert_raises(ValueError, ndimage.convolve,
2303
+ xp.ones((3, 5)), xp.ones((2, 2)), origin=[0, -2])
2304
+
2305
+ @skip_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8430")
2306
+ def test_multiple_modes(xp):
2307
+ # Test that the filters with multiple mode capabilities for different
2308
+ # dimensions give the same result as applying a single mode.
2309
+ arr = xp.asarray([[1., 0., 0.],
2310
+ [1., 1., 0.],
2311
+ [0., 0., 0.]])
2312
+
2313
+ mode1 = 'reflect'
2314
+ mode2 = ['reflect', 'reflect']
2315
+
2316
+ xp_assert_equal(ndimage.gaussian_filter(arr, 1, mode=mode1),
2317
+ ndimage.gaussian_filter(arr, 1, mode=mode2))
2318
+ xp_assert_equal(ndimage.prewitt(arr, mode=mode1),
2319
+ ndimage.prewitt(arr, mode=mode2))
2320
+ xp_assert_equal(ndimage.sobel(arr, mode=mode1),
2321
+ ndimage.sobel(arr, mode=mode2))
2322
+ xp_assert_equal(ndimage.laplace(arr, mode=mode1),
2323
+ ndimage.laplace(arr, mode=mode2))
2324
+ xp_assert_equal(ndimage.gaussian_laplace(arr, 1, mode=mode1),
2325
+ ndimage.gaussian_laplace(arr, 1, mode=mode2))
2326
+ xp_assert_equal(ndimage.maximum_filter(arr, size=5, mode=mode1),
2327
+ ndimage.maximum_filter(arr, size=5, mode=mode2))
2328
+ xp_assert_equal(ndimage.minimum_filter(arr, size=5, mode=mode1),
2329
+ ndimage.minimum_filter(arr, size=5, mode=mode2))
2330
+ xp_assert_equal(ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode1),
2331
+ ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode2))
2332
+ xp_assert_equal(ndimage.uniform_filter(arr, 5, mode=mode1),
2333
+ ndimage.uniform_filter(arr, 5, mode=mode2))
2334
+
2335
+
2336
+ @skip_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8430")
2337
+ def test_multiple_modes_sequentially(xp):
2338
+ # Test that the filters with multiple mode capabilities for different
2339
+ # dimensions give the same result as applying the filters with
2340
+ # different modes sequentially
2341
+ arr = xp.asarray([[1., 0., 0.],
2342
+ [1., 1., 0.],
2343
+ [0., 0., 0.]])
2344
+
2345
+ modes = ['reflect', 'wrap']
2346
+
2347
+ expected = ndimage.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
2348
+ expected = ndimage.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
2349
+ xp_assert_equal(expected,
2350
+ ndimage.gaussian_filter(arr, 1, mode=modes))
2351
+
2352
+ expected = ndimage.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
2353
+ expected = ndimage.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
2354
+ xp_assert_equal(expected,
2355
+ ndimage.uniform_filter(arr, 5, mode=modes))
2356
+
2357
+ expected = ndimage.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
2358
+ expected = ndimage.maximum_filter1d(expected, size=5, axis=1,
2359
+ mode=modes[1])
2360
+ xp_assert_equal(expected,
2361
+ ndimage.maximum_filter(arr, size=5, mode=modes))
2362
+
2363
+ expected = ndimage.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
2364
+ expected = ndimage.minimum_filter1d(expected, size=5, axis=1,
2365
+ mode=modes[1])
2366
+ xp_assert_equal(expected,
2367
+ ndimage.minimum_filter(arr, size=5, mode=modes))
2368
+
2369
+
2370
+ def test_multiple_modes_prewitt(xp):
2371
+ # Test prewitt filter for multiple extrapolation modes
2372
+ arr = xp.asarray([[1., 0., 0.],
2373
+ [1., 1., 0.],
2374
+ [0., 0., 0.]])
2375
+
2376
+ expected = xp.asarray([[1., -3., 2.],
2377
+ [1., -2., 1.],
2378
+ [1., -1., 0.]])
2379
+
2380
+ modes = ['reflect', 'wrap']
2381
+
2382
+ xp_assert_equal(expected,
2383
+ ndimage.prewitt(arr, mode=modes))
2384
+
2385
+
2386
+ def test_multiple_modes_sobel(xp):
2387
+ # Test sobel filter for multiple extrapolation modes
2388
+ arr = xp.asarray([[1., 0., 0.],
2389
+ [1., 1., 0.],
2390
+ [0., 0., 0.]])
2391
+
2392
+ expected = xp.asarray([[1., -4., 3.],
2393
+ [2., -3., 1.],
2394
+ [1., -1., 0.]])
2395
+
2396
+ modes = ['reflect', 'wrap']
2397
+
2398
+ xp_assert_equal(expected,
2399
+ ndimage.sobel(arr, mode=modes))
2400
+
2401
+
2402
+ def test_multiple_modes_laplace(xp):
2403
+ # Test laplace filter for multiple extrapolation modes
2404
+ arr = xp.asarray([[1., 0., 0.],
2405
+ [1., 1., 0.],
2406
+ [0., 0., 0.]])
2407
+
2408
+ expected = xp.asarray([[-2., 2., 1.],
2409
+ [-2., -3., 2.],
2410
+ [1., 1., 0.]])
2411
+
2412
+ modes = ['reflect', 'wrap']
2413
+
2414
+ xp_assert_equal(expected,
2415
+ ndimage.laplace(arr, mode=modes))
2416
+
2417
+
2418
+ def test_multiple_modes_gaussian_laplace(xp):
2419
+ # Test gaussian_laplace filter for multiple extrapolation modes
2420
+ arr = xp.asarray([[1., 0., 0.],
2421
+ [1., 1., 0.],
2422
+ [0., 0., 0.]])
2423
+
2424
+ expected = xp.asarray([[-0.28438687, 0.01559809, 0.19773499],
2425
+ [-0.36630503, -0.20069774, 0.07483620],
2426
+ [0.15849176, 0.18495566, 0.21934094]])
2427
+
2428
+ modes = ['reflect', 'wrap']
2429
+
2430
+ assert_almost_equal(expected,
2431
+ ndimage.gaussian_laplace(arr, 1, mode=modes))
2432
+
2433
+
2434
+ def test_multiple_modes_gaussian_gradient_magnitude(xp):
2435
+ # Test gaussian_gradient_magnitude filter for multiple
2436
+ # extrapolation modes
2437
+ arr = xp.asarray([[1., 0., 0.],
2438
+ [1., 1., 0.],
2439
+ [0., 0., 0.]])
2440
+
2441
+ expected = xp.asarray([[0.04928965, 0.09745625, 0.06405368],
2442
+ [0.23056905, 0.14025305, 0.04550846],
2443
+ [0.19894369, 0.14950060, 0.06796850]])
2444
+
2445
+ modes = ['reflect', 'wrap']
2446
+
2447
+ calculated = ndimage.gaussian_gradient_magnitude(arr, 1, mode=modes)
2448
+
2449
+ assert_almost_equal(expected, calculated)
2450
+
2451
+ @skip_xp_backends("cupy", reason="https://github.com/cupy/cupy/pull/8430")
2452
+ def test_multiple_modes_uniform(xp):
2453
+ # Test uniform filter for multiple extrapolation modes
2454
+ arr = xp.asarray([[1., 0., 0.],
2455
+ [1., 1., 0.],
2456
+ [0., 0., 0.]])
2457
+
2458
+ expected = xp.asarray([[0.32, 0.40, 0.48],
2459
+ [0.20, 0.28, 0.32],
2460
+ [0.28, 0.32, 0.40]])
2461
+
2462
+ modes = ['reflect', 'wrap']
2463
+
2464
+ assert_almost_equal(expected,
2465
+ ndimage.uniform_filter(arr, 5, mode=modes))
2466
+
2467
+
2468
+ def _count_nonzero(arr):
2469
+ # XXX: a simplified count_nonzero replacement; replace once
2470
+ # https://github.com/data-apis/array-api/pull/803/ is in
2471
+
2472
+ # this assumes arr.dtype == xp.bool
2473
+ xp = array_namespace(arr)
2474
+ return xp.sum(xp.astype(arr, xp.int8))
2475
+
2476
+
2477
+ def test_gaussian_truncate(xp):
2478
+ # Test that Gaussian filters can be truncated at different widths.
2479
+ # These tests only check that the result has the expected number
2480
+ # of nonzero elements.
2481
+ arr = np.zeros((100, 100), dtype=np.float64)
2482
+ arr[50, 50] = 1
2483
+ arr = xp.asarray(arr)
2484
+ num_nonzeros_2 = _count_nonzero(ndimage.gaussian_filter(arr, 5, truncate=2) > 0)
2485
+ assert num_nonzeros_2 == 21**2
2486
+
2487
+ num_nonzeros_5 = _count_nonzero(
2488
+ ndimage.gaussian_filter(arr, 5, truncate=5) > 0
2489
+ )
2490
+ assert num_nonzeros_5 == 51**2
2491
+
2492
+ # Test truncate when sigma is a sequence.
2493
+ f = ndimage.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
2494
+ fpos = f > 0
2495
+ n0 = _count_nonzero(xp.any(fpos, axis=0))
2496
+ assert n0 == 19
2497
+ n1 = _count_nonzero(xp.any(fpos, axis=1))
2498
+ assert n1 == 5
2499
+
2500
+ # Test gaussian_filter1d.
2501
+ x = np.zeros(51)
2502
+ x[25] = 1
2503
+ x = xp.asarray(x)
2504
+ f = ndimage.gaussian_filter1d(x, sigma=2, truncate=3.5)
2505
+ n = _count_nonzero(f > 0)
2506
+ assert n == 15
2507
+
2508
+ # Test gaussian_laplace
2509
+ y = ndimage.gaussian_laplace(x, sigma=2, truncate=3.5)
2510
+ nonzero_indices = xp.nonzero(y != 0)[0]
2511
+
2512
+ n = xp.max(nonzero_indices) - xp.min(nonzero_indices) + 1
2513
+ assert n == 15
2514
+
2515
+ # Test gaussian_gradient_magnitude
2516
+ y = ndimage.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
2517
+ nonzero_indices = xp.nonzero(y != 0)[0]
2518
+ n = xp.max(nonzero_indices) - xp.min(nonzero_indices) + 1
2519
+ assert n == 15
2520
+
2521
+
2522
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8402")
2523
+ def test_gaussian_radius(xp):
2524
+ # Test that Gaussian filters with radius argument produce the same
2525
+ # results as the filters with corresponding truncate argument.
2526
+ # radius = int(truncate * sigma + 0.5)
2527
+ # Test gaussian_filter1d
2528
+ x = np.zeros(7)
2529
+ x[3] = 1
2530
+ x = xp.asarray(x)
2531
+ f1 = ndimage.gaussian_filter1d(x, sigma=2, truncate=1.5)
2532
+ f2 = ndimage.gaussian_filter1d(x, sigma=2, radius=3)
2533
+ xp_assert_equal(f1, f2)
2534
+
2535
+ # Test gaussian_filter when sigma is a number.
2536
+ a = np.zeros((9, 9))
2537
+ a[4, 4] = 1
2538
+ a = xp.asarray(a)
2539
+ f1 = ndimage.gaussian_filter(a, sigma=0.5, truncate=3.5)
2540
+ f2 = ndimage.gaussian_filter(a, sigma=0.5, radius=2)
2541
+ xp_assert_equal(f1, f2)
2542
+
2543
+ # Test gaussian_filter when sigma is a sequence.
2544
+ a = np.zeros((50, 50))
2545
+ a[25, 25] = 1
2546
+ a = xp.asarray(a)
2547
+ f1 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], truncate=3.5)
2548
+ f2 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], radius=[2, 9])
2549
+ xp_assert_equal(f1, f2)
2550
+
2551
+
2552
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8402")
2553
+ def test_gaussian_radius_invalid(xp):
2554
+ # radius must be a nonnegative integer
2555
+ with assert_raises(ValueError):
2556
+ ndimage.gaussian_filter1d(xp.zeros(8), sigma=1, radius=-1)
2557
+ with assert_raises(ValueError):
2558
+ ndimage.gaussian_filter1d(xp.zeros(8), sigma=1, radius=1.1)
2559
+
2560
+
2561
+ @uses_output_array
2562
+ class TestThreading:
2563
+ def check_func_thread(self, n, fun, args, out):
2564
+ from threading import Thread
2565
+ thrds = [Thread(target=fun, args=args, kwargs={'output': out[x, ...]})
2566
+ for x in range(n)]
2567
+ [t.start() for t in thrds]
2568
+ [t.join() for t in thrds]
2569
+
2570
+ def check_func_serial(self, n, fun, args, out):
2571
+ for i in range(n):
2572
+ fun(*args, output=out[i, ...])
2573
+
2574
+ @xfail_xp_backends("cupy",
2575
+ reason="XXX thread exception; cannot repro outside of pytest")
2576
+ def test_correlate1d(self, xp):
2577
+ d = np.random.randn(5000)
2578
+ os = np.empty((4, d.size))
2579
+ ot = np.empty_like(os)
2580
+ d = xp.asarray(d)
2581
+ os = xp.asarray(os)
2582
+ ot = xp.asarray(ot)
2583
+ k = xp.arange(5)
2584
+ self.check_func_serial(4, ndimage.correlate1d, (d, k), os)
2585
+ self.check_func_thread(4, ndimage.correlate1d, (d, k), ot)
2586
+ xp_assert_equal(os, ot)
2587
+
2588
+ @xfail_xp_backends("cupy",
2589
+ reason="XXX thread exception; cannot repro outside of pytest")
2590
+ def test_correlate(self, xp):
2591
+ d = xp.asarray(np.random.randn(500, 500))
2592
+ k = xp.asarray(np.random.randn(10, 10))
2593
+ os = xp.empty([4] + list(d.shape))
2594
+ ot = xp.empty_like(os)
2595
+ self.check_func_serial(4, ndimage.correlate, (d, k), os)
2596
+ self.check_func_thread(4, ndimage.correlate, (d, k), ot)
2597
+ xp_assert_equal(os, ot)
2598
+
2599
+ @xfail_xp_backends("cupy",
2600
+ reason="XXX thread exception; cannot repro outside of pytest")
2601
+ def test_median_filter(self, xp):
2602
+ d = xp.asarray(np.random.randn(500, 500))
2603
+ os = xp.empty([4] + list(d.shape))
2604
+ ot = xp.empty_like(os)
2605
+ self.check_func_serial(4, ndimage.median_filter, (d, 3), os)
2606
+ self.check_func_thread(4, ndimage.median_filter, (d, 3), ot)
2607
+ xp_assert_equal(os, ot)
2608
+
2609
+ @xfail_xp_backends("cupy",
2610
+ reason="XXX thread exception; cannot repro outside of pytest")
2611
+ def test_uniform_filter1d(self, xp):
2612
+ d = np.random.randn(5000)
2613
+ os = np.empty((4, d.size))
2614
+ ot = np.empty_like(os)
2615
+ d = xp.asarray(d)
2616
+ os = xp.asarray(os)
2617
+ ot = xp.asarray(ot)
2618
+ self.check_func_serial(4, ndimage.uniform_filter1d, (d, 5), os)
2619
+ self.check_func_thread(4, ndimage.uniform_filter1d, (d, 5), ot)
2620
+ xp_assert_equal(os, ot)
2621
+
2622
+ @xfail_xp_backends("cupy",
2623
+ reason="XXX thread exception; cannot repro outside of pytest")
2624
+ def test_minmax_filter(self, xp):
2625
+ d = xp.asarray(np.random.randn(500, 500))
2626
+ os = xp.empty([4] + list(d.shape))
2627
+ ot = xp.empty_like(os)
2628
+ self.check_func_serial(4, ndimage.maximum_filter, (d, 3), os)
2629
+ self.check_func_thread(4, ndimage.maximum_filter, (d, 3), ot)
2630
+ xp_assert_equal(os, ot)
2631
+ self.check_func_serial(4, ndimage.minimum_filter, (d, 3), os)
2632
+ self.check_func_thread(4, ndimage.minimum_filter, (d, 3), ot)
2633
+ xp_assert_equal(os, ot)
2634
+
2635
+
2636
+ def test_minmaximum_filter1d(xp):
2637
+ # Regression gh-3898
2638
+ in_ = xp.arange(10)
2639
+ out = ndimage.minimum_filter1d(in_, 1)
2640
+ xp_assert_equal(in_, out)
2641
+ out = ndimage.maximum_filter1d(in_, 1)
2642
+ xp_assert_equal(in_, out)
2643
+ # Test reflect
2644
+ out = ndimage.minimum_filter1d(in_, 5, mode='reflect')
2645
+ xp_assert_equal(xp.asarray([0, 0, 0, 1, 2, 3, 4, 5, 6, 7]), out)
2646
+ out = ndimage.maximum_filter1d(in_, 5, mode='reflect')
2647
+ xp_assert_equal(xp.asarray([2, 3, 4, 5, 6, 7, 8, 9, 9, 9]), out)
2648
+ # Test constant
2649
+ out = ndimage.minimum_filter1d(in_, 5, mode='constant', cval=-1)
2650
+ xp_assert_equal(xp.asarray([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1]), out)
2651
+ out = ndimage.maximum_filter1d(in_, 5, mode='constant', cval=10)
2652
+ xp_assert_equal(xp.asarray([10, 10, 4, 5, 6, 7, 8, 9, 10, 10]), out)
2653
+ # Test nearest
2654
+ out = ndimage.minimum_filter1d(in_, 5, mode='nearest')
2655
+ xp_assert_equal(xp.asarray([0, 0, 0, 1, 2, 3, 4, 5, 6, 7]), out)
2656
+ out = ndimage.maximum_filter1d(in_, 5, mode='nearest')
2657
+ xp_assert_equal(xp.asarray([2, 3, 4, 5, 6, 7, 8, 9, 9, 9]), out)
2658
+ # Test wrap
2659
+ out = ndimage.minimum_filter1d(in_, 5, mode='wrap')
2660
+ xp_assert_equal(xp.asarray([0, 0, 0, 1, 2, 3, 4, 5, 0, 0]), out)
2661
+ out = ndimage.maximum_filter1d(in_, 5, mode='wrap')
2662
+ xp_assert_equal(xp.asarray([9, 9, 4, 5, 6, 7, 8, 9, 9, 9]), out)
2663
+
2664
+
2665
+ @xfail_xp_backends("cupy", reason="cupy/cupy#8401")
2666
+ def test_uniform_filter1d_roundoff_errors(xp):
2667
+ # gh-6930
2668
+ in_ = np.repeat([0, 1, 0], [9, 9, 9])
2669
+ in_ = xp.asarray(in_)
2670
+
2671
+ for filter_size in range(3, 10):
2672
+ out = ndimage.uniform_filter1d(in_, filter_size)
2673
+ xp_assert_equal(xp.sum(out), xp.asarray(10 - filter_size), check_0d=False)
2674
+
2675
+
2676
+ def test_footprint_all_zeros(xp):
2677
+ # regression test for gh-6876: footprint of all zeros segfaults
2678
+ arr = xp.asarray(np.random.randint(0, 100, (100, 100)))
2679
+ kernel = xp.asarray(np.zeros((3, 3), dtype=bool))
2680
+ with assert_raises(ValueError):
2681
+ ndimage.maximum_filter(arr, footprint=kernel)
2682
+
2683
+
2684
+ @xfail_xp_backends("cupy", reason="does not raise")
2685
+ @skip_xp_backends("array_api_strict", reason="no float16")
2686
+ @skip_xp_backends("dask.array", reason="no float16")
2687
+ def test_gaussian_filter_float16(xp):
2688
+ # gh-8207
2689
+ data = xp.asarray([1], dtype=xp.float16)
2690
+ sigma = 1.0
2691
+ with assert_raises(RuntimeError):
2692
+ ndimage.gaussian_filter(data, sigma)
2693
+
2694
+
2695
+ @xfail_xp_backends("cupy", reason="does not raise")
2696
+ def test_rank_filter_noninteger_rank(xp):
2697
+ # regression test for issue 9388: ValueError for
2698
+ # non integer rank when performing rank_filter
2699
+ arr = xp.asarray(np.random.random((10, 20, 30)))
2700
+ footprint = xp.asarray(np.ones((1, 1, 10), dtype=bool))
2701
+ assert_raises(TypeError, ndimage.rank_filter, arr, 0.5,
2702
+ footprint=footprint)
2703
+
2704
+
2705
+ def test_size_footprint_both_set(xp):
2706
+ # test for input validation, expect user warning when
2707
+ # size and footprint is set
2708
+ with suppress_warnings() as sup:
2709
+ sup.filter(UserWarning,
2710
+ "ignoring size because footprint is set")
2711
+ arr = xp.asarray(np.random.random((10, 20, 30)))
2712
+ footprint = xp.asarray(np.ones((1, 1, 10), dtype=bool))
2713
+ ndimage.rank_filter(
2714
+ arr, 5, size=2, footprint=footprint
2715
+ )
2716
+
2717
+
2718
+ # NumPy-only because 'byteorder is numpy-specific'
2719
+ def test_byte_order_median():
2720
+ """Regression test for #413: median_filter does not handle bytes orders."""
2721
+ a = np.arange(9, dtype='<f4').reshape(3, 3)
2722
+ ref = ndimage.median_filter(a, (3, 3))
2723
+ b = np.arange(9, dtype='>f4').reshape(3, 3)
2724
+ t = ndimage.median_filter(b, (3, 3))
2725
+ assert_array_almost_equal(ref, t)
2726
+
2727
+
2728
+ @pytest.mark.parametrize("filter_size, exp", [
2729
+ # expected results from SciPy 1.14.1
2730
+ (20, 0.25754605),
2731
+ (10,
2732
+ np.array([0.25266576, 0.27894721, 0.30445588, 0.30958242, 0.30445588, 0.30445588,
2733
+ 0.27894721, 0.30445588, 0.27894721, 0.30445588, 0.30445588, 0.25754605,
2734
+ 0.22183391, 0.18015438, 0.22183391, 0.25266576, 0.25754605, 0.25266576,
2735
+ 0.25266576, 0.25266576]),
2736
+ ),
2737
+ # a median filter size of 1 is just an identity operation
2738
+ (1,
2739
+ np.array([0.30958242, 0.17555138, 0.34343917, 0.27894721, 0.03767094, 0.39024894,
2740
+ 0.30445588, 0.31442572, 0.05124545, 0.18015438, 0.14831921, 0.370706,
2741
+ 0.25754605, 0.32910465, 0.17736568, 0.09089549, 0.22183391, 0.0255269,
2742
+ 0.33105247, 0.25266576]),
2743
+ ),
2744
+ # testing odd-sized filters >1 makes sense too
2745
+ (3,
2746
+ np.array([0.25266576, 0.30958242, 0.27894721, 0.27894721, 0.27894721, 0.30445588,
2747
+ 0.31442572, 0.30445588, 0.18015438, 0.14831921, 0.18015438, 0.25754605,
2748
+ 0.32910465, 0.25754605, 0.17736568, 0.17736568, 0.09089549, 0.22183391,
2749
+ 0.25266576, 0.30958242]),
2750
+ ),
2751
+ (15,
2752
+ np.array([0.27894721, 0.25266576, 0.25266576, 0.25266576, 0.27894721, 0.27894721,
2753
+ 0.27894721, 0.27894721, 0.25754605, 0.25754605, 0.22183391, 0.22183391,
2754
+ 0.25266576, 0.25266576, 0.22183391, 0.22183391, 0.25266576, 0.25266576,
2755
+ 0.25754605, 0.25754605]),
2756
+ ),
2757
+ ])
2758
+ def test_gh_22250(filter_size, exp):
2759
+ rng = np.random.default_rng(42)
2760
+ image = np.zeros((20,))
2761
+ noisy_image = image + 0.4 * rng.random(image.shape)
2762
+ result = ndimage.median_filter(noisy_image, size=filter_size, mode='wrap')
2763
+ assert_allclose(result, exp)
2764
+
2765
+
2766
+ def test_gh_22333():
2767
+ x = np.array([272, 58, 67, 163, 463, 608, 87, 108, 1378])
2768
+ expected = [58, 67, 87, 108, 163, 108, 108, 108, 87]
2769
+ actual = ndimage.median_filter(x, size=9, mode='constant')
2770
+ assert_array_equal(actual, expected)
2771
+
2772
+
2773
+ @pytest.mark.filterwarnings("ignore:The given NumPy array is not writable:UserWarning")
2774
+ @pytest.mark.skip_xp_backends(cpu_only=True, exceptions=['cupy'])
2775
+ class TestVectorizedFilter:
2776
+ @pytest.mark.parametrize("axes, size",
2777
+ [(None, (3, 4, 5)), ((0, 2), (3, 4)), ((-1,), (5,))])
2778
+ @pytest.mark.parametrize("origin", [-1, 0, 1])
2779
+ @pytest.mark.parametrize("mode",
2780
+ ['reflect', 'nearest', 'mirror', 'wrap', 'constant'])
2781
+ @pytest.mark.parametrize("use_output", [False, True])
2782
+ def test_against_generic_filter(self, axes, size, origin, mode, use_output, xp):
2783
+ rng = np.random.default_rng(435982456983456987356)
2784
+
2785
+ if use_output and (is_dask(xp) or is_jax(xp)):
2786
+ pytest.skip("Requires mutable arrays.")
2787
+
2788
+ input = rng.random(size=(11, 12, 13))
2789
+ input_copy = input.copy() # check that it is not modified
2790
+ output = xp.zeros(input.shape) if use_output else None
2791
+
2792
+ kwargs = dict(axes=axes, size=size, origin=origin, mode=mode)
2793
+ ref = ndimage.generic_filter(input, np.mean, **kwargs)
2794
+ kwargs['output'] = output
2795
+ res = ndimage.vectorized_filter(xp.asarray(input.tolist()),
2796
+ xp.mean, **kwargs)
2797
+ xp_assert_close(res, xp.asarray(ref.tolist()), atol=1e-15)
2798
+ if use_output:
2799
+ xp_assert_equal(output, res)
2800
+
2801
+ if not (is_array_api_strict(xp) or is_dask(xp)):
2802
+ # currently requires support for [..., mask] indexing
2803
+ kwargs.pop('size')
2804
+ kwargs.pop('output')
2805
+ kwargs['footprint'] = rng.random(size=size or input.shape) > 0.5
2806
+ ref = ndimage.generic_filter(input, np.mean, **kwargs)
2807
+ kwargs['footprint'] = xp.asarray(kwargs['footprint'])
2808
+ kwargs['output'] = output
2809
+ res = ndimage.vectorized_filter(xp.asarray(input.tolist()),
2810
+ xp.mean, **kwargs)
2811
+ xp_assert_close(res, xp.asarray(ref.tolist()), atol=1e-15)
2812
+ if use_output:
2813
+ xp_assert_equal(output, res)
2814
+
2815
+ xp_assert_equal(xp.asarray(input), xp.asarray(input_copy))
2816
+
2817
+ @pytest.mark.parametrize("dtype",
2818
+ ["uint8", "uint16", "uint32", "uint64",
2819
+ "int8", "int16", "int32", "int64",
2820
+ "float32", "float64", "complex64", "complex128"])
2821
+ @pytest.mark.parametrize("batch_memory", [1, 16*3, np.inf])
2822
+ @pytest.mark.parametrize("use_footprint", [False, True])
2823
+ def test_dtype_batch_memory(self, dtype, batch_memory, use_footprint, xp):
2824
+ rng = np.random.default_rng(435982456983456987356)
2825
+ w = 3
2826
+
2827
+ if is_jax(xp) and not (batch_memory == 1):
2828
+ pytest.skip("Requires mutable array.")
2829
+ if is_torch(xp) and dtype in {'uint16', 'uint32', 'uint64'}:
2830
+ pytest.skip("Needs uint support.")
2831
+
2832
+ dtype = getattr(xp, dtype)
2833
+
2834
+ if use_footprint:
2835
+ if (is_dask(xp) or is_array_api_strict(xp)):
2836
+ pytest.skip("Requires [..., mask] indexing.")
2837
+ footprint = xp.asarray([True, False, True])
2838
+ kwargs = dict(footprint=footprint, batch_memory=batch_memory)
2839
+ else:
2840
+ footprint = xp.asarray([True, True, True])
2841
+ kwargs = dict(size=w, batch_memory=batch_memory)
2842
+
2843
+ # The intent here is to exercise all the code paths involved in `batch_memory`
2844
+ # and `output` handling. To test the limited-memory case, `batch_memory=16*3`
2845
+ # is chosen to be just large enough for a *single* window of `complex128` to
2846
+ # fit, and `n` is large enough that a whole sliding window view of `uint8`s
2847
+ # *won't* fit.
2848
+ n = 16*3 + 1
2849
+ input = rng.integers(0, 42, size=(n,))
2850
+ input = input + input*1j if xp.isdtype(dtype, 'complex floating') else input
2851
+ input_padded = xp.asarray(np.pad(input, [(1, 1)], mode='symmetric'),
2852
+ dtype=dtype)
2853
+ input = xp.asarray(input, dtype=dtype)
2854
+
2855
+ ref = [xp.sum(input_padded[i: i + w][footprint]) for i in range(n)]
2856
+ sum_dtype = xp.sum(input_padded).dtype
2857
+
2858
+ message = "`batch_memory` is insufficient for minimum chunk size."
2859
+ context = (pytest.raises(ValueError, match=message)
2860
+ if batch_memory == 1 else contextlib.nullcontext())
2861
+ with context:
2862
+ res = ndimage.vectorized_filter(input, xp.sum, **kwargs)
2863
+ xp_assert_close(res, xp.astype(xp.stack(ref), sum_dtype))
2864
+ assert res.dtype == sum_dtype
2865
+
2866
+ output = xp.empty_like(input)
2867
+ res = ndimage.vectorized_filter(input, xp.sum, output=output, **kwargs)
2868
+ xp_assert_close(res, xp.astype(xp.stack(ref), dtype))
2869
+ assert res.dtype == dtype
2870
+
2871
+ def test_mode_valid(self, xp):
2872
+ rng = np.random.default_rng(435982456983456987356)
2873
+ input = rng.random(size=(10, 11))
2874
+ input_xp = xp.asarray(input)
2875
+ input_xp_copy = xp_copy(input_xp) # check that it is not modified
2876
+ size = (3, 5)
2877
+
2878
+ res = ndimage.vectorized_filter(input_xp, xp.mean, size=size, mode='valid')
2879
+
2880
+ view = np.lib.stride_tricks.sliding_window_view(input, size)
2881
+ ref = np.mean(view, axis=(-2, -1))
2882
+
2883
+ xp_assert_close(res, xp.asarray(ref))
2884
+ assert res.shape == tuple(input.shape - np.asarray(size) + 1)
2885
+ xp_assert_equal(input_xp, input_xp_copy)
2886
+
2887
+ def test_input_validation(self, xp):
2888
+ input = xp.ones((10, 10))
2889
+ function = xp.mean
2890
+ size = 2
2891
+ footprint = xp.ones((2, 2))
2892
+
2893
+ message = "`function` must be a callable."
2894
+ with pytest.raises(ValueError, match=message):
2895
+ ndimage.vectorized_filter(input, "eggplant", size=size)
2896
+
2897
+ message = "Either `size` or `footprint` must be provided."
2898
+ with pytest.raises(ValueError, match=message):
2899
+ ndimage.vectorized_filter(input, function)
2900
+
2901
+ message = "Either `size` or `footprint` may be provided, not both."
2902
+ with pytest.raises(ValueError, match=message):
2903
+ ndimage.vectorized_filter(input, function, size=size, footprint=footprint)
2904
+
2905
+ message = "All elements of `size` must be positive integers."
2906
+ with pytest.raises(ValueError, match=message):
2907
+ ndimage.vectorized_filter(input, function, size=(1, -1))
2908
+ with pytest.raises(ValueError, match=message):
2909
+ ndimage.vectorized_filter(input, function, size=0)
2910
+
2911
+ message = "The length of `axes` may not exceed "
2912
+ axes = (0, 1, 2)
2913
+ with pytest.raises(ValueError, match=message):
2914
+ ndimage.vectorized_filter(input, function, size=(1, 2), axes=axes)
2915
+ with pytest.raises(ValueError, match=message):
2916
+ ndimage.vectorized_filter(input, function, footprint=xp.ones((2, 2)),
2917
+ axes=axes)
2918
+
2919
+ message = "`axes` must be compatible with the dimensionality..."
2920
+ with pytest.raises(ValueError, match=message):
2921
+ ndimage.vectorized_filter(input, function, size=(1,))
2922
+ with pytest.raises(ValueError, match=message):
2923
+ ndimage.vectorized_filter(input, function, size=(2,), axes=(0,1))
2924
+
2925
+ message = "All elements of `origin` must be integers"
2926
+ with pytest.raises(ValueError, match=message):
2927
+ ndimage.vectorized_filter(input, function, size=size, origin=(1, 1.5))
2928
+
2929
+ message = "`origin` must be an integer or tuple of integers with length..."
2930
+ with pytest.raises(ValueError, match=message):
2931
+ ndimage.vectorized_filter(input, function, size=size, origin=(1, 2, 3))
2932
+
2933
+ message = "`mode` must be one of..."
2934
+ with pytest.raises(ValueError, match=message):
2935
+ ndimage.vectorized_filter(input, function, size=size, mode='coconut')
2936
+
2937
+ message = "`mode='valid'` is incompatible with use of `origin`."
2938
+ with pytest.raises(ValueError, match=message):
2939
+ ndimage.vectorized_filter(input, function, size=size,
2940
+ mode='valid', origin=1)
2941
+
2942
+ message = "Use of `cval` is compatible only with `mode='constant'`."
2943
+ with pytest.raises(ValueError, match=message):
2944
+ ndimage.vectorized_filter(input, function, size=size, mode='valid', cval=1)
2945
+
2946
+ other_messages = "|Unsupported|The array_api_strict|new|Value 'a duck'"
2947
+ message = "`cval` must include only numbers." + other_messages
2948
+ with pytest.raises((ValueError, TypeError), match=message):
2949
+ ndimage.vectorized_filter(input, function, size=size,
2950
+ mode='constant', cval='a duck')
2951
+
2952
+ message = "`batch_memory` must be positive number." + other_messages
2953
+ with pytest.raises(ValueError, match=message):
2954
+ ndimage.vectorized_filter(input, function, size=size, batch_memory=0)
2955
+ with pytest.raises(ValueError, match=message):
2956
+ ndimage.vectorized_filter(input, function, size=size, batch_memory=(1, 2))
2957
+ with pytest.raises((ValueError, TypeError), match=message):
2958
+ ndimage.vectorized_filter(input, function, size=size, batch_memory="a duck")
2959
+
2960
+ @pytest.mark.parametrize('shape', [(0,), (1, 0), (0, 1, 0)])
2961
+ def test_zero_size(self, shape, xp):
2962
+ input = xp.empty(shape)
2963
+ res = ndimage.vectorized_filter(input, xp.mean, size=1)
2964
+ xp_assert_equal(res, input)
2965
+
2966
+ @pytest.mark.filterwarnings("ignore:Mean of empty slice.:RuntimeWarning")
2967
+ def test_edge_cases(self, xp):
2968
+ rng = np.random.default_rng(4835982345234982)
2969
+ function = xp.mean
2970
+
2971
+ # 0-D input
2972
+ input = xp.asarray(1.)
2973
+ res = ndimage.vectorized_filter(input, function, size=())
2974
+ xp_assert_equal(res, xp.asarray(function(input, axis=())))
2975
+
2976
+ if not (is_array_api_strict(xp) or is_dask(xp)):
2977
+ res = ndimage.vectorized_filter(input, function, footprint=True)
2978
+ xp_assert_equal(res, xp.asarray(function(input[True], axis=())))
2979
+
2980
+ res = ndimage.vectorized_filter(input, function, footprint=False)
2981
+ xp_assert_equal(res, xp.asarray(function(input[False], axis=())))
2982
+
2983
+ # 1x1 window
2984
+ input = xp.asarray(rng.random((5, 5)))
2985
+ res = ndimage.vectorized_filter(input, function, size=1)
2986
+ xp_assert_equal(res, input)
2987
+
2988
+ # window is bigger than input shouldn't be a problem
2989
+ res = ndimage.vectorized_filter(input, function, size=21)
2990
+ ref = ndimage.vectorized_filter(input, function, size=21)
2991
+ xp_assert_close(res, ref)
2992
+
2993
+ def test_gh23046_feature(self, xp):
2994
+ # The intent of gh-23046 was to always allow `size` to be a scalar.
2995
+ rng = np.random.default_rng(45982734597824)
2996
+ img = xp.asarray(rng.random((5, 5)))
2997
+
2998
+ ref = ndimage.vectorized_filter(img, xp.mean, size=2)
2999
+ res = ndimage.vectorized_filter(img, xp.mean, size=2, axes=(0, 1))
3000
+ xp_assert_close(res, ref)
3001
+
3002
+ ref = ndimage.vectorized_filter(img, xp.mean, size=(2,), axes=(0,))
3003
+ res = ndimage.vectorized_filter(img, xp.mean, size=2, axes=0)
3004
+ xp_assert_close(res, ref)
3005
+
3006
+ def test_gh23046_fix(self, xp):
3007
+ # While investigating the feasibility of gh-23046, I noticed a bug when the
3008
+ # length of an `axes` tuple equals the dimensionality of the image.
3009
+ rng = np.random.default_rng(45982734597824)
3010
+ img = xp.asarray(rng.random((5, 5)))
3011
+ size = (2, 3)
3012
+ ref = ndimage.vectorized_filter(img.T, xp.mean, size=size).T
3013
+ res = ndimage.vectorized_filter(img, xp.mean, size=size, axes=(1, 0))
3014
+ xp_assert_close(res, ref)
3015
+
3016
+ ref = ndimage.vectorized_filter(img, xp.mean, size=size, mode='constant')
3017
+ res = ndimage.vectorized_filter(img, xp.mean, size=size[::-1], axes=(1, 0),
3018
+ mode='constant')
3019
+ xp_assert_close(res, ref)
3020
+
3021
+
3022
+
3023
+ @given(x=npst.arrays(dtype=np.float64,
3024
+ shape=st.integers(min_value=1, max_value=1000)),
3025
+ size=st.integers(min_value=1, max_value=50),
3026
+ mode=st.sampled_from(["constant", "mirror", "wrap", "reflect",
3027
+ "nearest"]),
3028
+ )
3029
+ def test_gh_22586_crash_property(x, size, mode):
3030
+ # property-based test for median_filter resilience to hard crashing
3031
+ ndimage.median_filter(x, size=size, mode=mode)
3032
+
3033
+
3034
+ @pytest.mark.parametrize('samples, mode, size, expected', [
3035
+ ([1, 2], "reflect", 5, [2, 1]),
3036
+ ([2], "reflect", 5, [2]), # original failure from gh-23075
3037
+ ([2], "nearest", 5, [2]),
3038
+ ([2], "wrap", 5, [2]),
3039
+ ([2], "mirror", 5, [2]),
3040
+ ([2], "constant", 5, [0]),
3041
+ ([2], "reflect", 1, [2]),
3042
+ ([2], "nearest", 1, [2]),
3043
+ ([2], "wrap", 1, [2]),
3044
+ ([2], "mirror", 1, [2]),
3045
+ ([2], "constant", 1, [2]),
3046
+ ([2], "reflect", 100, [2]),
3047
+ ([2], "nearest", 100, [2]),
3048
+ ([2], "wrap", 100, [2]),
3049
+ ([2], "mirror", 100, [2]),
3050
+ ([2], "constant", 100, [0]),
3051
+ ])
3052
+ def test_gh_23075(samples, mode, size, expected):
3053
+ # results verified against SciPy 1.14.1, before the median_filter
3054
+ # overhaul
3055
+ sample_array = np.asarray(samples, dtype=np.float32)
3056
+ expected = np.asarray(expected, dtype=np.float32)
3057
+ filtered_samples = ndimage.median_filter(sample_array, size=size, mode=mode)
3058
+ xp_assert_close(filtered_samples, expected, check_shape=True, check_dtype=True)
3059
+
3060
+
3061
+ @pytest.mark.parametrize('samples, size, cval, expected', [
3062
+ ([2], 5, 17.7, [17.7]),
3063
+ ([2], 1, 0, [2]),
3064
+ ([2], 100, 1.4, [1.4]),
3065
+ ([9], 137, -7807.7, [-7807.7]),
3066
+ ])
3067
+ def test_gh_23075_constant(samples, size, cval, expected):
3068
+ # results verified against SciPy 1.14.1, before the median_filter
3069
+ # overhaul
3070
+ sample_array = np.asarray(samples, dtype=np.single)
3071
+ expected = np.asarray(expected, dtype=np.single)
3072
+ filtered_samples = ndimage.median_filter(sample_array,
3073
+ size=size,
3074
+ mode="constant",
3075
+ cval=cval)
3076
+ xp_assert_close(filtered_samples, expected, check_shape=True, check_dtype=True)
3077
+
3078
+
3079
+ def test_median_filter_lim2():
3080
+ sample_array = np.ones(8)
3081
+ expected = np.ones(8)
3082
+ filtered_samples = ndimage.median_filter(sample_array, size=19, mode="reflect")
3083
+ xp_assert_close(filtered_samples, expected, check_shape=True, check_dtype=True)