passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,911 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-singular
|
|
2
|
+
r"""
|
|
3
|
+
Derivations of function fields: extension
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2010 William Stein <wstein@gmail.com>
|
|
8
|
+
# 2011-2017 Julian Rüth <julian.rueth@gmail.com>
|
|
9
|
+
# 2017 Alyson Deines
|
|
10
|
+
# 2017-2019 Kwankyu Lee
|
|
11
|
+
# 2018-2019 Travis Scrimshaw
|
|
12
|
+
# 2019 Brent Baccala
|
|
13
|
+
# 2022 Xavier Caruso
|
|
14
|
+
# 2022 Frédéric Chapoton
|
|
15
|
+
#
|
|
16
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
17
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
18
|
+
# the License, or (at your option) any later version.
|
|
19
|
+
# https://www.gnu.org/licenses/
|
|
20
|
+
# ****************************************************************************
|
|
21
|
+
|
|
22
|
+
from sage.arith.misc import binomial
|
|
23
|
+
from sage.categories.homset import Hom
|
|
24
|
+
from sage.categories.map import Map
|
|
25
|
+
from sage.categories.sets_cat import Sets
|
|
26
|
+
from sage.rings.derivation import RingDerivationWithoutTwist
|
|
27
|
+
|
|
28
|
+
from .derivations import FunctionFieldDerivation
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class FunctionFieldDerivation_separable(FunctionFieldDerivation):
|
|
32
|
+
"""
|
|
33
|
+
Derivations of separable extensions.
|
|
34
|
+
|
|
35
|
+
EXAMPLES::
|
|
36
|
+
|
|
37
|
+
sage: K.<x> = FunctionField(QQ)
|
|
38
|
+
sage: R.<y> = K[]
|
|
39
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
40
|
+
sage: L.derivation()
|
|
41
|
+
d/dx
|
|
42
|
+
"""
|
|
43
|
+
def __init__(self, parent, d):
|
|
44
|
+
"""
|
|
45
|
+
Initialize a derivation.
|
|
46
|
+
|
|
47
|
+
INPUT:
|
|
48
|
+
|
|
49
|
+
- ``parent`` -- the parent of this derivation
|
|
50
|
+
|
|
51
|
+
- ``d`` -- a variable name or a derivation over
|
|
52
|
+
the base field (or something capable to create
|
|
53
|
+
such a derivation)
|
|
54
|
+
|
|
55
|
+
EXAMPLES::
|
|
56
|
+
|
|
57
|
+
sage: K.<x> = FunctionField(QQ)
|
|
58
|
+
sage: R.<y> = K[]
|
|
59
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
60
|
+
sage: d = L.derivation()
|
|
61
|
+
sage: TestSuite(d).run()
|
|
62
|
+
|
|
63
|
+
sage: L.derivation(y) # d/dy
|
|
64
|
+
2*y*d/dx
|
|
65
|
+
|
|
66
|
+
sage: dK = K.derivation([x]); dK
|
|
67
|
+
x*d/dx
|
|
68
|
+
sage: L.derivation(dK)
|
|
69
|
+
x*d/dx
|
|
70
|
+
"""
|
|
71
|
+
FunctionFieldDerivation.__init__(self, parent)
|
|
72
|
+
L = parent.domain()
|
|
73
|
+
C = parent.codomain()
|
|
74
|
+
dm = parent._defining_morphism
|
|
75
|
+
u = L.gen()
|
|
76
|
+
if d == L.gen():
|
|
77
|
+
d = parent._base_derivation(None)
|
|
78
|
+
f = L.polynomial().change_ring(L)
|
|
79
|
+
coeff = -f.derivative()(u) / f.map_coefficients(d)(u)
|
|
80
|
+
if dm is not None:
|
|
81
|
+
coeff = dm(coeff)
|
|
82
|
+
self._d = parent._base_derivation([coeff])
|
|
83
|
+
self._gen_image = C.one()
|
|
84
|
+
else:
|
|
85
|
+
if isinstance(d, RingDerivationWithoutTwist) and d.domain() is L.base_ring():
|
|
86
|
+
self._d = d
|
|
87
|
+
else:
|
|
88
|
+
self._d = d = parent._base_derivation(d)
|
|
89
|
+
f = L.polynomial()
|
|
90
|
+
if dm is None:
|
|
91
|
+
denom = f.derivative()(u)
|
|
92
|
+
else:
|
|
93
|
+
u = dm(u)
|
|
94
|
+
denom = f.derivative().map_coefficients(dm, new_base_ring=C)(u)
|
|
95
|
+
num = f.map_coefficients(d, new_base_ring=C)(u)
|
|
96
|
+
self._gen_image = -num / denom
|
|
97
|
+
|
|
98
|
+
def _call_(self, x):
|
|
99
|
+
r"""
|
|
100
|
+
Evaluate the derivation on ``x``.
|
|
101
|
+
|
|
102
|
+
INPUT:
|
|
103
|
+
|
|
104
|
+
- ``x`` -- element of the function field
|
|
105
|
+
|
|
106
|
+
EXAMPLES::
|
|
107
|
+
|
|
108
|
+
sage: K.<x> = FunctionField(QQ)
|
|
109
|
+
sage: R.<y> = K[]
|
|
110
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
111
|
+
sage: d = L.derivation()
|
|
112
|
+
sage: d(x) # indirect doctest
|
|
113
|
+
1
|
|
114
|
+
sage: d(y)
|
|
115
|
+
1/2/x*y
|
|
116
|
+
sage: d(y^2)
|
|
117
|
+
1
|
|
118
|
+
"""
|
|
119
|
+
parent = self.parent()
|
|
120
|
+
if x.is_zero():
|
|
121
|
+
return parent.codomain().zero()
|
|
122
|
+
x = x._x
|
|
123
|
+
y = parent.domain().gen()
|
|
124
|
+
dm = parent._defining_morphism
|
|
125
|
+
tmp1 = x.map_coefficients(self._d, new_base_ring=parent.codomain())
|
|
126
|
+
tmp2 = x.derivative()(y)
|
|
127
|
+
if dm is not None:
|
|
128
|
+
tmp2 = dm(tmp2)
|
|
129
|
+
y = dm(y)
|
|
130
|
+
return tmp1(y) + tmp2 * self._gen_image
|
|
131
|
+
|
|
132
|
+
def _add_(self, other):
|
|
133
|
+
"""
|
|
134
|
+
Return the sum of this derivation and ``other``.
|
|
135
|
+
|
|
136
|
+
EXAMPLES::
|
|
137
|
+
|
|
138
|
+
sage: K.<x> = FunctionField(QQ)
|
|
139
|
+
sage: R.<y> = K[]
|
|
140
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
141
|
+
sage: d = L.derivation()
|
|
142
|
+
sage: d
|
|
143
|
+
d/dx
|
|
144
|
+
sage: d + d
|
|
145
|
+
2*d/dx
|
|
146
|
+
"""
|
|
147
|
+
return type(self)(self.parent(), self._d + other._d)
|
|
148
|
+
|
|
149
|
+
def _lmul_(self, factor):
|
|
150
|
+
"""
|
|
151
|
+
Return the product of this derivation by the scalar ``factor``.
|
|
152
|
+
|
|
153
|
+
EXAMPLES::
|
|
154
|
+
|
|
155
|
+
sage: K.<x> = FunctionField(QQ)
|
|
156
|
+
sage: R.<y> = K[]
|
|
157
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
158
|
+
sage: d = L.derivation()
|
|
159
|
+
sage: d
|
|
160
|
+
d/dx
|
|
161
|
+
sage: y * d
|
|
162
|
+
y*d/dx
|
|
163
|
+
"""
|
|
164
|
+
return type(self)(self.parent(), factor * self._d)
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class FunctionFieldDerivation_inseparable(FunctionFieldDerivation):
|
|
168
|
+
def __init__(self, parent, u=None):
|
|
169
|
+
r"""
|
|
170
|
+
Initialize this derivation.
|
|
171
|
+
|
|
172
|
+
INPUT:
|
|
173
|
+
|
|
174
|
+
- ``parent`` -- the parent of this derivation
|
|
175
|
+
|
|
176
|
+
- ``u`` -- a parameter describing the derivation
|
|
177
|
+
|
|
178
|
+
EXAMPLES::
|
|
179
|
+
|
|
180
|
+
sage: K.<x> = FunctionField(GF(2))
|
|
181
|
+
sage: R.<y> = K[]
|
|
182
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
183
|
+
sage: d = L.derivation()
|
|
184
|
+
|
|
185
|
+
This also works for iterated non-monic extensions::
|
|
186
|
+
|
|
187
|
+
sage: K.<x> = FunctionField(GF(2))
|
|
188
|
+
sage: R.<y> = K[]
|
|
189
|
+
sage: L.<y> = K.extension(y^2 - 1/x)
|
|
190
|
+
sage: R.<z> = L[]
|
|
191
|
+
sage: M.<z> = L.extension(z^2*y - x^3)
|
|
192
|
+
sage: M.derivation()
|
|
193
|
+
d/dz
|
|
194
|
+
|
|
195
|
+
We can also create a multiple of the canonical derivation::
|
|
196
|
+
|
|
197
|
+
sage: M.derivation([x])
|
|
198
|
+
x*d/dz
|
|
199
|
+
"""
|
|
200
|
+
FunctionFieldDerivation.__init__(self, parent)
|
|
201
|
+
if u is None:
|
|
202
|
+
self._u = parent.codomain().one()
|
|
203
|
+
elif u == 0 or isinstance(u, (list, tuple)):
|
|
204
|
+
if u == 0 or len(u) == 0:
|
|
205
|
+
self._u = parent.codomain().zero()
|
|
206
|
+
elif len(u) == 1:
|
|
207
|
+
self._u = parent.codomain()(u[0])
|
|
208
|
+
else:
|
|
209
|
+
raise ValueError("the length does not match")
|
|
210
|
+
else:
|
|
211
|
+
raise ValueError("you must pass in either a name of a variable or a list of coefficients")
|
|
212
|
+
|
|
213
|
+
def _call_(self, x):
|
|
214
|
+
r"""
|
|
215
|
+
Evaluate the derivation on ``x``.
|
|
216
|
+
|
|
217
|
+
INPUT:
|
|
218
|
+
|
|
219
|
+
- ``x`` -- an element of the function field
|
|
220
|
+
|
|
221
|
+
EXAMPLES::
|
|
222
|
+
|
|
223
|
+
sage: K.<x> = FunctionField(GF(2))
|
|
224
|
+
sage: R.<y> = K[]
|
|
225
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
226
|
+
sage: d = L.derivation()
|
|
227
|
+
sage: d(x) # indirect doctest
|
|
228
|
+
0
|
|
229
|
+
sage: d(y)
|
|
230
|
+
1
|
|
231
|
+
sage: d(y^2)
|
|
232
|
+
0
|
|
233
|
+
"""
|
|
234
|
+
if x.is_zero():
|
|
235
|
+
return self.codomain().zero()
|
|
236
|
+
parent = self.parent()
|
|
237
|
+
return self._u * parent._d(parent._t(x))
|
|
238
|
+
|
|
239
|
+
def _add_(self, other):
|
|
240
|
+
"""
|
|
241
|
+
Return the sum of this derivation and ``other``.
|
|
242
|
+
|
|
243
|
+
EXAMPLES::
|
|
244
|
+
|
|
245
|
+
sage: K.<x> = FunctionField(GF(3))
|
|
246
|
+
sage: R.<y> = K[]
|
|
247
|
+
sage: L.<y> = K.extension(y^3 - x)
|
|
248
|
+
sage: d = L.derivation()
|
|
249
|
+
sage: d
|
|
250
|
+
d/dy
|
|
251
|
+
sage: d + d
|
|
252
|
+
2*d/dy
|
|
253
|
+
"""
|
|
254
|
+
return type(self)(self.parent(), [self._u + other._u])
|
|
255
|
+
|
|
256
|
+
def _lmul_(self, factor):
|
|
257
|
+
"""
|
|
258
|
+
Return the product of this derivation by the scalar ``factor``.
|
|
259
|
+
|
|
260
|
+
EXAMPLES::
|
|
261
|
+
|
|
262
|
+
sage: K.<x> = FunctionField(GF(2))
|
|
263
|
+
sage: R.<y> = K[]
|
|
264
|
+
sage: L.<y> = K.extension(y^2 - x)
|
|
265
|
+
sage: d = L.derivation()
|
|
266
|
+
sage: d
|
|
267
|
+
d/dy
|
|
268
|
+
sage: y * d
|
|
269
|
+
y*d/dy
|
|
270
|
+
"""
|
|
271
|
+
return type(self)(self.parent(), [factor * self._u])
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
class FunctionFieldHigherDerivation(Map):
|
|
275
|
+
"""
|
|
276
|
+
Base class of higher derivations on function fields.
|
|
277
|
+
|
|
278
|
+
INPUT:
|
|
279
|
+
|
|
280
|
+
- ``field`` -- function field on which the derivation operates
|
|
281
|
+
|
|
282
|
+
EXAMPLES::
|
|
283
|
+
|
|
284
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
285
|
+
sage: F.higher_derivation()
|
|
286
|
+
Higher derivation map:
|
|
287
|
+
From: Rational function field in x over Finite Field of size 2
|
|
288
|
+
To: Rational function field in x over Finite Field of size 2
|
|
289
|
+
"""
|
|
290
|
+
def __init__(self, field):
|
|
291
|
+
"""
|
|
292
|
+
Initialize.
|
|
293
|
+
|
|
294
|
+
TESTS::
|
|
295
|
+
|
|
296
|
+
sage: F.<x> = FunctionField(GF(4)) # needs sage.rings.finite_rings
|
|
297
|
+
sage: h = F.higher_derivation() # needs sage.rings.finite_rings
|
|
298
|
+
sage: TestSuite(h).run(skip='_test_category') # needs sage.rings.finite_rings
|
|
299
|
+
"""
|
|
300
|
+
Map.__init__(self, Hom(field, field, Sets()))
|
|
301
|
+
self._field = field
|
|
302
|
+
# elements of a prime finite field do not have pth_root method
|
|
303
|
+
if field.constant_base_field().is_prime_field():
|
|
304
|
+
self._pth_root_func = _pth_root_in_prime_field
|
|
305
|
+
else:
|
|
306
|
+
self._pth_root_func = _pth_root_in_finite_field
|
|
307
|
+
|
|
308
|
+
def _repr_type(self) -> str:
|
|
309
|
+
"""
|
|
310
|
+
Return a string containing the type of the map.
|
|
311
|
+
|
|
312
|
+
EXAMPLES::
|
|
313
|
+
|
|
314
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
315
|
+
sage: h = F.higher_derivation()
|
|
316
|
+
sage: h # indirect doctest
|
|
317
|
+
Higher derivation map:
|
|
318
|
+
From: Rational function field in x over Finite Field of size 2
|
|
319
|
+
To: Rational function field in x over Finite Field of size 2
|
|
320
|
+
"""
|
|
321
|
+
return 'Higher derivation'
|
|
322
|
+
|
|
323
|
+
def __eq__(self, other) -> bool:
|
|
324
|
+
"""
|
|
325
|
+
Test if ``self`` equals ``other``.
|
|
326
|
+
|
|
327
|
+
TESTS::
|
|
328
|
+
|
|
329
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
330
|
+
sage: h = F.higher_derivation()
|
|
331
|
+
sage: loads(dumps(h)) == h
|
|
332
|
+
True
|
|
333
|
+
"""
|
|
334
|
+
if isinstance(other, FunctionFieldHigherDerivation):
|
|
335
|
+
return self._field == other._field
|
|
336
|
+
return False
|
|
337
|
+
|
|
338
|
+
|
|
339
|
+
def _pth_root_in_prime_field(e):
|
|
340
|
+
"""
|
|
341
|
+
Return the `p`-th root of element ``e`` in a prime finite field.
|
|
342
|
+
|
|
343
|
+
TESTS::
|
|
344
|
+
|
|
345
|
+
sage: from sage.rings.function_field.derivations_polymod import _pth_root_in_prime_field
|
|
346
|
+
sage: p = 5
|
|
347
|
+
sage: F.<a> = GF(p)
|
|
348
|
+
sage: e = F.random_element()
|
|
349
|
+
sage: _pth_root_in_prime_field(e)^p == e
|
|
350
|
+
True
|
|
351
|
+
"""
|
|
352
|
+
return e
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def _pth_root_in_finite_field(e):
|
|
356
|
+
"""
|
|
357
|
+
Return the `p`-th root of element ``e`` in a finite field.
|
|
358
|
+
|
|
359
|
+
TESTS::
|
|
360
|
+
|
|
361
|
+
sage: from sage.rings.function_field.derivations_polymod import _pth_root_in_finite_field
|
|
362
|
+
sage: p = 3
|
|
363
|
+
sage: F.<a> = GF(p^2) # needs sage.rings.finite_rings
|
|
364
|
+
sage: e = F.random_element() # needs sage.rings.finite_rings
|
|
365
|
+
sage: _pth_root_in_finite_field(e)^p == e # needs sage.rings.finite_rings
|
|
366
|
+
True
|
|
367
|
+
"""
|
|
368
|
+
return e.pth_root()
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
class RationalFunctionFieldHigherDerivation_global(FunctionFieldHigherDerivation):
|
|
372
|
+
"""
|
|
373
|
+
Higher derivations of rational function fields over finite fields.
|
|
374
|
+
|
|
375
|
+
INPUT:
|
|
376
|
+
|
|
377
|
+
- ``field`` -- function field on which the derivation operates
|
|
378
|
+
|
|
379
|
+
EXAMPLES::
|
|
380
|
+
|
|
381
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
382
|
+
sage: h = F.higher_derivation()
|
|
383
|
+
sage: h
|
|
384
|
+
Higher derivation map:
|
|
385
|
+
From: Rational function field in x over Finite Field of size 2
|
|
386
|
+
To: Rational function field in x over Finite Field of size 2
|
|
387
|
+
sage: h(x^2, 2)
|
|
388
|
+
1
|
|
389
|
+
"""
|
|
390
|
+
def __init__(self, field):
|
|
391
|
+
"""
|
|
392
|
+
Initialize.
|
|
393
|
+
|
|
394
|
+
TESTS::
|
|
395
|
+
|
|
396
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
397
|
+
sage: h = F.higher_derivation()
|
|
398
|
+
sage: TestSuite(h).run(skip='_test_category')
|
|
399
|
+
"""
|
|
400
|
+
FunctionFieldHigherDerivation.__init__(self, field)
|
|
401
|
+
|
|
402
|
+
self._p = field.characteristic()
|
|
403
|
+
self._separating_element = field.gen()
|
|
404
|
+
|
|
405
|
+
def _call_with_args(self, f, args=(), kwds={}):
|
|
406
|
+
"""
|
|
407
|
+
Call the derivation with args and kwds.
|
|
408
|
+
|
|
409
|
+
EXAMPLES::
|
|
410
|
+
|
|
411
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
412
|
+
sage: h = F.higher_derivation()
|
|
413
|
+
sage: h(x^2, 2) # indirect doctest
|
|
414
|
+
1
|
|
415
|
+
"""
|
|
416
|
+
return self._derive(f, *args, **kwds)
|
|
417
|
+
|
|
418
|
+
def _derive(self, f, i, separating_element=None):
|
|
419
|
+
"""
|
|
420
|
+
Return the `i`-th derivative of ``f`` with respect to the
|
|
421
|
+
separating element.
|
|
422
|
+
|
|
423
|
+
This implements Hess' Algorithm 26 in [Hes2002b]_.
|
|
424
|
+
|
|
425
|
+
EXAMPLES::
|
|
426
|
+
|
|
427
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
428
|
+
sage: h = F.higher_derivation()
|
|
429
|
+
sage: h._derive(x^3, 0)
|
|
430
|
+
x^3
|
|
431
|
+
sage: h._derive(x^3, 1)
|
|
432
|
+
x^2
|
|
433
|
+
sage: h._derive(x^3, 2)
|
|
434
|
+
x
|
|
435
|
+
sage: h._derive(x^3, 3)
|
|
436
|
+
1
|
|
437
|
+
sage: h._derive(x^3, 4)
|
|
438
|
+
0
|
|
439
|
+
"""
|
|
440
|
+
F = self._field
|
|
441
|
+
p = self._p
|
|
442
|
+
|
|
443
|
+
if separating_element is None:
|
|
444
|
+
x = self._separating_element
|
|
445
|
+
|
|
446
|
+
def derivative(f):
|
|
447
|
+
return f.derivative()
|
|
448
|
+
else:
|
|
449
|
+
x = separating_element
|
|
450
|
+
xderinv = ~(x.derivative())
|
|
451
|
+
|
|
452
|
+
def derivative(f):
|
|
453
|
+
return xderinv * f.derivative()
|
|
454
|
+
|
|
455
|
+
prime_power_representation = self._prime_power_representation
|
|
456
|
+
|
|
457
|
+
def derive(f, i):
|
|
458
|
+
# Step 1: zero-th derivative
|
|
459
|
+
if i == 0:
|
|
460
|
+
return f
|
|
461
|
+
# Step 2:
|
|
462
|
+
s = i % p
|
|
463
|
+
r = i // p
|
|
464
|
+
# Step 3:
|
|
465
|
+
e = f
|
|
466
|
+
while s > 0:
|
|
467
|
+
e = derivative(e) / F(s)
|
|
468
|
+
s -= 1
|
|
469
|
+
# Step 4:
|
|
470
|
+
if r == 0:
|
|
471
|
+
return e
|
|
472
|
+
else:
|
|
473
|
+
# Step 5:
|
|
474
|
+
lambdas = prime_power_representation(e, x)
|
|
475
|
+
# Step 6 and 7:
|
|
476
|
+
der = 0
|
|
477
|
+
for i in range(p):
|
|
478
|
+
mu = derive(lambdas[i], r)
|
|
479
|
+
der += mu**p * x**i
|
|
480
|
+
return der
|
|
481
|
+
|
|
482
|
+
return derive(f, i)
|
|
483
|
+
|
|
484
|
+
def _prime_power_representation(self, f, separating_element=None):
|
|
485
|
+
"""
|
|
486
|
+
Return `p`-th power representation of the element ``f``.
|
|
487
|
+
|
|
488
|
+
Here `p` is the characteristic of the function field.
|
|
489
|
+
|
|
490
|
+
This implements Hess' Algorithm 25.
|
|
491
|
+
|
|
492
|
+
EXAMPLES::
|
|
493
|
+
|
|
494
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
495
|
+
sage: h = F.higher_derivation()
|
|
496
|
+
sage: h._prime_power_representation(x^2 + x + 1)
|
|
497
|
+
[x + 1, 1]
|
|
498
|
+
sage: x^2 + x + 1 == _[0]^2 + _[1]^2 * x
|
|
499
|
+
True
|
|
500
|
+
"""
|
|
501
|
+
F = self._field
|
|
502
|
+
p = self._p
|
|
503
|
+
|
|
504
|
+
if separating_element is None:
|
|
505
|
+
x = self._separating_element
|
|
506
|
+
|
|
507
|
+
def derivative(f):
|
|
508
|
+
return f.derivative()
|
|
509
|
+
else:
|
|
510
|
+
x = separating_element
|
|
511
|
+
xderinv = ~(x.derivative())
|
|
512
|
+
|
|
513
|
+
def derivative(f):
|
|
514
|
+
return xderinv * f.derivative()
|
|
515
|
+
|
|
516
|
+
# Step 1:
|
|
517
|
+
a = [f]
|
|
518
|
+
aprev = f
|
|
519
|
+
j = 1
|
|
520
|
+
while j < p:
|
|
521
|
+
aprev = derivative(aprev) / F(j)
|
|
522
|
+
a.append(aprev)
|
|
523
|
+
j += 1
|
|
524
|
+
# Step 2:
|
|
525
|
+
b = a
|
|
526
|
+
j = p - 2
|
|
527
|
+
while j >= 0:
|
|
528
|
+
b[j] -= sum(binomial(i, j) * b[i] * x**(i - j)
|
|
529
|
+
for i in range(j + 1, p))
|
|
530
|
+
j -= 1
|
|
531
|
+
# Step 3
|
|
532
|
+
return [self._pth_root(c) for c in b]
|
|
533
|
+
|
|
534
|
+
def _pth_root(self, c):
|
|
535
|
+
"""
|
|
536
|
+
Return the `p`-th root of the rational function ``c``.
|
|
537
|
+
|
|
538
|
+
INPUT:
|
|
539
|
+
|
|
540
|
+
- ``c`` -- rational function
|
|
541
|
+
|
|
542
|
+
EXAMPLES::
|
|
543
|
+
|
|
544
|
+
sage: F.<x> = FunctionField(GF(2))
|
|
545
|
+
sage: h = F.higher_derivation()
|
|
546
|
+
sage: h._pth_root((x^2+1)^2)
|
|
547
|
+
x^2 + 1
|
|
548
|
+
"""
|
|
549
|
+
K = self._field
|
|
550
|
+
p = self._p
|
|
551
|
+
|
|
552
|
+
R = K._field.ring()
|
|
553
|
+
|
|
554
|
+
poly = c.numerator()
|
|
555
|
+
num = R([self._pth_root_func(poly[i])
|
|
556
|
+
for i in range(0, poly.degree() + 1, p)])
|
|
557
|
+
poly = c.denominator()
|
|
558
|
+
den = R([self._pth_root_func(poly[i])
|
|
559
|
+
for i in range(0, poly.degree() + 1, p)])
|
|
560
|
+
return K.element_class(K, num / den)
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
class FunctionFieldHigherDerivation_global(FunctionFieldHigherDerivation):
|
|
564
|
+
"""
|
|
565
|
+
Higher derivations of global function fields.
|
|
566
|
+
|
|
567
|
+
INPUT:
|
|
568
|
+
|
|
569
|
+
- ``field`` -- function field on which the derivation operates
|
|
570
|
+
|
|
571
|
+
EXAMPLES::
|
|
572
|
+
|
|
573
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
574
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
575
|
+
sage: h = L.higher_derivation()
|
|
576
|
+
sage: h
|
|
577
|
+
Higher derivation map:
|
|
578
|
+
From: Function field in y defined by y^3 + x^3*y + x
|
|
579
|
+
To: Function field in y defined by y^3 + x^3*y + x
|
|
580
|
+
sage: h(y^2, 2)
|
|
581
|
+
((x^7 + 1)/x^2)*y^2 + x^3*y
|
|
582
|
+
"""
|
|
583
|
+
|
|
584
|
+
def __init__(self, field):
|
|
585
|
+
"""
|
|
586
|
+
Initialize.
|
|
587
|
+
|
|
588
|
+
TESTS::
|
|
589
|
+
|
|
590
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
591
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
592
|
+
sage: h = L.higher_derivation()
|
|
593
|
+
sage: TestSuite(h).run(skip=['_test_category'])
|
|
594
|
+
"""
|
|
595
|
+
from sage.matrix.constructor import matrix
|
|
596
|
+
|
|
597
|
+
FunctionFieldHigherDerivation.__init__(self, field)
|
|
598
|
+
|
|
599
|
+
self._p = field.characteristic()
|
|
600
|
+
self._separating_element = field(field.base_field().gen())
|
|
601
|
+
|
|
602
|
+
p = field.characteristic()
|
|
603
|
+
y = field.gen()
|
|
604
|
+
|
|
605
|
+
# matrix for pth power map; used in _prime_power_representation method
|
|
606
|
+
self.__pth_root_matrix = matrix([(y**(i * p)).list()
|
|
607
|
+
for i in range(field.degree())]).transpose()
|
|
608
|
+
|
|
609
|
+
# cache computed higher derivatives to speed up later computations
|
|
610
|
+
self._cache = {}
|
|
611
|
+
|
|
612
|
+
def _call_with_args(self, f, args, kwds):
|
|
613
|
+
"""
|
|
614
|
+
Call the derivation with ``args`` and ``kwds``.
|
|
615
|
+
|
|
616
|
+
EXAMPLES::
|
|
617
|
+
|
|
618
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
619
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
620
|
+
sage: h = L.higher_derivation()
|
|
621
|
+
sage: h(y^2, 2) # indirect doctest
|
|
622
|
+
((x^7 + 1)/x^2)*y^2 + x^3*y
|
|
623
|
+
"""
|
|
624
|
+
return self._derive(f, *args, **kwds)
|
|
625
|
+
|
|
626
|
+
def _derive(self, f, i, separating_element=None):
|
|
627
|
+
"""
|
|
628
|
+
Return ``i``-th derivative of ``f`` with respect to the separating
|
|
629
|
+
element.
|
|
630
|
+
|
|
631
|
+
This implements Hess' Algorithm 26 in [Hes2002b]_.
|
|
632
|
+
|
|
633
|
+
EXAMPLES::
|
|
634
|
+
|
|
635
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
636
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
637
|
+
sage: h = L.higher_derivation()
|
|
638
|
+
sage: y^3
|
|
639
|
+
x^3*y + x
|
|
640
|
+
sage: h._derive(y^3, 0)
|
|
641
|
+
x^3*y + x
|
|
642
|
+
sage: h._derive(y^3, 1)
|
|
643
|
+
x^4*y^2 + 1
|
|
644
|
+
sage: h._derive(y^3, 2)
|
|
645
|
+
x^10*y^2 + (x^8 + x)*y
|
|
646
|
+
sage: h._derive(y^3, 3)
|
|
647
|
+
(x^9 + x^2)*y^2 + x^7*y
|
|
648
|
+
sage: h._derive(y^3, 4)
|
|
649
|
+
(x^22 + x)*y^2 + ((x^21 + x^14 + x^7 + 1)/x)*y
|
|
650
|
+
"""
|
|
651
|
+
F = self._field
|
|
652
|
+
p = self._p
|
|
653
|
+
frob = F.frobenius_endomorphism() # p-th power map
|
|
654
|
+
|
|
655
|
+
if separating_element is None:
|
|
656
|
+
x = self._separating_element
|
|
657
|
+
|
|
658
|
+
def derivative(f):
|
|
659
|
+
return f.derivative()
|
|
660
|
+
else:
|
|
661
|
+
x = separating_element
|
|
662
|
+
xderinv = ~(x.derivative())
|
|
663
|
+
|
|
664
|
+
def derivative(f):
|
|
665
|
+
return xderinv * f.derivative()
|
|
666
|
+
|
|
667
|
+
try:
|
|
668
|
+
cache = self._cache[separating_element]
|
|
669
|
+
except KeyError:
|
|
670
|
+
cache = self._cache[separating_element] = {}
|
|
671
|
+
|
|
672
|
+
def derive(f, i):
|
|
673
|
+
# Step 1: zero-th derivative
|
|
674
|
+
if i == 0:
|
|
675
|
+
return f
|
|
676
|
+
|
|
677
|
+
# Step 1.5: use cached result if available
|
|
678
|
+
try:
|
|
679
|
+
return cache[f, i]
|
|
680
|
+
except KeyError:
|
|
681
|
+
pass
|
|
682
|
+
|
|
683
|
+
# Step 2:
|
|
684
|
+
s = i % p
|
|
685
|
+
r = i // p
|
|
686
|
+
# Step 3:
|
|
687
|
+
e = f
|
|
688
|
+
while s > 0:
|
|
689
|
+
e = derivative(e) / F(s)
|
|
690
|
+
s -= 1
|
|
691
|
+
# Step 4:
|
|
692
|
+
if r == 0:
|
|
693
|
+
der = e
|
|
694
|
+
else:
|
|
695
|
+
# Step 5: inlined self._prime_power_representation
|
|
696
|
+
a = [e]
|
|
697
|
+
aprev = e
|
|
698
|
+
j = 1
|
|
699
|
+
while j < p:
|
|
700
|
+
aprev = derivative(aprev) / F(j)
|
|
701
|
+
a.append(aprev)
|
|
702
|
+
j += 1
|
|
703
|
+
b = a
|
|
704
|
+
j = p - 2
|
|
705
|
+
while j >= 0:
|
|
706
|
+
b[j] -= sum(binomial(k, j) * b[k] * x**(k - j)
|
|
707
|
+
for k in range(j + 1, p))
|
|
708
|
+
j -= 1
|
|
709
|
+
lambdas = [self._pth_root(c) for c in b]
|
|
710
|
+
|
|
711
|
+
# Step 6 and 7:
|
|
712
|
+
der = 0
|
|
713
|
+
xpow = 1
|
|
714
|
+
for k in range(p):
|
|
715
|
+
mu = derive(lambdas[k], r)
|
|
716
|
+
der += frob(mu) * xpow
|
|
717
|
+
xpow *= x
|
|
718
|
+
|
|
719
|
+
cache[f, i] = der
|
|
720
|
+
return der
|
|
721
|
+
|
|
722
|
+
return derive(f, i)
|
|
723
|
+
|
|
724
|
+
def _prime_power_representation(self, f, separating_element=None):
|
|
725
|
+
"""
|
|
726
|
+
Return `p`-th power representation of the element ``f``.
|
|
727
|
+
|
|
728
|
+
Here `p` is the characteristic of the function field.
|
|
729
|
+
|
|
730
|
+
This implements Hess' Algorithm 25 in [Hes2002b]_.
|
|
731
|
+
|
|
732
|
+
EXAMPLES::
|
|
733
|
+
|
|
734
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
735
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
736
|
+
sage: h = L.higher_derivation()
|
|
737
|
+
sage: b = h._prime_power_representation(y)
|
|
738
|
+
sage: y == b[0]^2 + b[1]^2 * x
|
|
739
|
+
True
|
|
740
|
+
"""
|
|
741
|
+
F = self._field
|
|
742
|
+
p = self._p
|
|
743
|
+
|
|
744
|
+
if separating_element is None:
|
|
745
|
+
x = self._separating_element
|
|
746
|
+
|
|
747
|
+
def derivative(f):
|
|
748
|
+
return f.derivative()
|
|
749
|
+
else:
|
|
750
|
+
x = separating_element
|
|
751
|
+
xderinv = ~(x.derivative())
|
|
752
|
+
|
|
753
|
+
def derivative(f):
|
|
754
|
+
return xderinv * f.derivative()
|
|
755
|
+
|
|
756
|
+
# Step 1:
|
|
757
|
+
a = [f]
|
|
758
|
+
aprev = f
|
|
759
|
+
j = 1
|
|
760
|
+
while j < p:
|
|
761
|
+
aprev = derivative(aprev) / F(j)
|
|
762
|
+
a.append(aprev)
|
|
763
|
+
j += 1
|
|
764
|
+
# Step 2:
|
|
765
|
+
b = a
|
|
766
|
+
j = p - 2
|
|
767
|
+
while j >= 0:
|
|
768
|
+
b[j] -= sum(binomial(i, j) * b[i] * x**(i - j)
|
|
769
|
+
for i in range(j + 1, p))
|
|
770
|
+
j -= 1
|
|
771
|
+
# Step 3
|
|
772
|
+
return [self._pth_root(c) for c in b]
|
|
773
|
+
|
|
774
|
+
def _pth_root(self, c):
|
|
775
|
+
"""
|
|
776
|
+
Return the `p`-th root of function field element ``c``.
|
|
777
|
+
|
|
778
|
+
EXAMPLES::
|
|
779
|
+
|
|
780
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
781
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
782
|
+
sage: h = L.higher_derivation()
|
|
783
|
+
sage: h._pth_root((x^2 + y^2)^2)
|
|
784
|
+
y^2 + x^2
|
|
785
|
+
"""
|
|
786
|
+
from sage.modules.free_module_element import vector
|
|
787
|
+
|
|
788
|
+
K = self._field.base_field() # rational function field
|
|
789
|
+
p = self._p
|
|
790
|
+
|
|
791
|
+
coeffs = []
|
|
792
|
+
for d in self.__pth_root_matrix.solve_right(vector(c.list())):
|
|
793
|
+
poly = d.numerator()
|
|
794
|
+
num = K([self._pth_root_func(poly[i])
|
|
795
|
+
for i in range(0, poly.degree() + 1, p)])
|
|
796
|
+
poly = d.denominator()
|
|
797
|
+
den = K([self._pth_root_func(poly[i])
|
|
798
|
+
for i in range(0, poly.degree() + 1, p)])
|
|
799
|
+
coeffs.append(num / den)
|
|
800
|
+
return self._field(coeffs)
|
|
801
|
+
|
|
802
|
+
|
|
803
|
+
class FunctionFieldHigherDerivation_char_zero(FunctionFieldHigherDerivation):
|
|
804
|
+
"""
|
|
805
|
+
Higher derivations of function fields of characteristic zero.
|
|
806
|
+
|
|
807
|
+
INPUT:
|
|
808
|
+
|
|
809
|
+
- ``field`` -- function field on which the derivation operates
|
|
810
|
+
|
|
811
|
+
EXAMPLES::
|
|
812
|
+
|
|
813
|
+
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
|
|
814
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
815
|
+
sage: h = L.higher_derivation()
|
|
816
|
+
sage: h
|
|
817
|
+
Higher derivation map:
|
|
818
|
+
From: Function field in y defined by y^3 + x^3*y + x
|
|
819
|
+
To: Function field in y defined by y^3 + x^3*y + x
|
|
820
|
+
sage: h(y,1) == -(3*x^2*y+1)/(3*y^2+x^3)
|
|
821
|
+
True
|
|
822
|
+
sage: h(y^2,1) == -2*y*(3*x^2*y+1)/(3*y^2+x^3)
|
|
823
|
+
True
|
|
824
|
+
sage: e = L.random_element()
|
|
825
|
+
sage: h(h(e,1),1) == 2*h(e,2)
|
|
826
|
+
True
|
|
827
|
+
sage: h(h(h(e,1),1),1) == 3*2*h(e,3)
|
|
828
|
+
True
|
|
829
|
+
"""
|
|
830
|
+
def __init__(self, field):
|
|
831
|
+
"""
|
|
832
|
+
Initialize.
|
|
833
|
+
|
|
834
|
+
TESTS::
|
|
835
|
+
|
|
836
|
+
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
|
|
837
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
838
|
+
sage: h = L.higher_derivation()
|
|
839
|
+
sage: TestSuite(h).run(skip=['_test_category'])
|
|
840
|
+
"""
|
|
841
|
+
FunctionFieldHigherDerivation.__init__(self, field)
|
|
842
|
+
|
|
843
|
+
self._separating_element = field(field.base_field().gen())
|
|
844
|
+
|
|
845
|
+
# cache computed higher derivatives to speed up later computations
|
|
846
|
+
self._cache = {}
|
|
847
|
+
|
|
848
|
+
def _call_with_args(self, f, args, kwds):
|
|
849
|
+
"""
|
|
850
|
+
Call the derivation with ``args`` and ``kwds``.
|
|
851
|
+
|
|
852
|
+
EXAMPLES::
|
|
853
|
+
|
|
854
|
+
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
|
|
855
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
856
|
+
sage: h = L.higher_derivation()
|
|
857
|
+
sage: e = L.random_element()
|
|
858
|
+
sage: h(h(e,1),1) == 2*h(e,2) # indirect doctest
|
|
859
|
+
True
|
|
860
|
+
"""
|
|
861
|
+
return self._derive(f, *args, **kwds)
|
|
862
|
+
|
|
863
|
+
def _derive(self, f, i, separating_element=None):
|
|
864
|
+
"""
|
|
865
|
+
Return ``i``-th derivative of ``f`` with respect to the separating
|
|
866
|
+
element.
|
|
867
|
+
|
|
868
|
+
EXAMPLES::
|
|
869
|
+
|
|
870
|
+
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
|
|
871
|
+
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
|
|
872
|
+
sage: h = L.higher_derivation()
|
|
873
|
+
sage: y^3
|
|
874
|
+
-x^3*y - x
|
|
875
|
+
sage: h._derive(y^3, 0)
|
|
876
|
+
-x^3*y - x
|
|
877
|
+
sage: h._derive(y^3, 1)
|
|
878
|
+
(-21/4*x^4/(x^7 + 27/4))*y^2 + ((-9/2*x^9 - 45/2*x^2)/(x^7 + 27/4))*y + (-9/2*x^7 - 27/4)/(x^7 + 27/4)
|
|
879
|
+
"""
|
|
880
|
+
F = self._field
|
|
881
|
+
|
|
882
|
+
if separating_element is None:
|
|
883
|
+
x = self._separating_element
|
|
884
|
+
xderinv = 1
|
|
885
|
+
else:
|
|
886
|
+
x = separating_element
|
|
887
|
+
xderinv = ~(x.derivative())
|
|
888
|
+
|
|
889
|
+
try:
|
|
890
|
+
cache = self._cache[separating_element]
|
|
891
|
+
except KeyError:
|
|
892
|
+
cache = self._cache[separating_element] = {}
|
|
893
|
+
|
|
894
|
+
if i == 0:
|
|
895
|
+
return f
|
|
896
|
+
|
|
897
|
+
try:
|
|
898
|
+
return cache[f, i]
|
|
899
|
+
except KeyError:
|
|
900
|
+
pass
|
|
901
|
+
|
|
902
|
+
s = i
|
|
903
|
+
e = f
|
|
904
|
+
while s > 0:
|
|
905
|
+
e = xderinv * e.derivative() / F(s)
|
|
906
|
+
s -= 1
|
|
907
|
+
|
|
908
|
+
der = e
|
|
909
|
+
|
|
910
|
+
cache[f, i] = der
|
|
911
|
+
return der
|