passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,3239 @@
|
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version classify.lib 4.4.0.0 Nov_2023 "; // $Id: 4ec54487dcb27f66efd5ee221a933915b7f6a651 $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: classify.lib Arnold Classifier of Singularities
|
|
6
|
+
AUTHOR: Kai Krueger, krueger@mathematik.uni-kl.de
|
|
7
|
+
|
|
8
|
+
OVERVIEW:
|
|
9
|
+
A library for classifying isolated hypersurface singularities w.r.t. right
|
|
10
|
+
equivalence, based on the determinator of singularities by V.I. Arnold.
|
|
11
|
+
|
|
12
|
+
SEE ALSO: realclassify_lib
|
|
13
|
+
|
|
14
|
+
PROCEDURES:
|
|
15
|
+
basicinvariants(f); computes Milnor number, determinacy-bound and corank of
|
|
16
|
+
classify(f); normal form of polynomial f determined with Arnold's method
|
|
17
|
+
corank(f); computes the corank of f (i.e. of the Hessian of f)
|
|
18
|
+
Hcode(v); coding of intvec v according to the number repetitions
|
|
19
|
+
init_debug([n]); print trace and debugging information depending on int n
|
|
20
|
+
internalfunctions();display names of internal procedures of this library
|
|
21
|
+
milnorcode(f[,e]); Hilbert polynomial of [e-th] Milnor algebra coded with Hcode
|
|
22
|
+
morsesplit(f); residual part of f after applying the splitting lemma
|
|
23
|
+
quickclass(f) normal form of f determined by invariants (milnorcode)
|
|
24
|
+
singularity(s,[]); normal form of singularity given by its name s and index
|
|
25
|
+
A_L(s/f); shortcut for quickclass(f) or normalform(s)
|
|
26
|
+
normalform(s); normal form of singularity given by its name s
|
|
27
|
+
debug_log(lev,[]); print trace and debugging information w.r.t level>@DeBug
|
|
28
|
+
swap(a,b); swaps the arguments
|
|
29
|
+
modality(f); modality of the singularity
|
|
30
|
+
complexSingType(f); complex type of the singularity as a string
|
|
31
|
+
prepRealclassify(f);
|
|
32
|
+
the modality and the complex type of the singularity at
|
|
33
|
+
once
|
|
34
|
+
(parameters in square brackets [] are optional)
|
|
35
|
+
";
|
|
36
|
+
|
|
37
|
+
LIB "inout.lib";
|
|
38
|
+
LIB "elim.lib";
|
|
39
|
+
LIB "sing.lib";
|
|
40
|
+
LIB "makedbm.lib";
|
|
41
|
+
|
|
42
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
43
|
+
proc classify_init
|
|
44
|
+
{
|
|
45
|
+
string s;
|
|
46
|
+
link l="DBM:r NFlist";
|
|
47
|
+
s = read(l,"VERSION");
|
|
48
|
+
if (s == "" )
|
|
49
|
+
{
|
|
50
|
+
if (printlevel > 0)
|
|
51
|
+
{
|
|
52
|
+
"(classify.lib): Need to create database...";
|
|
53
|
+
}
|
|
54
|
+
create_sing_dbm();
|
|
55
|
+
}
|
|
56
|
+
close(l);
|
|
57
|
+
l="DBM:r NFlist";
|
|
58
|
+
s = read(l,"VERSION");
|
|
59
|
+
//"(classify.lib): Creation done. Current version:", s;
|
|
60
|
+
}
|
|
61
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
62
|
+
|
|
63
|
+
proc classify (poly f_in)
|
|
64
|
+
"USAGE: classify(f); f=poly
|
|
65
|
+
COMPUTE: normal form and singularity type of f with respect to right
|
|
66
|
+
equivalence, as given in the book \"Singularities of differentiable
|
|
67
|
+
maps, Volume I\" by V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko
|
|
68
|
+
RETURN: normal form of f, of type poly
|
|
69
|
+
REMARK: This version of classify is only beta. Please send bugs and
|
|
70
|
+
comments to: \"Kai Krueger\" <krueger@mathematik.uni-kl.de> @*
|
|
71
|
+
Be sure to have at least Singular version 1.0.1.
|
|
72
|
+
NOTE: type init_debug(n); (0 <= n <= 10) in order to get intermediate
|
|
73
|
+
information, higher values of n give more information.
|
|
74
|
+
The proc creates several global objects with names all starting
|
|
75
|
+
with @, hence there should be no name conflicts.
|
|
76
|
+
EXAMPLE: example classify; shows an example"
|
|
77
|
+
{
|
|
78
|
+
//---------------------------- initialisation ---------------------------------
|
|
79
|
+
poly f_out;
|
|
80
|
+
int n, i, corank, show_nf;
|
|
81
|
+
string s2;
|
|
82
|
+
list v;
|
|
83
|
+
def ring_ext = basering;
|
|
84
|
+
|
|
85
|
+
// Namespaces:
|
|
86
|
+
if(defined(A_Z)==0) { proc A_Z = General::A_Z; export A_Z; }
|
|
87
|
+
init_debug(); // initialize trace/debug mode
|
|
88
|
+
if(checkring()) { return(f_in); }
|
|
89
|
+
n = nvars(basering);
|
|
90
|
+
show_nf = 1; // return normal form if set to '1'
|
|
91
|
+
|
|
92
|
+
// define new ring
|
|
93
|
+
ring ring_top=char(basering),(x(1..n)),(c,ds);
|
|
94
|
+
|
|
95
|
+
map conv_ext2top=ring_ext,maxideal(1);
|
|
96
|
+
|
|
97
|
+
if(defined(@ringdisplay)!=0) { kill @ringdisplay; }
|
|
98
|
+
string @ringdisplay = "ring_ext";
|
|
99
|
+
export @ringdisplay;
|
|
100
|
+
|
|
101
|
+
v = Klassifiziere(conv_ext2top(f_in));
|
|
102
|
+
if(typeof(v[1])=="poly")
|
|
103
|
+
{
|
|
104
|
+
poly f_out = v[1];
|
|
105
|
+
s2 = v[2]; // s2: Typ des Polynoms f z.b: E[18]
|
|
106
|
+
corank = v[3];
|
|
107
|
+
}
|
|
108
|
+
else
|
|
109
|
+
{
|
|
110
|
+
s2="NoClass";
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
//---------------- collect results and create return-value --------------------
|
|
114
|
+
if( s2=="error!" || s2=="NoClass")
|
|
115
|
+
{
|
|
116
|
+
setring ring_ext;
|
|
117
|
+
return(f_in);
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
if(show_nf==1)
|
|
121
|
+
{
|
|
122
|
+
poly f_nf = normalform(s2);
|
|
123
|
+
for(i=corank+1;i<=n;i=i+1) { f_nf = f_nf + x(i)^2; }
|
|
124
|
+
debug_log(2, "Normal form NF(f)=", f_nf);
|
|
125
|
+
}
|
|
126
|
+
if(corank>1) { for(i=corank+1;i<=n;i=i+1) { f_out = f_out + x(i)^2; } }
|
|
127
|
+
setring ring_ext;
|
|
128
|
+
map conv_top2ext=ring_top,maxideal(1);
|
|
129
|
+
|
|
130
|
+
if(show_nf == 1) { return(conv_top2ext(f_nf)); }
|
|
131
|
+
else { return(conv_top2ext(f_out)); }
|
|
132
|
+
}
|
|
133
|
+
example
|
|
134
|
+
{"EXAMPLE"; echo=2;
|
|
135
|
+
ring r=0,(x,y,z),ds;
|
|
136
|
+
poly f=(x2+3y-2z)^2+xyz-(x-y3+x2*z3)^3;
|
|
137
|
+
classify(f);
|
|
138
|
+
init_debug(3);
|
|
139
|
+
classify(f);
|
|
140
|
+
}
|
|
141
|
+
|
|
142
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
143
|
+
static proc Klassifiziere (poly f)
|
|
144
|
+
{
|
|
145
|
+
//--------------------------- initialisation ----------------------------------
|
|
146
|
+
string s1;
|
|
147
|
+
int n, cnt, corank_f, K, Mu;
|
|
148
|
+
list v, cstn;
|
|
149
|
+
map PhiG;
|
|
150
|
+
def ring_top = basering;
|
|
151
|
+
|
|
152
|
+
n = nvars(basering); // Zahl der Variablen des aktuellen Rings.
|
|
153
|
+
PhiG = ring_top, maxideal(1);
|
|
154
|
+
cstn[4] = PhiG;
|
|
155
|
+
if( defined(@ringdisplay) == 0)
|
|
156
|
+
{
|
|
157
|
+
string @ringdisplay; // Define always 'ringdisplay' to be
|
|
158
|
+
export @ringdisplay; // able to run 'Show(f)'
|
|
159
|
+
}
|
|
160
|
+
@ringdisplay = "setring RingB;";
|
|
161
|
+
if(defined(RingB)!=0) { kill RingB; }
|
|
162
|
+
ring RingB = create_ring(ring_list(basering)[1], "("+A_Z("x", n)+")", "(c,ds)", "no_minpoly");
|
|
163
|
+
export RingB;
|
|
164
|
+
setring ring_top;
|
|
165
|
+
|
|
166
|
+
//---------------------- compute basciinvariants ------------------------------
|
|
167
|
+
if(jet(f,0) != 0 )
|
|
168
|
+
{
|
|
169
|
+
cstn[1] = corank(f); cstn[2]=-1; cstn[3]=1;
|
|
170
|
+
return(printresult(1, f, "a unit", cstn, -1));
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
debug_log(1, "Computing Basicinvariants of f ...");
|
|
174
|
+
K, Mu, corank_f = basicinvariants(f);
|
|
175
|
+
debug_log(0, "About the singularity :");
|
|
176
|
+
debug_log(0, " Milnor number(f) = "+string(Mu));
|
|
177
|
+
debug_log(0, " Corank(f) = "+string(corank_f));
|
|
178
|
+
debug_log(0, " Determinacy <= "+string(K));
|
|
179
|
+
cstn[1] = corank_f;
|
|
180
|
+
cstn[2] = Mu;
|
|
181
|
+
cstn[3] = K;
|
|
182
|
+
|
|
183
|
+
if( Mu == 0)
|
|
184
|
+
{
|
|
185
|
+
cstn[1]=1; cstn[3]=1;
|
|
186
|
+
return(printresult(1, f, "A[0]", cstn, 0));
|
|
187
|
+
}
|
|
188
|
+
|
|
189
|
+
if(Mu<0)
|
|
190
|
+
{
|
|
191
|
+
debug_log(0, "The Milnor number of the function is infinite.");
|
|
192
|
+
debug_log(0, "The singularity is not in Arnolds list.");
|
|
193
|
+
return(printresult(1, 1, "error!", cstn, -1));
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
f = jet(f, K);
|
|
197
|
+
v = HKclass(milnorcode(f));
|
|
198
|
+
if(v[2]>0) { debug_log(0, "Guessing type via Milnorcode: ", v[1]);}
|
|
199
|
+
else
|
|
200
|
+
{
|
|
201
|
+
debug_log(0, "Hilbert polynomial not recognised. Milnor code = ",
|
|
202
|
+
milnorcode(f));
|
|
203
|
+
}
|
|
204
|
+
debug_log(0, "");
|
|
205
|
+
debug_log(0, "Computing normal form ...");
|
|
206
|
+
|
|
207
|
+
//------------ step 1, classification according to corank(f) ------------------
|
|
208
|
+
if(corank_f == 0)
|
|
209
|
+
{
|
|
210
|
+
return(printresult(2, f, "A["+string(Mu)+"]", cstn, 0));
|
|
211
|
+
}
|
|
212
|
+
if(corank_f == 1)
|
|
213
|
+
{
|
|
214
|
+
return(printresult(2, f, "A["+string(Mu)+"]", cstn, 0));
|
|
215
|
+
}
|
|
216
|
+
cstn[4] = 0;
|
|
217
|
+
if(corank_f == 2) { return(Funktion1bis(f, cstn)); }
|
|
218
|
+
if(corank_f == 3) { return(Funktion1bis(f, cstn)); }
|
|
219
|
+
return(printresult(105, f, "NoClass", cstn, -1));
|
|
220
|
+
}
|
|
221
|
+
|
|
222
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
223
|
+
static proc Funktion1bis (poly f, list cstn)
|
|
224
|
+
{
|
|
225
|
+
//---------------------------- initialisation ---------------------------------
|
|
226
|
+
def ring_top=basering;
|
|
227
|
+
poly g;
|
|
228
|
+
int n, corank, K;
|
|
229
|
+
map conv, PhiG;
|
|
230
|
+
string s1;
|
|
231
|
+
list v_res, v_class, v, iv;
|
|
232
|
+
|
|
233
|
+
corank = cstn[1];
|
|
234
|
+
K = cstn[3];
|
|
235
|
+
n = nvars(basering);
|
|
236
|
+
|
|
237
|
+
//-------------------- apply morsesplit if n>corank ---------------------------
|
|
238
|
+
if( n > corank)
|
|
239
|
+
{
|
|
240
|
+
debug_log(0,
|
|
241
|
+
"I have to apply the splitting lemma. This will take some time....:-)");
|
|
242
|
+
v_res = Morse(f, K, corank, 0);
|
|
243
|
+
g = v_res[1];
|
|
244
|
+
PhiG = v_res[2];
|
|
245
|
+
|
|
246
|
+
conv = ReOrder(g);
|
|
247
|
+
g = conv(g);
|
|
248
|
+
PhiG = conv(PhiG);
|
|
249
|
+
|
|
250
|
+
if(defined(RingB) != 0 ) { kill RingB; }
|
|
251
|
+
ring ring_rest=char(basering),(x(1..corank)),(c,ds);
|
|
252
|
+
|
|
253
|
+
map MapReduce=ring_top,maxideal(1);
|
|
254
|
+
poly G = MapReduce(g);
|
|
255
|
+
map PhiG=ring_top,maxideal(1);// Konstruiere Id auf r
|
|
256
|
+
PhiG = MapReduce(PhiG);
|
|
257
|
+
|
|
258
|
+
ring RingB = create_ring(ring_list(basering)[1], "("+A_Z("x",corank)+")", "(c,ds)", "no_minpoly");
|
|
259
|
+
export RingB;
|
|
260
|
+
setring ring_rest;
|
|
261
|
+
}
|
|
262
|
+
else
|
|
263
|
+
{
|
|
264
|
+
ring ring_rest=char(basering),(x(1..corank)),(c,ds);
|
|
265
|
+
map PhiG=ring_top,maxideal(1);
|
|
266
|
+
poly G = PhiG(f);
|
|
267
|
+
}
|
|
268
|
+
|
|
269
|
+
//--------------------- step 1 of Arnold now finished -------------------------
|
|
270
|
+
map phi = ring_rest,maxideal(1);
|
|
271
|
+
cstn[4] = phi;
|
|
272
|
+
if(corank == 2) { v_class = Funktion3(G, cstn); }
|
|
273
|
+
else
|
|
274
|
+
{
|
|
275
|
+
if(corank == 3) { v_class = Funktion50(G, cstn); }
|
|
276
|
+
else { v_class = printresult(1, f, "error!", cstn, -1); }
|
|
277
|
+
}
|
|
278
|
+
//-------------------------- classification done ------------------------------
|
|
279
|
+
if(typeof(v_class[1])!="poly") { return(v); }
|
|
280
|
+
poly f_result = v_class[1];
|
|
281
|
+
v[2] = v_class[2];
|
|
282
|
+
v[3] = v_class[3];
|
|
283
|
+
map Phi = v_class[4];
|
|
284
|
+
PhiG = Phi(PhiG);
|
|
285
|
+
setring ring_top;
|
|
286
|
+
if(defined(conv)!=0) { kill conv; }
|
|
287
|
+
map conv=ring_rest,maxideal(1);
|
|
288
|
+
v[1] = conv(f_result);
|
|
289
|
+
return(v);
|
|
290
|
+
}
|
|
291
|
+
|
|
292
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
293
|
+
static proc Funktion3 (poly f, list cstn)
|
|
294
|
+
{
|
|
295
|
+
//---------------------------- initialisation ---------------------------------
|
|
296
|
+
poly f3 = jet(f, 3);
|
|
297
|
+
ideal Jf;
|
|
298
|
+
int Dim, Mult, Mu;
|
|
299
|
+
debug_log(1, "Step 3");
|
|
300
|
+
|
|
301
|
+
if( f3 == 0 ) { return(Funktion13(f, cstn)); }
|
|
302
|
+
|
|
303
|
+
// f3 ~ x3 , x2y+y3 , x2y
|
|
304
|
+
Jf = std(jacob(f3));
|
|
305
|
+
Dim = dim(Jf);
|
|
306
|
+
if(Dim == 0) { return(printresult(4, f, "D[4]", cstn, 0)); }
|
|
307
|
+
|
|
308
|
+
Mult = mult(Jf);
|
|
309
|
+
Mu = cstn[2];
|
|
310
|
+
if(Dim == 1)
|
|
311
|
+
{
|
|
312
|
+
if( Mult == 1) { return(printresult(5,f,"D["+string(Mu)+"]", cstn, 0)); }
|
|
313
|
+
if( Mult == 2) { return(Funktion6(f, cstn));} // series E,J
|
|
314
|
+
debug_log(0, "dimension 1 und deg != 1, 2 => error, ",
|
|
315
|
+
"this should never occur");
|
|
316
|
+
return(printresult(3, f, "error!", cstn, -1));
|
|
317
|
+
// Should never reach this line
|
|
318
|
+
}
|
|
319
|
+
// Should never reach this line
|
|
320
|
+
return(printresult(3, f, "error!", cstn, -1));
|
|
321
|
+
}
|
|
322
|
+
|
|
323
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
324
|
+
static proc Funktion6 (poly f, list cstn)
|
|
325
|
+
{ // Arnold's steps 6-12
|
|
326
|
+
//---------------------------- initialisation ---------------------------------
|
|
327
|
+
poly f3, fk;
|
|
328
|
+
ideal JetId, Jf;
|
|
329
|
+
int k, Dim, Mult, n, Mu;
|
|
330
|
+
map PhiG, Phi;
|
|
331
|
+
intvec RFlg;
|
|
332
|
+
list v;
|
|
333
|
+
|
|
334
|
+
def ring_top=basering;
|
|
335
|
+
f3 = jet(f, 3); // 3-Jet von f
|
|
336
|
+
n = nvars(basering);
|
|
337
|
+
Mu = cstn[2];
|
|
338
|
+
PhiG = cstn[4];
|
|
339
|
+
k = 1;
|
|
340
|
+
debug_log(1, " Step 6");
|
|
341
|
+
|
|
342
|
+
RFlg = GetRf(f, n);
|
|
343
|
+
v = Faktorisiere(f, f3, 3, 1, RFlg);
|
|
344
|
+
f = v[1];
|
|
345
|
+
Phi = v[2];
|
|
346
|
+
PhiG = Phi(PhiG);
|
|
347
|
+
cstn[4] = PhiG;
|
|
348
|
+
|
|
349
|
+
//---------------------------- begin of loop ----------------------------------
|
|
350
|
+
while( (6*k) <= Mu )
|
|
351
|
+
{
|
|
352
|
+
JetId = x(1)^3+x(2)^(3*k);
|
|
353
|
+
fk = jet(f, 3*k, weight(JetId));
|
|
354
|
+
//--------------------------- step 6(k) ---------------------------------
|
|
355
|
+
if( fk == Coeff(fk,x(1), x(1)^3)*x(1)^3 )
|
|
356
|
+
{
|
|
357
|
+
JetId = x(1)^3+x(2)^(3*k+1); // check jet x3,y3k+1 : E[6k]
|
|
358
|
+
fk = jet(f, 3*(3*k+1), weight(JetId));
|
|
359
|
+
if( Coeff(fk,x(2),x(2)^(3*k+1)) != 0 )
|
|
360
|
+
{
|
|
361
|
+
return(printresult(7, f, "E["+string(6*k)+"]", cstn, k-1));
|
|
362
|
+
}
|
|
363
|
+
|
|
364
|
+
JetId = x(1)^3+x(1)*x(2)^(2*k+1); // check jet x3,xy2k+1 : E[6k+1]
|
|
365
|
+
fk = jet(f, 3*(2*k+1), weight(JetId));
|
|
366
|
+
if( Coeff(fk, x(1)*x(2), x(1)*x(2)^(2*k+1)) != 0 )
|
|
367
|
+
{
|
|
368
|
+
return(printresult(8, f,"E["+string(6*k+1)+"]", cstn, k-1));
|
|
369
|
+
}
|
|
370
|
+
|
|
371
|
+
JetId = x(1)^3+x(2)^(3*k+2); // check jet x3,y3k+1 : E[6k+2]
|
|
372
|
+
fk = jet(f, 3*(3*k+2), weight(JetId));
|
|
373
|
+
if( Coeff(fk,x(2),x(2)^(3*k+2)) != 0 )
|
|
374
|
+
{
|
|
375
|
+
return(printresult(9, f,"E["+string(6*k+2)+"]", cstn, k-1));
|
|
376
|
+
}
|
|
377
|
+
|
|
378
|
+
//------------------------- step 10(k) --------------------------------
|
|
379
|
+
k++;
|
|
380
|
+
JetId = x(1)^3+x(2)^(3*k);
|
|
381
|
+
fk = jet(f, 3*k, weight(JetId));
|
|
382
|
+
Jf = std(jacob(fk));
|
|
383
|
+
Dim = dim(Jf);
|
|
384
|
+
|
|
385
|
+
if(Dim==0) { return(printresult(11,f,"J["+string(k)+",0]",cstn,k-1)); }
|
|
386
|
+
Mult = mult(Jf);
|
|
387
|
+
if( Dim ==1 && Mult==1)
|
|
388
|
+
{
|
|
389
|
+
return(printresult(12,f,"J["+string(k)+","+string(Mu - 6*k +2)+"]",
|
|
390
|
+
cstn, k-1));
|
|
391
|
+
}
|
|
392
|
+
if( Dim == 1 && Mult == 2)
|
|
393
|
+
{
|
|
394
|
+
if(Coeff(fk, x(2), x(2)^(3*k)) != 0)
|
|
395
|
+
{
|
|
396
|
+
v = Faktorisiere(f, fk, 3, k, RFlg);
|
|
397
|
+
f = v[1];
|
|
398
|
+
Phi = v[2];
|
|
399
|
+
PhiG = Phi(PhiG);
|
|
400
|
+
cstn[4] = PhiG;
|
|
401
|
+
}
|
|
402
|
+
}
|
|
403
|
+
}
|
|
404
|
+
}
|
|
405
|
+
// Should never reach this line
|
|
406
|
+
return(printresult(6, f, "error!", cstn, -1));
|
|
407
|
+
}
|
|
408
|
+
|
|
409
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
410
|
+
static proc Funktion13 (poly f, list cstn)
|
|
411
|
+
{
|
|
412
|
+
//---------------------------- initialisation ---------------------------------
|
|
413
|
+
poly f4;
|
|
414
|
+
ideal Jf;
|
|
415
|
+
int Dim, Mult, Mu;
|
|
416
|
+
|
|
417
|
+
debug_log(1, " Step 13");
|
|
418
|
+
Mu = cstn[2];
|
|
419
|
+
f4 = jet(f, 4);
|
|
420
|
+
if( f4 == 0 ) { return(Funktion47(f, cstn)); }
|
|
421
|
+
|
|
422
|
+
// f4 ~ x4+ax2y2+y4, x4+x2y2, x2y2, x3y, x4
|
|
423
|
+
Jf = std(jacob(f4));
|
|
424
|
+
Dim = dim(Jf);
|
|
425
|
+
|
|
426
|
+
if(Dim==0) { return(printresult(14,f,"X[9] = X[1,0] = T[2,4,4]",cstn,1)); }
|
|
427
|
+
Mult = mult(Jf);
|
|
428
|
+
if( Dim == 1)
|
|
429
|
+
{
|
|
430
|
+
if( Mult == 1 )
|
|
431
|
+
{
|
|
432
|
+
return(printresult(15, f,
|
|
433
|
+
"X[1,"+string(Mu-9)+"] = T[2,4,"+string(Mu-5)+"]", cstn, 1));
|
|
434
|
+
}
|
|
435
|
+
if( Mult == 2 )
|
|
436
|
+
{
|
|
437
|
+
Jf = Jf, jacob(Jf);
|
|
438
|
+
Jf = std(Jf);
|
|
439
|
+
Dim = dim(Jf);
|
|
440
|
+
if(Dim==0){return(printresult(16,f,"Y[1,p,q] = T[2,4+p,4+q]",cstn,1));}
|
|
441
|
+
if( Dim == 1 ) { return(Funktion17(f, cstn)); }
|
|
442
|
+
}
|
|
443
|
+
if( Mult == 3 ) { return(Funktion25(f, cstn)); }
|
|
444
|
+
}
|
|
445
|
+
// Should never reach this line
|
|
446
|
+
return(printresult(13, f, "error!", cstn, -1));
|
|
447
|
+
}
|
|
448
|
+
|
|
449
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
450
|
+
static proc Funktion17 (poly f, list cstn)
|
|
451
|
+
{ // Analog zu Fumktion 6, Kombination 17-24
|
|
452
|
+
//---------------------------- initialisation ---------------------------------
|
|
453
|
+
poly fk, ft;
|
|
454
|
+
ideal JetId, Jf;
|
|
455
|
+
int p, Dim, Mult, Mu;
|
|
456
|
+
list v;
|
|
457
|
+
map PhiG, Phi;
|
|
458
|
+
|
|
459
|
+
def ring_top=basering;
|
|
460
|
+
debug_log(1, " Step 17");
|
|
461
|
+
Mu = cstn[2];
|
|
462
|
+
PhiG = cstn[4];
|
|
463
|
+
fk = jet(f, 4);
|
|
464
|
+
p = 1;
|
|
465
|
+
|
|
466
|
+
//---------------------------- begin of loop ----------------------------------
|
|
467
|
+
while( 3*p<= Mu)
|
|
468
|
+
{
|
|
469
|
+
debug_log(1, " Step 18("+string(p)+")");
|
|
470
|
+
v = Isomorphie_s17(f, fk, p, 1);
|
|
471
|
+
f, Phi = v[1..2];
|
|
472
|
+
PhiG = Phi(PhiG);
|
|
473
|
+
cstn[4] = PhiG;
|
|
474
|
+
|
|
475
|
+
if ( p>1)
|
|
476
|
+
{
|
|
477
|
+
JetId = x(1)^3*x(2) + x(2)^(3*p);
|
|
478
|
+
fk = jet(f, 3*p, weight(JetId));
|
|
479
|
+
}
|
|
480
|
+
//--------------------------- step 18(p) --------------------------------
|
|
481
|
+
JetId = x(1)^3*x(2) + x(2)^(3*p+2); // check jet x3y,y3k+2 : Z[6p+5]
|
|
482
|
+
fk = jet(f, 3*(3*p+2), weight(JetId));
|
|
483
|
+
if( Coeff(fk, x(2), x(2)^(3*p+2)) != 0)
|
|
484
|
+
{
|
|
485
|
+
return(printresult(19,f, "Z["+string(6*p+5)+"]", cstn, p));
|
|
486
|
+
}
|
|
487
|
+
|
|
488
|
+
JetId = x(1)^3*x(2)+x(1)*x(2)^(2*p+2); // check jet x3y,xy2k+2 : Z[6p+6]
|
|
489
|
+
fk = jet(f, 2*(3*p+2)+1, weight(JetId));
|
|
490
|
+
if( Coeff(fk, x(1)*x(2), x(1)*x(2)^(2*p+2)) != 0)
|
|
491
|
+
{
|
|
492
|
+
return(printresult(20, f, "Z["+string(6*p+6)+"]", cstn, p));
|
|
493
|
+
}
|
|
494
|
+
|
|
495
|
+
JetId = x(1)^3*x(2) + x(2)^(3*p+3); // check jet x3y,y3k+3 : Z[6p+7]
|
|
496
|
+
fk = jet(f, 3*(3*p+3), weight(JetId));
|
|
497
|
+
if( Coeff(fk, x(2), x(2)^(3*p+3)) != 0)
|
|
498
|
+
{
|
|
499
|
+
return(printresult(21, f, "Z["+string(6*p+7)+"]", cstn, p));
|
|
500
|
+
}
|
|
501
|
+
|
|
502
|
+
//---------------------------- step 22 ----------------------------------
|
|
503
|
+
p = p+1;
|
|
504
|
+
JetId = x(1)^3*x(2) + x(2)^(3*p+1);
|
|
505
|
+
fk = jet(f, 3*p+1, weight(JetId));
|
|
506
|
+
ft = Teile(fk, x(2));
|
|
507
|
+
Jf = std(jacob(ft));
|
|
508
|
+
Dim = dim(Jf);
|
|
509
|
+
Mult = mult(Jf);
|
|
510
|
+
if(Dim==0) { return(printresult(23,f,"Z["+string(p-1)+",0]", cstn, p)); }
|
|
511
|
+
if( Mult == 1 )
|
|
512
|
+
{
|
|
513
|
+
return(printresult(24, f, "Z["+string(p-1)+","+string(Mu-3-6*p)+"]",
|
|
514
|
+
cstn, p));
|
|
515
|
+
}
|
|
516
|
+
}
|
|
517
|
+
// Should never reach this line
|
|
518
|
+
return(printresult(17, f, "error!", cstn, -1));
|
|
519
|
+
}
|
|
520
|
+
|
|
521
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
522
|
+
static proc Funktion25 (poly f, list cstn)
|
|
523
|
+
{ // Analog zu Fumktion 6, Kombination 25-46
|
|
524
|
+
//---------------------------- initialisation ---------------------------------
|
|
525
|
+
poly fk, ft;
|
|
526
|
+
ideal JetId, Jf;
|
|
527
|
+
int k, Dim, Mult, Mu;
|
|
528
|
+
map PhiG, Phi;
|
|
529
|
+
intvec RFlg;
|
|
530
|
+
list v;
|
|
531
|
+
def ring_top=basering;
|
|
532
|
+
|
|
533
|
+
debug_log(1, " Step 25");
|
|
534
|
+
Mu = cstn[2];
|
|
535
|
+
PhiG = cstn[4];
|
|
536
|
+
fk = jet(f, 4);
|
|
537
|
+
k = 1;
|
|
538
|
+
RFlg = GetRf(f, 2);
|
|
539
|
+
|
|
540
|
+
//---------------------------- begin of loop ----------------------------------
|
|
541
|
+
while (k<Mu)
|
|
542
|
+
{
|
|
543
|
+
v = Faktorisiere(f, fk, 4 , k, RFlg);
|
|
544
|
+
f, Phi = v[1..2];
|
|
545
|
+
PhiG = Phi(PhiG);
|
|
546
|
+
cstn[4] = PhiG;
|
|
547
|
+
|
|
548
|
+
//--------------------------- step 26(k) --------------------------------
|
|
549
|
+
JetId = x(1)^4 + x(2)^(4*k+1); // check jet x4,y4k+1 : W[12k]
|
|
550
|
+
fk = jet(f, 4*(4*k+1), weight(JetId));
|
|
551
|
+
if( Coeff(fk, x(2), x(2)^(4*k+1)) != 0)
|
|
552
|
+
{
|
|
553
|
+
return(printresult(27, f, "W["+string(12*k)+"]", cstn, 3*k-2));
|
|
554
|
+
}
|
|
555
|
+
|
|
556
|
+
JetId = x(1)^4 + x(1)*x(2)^(3*k+1); // check jet x4,xy3k+1 : W[12k+1]
|
|
557
|
+
fk = jet(f, 4*(3*k+1), weight(JetId));
|
|
558
|
+
if( Coeff(fk, x(1)*x(2), x(1)*x(2)^(3*k+1)) != 0)
|
|
559
|
+
{
|
|
560
|
+
return(printresult(28, f, "W["+string(12*k+1)+"]", cstn, 3*k-2));
|
|
561
|
+
}
|
|
562
|
+
|
|
563
|
+
//--------------------------- step 29(k) --------------------------------
|
|
564
|
+
JetId = x(1)^4 + x(2)^(4*k+2);
|
|
565
|
+
fk = jet(f, 2*(4*k+2), weight(JetId));
|
|
566
|
+
if( Coeff(fk, x(2), x(2)^(4*k+2)) != 0)
|
|
567
|
+
{
|
|
568
|
+
Jf = std(jacob(fk));
|
|
569
|
+
Dim = dim(Jf);
|
|
570
|
+
if(Dim==0) {return(printresult(30,f,"W["+string(k)+",0]",cstn,3*k-1));}
|
|
571
|
+
if(Dim==1)
|
|
572
|
+
{
|
|
573
|
+
return(printresult(32, f,
|
|
574
|
+
"W#["+string(k)+","+string(Mu-12*k-3)+"]", cstn, 3*k-1));
|
|
575
|
+
}
|
|
576
|
+
return(printresult(29, f, "error!", cstn, -1));
|
|
577
|
+
}
|
|
578
|
+
else
|
|
579
|
+
{
|
|
580
|
+
// x^4 oder x^2(x^2+x(2)^2k+1)
|
|
581
|
+
ft = Teile(fk, x(1)^2);
|
|
582
|
+
Jf = std(jacob(ft));
|
|
583
|
+
Dim = dim(Jf);
|
|
584
|
+
if( Dim == 0 )
|
|
585
|
+
{
|
|
586
|
+
return(printresult(31, f, "W["+string(k)+","+string(Mu-12*k-3)+"]",
|
|
587
|
+
cstn, 3*k-1));
|
|
588
|
+
}
|
|
589
|
+
if( Dim != 1 ) { return(printresult(29, f, "error!", cstn, -1)); }
|
|
590
|
+
|
|
591
|
+
//-------------------------- step 33(k) -------------------------------
|
|
592
|
+
JetId = x(1)^4 + x(1)*x(2)^(3*k+2); // check jet x4,xy3k+2 : W[12k+5]
|
|
593
|
+
fk = jet(f, 4*(3*k+2), weight(JetId));
|
|
594
|
+
if( Coeff(fk, x(1)*x(2), x(1)*x(2)^(3*k+2)) != 0)
|
|
595
|
+
{
|
|
596
|
+
return(printresult(34, f,"W["+string(12*k+5)+"]", cstn, 3*k-1));
|
|
597
|
+
}
|
|
598
|
+
|
|
599
|
+
JetId = x(1)^4 + x(2)^(4*k+3); // check jet x4,y4k+3 : W[12k+6]
|
|
600
|
+
fk = jet(f, 4*(4*k+3), weight(JetId));
|
|
601
|
+
if( Coeff(fk, x(2), x(2)^(4*k+3)) != 0)
|
|
602
|
+
{
|
|
603
|
+
return(printresult(35, f,"W["+string(12*k+6)+"]", cstn, 3*k-1));
|
|
604
|
+
}
|
|
605
|
+
|
|
606
|
+
//-------------------------- step 36(k) -------------------------------
|
|
607
|
+
k = k+1;
|
|
608
|
+
JetId = x(1)^4 + x(2)^(4*k);
|
|
609
|
+
fk = jet(f, (4*k), weight(JetId));
|
|
610
|
+
Jf = std(jacob(fk));
|
|
611
|
+
Dim = dim(Jf);
|
|
612
|
+
Mult = mult(Jf);
|
|
613
|
+
if(Dim==0) {return(printresult(37,f,"X["+string(k)+",0]",cstn,3*k-1));}
|
|
614
|
+
if(Dim==1)
|
|
615
|
+
{
|
|
616
|
+
if(Mult==1)
|
|
617
|
+
{
|
|
618
|
+
return(printresult(38, f,"X["+string(k)+","+string(Mu-12*k+3)+"]",
|
|
619
|
+
cstn, 3*k-1));
|
|
620
|
+
}
|
|
621
|
+
if(Mult==2)
|
|
622
|
+
{
|
|
623
|
+
ft = Teile(fk, x(1)^2);
|
|
624
|
+
Jf = std(jacob(ft));
|
|
625
|
+
Dim = dim(Jf);
|
|
626
|
+
if( Dim == 0) { return(Funktion40(f, cstn, k)); }
|
|
627
|
+
if( Dim == 1)
|
|
628
|
+
{
|
|
629
|
+
return(printresult(39, f, "Y["+string(k)+",r,s]", cstn,3*k-1));
|
|
630
|
+
}
|
|
631
|
+
}
|
|
632
|
+
if(Mult!=3)
|
|
633
|
+
{
|
|
634
|
+
return(printresult(36, f, "error!", cstn, -1)); }
|
|
635
|
+
}
|
|
636
|
+
else { return(printresult(36, f, "error!", cstn, -1)); }
|
|
637
|
+
}
|
|
638
|
+
} // Ende der While-Schleife
|
|
639
|
+
// Should never reach this line
|
|
640
|
+
return(printresult(25, f, "error!", cstn, -1));
|
|
641
|
+
}
|
|
642
|
+
|
|
643
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
644
|
+
static proc Funktion40 (poly f, list cstn, int k)
|
|
645
|
+
{
|
|
646
|
+
//---------------------------- initialisation ---------------------------------
|
|
647
|
+
int r, kr, rr, sr, oldDebug;
|
|
648
|
+
poly fk, f2, a, b, c;
|
|
649
|
+
ideal JetId, Jfsyz;
|
|
650
|
+
string Typ, RestRing, s1;
|
|
651
|
+
list v1, v2;
|
|
652
|
+
def ring_top=basering;
|
|
653
|
+
|
|
654
|
+
debug_log(1, " Step 40" );
|
|
655
|
+
|
|
656
|
+
//------------------------------ compute f2 -----------------------------------
|
|
657
|
+
JetId = x(1)^4 + x(2)^(4*k);
|
|
658
|
+
fk = jet(f, (4*k), weight(JetId));
|
|
659
|
+
f2 = -fk / x(1)^3;
|
|
660
|
+
Jfsyz = f - fk, x(1)^3, f2;
|
|
661
|
+
matrix Mat = matrix(syz(Jfsyz));
|
|
662
|
+
a = Mat[2,1] / Mat[1,1] - Mat[2,2];
|
|
663
|
+
b = - Mat[3,1] / Mat[1,1] + Mat[3,2];
|
|
664
|
+
ring tmp_ring=char(basering), (x(1),x(2)),(c,ds);
|
|
665
|
+
map map_top2tmp=ring_top,maxideal(1);
|
|
666
|
+
oldDebug = @DeBug;
|
|
667
|
+
init_debug(-1);
|
|
668
|
+
//------------------------------ classify f2 ----------------------------------
|
|
669
|
+
v1=Klassifiziere(map_top2tmp(b));
|
|
670
|
+
init_debug(oldDebug);
|
|
671
|
+
Typ = v1[2];
|
|
672
|
+
v2 = DecodeNormalFormString(Typ);
|
|
673
|
+
Typ, kr, rr, sr = v2[1..4];
|
|
674
|
+
r = kr-k;
|
|
675
|
+
setring ring_top;
|
|
676
|
+
if( Typ == "E[6k]" )
|
|
677
|
+
{
|
|
678
|
+
return(printresult(42, f, "Z["+string(k)+","+string(12*k+6*r-1)+"]",
|
|
679
|
+
cstn, 3*k+r-2));
|
|
680
|
+
}
|
|
681
|
+
if( Typ == "E[6k+1]" )
|
|
682
|
+
{
|
|
683
|
+
return(printresult(43, f, "Z["+string(k)+","+string(12*k+6*r)+"]",
|
|
684
|
+
cstn, 3*k+r-2));
|
|
685
|
+
}
|
|
686
|
+
if( Typ == "E[6k+2]" )
|
|
687
|
+
{
|
|
688
|
+
return(printresult(44, f, "Z["+string(k)+","+string(12*k+6*r+1)+"]",
|
|
689
|
+
cstn, 3*k+r-2));
|
|
690
|
+
}
|
|
691
|
+
if( Typ == "J[k,0]" )
|
|
692
|
+
{
|
|
693
|
+
return(printresult(45, f, "Z["+string(k)+","+string(r)+",0]",
|
|
694
|
+
cstn, 3*k+r-2));
|
|
695
|
+
}
|
|
696
|
+
if( Typ == "J[k,r]" )
|
|
697
|
+
{
|
|
698
|
+
return(printresult(46,f,"Z["+string(k)+","+string(r)+","+string(rr)+"]",
|
|
699
|
+
cstn, 3*k+r-2));
|
|
700
|
+
}
|
|
701
|
+
// Should never reach this line
|
|
702
|
+
return(printresult(40, f, "error!", cstn, -1));
|
|
703
|
+
}
|
|
704
|
+
|
|
705
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
706
|
+
static proc Funktion50 (poly f, list cstn)
|
|
707
|
+
{
|
|
708
|
+
//---------------------------- initialisation ---------------------------------
|
|
709
|
+
poly f3;
|
|
710
|
+
ideal Jf, Jf1, Jf2;
|
|
711
|
+
int Dim, Mult, Mu;
|
|
712
|
+
debug_log(1, "Step 50");
|
|
713
|
+
|
|
714
|
+
f3 = jet(f, 3);
|
|
715
|
+
if( f3 == 0 ) { return(printresult(104, f, "NoClass", cstn, -1)); }
|
|
716
|
+
|
|
717
|
+
// f3 ~
|
|
718
|
+
Jf1 = jacob(f3);
|
|
719
|
+
Jf = std(Jf1);
|
|
720
|
+
Dim = dim(Jf);
|
|
721
|
+
Mult = mult(Jf);
|
|
722
|
+
Mu = cstn[2];
|
|
723
|
+
|
|
724
|
+
if(Dim == 0)
|
|
725
|
+
{
|
|
726
|
+
return(printresult(51, f, "P[8] = T[3,3,3]", cstn, 1));
|
|
727
|
+
} // x3 + y3 + z3 + axyz
|
|
728
|
+
if(Dim == 1)
|
|
729
|
+
{
|
|
730
|
+
if (Mult == 1)
|
|
731
|
+
{
|
|
732
|
+
return(printresult(52, f,"P["+string(Mu)+"] = T[3,3,"+string(Mu-5)+"]",
|
|
733
|
+
cstn, 1));
|
|
734
|
+
} // x3 + y3 + xyz
|
|
735
|
+
if(Mult == 2)
|
|
736
|
+
{
|
|
737
|
+
Jf2 = wedge(jacob(Jf1),3-Dim), Jf1;
|
|
738
|
+
Jf2 = std(Jf2);
|
|
739
|
+
Dim = dim(Jf2);
|
|
740
|
+
if (Dim==0) { return(printresult(54,f,"R[p,q] = T[3,p,q]", cstn, 1)); }
|
|
741
|
+
if (Dim==1) { return(Funktion58(f, cstn)); } // x3 + yz2
|
|
742
|
+
}
|
|
743
|
+
if(Mult == 3)
|
|
744
|
+
{
|
|
745
|
+
Jf2 = wedge(jacob(Jf1),3-Dim), Jf1;
|
|
746
|
+
Jf2 = std(Jf2);
|
|
747
|
+
Dim = dim(Jf2);
|
|
748
|
+
if(Dim == 0) { return(printresult(56, f, "T[p,q,r]", cstn, 1)); }
|
|
749
|
+
if(Dim == 1) { return(Funktion66(f, cstn)); } // x2z + yz2
|
|
750
|
+
}
|
|
751
|
+
if(Mult == 4) { return(Funktion82(f, cstn)); } // x3 + xz2
|
|
752
|
+
}
|
|
753
|
+
if(Dim == 2)
|
|
754
|
+
{
|
|
755
|
+
if(Mult == 1) { return(Funktion97(f, cstn)); } // x2y
|
|
756
|
+
if(Mult == 2) { return(printresult(103,f,"NoClass", cstn, -1));}
|
|
757
|
+
}
|
|
758
|
+
|
|
759
|
+
// Should never reach this line
|
|
760
|
+
return(printresult(50, f, "error!", cstn, -1));
|
|
761
|
+
}
|
|
762
|
+
|
|
763
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
764
|
+
static proc Funktion58 (poly fin, list cstn)
|
|
765
|
+
{
|
|
766
|
+
//---------------------------- initialisation ---------------------------------
|
|
767
|
+
poly f, f3, a, b, phi, b1, b2, b3, fa, fb, fc;
|
|
768
|
+
ideal B, Jf3, J1, J2, S, Jfsyz;
|
|
769
|
+
int kx, ky, kz;
|
|
770
|
+
string tp;
|
|
771
|
+
matrix M[2][3];
|
|
772
|
+
matrix C[2][3], D;
|
|
773
|
+
list v;
|
|
774
|
+
map PhiG, VERT;
|
|
775
|
+
def ring_top=basering;
|
|
776
|
+
debug_log(1, " Step 58");
|
|
777
|
+
|
|
778
|
+
f = fin;
|
|
779
|
+
f3 = jet(f, 3);
|
|
780
|
+
PhiG = cstn[4];
|
|
781
|
+
tp = "Nix";
|
|
782
|
+
kx = 1; // Koordinate x
|
|
783
|
+
ky = 2; // Koordinate y
|
|
784
|
+
kz = 3; // Koordinate z
|
|
785
|
+
B = maxideal(1); // ideal fuer Abbildungen
|
|
786
|
+
Jf3 = jacob(f3);
|
|
787
|
+
S = sat(Jf3, maxideal(1));
|
|
788
|
+
J1 = diff(S[1], x(kx)), diff(S[1], x(ky)), diff(S[1], x(kz)),
|
|
789
|
+
diff(S[2], x(kx)), diff(S[2], x(ky)), diff(S[2], x(kz));
|
|
790
|
+
M = J1;
|
|
791
|
+
J2 = minor(M, 2), S;
|
|
792
|
+
|
|
793
|
+
//------------------ determine coordinate named 'x' -----------------------
|
|
794
|
+
S = sat(J2, maxideal(1));
|
|
795
|
+
J1 = Coeff(S[1], x(1), x(1)), Coeff(S[1], x(2), x(2)),
|
|
796
|
+
Coeff(S[1], x(3), x(3)), Coeff(S[2], x(1), x(1)),
|
|
797
|
+
Coeff(S[2], x(2), x(2)), Coeff(S[2], x(3), x(3));
|
|
798
|
+
C = J1;
|
|
799
|
+
D = syz(C);
|
|
800
|
+
kill C;
|
|
801
|
+
|
|
802
|
+
b1 = D[1,1];
|
|
803
|
+
b2 = D[2,1];
|
|
804
|
+
b3 = D[3,1];
|
|
805
|
+
|
|
806
|
+
debug_log(6, "f3,s1=", Show(f3));
|
|
807
|
+
if( b1 != 0)
|
|
808
|
+
{
|
|
809
|
+
VERT=ring_top,-1*b1*x(1), -1*b2*x(1)+x(2), -1*b3*x(1) + x(3);
|
|
810
|
+
kx=1; ky=2; kz=3;
|
|
811
|
+
}
|
|
812
|
+
else
|
|
813
|
+
{
|
|
814
|
+
if( b2 != 0)
|
|
815
|
+
{
|
|
816
|
+
VERT=ring_top, x(1) + -1*b1*x(2), -1*b2*x(2), -1*b3*x(2) + x(3);
|
|
817
|
+
kx=2; ky=1; kz=3;
|
|
818
|
+
}
|
|
819
|
+
else
|
|
820
|
+
{
|
|
821
|
+
if( b3 != 0)
|
|
822
|
+
{
|
|
823
|
+
VERT=ring_top,x(1) + -1*b1*x(3), x(2) + -1*b2*x(3), -1*b3*x(3);
|
|
824
|
+
kx=3; ky=1; kz=2;
|
|
825
|
+
}
|
|
826
|
+
}
|
|
827
|
+
}
|
|
828
|
+
f = VERT(f);
|
|
829
|
+
PhiG = VERT(PhiG);
|
|
830
|
+
cstn[4] = PhiG;
|
|
831
|
+
debug_log(6, VERT);
|
|
832
|
+
f3 = jet(f,3);
|
|
833
|
+
debug_log(6, "f3,s2=", Show(f3));
|
|
834
|
+
|
|
835
|
+
//---------------- compute f_2 such that j3f = xf_2+f_3 -------------------
|
|
836
|
+
debug_log(6, "1) x=", kx, " y=", ky, " z=", kz );
|
|
837
|
+
matrix C = Coeffs(f3, x(kx));
|
|
838
|
+
fb=C[2,1]; // Coeff von x^1
|
|
839
|
+
fc=C[1,1]; // Coeff von x^0
|
|
840
|
+
if(diff(fb, x(ky)) != 0)
|
|
841
|
+
{
|
|
842
|
+
Jfsyz = fb, diff(fb, x(ky));
|
|
843
|
+
matrix Mat = matrix(syz(Jfsyz));
|
|
844
|
+
B = maxideal(1); // setze Abbildungs-ideal
|
|
845
|
+
if( nrows(Mat) == 2)
|
|
846
|
+
{
|
|
847
|
+
poly Relation = -2 * Mat[2,1] / Mat[1,1];
|
|
848
|
+
b = Coeff(Relation, x(kz), x(kz));
|
|
849
|
+
B[rvar(x(ky))] = x(ky)-b*x(kz);
|
|
850
|
+
}
|
|
851
|
+
else
|
|
852
|
+
{
|
|
853
|
+
Jfsyz = fb, diff(fb, x(kz));
|
|
854
|
+
Mat = matrix(syz(Jfsyz));
|
|
855
|
+
poly Relation = -2 * Mat[2,1];
|
|
856
|
+
a = Coeff(Relation, x(ky), x(ky));
|
|
857
|
+
B[rvar(x(kz))] = x(kz)-a*x(kz);
|
|
858
|
+
ky, kz = swap(ky, kz);
|
|
859
|
+
}
|
|
860
|
+
VERT = ring_top, B;
|
|
861
|
+
f = VERT(f);
|
|
862
|
+
PhiG = VERT(PhiG);
|
|
863
|
+
cstn[4] = PhiG;
|
|
864
|
+
f3 = jet(f,3);
|
|
865
|
+
kill Mat;
|
|
866
|
+
}
|
|
867
|
+
else { ky,kz = swap(ky,kz); }
|
|
868
|
+
|
|
869
|
+
//------- compute tschirnhaus for 'z' and get f3=f_1(x,y,z)y^2+z^3 --------
|
|
870
|
+
C = Coeffs(f3, x(kx));
|
|
871
|
+
fb = C[2,1]; // Coeff von x^1
|
|
872
|
+
fc = C[1,1]; // Coeff von x^0
|
|
873
|
+
v = tschirnhaus(fc, x(kz));
|
|
874
|
+
fc, VERT = v[1..2];
|
|
875
|
+
f = VERT(f);
|
|
876
|
+
PhiG = VERT(PhiG);
|
|
877
|
+
cstn[4] = PhiG;
|
|
878
|
+
f3 = jet(f,3);
|
|
879
|
+
|
|
880
|
+
//------------------- compute f_1 and get f3=xy^2+z^3 ---------------------
|
|
881
|
+
fb = (f3 - 1*(Coeffs(f3, x(kz))[4,1])*x(kz)^3)/(x(ky)^2);
|
|
882
|
+
fc=(x(kx)-1*(Coeffs(fb,x(ky))[2,1])*x(ky)-1*(Coeffs(fb,x(kz))[2,1])*x(kz));
|
|
883
|
+
fa = Coeffs(fb, x(kx))[2,1];
|
|
884
|
+
if ( fa != 0 )
|
|
885
|
+
{
|
|
886
|
+
B = maxideal(1);
|
|
887
|
+
B[rvar(x(kx))] = fc / fa;
|
|
888
|
+
VERT = ring_top, B;
|
|
889
|
+
f = VERT(f);
|
|
890
|
+
PhiG = VERT(PhiG);
|
|
891
|
+
cstn[4] = PhiG;
|
|
892
|
+
f3 = jet(f,3);
|
|
893
|
+
}
|
|
894
|
+
|
|
895
|
+
//--------------------- permutation of x,y,z -----------------------------
|
|
896
|
+
if(Coeffs(f3, x(1))[4,1]!=0)
|
|
897
|
+
{
|
|
898
|
+
kx=1;
|
|
899
|
+
if(Coeffs(f3, x(2))[3,1]==0) { ky=2; kz=3; }
|
|
900
|
+
else { ky=3; kz=2; }
|
|
901
|
+
}
|
|
902
|
+
else
|
|
903
|
+
{
|
|
904
|
+
if(Coeffs(f3, x(2))[4,1]!=0)
|
|
905
|
+
{
|
|
906
|
+
kx=2;
|
|
907
|
+
if(Coeffs(f3, x(3))[3,1]==0) { ky=3; kz=1; }
|
|
908
|
+
else { ky=1; kz=3; }
|
|
909
|
+
}
|
|
910
|
+
else
|
|
911
|
+
{
|
|
912
|
+
kx=3;
|
|
913
|
+
if(Coeffs(f3, x(1))[3,1]==0) { ky=1; kz=2; }
|
|
914
|
+
else { ky=2; kz=1; }
|
|
915
|
+
}
|
|
916
|
+
}
|
|
917
|
+
VERT = ring_top, x(kx), x(ky), x(kz);
|
|
918
|
+
f = VERT(f);
|
|
919
|
+
PhiG = VERT(PhiG);
|
|
920
|
+
cstn[4] = PhiG;
|
|
921
|
+
f3 = jet(f,3);
|
|
922
|
+
return(Funktion59(f, cstn));
|
|
923
|
+
}
|
|
924
|
+
|
|
925
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
926
|
+
static proc Funktion59 (poly f, list cstn)
|
|
927
|
+
{
|
|
928
|
+
//---------------------------- initialisation ---------------------------------
|
|
929
|
+
poly phi, fr, fk, alpha, beta, f_tmp;
|
|
930
|
+
ideal JetId;
|
|
931
|
+
int p, Dim, Mult, Mu;
|
|
932
|
+
string tp;
|
|
933
|
+
list v;
|
|
934
|
+
map PhiG, Phi;
|
|
935
|
+
intvec w, RFlg;
|
|
936
|
+
def ring_top=basering;
|
|
937
|
+
debug_log(1, " Step 59");
|
|
938
|
+
|
|
939
|
+
Mu = cstn[2];
|
|
940
|
+
PhiG = cstn[4];
|
|
941
|
+
tp = "Nix";
|
|
942
|
+
p = 1;
|
|
943
|
+
phi = jet(f,3);
|
|
944
|
+
fr = f - phi;
|
|
945
|
+
RFlg = 1,2,3;
|
|
946
|
+
alpha = coeffs(fr, x(1))[1,1];
|
|
947
|
+
beta = (fr - alpha) / x(1);
|
|
948
|
+
debug_log(3, "f = ", Show(f));
|
|
949
|
+
debug_log(3, "fr = ", Show(fr));
|
|
950
|
+
debug_log(3, "alpha= ", Show(alpha));
|
|
951
|
+
debug_log(3, "beta = ", Show(beta));
|
|
952
|
+
|
|
953
|
+
//---------------------------- begin of loop ----------------------------------
|
|
954
|
+
while(6*p<Mu)
|
|
955
|
+
{
|
|
956
|
+
JetId = x(2)^(3*p+1);
|
|
957
|
+
JetId = phi + x(2)^(3*p+1);
|
|
958
|
+
//--------------------------- step 59(k) --------------------------------
|
|
959
|
+
w = weight(JetId);
|
|
960
|
+
fk = jet(fr, 3*w[1], w);
|
|
961
|
+
if(fk!=0) { return(printresult(60,f, "Q["+string(6*p+4)+"]", cstn, p)); }
|
|
962
|
+
|
|
963
|
+
JetId = phi + x(1)*x(2)^(2*p+1);
|
|
964
|
+
w = weight(JetId);
|
|
965
|
+
fk = jet(fr, 3*w[1], w);
|
|
966
|
+
if(fk!=0) { return(printresult(61,f, "Q["+string(6*p+5)+"]", cstn, p)); }
|
|
967
|
+
|
|
968
|
+
JetId = phi + x(2)^(3*p+2);
|
|
969
|
+
w = weight(JetId);
|
|
970
|
+
fk = jet(fr, 3*w[1], w);
|
|
971
|
+
if(fk!=0) { return(printresult(62,f, "Q["+string(6*p+6)+"]", cstn, p)); }
|
|
972
|
+
|
|
973
|
+
//--------------------------- step 63(k) --------------------------------
|
|
974
|
+
p++;
|
|
975
|
+
JetId = phi + x(2)^(3*p);
|
|
976
|
+
w = weight(JetId);
|
|
977
|
+
fk = jet(f, 3*w[1], w);
|
|
978
|
+
JetId = std(jacob(fk));
|
|
979
|
+
Dim = dim(JetId);
|
|
980
|
+
Mult = mult(JetId);
|
|
981
|
+
if(Dim==0) { return(printresult(64, f, "Q["+string(p)+",0]", cstn, p)); }
|
|
982
|
+
if(Dim==1)
|
|
983
|
+
{
|
|
984
|
+
if(Mult == 1)
|
|
985
|
+
{
|
|
986
|
+
return(printresult(65, f, "Q["+string(p)+","+string(Mu-(6*p+2))+"]",
|
|
987
|
+
cstn, p));
|
|
988
|
+
}
|
|
989
|
+
if(Mult == 2)
|
|
990
|
+
{
|
|
991
|
+
fk = jet(fr, 3*w[1], w);
|
|
992
|
+
f_tmp = Coeffs(phi, x(1))[4,1] *x(1)^3+fk;
|
|
993
|
+
v = Faktorisiere(f, f_tmp, 3 , p, RFlg);
|
|
994
|
+
f = v[1];
|
|
995
|
+
Phi = v[2];
|
|
996
|
+
PhiG = Phi(PhiG);
|
|
997
|
+
cstn[4] = PhiG;
|
|
998
|
+
fr = f - phi;
|
|
999
|
+
}
|
|
1000
|
+
}
|
|
1001
|
+
}
|
|
1002
|
+
// Should never reach this line
|
|
1003
|
+
return(printresult(59, f, "error!", cstn, -1));
|
|
1004
|
+
}
|
|
1005
|
+
|
|
1006
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1007
|
+
static proc Funktion66 (poly f, list cstn)
|
|
1008
|
+
{
|
|
1009
|
+
//---------------------------- initialisation ---------------------------------
|
|
1010
|
+
int kx = 1; // Koordinate x
|
|
1011
|
+
int ky = 2; // Koordinate y
|
|
1012
|
+
int kz = 3; // Koordinate z
|
|
1013
|
+
poly f3 = jet(f, 3);
|
|
1014
|
+
ideal JetId;
|
|
1015
|
+
|
|
1016
|
+
debug_log(1, " Step 66");
|
|
1017
|
+
debug_log(2, "F3=", Show(f3));
|
|
1018
|
+
poly fx = diff(f3, x(kx));
|
|
1019
|
+
JetId = jacob(fx);
|
|
1020
|
+
JetId = std(JetId);
|
|
1021
|
+
"nach x:",Show(fx), " Id=", JetId, " Dim=", dim(JetId);
|
|
1022
|
+
|
|
1023
|
+
poly fy = diff(f3, x(ky));
|
|
1024
|
+
JetId = jacob(fx);
|
|
1025
|
+
JetId = std(JetId);
|
|
1026
|
+
"nach y:",Show(fy), " Id=", JetId, " Dim=", dim(JetId);
|
|
1027
|
+
|
|
1028
|
+
poly fz = diff(f3, x(kz));
|
|
1029
|
+
JetId = jacob(fx);
|
|
1030
|
+
JetId = std(JetId);
|
|
1031
|
+
"nach z:",Show(fz), " Id=", JetId, " Dim=", dim(JetId);
|
|
1032
|
+
return(printresult(1, 66, "error!", cstn, -1));
|
|
1033
|
+
}
|
|
1034
|
+
|
|
1035
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1036
|
+
static proc Funktion82 (poly f, list cstn)
|
|
1037
|
+
{
|
|
1038
|
+
//---------------------------- initialisation ---------------------------------
|
|
1039
|
+
poly f3, b1, b2, b3;
|
|
1040
|
+
int i, kx, ky, kz, Fall;
|
|
1041
|
+
ideal Jfsyz, B;
|
|
1042
|
+
intvec kv = 1,2,3;
|
|
1043
|
+
matrix Mat;
|
|
1044
|
+
map PhiG, VERT;
|
|
1045
|
+
list v;
|
|
1046
|
+
def ring_top=basering;
|
|
1047
|
+
debug_log(1, " Step 82");
|
|
1048
|
+
|
|
1049
|
+
f3 = jet(f,3);
|
|
1050
|
+
kx = 1; // Koordinate x
|
|
1051
|
+
ky = 2; // Koordinate y
|
|
1052
|
+
kz = 3; // Koordinate z
|
|
1053
|
+
B = maxideal(1);
|
|
1054
|
+
Jfsyz = jacob(f3);
|
|
1055
|
+
PhiG = cstn[4];
|
|
1056
|
+
Fall = 2;
|
|
1057
|
+
|
|
1058
|
+
//------------------ find coordinatechange that f3 ~ g(x,z) -------------------
|
|
1059
|
+
if (diff(f3, x(1)) == 0) { kx, ky = swap(kx, ky); }
|
|
1060
|
+
if (diff(f3, x(2)) == 0) { }
|
|
1061
|
+
if (diff(f3, x(3)) == 0) { kz, ky = swap(kz, ky); }
|
|
1062
|
+
if ( (diff(f3, x(1)) != 0) && (diff(f3, x(2)) != 0) &&
|
|
1063
|
+
(diff(f3, x(3)) != 0) )
|
|
1064
|
+
{
|
|
1065
|
+
Mat = matrix(syz(Jfsyz));
|
|
1066
|
+
b1 = Mat[1,1];
|
|
1067
|
+
b2 = Mat[2,1];
|
|
1068
|
+
b3 = Mat[3,1];
|
|
1069
|
+
|
|
1070
|
+
if( b1 != 0)
|
|
1071
|
+
{
|
|
1072
|
+
VERT = ring_top,b1*x(kx), b2*x(kx)+x(ky), b3*x(kx) + x(kz);
|
|
1073
|
+
kx, ky = swap(kx, ky);
|
|
1074
|
+
}
|
|
1075
|
+
else
|
|
1076
|
+
{
|
|
1077
|
+
if(b2!=0) { VERT = ring_top,x(kx)+b1*x(ky),b2*x(ky),b3*x(ky)+x(kz); }
|
|
1078
|
+
else
|
|
1079
|
+
{
|
|
1080
|
+
if(b3!=0) { VERT = ring_top,x(kx)+b1*x(kz),x(ky)+b2*x(kz),b3*x(kz); }
|
|
1081
|
+
else { VERT = ring_top,B; }
|
|
1082
|
+
}
|
|
1083
|
+
}
|
|
1084
|
+
f = VERT(f);
|
|
1085
|
+
PhiG = VERT(PhiG);
|
|
1086
|
+
cstn[4] = PhiG;
|
|
1087
|
+
}
|
|
1088
|
+
VERT = ring_top,x(kx),x(ky),x(kz);
|
|
1089
|
+
f = VERT(f);
|
|
1090
|
+
PhiG = VERT(PhiG);
|
|
1091
|
+
cstn[4] = PhiG;
|
|
1092
|
+
f3 = jet(f,3);
|
|
1093
|
+
|
|
1094
|
+
if( (f3-subst(f3, x(kx), 0)) == 0) { kx, ky = swap(kx, ky); }
|
|
1095
|
+
if( (f3-subst(f3, x(kz), 0)) == 0) { kz, ky = swap(kz, ky); }
|
|
1096
|
+
|
|
1097
|
+
//------------ find coordinatechange for f3 ~ x3+xz2, if possible ------------
|
|
1098
|
+
matrix C = coeffs(f3, x(kx));
|
|
1099
|
+
if(size(C) == 3) { C = coeffs(f3, x(kz)); kx,kz=swap(kx, kz); }
|
|
1100
|
+
if(C[1,1] == 0 && C[3,1] == 0) { Fall = 1; }
|
|
1101
|
+
if(C[1,1] != 0 && C[3,1] != 0 ) { Fall = 3; }
|
|
1102
|
+
if(C[1,1] == 0 && C[3,1] != 0 ) { Fall = 2; }
|
|
1103
|
+
if(C[1,1] != 0 && C[3,1] == 0 ) { Fall = 2; kx,kz=swap(kx, kz); }
|
|
1104
|
+
|
|
1105
|
+
if(Fall == 1)
|
|
1106
|
+
{
|
|
1107
|
+
VERT=ring_top,x(kx),x(ky),x(kz);
|
|
1108
|
+
}
|
|
1109
|
+
if(Fall == 2)
|
|
1110
|
+
{
|
|
1111
|
+
v = tschirnhaus(f3/x(kz), x(kx));
|
|
1112
|
+
b1, VERT = v[1..2];
|
|
1113
|
+
}
|
|
1114
|
+
if(Fall == 3)
|
|
1115
|
+
{
|
|
1116
|
+
v = tschirnhaus(f3/x(kx), x(kx));
|
|
1117
|
+
b1, VERT = [1..2];
|
|
1118
|
+
debug_log(2, "B1=", Show(jet(VERT(f),3)));
|
|
1119
|
+
v = tschirnhaus(f3/x(kz), x(kz));
|
|
1120
|
+
b2, VERT = [1..2];
|
|
1121
|
+
debug_log(2, "B2=", Show(jet(VERT(f),3)));
|
|
1122
|
+
}
|
|
1123
|
+
f = VERT(f);
|
|
1124
|
+
PhiG = VERT(PhiG);
|
|
1125
|
+
cstn[4] = PhiG;
|
|
1126
|
+
f3 = jet(f,3);
|
|
1127
|
+
|
|
1128
|
+
//------------- if f3 ~ x3+xz2 then continue with classification -------------
|
|
1129
|
+
C = coeffs(f3, x(1));
|
|
1130
|
+
if( C[1,1] == 0 && C[2,1] != 0 && C[3,1] == 0 && C[4,1] != 0 )
|
|
1131
|
+
{
|
|
1132
|
+
return(Funktion83(f, cstn));
|
|
1133
|
+
}
|
|
1134
|
+
return(printresult(82, f, "error!", cstn, -1));
|
|
1135
|
+
}
|
|
1136
|
+
|
|
1137
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1138
|
+
static proc Isomorphie_s82_z (poly f, poly fk, int p)
|
|
1139
|
+
{
|
|
1140
|
+
//---------------------------- initialisation ---------------------------------
|
|
1141
|
+
poly Relation, a, b;
|
|
1142
|
+
ideal Jfsyz, B;
|
|
1143
|
+
matrix Mat;
|
|
1144
|
+
map VERT;
|
|
1145
|
+
list v;
|
|
1146
|
+
def ring_top=basering;
|
|
1147
|
+
|
|
1148
|
+
debug_log(1, " Isomorphie 82/90 z");
|
|
1149
|
+
debug_log(2, "tt=", Show(fk));
|
|
1150
|
+
Jfsyz = fk, diff(fk, x(3));
|
|
1151
|
+
Mat = matrix(syz(Jfsyz));
|
|
1152
|
+
Relation = -2 * Mat[2,1] / Mat[1,1];
|
|
1153
|
+
a = Coeff(Relation, x(3), x(3));
|
|
1154
|
+
b = Coeff(Relation, x(2), x(2)^p);
|
|
1155
|
+
B = maxideal(1);
|
|
1156
|
+
B[rvar(x(3))] = x(3)-b*x(2)^p;
|
|
1157
|
+
VERT = ring_top,B;
|
|
1158
|
+
v = VERT(f), VERT;
|
|
1159
|
+
debug_log(2, VERT);
|
|
1160
|
+
debug_log(2, " z res=", Show(VERT(fk)));
|
|
1161
|
+
return(v);
|
|
1162
|
+
}
|
|
1163
|
+
|
|
1164
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1165
|
+
static proc Isomorphie_s82_x (poly f, poly fk, int p)
|
|
1166
|
+
{
|
|
1167
|
+
//---------------------------- initialisation ---------------------------------
|
|
1168
|
+
matrix Mat;
|
|
1169
|
+
poly Relation, a, b;
|
|
1170
|
+
ideal Jfsyz, B;
|
|
1171
|
+
map VERT;
|
|
1172
|
+
list v;
|
|
1173
|
+
def ring_top=basering;
|
|
1174
|
+
|
|
1175
|
+
debug_log(1, " Isomorphie 82/90 x");
|
|
1176
|
+
debug_log(2, "tt=", Show(fk));
|
|
1177
|
+
Jfsyz = fk, diff(fk, x(1));
|
|
1178
|
+
Mat = matrix(syz(Jfsyz));
|
|
1179
|
+
Relation = -3 * Mat[2,1] / Mat[1,1];
|
|
1180
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1181
|
+
b = Coeff(Relation, x(2), x(2)^p);
|
|
1182
|
+
B = maxideal(1);
|
|
1183
|
+
B[rvar(x(1))] = x(1)-b*x(2)^p;
|
|
1184
|
+
VERT = ring_top,B;
|
|
1185
|
+
v = VERT(f), VERT;
|
|
1186
|
+
debug_log(2, VERT);
|
|
1187
|
+
debug_log(2, " x res=", Show(VERT(fk)));
|
|
1188
|
+
|
|
1189
|
+
return(v);
|
|
1190
|
+
}
|
|
1191
|
+
|
|
1192
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1193
|
+
static proc Funktion83 (poly f, list cstn)
|
|
1194
|
+
{
|
|
1195
|
+
//---------------------------- initialisation ---------------------------------
|
|
1196
|
+
poly fk, phi, a, b;
|
|
1197
|
+
ideal JetId, Jf, B;
|
|
1198
|
+
int k, Dim, Mult;
|
|
1199
|
+
intvec w;
|
|
1200
|
+
map PhiG, Phi;
|
|
1201
|
+
list v;
|
|
1202
|
+
matrix Mat;
|
|
1203
|
+
def ring_top=basering;
|
|
1204
|
+
debug_log(1, " Step 83");
|
|
1205
|
+
|
|
1206
|
+
k = 1;
|
|
1207
|
+
PhiG = cstn[4];
|
|
1208
|
+
//---------------------------- begin of loop ----------------------------------
|
|
1209
|
+
while(k<10)
|
|
1210
|
+
{
|
|
1211
|
+
phi = jet(f, 3);
|
|
1212
|
+
//--------------------------- step 83(k) --------------------------------
|
|
1213
|
+
JetId = x(1)^3 + x(3)^3 + x(2)^(3*k+1);
|
|
1214
|
+
fk = jet(f- phi, 3*w[1], weight(JetId)) ;
|
|
1215
|
+
if(fk!=0) { return(printresult(84,f,"U["+string(12*k)+"]",cstn,4*k-3)); }
|
|
1216
|
+
|
|
1217
|
+
JetId = x(1)^3 + x(3)^3 + x(1)*x(2)^(2*k+1);
|
|
1218
|
+
fk = jet(f, 3*w[1], weight(JetId)) ;
|
|
1219
|
+
//--------------------------- step 85(k) --------------------------------
|
|
1220
|
+
if ( fk != phi )
|
|
1221
|
+
{
|
|
1222
|
+
Jf = std(jacob(fk));
|
|
1223
|
+
Dim = dim(Jf);
|
|
1224
|
+
if(Dim==0) {return(printresult(86,f,"U["+string(k)+",0]",cstn,4*k-2));}
|
|
1225
|
+
if(Dim==1) {return(printresult(87,f,"U["+string(k)+",p]",cstn,4*k-2));}
|
|
1226
|
+
}
|
|
1227
|
+
|
|
1228
|
+
//--------------------------- step 88(k) --------------------------------
|
|
1229
|
+
JetId = x(1)^3 + x(3)^3 + x(2)^(3*k+2);
|
|
1230
|
+
fk = jet(f- phi, 3*w[1], weight(JetId)) ;
|
|
1231
|
+
if(fk!=0) {return(printresult(89,f,"U["+string(12*k+4)+"]",cstn,4*k-2));}
|
|
1232
|
+
|
|
1233
|
+
//--------------------------- step 90(k) --------------------------------
|
|
1234
|
+
k++;
|
|
1235
|
+
JetId = x(1)^3 + x(3)^3 + x(2)^(3*k);
|
|
1236
|
+
fk = jet(f, 3*w[1], weight(JetId)) ;
|
|
1237
|
+
Jf = std(jacob(fk));
|
|
1238
|
+
Dim = dim(Jf);
|
|
1239
|
+
Mult = mult(Jf);
|
|
1240
|
+
if ( Dim == 0 ) { return(printresult(83, f, "NoClass", cstn, -1)); }
|
|
1241
|
+
if ( Dim == 1 )
|
|
1242
|
+
{
|
|
1243
|
+
if ( Mult == 4 )
|
|
1244
|
+
{
|
|
1245
|
+
if( fk - phi != 0)
|
|
1246
|
+
{ // b!=0 und/oder b'!=0
|
|
1247
|
+
if( Coeff(fk,x(1)*x(2), x(1)^2*x(2)^k) == 0 )
|
|
1248
|
+
{ // b=0 und b'!=0
|
|
1249
|
+
a = (fk - Coeff(fk, x(1), x(1)^3)*x(1)^3) / x(1);
|
|
1250
|
+
v = Isomorphie_s82_z(f, a, k);
|
|
1251
|
+
}
|
|
1252
|
+
else
|
|
1253
|
+
{
|
|
1254
|
+
if( Coeff(fk,x(1)*x(2)*x(3), x(1)*x(2)^k*x(3)) == 0 )
|
|
1255
|
+
{
|
|
1256
|
+
// b!=0 und b'=0
|
|
1257
|
+
a = subst(fk, x(3), 0);
|
|
1258
|
+
v = Isomorphie_s82_x(f, a, k);
|
|
1259
|
+
}
|
|
1260
|
+
else
|
|
1261
|
+
{
|
|
1262
|
+
a = Coeff(fk,x(1)*x(2)*x(3), x(1)*x(2)^k*x(3));
|
|
1263
|
+
b = Coeff(fk,x(2)*x(3), x(2)^(2*k)*x(3));
|
|
1264
|
+
B = maxideal(1);
|
|
1265
|
+
B[rvar(x(1))] = x(1)-b/a*x(2)^k;
|
|
1266
|
+
Phi = ring_top,B;
|
|
1267
|
+
f = Phi(f);
|
|
1268
|
+
PhiG = Phi(PhiG);
|
|
1269
|
+
cstn[4] = PhiG;
|
|
1270
|
+
fk = jet(f, 3*w[1], w) ;
|
|
1271
|
+
a = (fk - Coeff(fk, x(1), x(1)^3)*x(1)^3) / x(1);
|
|
1272
|
+
v = Isomorphie_s82_z(f, a, k);
|
|
1273
|
+
} // ende else b!=0 und b'=0
|
|
1274
|
+
} // ende else b=0 und b'!=0
|
|
1275
|
+
f, Phi = v[1..2];
|
|
1276
|
+
PhiG = Phi(PhiG);
|
|
1277
|
+
cstn[4] = PhiG;
|
|
1278
|
+
} //ende fk-phi!=0
|
|
1279
|
+
} // ende mult=4
|
|
1280
|
+
else { return(printresult(83, f, "NoClass", cstn, -1)); }
|
|
1281
|
+
} // ende dim=1
|
|
1282
|
+
else { return(printresult(83, f, "NoClass", cstn, -1)); }
|
|
1283
|
+
} // ENDE While
|
|
1284
|
+
return(printresult(83, f, "error!", cstn, -1));
|
|
1285
|
+
}
|
|
1286
|
+
|
|
1287
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1288
|
+
static proc Funktion97 (poly f, list cstn)
|
|
1289
|
+
{
|
|
1290
|
+
//---------------------------- initialisation ---------------------------------
|
|
1291
|
+
poly f3, l1, l2, a, b, c, prod;
|
|
1292
|
+
ideal Jfsyz, Jf, B;
|
|
1293
|
+
int k, i, pt, kx, ky, kz, Dim, Mult, Mu;
|
|
1294
|
+
matrix Mat;
|
|
1295
|
+
map PhiG, VERT;
|
|
1296
|
+
def ring_top=basering;
|
|
1297
|
+
debug_log(1, " Step 97");
|
|
1298
|
+
|
|
1299
|
+
Mu = cstn[2];
|
|
1300
|
+
PhiG = cstn[4];
|
|
1301
|
+
kx = 1; // Koordinate x
|
|
1302
|
+
ky = 2; // Koordinate y
|
|
1303
|
+
kz = 3; // Koordinate z
|
|
1304
|
+
B = maxideal(1); // Abbildungs-ideal
|
|
1305
|
+
pt = 2;
|
|
1306
|
+
f3 = jet(f, 3);
|
|
1307
|
+
k = 1;
|
|
1308
|
+
|
|
1309
|
+
//--------------------------- compute f3 ~ x2y --------------------------------
|
|
1310
|
+
// vertausche 2 Koordinaten sodass d2f/dx2 <>0 ist.
|
|
1311
|
+
for(i=1;i<4;i=i+1)
|
|
1312
|
+
{
|
|
1313
|
+
if(diff(diff(f3, x(i)), x(i)) != 0) { kx = i; i=4; }
|
|
1314
|
+
}
|
|
1315
|
+
if(kx == 2) { ky = 1; kz = 3; }
|
|
1316
|
+
if(kx == 3) { ky = 2; kz = 1; }
|
|
1317
|
+
//-------------------------- compute -l1*l2 -------------------------------
|
|
1318
|
+
f3 = jet(f, 3);
|
|
1319
|
+
Jfsyz = f3, diff(f3, x(kx));
|
|
1320
|
+
Mat = matrix(syz(Jfsyz));
|
|
1321
|
+
if(deg(Mat[2,1])>1)
|
|
1322
|
+
{
|
|
1323
|
+
Jfsyz = f3, Mat[2,1];
|
|
1324
|
+
Mat = matrix(syz(Jfsyz));
|
|
1325
|
+
|
|
1326
|
+
// berechen Abb. sodass f=x2*l2
|
|
1327
|
+
l1 = Mat[2,1];
|
|
1328
|
+
a = Coeff(l1, x(kx), x(kx));
|
|
1329
|
+
l1 = l1 / number(a);
|
|
1330
|
+
b = Coeff(l1, x(ky), x(ky));
|
|
1331
|
+
c = Coeff(l1, x(kz), x(kz));
|
|
1332
|
+
B[rvar(x(kx))] = x(kx) - b * x(ky) - c * x(kz);
|
|
1333
|
+
VERT = ring_top, B;
|
|
1334
|
+
f = VERT(f);
|
|
1335
|
+
PhiG = VERT(PhiG);
|
|
1336
|
+
cstn[4] = PhiG;
|
|
1337
|
+
|
|
1338
|
+
f3 = jet(f, 3);
|
|
1339
|
+
l2 = f3 / x(kx)^2;
|
|
1340
|
+
|
|
1341
|
+
// sorge dafuer, dass b<>0 ist.
|
|
1342
|
+
b = Coeff(l2, x(ky), x(ky));
|
|
1343
|
+
if( b== 0) { ky, kz = swap(ky, kz); }
|
|
1344
|
+
|
|
1345
|
+
// Koordinaten-Transf. s.d. f=x2y
|
|
1346
|
+
b = Coeff(l2, x(ky), x(ky));
|
|
1347
|
+
l2 = l2 / number(b);
|
|
1348
|
+
a = Coeff(l2, x(kx), x(kx));
|
|
1349
|
+
c = Coeff(l2, x(kz), x(kz));
|
|
1350
|
+
B = maxideal(1);
|
|
1351
|
+
B[rvar(x(ky))] = -a * x(kx) + x(ky) - c * x(kz);
|
|
1352
|
+
VERT = ring_top, B;
|
|
1353
|
+
f = VERT(f);
|
|
1354
|
+
PhiG = VERT(PhiG);
|
|
1355
|
+
cstn[4] = PhiG;
|
|
1356
|
+
}
|
|
1357
|
+
|
|
1358
|
+
//------------------------------- step 98 ---------------------------------
|
|
1359
|
+
Jfsyz = x(kx)^2*x(ky) + x(ky)^4 + x(kz)^4;
|
|
1360
|
+
a = jet(f, 8, weight(Jfsyz));
|
|
1361
|
+
Jf = std(jacob(a));
|
|
1362
|
+
Dim = dim(Jf);
|
|
1363
|
+
Mult = mult(Jf);
|
|
1364
|
+
if( Dim == 0) { return(printresult(99, f, "V[1,0]", cstn, 3)); }
|
|
1365
|
+
if( Dim == 1)
|
|
1366
|
+
{
|
|
1367
|
+
if(Mult==1) {return(printresult(100,f,"V[1,"+string(Mu-15)+"]",cstn,3));}
|
|
1368
|
+
if(Mult==2){return(printresult(101,f,"V#[1,"+string(Mu-15)+"]",cstn,3));}
|
|
1369
|
+
}
|
|
1370
|
+
" Dim=",Dim," Mult=",Mult;
|
|
1371
|
+
return(printresult(102, f, "NoClass", cstn, -1));
|
|
1372
|
+
}
|
|
1373
|
+
|
|
1374
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1375
|
+
proc tschirnhaus (poly f, poly x)
|
|
1376
|
+
"USAGE: tschirnhaus();"
|
|
1377
|
+
{
|
|
1378
|
+
//---------------------------- initialisation ---------------------------------
|
|
1379
|
+
poly b;
|
|
1380
|
+
ideal B;
|
|
1381
|
+
int n, j, hc;
|
|
1382
|
+
matrix cf;
|
|
1383
|
+
intvec z;
|
|
1384
|
+
string s;
|
|
1385
|
+
list v;
|
|
1386
|
+
map Phi, EH;
|
|
1387
|
+
def ring_top=basering;
|
|
1388
|
+
|
|
1389
|
+
n = nvars(basering);
|
|
1390
|
+
cf = coeffs(f, x);
|
|
1391
|
+
hc = nrows(cf) - 1; // hoechster exponent von x_i
|
|
1392
|
+
b = cf[hc+1,1]; // koeffizient von x_i^hc
|
|
1393
|
+
B = maxideal(1);
|
|
1394
|
+
z[n] = 0;
|
|
1395
|
+
EH = ring_top, z;
|
|
1396
|
+
Phi = ring_top, B;
|
|
1397
|
+
v[1] = f;
|
|
1398
|
+
if ( EH(b) != 0) // pruefe ob der Koeff von x_i^hc
|
|
1399
|
+
{ B[rvar(x)] = x -1*(cf[hc,1]/(hc*b));
|
|
1400
|
+
v[1] = Phi(f);
|
|
1401
|
+
}
|
|
1402
|
+
v[2] = Phi;
|
|
1403
|
+
return(v);
|
|
1404
|
+
}
|
|
1405
|
+
|
|
1406
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1407
|
+
static proc Isomorphie_s17 (poly f, poly fk, int k, int ct, list #)
|
|
1408
|
+
{
|
|
1409
|
+
//---------------------------- initialisation ---------------------------------
|
|
1410
|
+
ideal Jfsyz, JetId, bb;
|
|
1411
|
+
poly a, b, c, d, Relation, an, bn;
|
|
1412
|
+
int B,C, alpha, beta, gamma, g;
|
|
1413
|
+
matrix Matx, Maty;
|
|
1414
|
+
map PhiG, VERT;
|
|
1415
|
+
list v;
|
|
1416
|
+
def ring_top=basering;
|
|
1417
|
+
|
|
1418
|
+
if(size(#)==1) { PhiG = #[1]; }
|
|
1419
|
+
else { PhiG = ring_top,maxideal(1); }
|
|
1420
|
+
bb = maxideal(1);
|
|
1421
|
+
|
|
1422
|
+
// Ziel: bestimme a,b,c,d sodass fk = (ax+by^k)^3(cx+dy) gilt.
|
|
1423
|
+
debug_log(2, "Isomorphie_s17:");
|
|
1424
|
+
debug_log(2, "Faktor: f=",Show(f)," Jet=",Show(fk)," k=",k, "cnt=", ct);
|
|
1425
|
+
|
|
1426
|
+
if( k == 1)
|
|
1427
|
+
{
|
|
1428
|
+
Jfsyz = fk, diff(fk, x(1));
|
|
1429
|
+
Matx = matrix(syz(Jfsyz));
|
|
1430
|
+
Jfsyz = fk, diff(fk, x(2));
|
|
1431
|
+
Maty = matrix(syz(Jfsyz));
|
|
1432
|
+
|
|
1433
|
+
a = Coeff(fk, x(1), x(1)^4);
|
|
1434
|
+
b = Coeff(fk, x(2), x(2)^4);
|
|
1435
|
+
c = Coeff(fk, x(1)*x(2), x(1)^3*x(2));
|
|
1436
|
+
d = Coeff(fk, x(1)*x(2), x(1)*x(2)^3);
|
|
1437
|
+
|
|
1438
|
+
if( (a != 0) && (b != 0) )
|
|
1439
|
+
{
|
|
1440
|
+
B = -int(Coeff(Matx[1,1], x(2), x(2)));
|
|
1441
|
+
C = -int(Coeff(Maty[1,1], x(1), x(1)));
|
|
1442
|
+
alpha = int(Coeff(Matx[2,1], x(1), x(1)^2));
|
|
1443
|
+
beta = int(Coeff(Matx[2,1], x(1)*x(2), x(1)*x(2)));
|
|
1444
|
+
gamma = int(Coeff(Matx[2,1], x(2), x(2)^2));
|
|
1445
|
+
|
|
1446
|
+
bb[rvar(x(1))] = x(1) - (2*number(gamma) / (B - beta))*x(2);
|
|
1447
|
+
bb[rvar(x(2))] = x(2) - ((C - number(beta)) / (2*gamma))*x(1);
|
|
1448
|
+
VERT = ring_top,bb;
|
|
1449
|
+
Relation = VERT(f);
|
|
1450
|
+
fk = jet(Relation, 4);
|
|
1451
|
+
|
|
1452
|
+
an = Coeff(fk, x(1), x(1)^4);
|
|
1453
|
+
bn = Coeff(fk, x(2), x(2)^4);
|
|
1454
|
+
if( (an != 0) & (bn != 0) ) { VERT=ring_top,x(1),(x(2) + a*x(1))/ b; }
|
|
1455
|
+
f = VERT(f);
|
|
1456
|
+
fk = jet(f, 4);
|
|
1457
|
+
PhiG = VERT(PhiG);
|
|
1458
|
+
|
|
1459
|
+
a = Coeff(fk, x(1), x(1)^4);
|
|
1460
|
+
b = Coeff(fk, x(2), x(2)^4);
|
|
1461
|
+
c = Coeff(fk, x(1)*x(2), x(1)^3*x(2));
|
|
1462
|
+
d = Coeff(fk, x(1)*x(2), x(1)*x(2)^3);
|
|
1463
|
+
Jfsyz = fk, diff(fk, x(1));
|
|
1464
|
+
Matx = matrix(syz(Jfsyz));
|
|
1465
|
+
Jfsyz = fk, diff(fk, x(2));
|
|
1466
|
+
Maty = matrix(syz(Jfsyz));
|
|
1467
|
+
}
|
|
1468
|
+
|
|
1469
|
+
if( (a == 0) || (b == 0) )
|
|
1470
|
+
{
|
|
1471
|
+
if( a == 0)
|
|
1472
|
+
{
|
|
1473
|
+
if( c == 0)
|
|
1474
|
+
{ // y3(ax+by)
|
|
1475
|
+
Relation = - Matx[2,1] / Matx[1,1];
|
|
1476
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1477
|
+
b = Coeff(Relation, x(2), x(2));
|
|
1478
|
+
VERT=ring_top,a*x(2)^k - b*x(1), x(1);
|
|
1479
|
+
}
|
|
1480
|
+
else
|
|
1481
|
+
{ // (ax+by)^3y
|
|
1482
|
+
Relation = - 3*Matx[2,1] / Matx[1,1];
|
|
1483
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1484
|
+
b = Coeff(Relation, x(2), x(2));
|
|
1485
|
+
VERT=ring_top,a*x(1) - b*x(2), x(2);
|
|
1486
|
+
}
|
|
1487
|
+
}
|
|
1488
|
+
else
|
|
1489
|
+
{
|
|
1490
|
+
if( d == 0)
|
|
1491
|
+
{ // x3(ax+by)
|
|
1492
|
+
Relation = - Maty[2,1] / Maty[1,1];
|
|
1493
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1494
|
+
b = Coeff(Relation, x(2), x(2));
|
|
1495
|
+
VERT=ring_top,x(1), b*x(2)^k - a*x(1);
|
|
1496
|
+
}
|
|
1497
|
+
else
|
|
1498
|
+
{ // x(ax+by)^3
|
|
1499
|
+
Relation = - 3*Maty[2,1] / Maty[1,1];
|
|
1500
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1501
|
+
b = Coeff(Relation, x(2), x(2));
|
|
1502
|
+
VERT=ring_top,x(2), b*x(1) - a*x(2);
|
|
1503
|
+
}
|
|
1504
|
+
}
|
|
1505
|
+
f = VERT(f);
|
|
1506
|
+
PhiG = VERT(PhiG);
|
|
1507
|
+
}
|
|
1508
|
+
else
|
|
1509
|
+
{ // "Weder b noch a sind 0";
|
|
1510
|
+
if(ct > 5) { v[1]=f; v[2]=PhiG; return(v); }
|
|
1511
|
+
fk = jet(f, 4);
|
|
1512
|
+
return(Isomorphie_s17(f, fk, k, ct+1, PhiG));
|
|
1513
|
+
}
|
|
1514
|
+
}
|
|
1515
|
+
else
|
|
1516
|
+
{ // k >1
|
|
1517
|
+
a = fk/x(2);
|
|
1518
|
+
Jfsyz = a, diff(a, x(1));
|
|
1519
|
+
Matx = matrix(syz(Jfsyz));
|
|
1520
|
+
Relation = -3 * Matx[2,1] / Matx[1,1];
|
|
1521
|
+
a = Coeff(Relation, x(1), x(1));
|
|
1522
|
+
b = Coeff(Relation, x(2), x(2)^k);
|
|
1523
|
+
VERT = basering,x(1)-b*x(2)^k,x(2);
|
|
1524
|
+
f = VERT(f);
|
|
1525
|
+
PhiG = VERT(PhiG);
|
|
1526
|
+
JetId = x(1)^3*x(2) + x(2)^(3*k+1);
|
|
1527
|
+
fk = jet(f, 3*k+1, weight(JetId));
|
|
1528
|
+
}
|
|
1529
|
+
v = f, PhiG;
|
|
1530
|
+
debug_log(2, "Isomorphie_s17: done");
|
|
1531
|
+
debug_log(2, "Faktor: f=",Show(f)," Jet=",Show(fk)," k=",k);
|
|
1532
|
+
|
|
1533
|
+
return(v);
|
|
1534
|
+
}
|
|
1535
|
+
|
|
1536
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1537
|
+
static proc printresult (int step, poly f, string typ, list cstn, int m)
|
|
1538
|
+
{
|
|
1539
|
+
if(defined(onlyreturninvariants))
|
|
1540
|
+
{
|
|
1541
|
+
if(onlyreturninvariants == 1)
|
|
1542
|
+
{
|
|
1543
|
+
Modality = m;
|
|
1544
|
+
Type = typ;
|
|
1545
|
+
}
|
|
1546
|
+
}
|
|
1547
|
+
//---------------------------- initialisation ---------------------------------
|
|
1548
|
+
int corank, Mu, K;
|
|
1549
|
+
list v;
|
|
1550
|
+
|
|
1551
|
+
corank, Mu, K = cstn[1..3];
|
|
1552
|
+
debug_log(0," Arnold step number "+string(step));
|
|
1553
|
+
if( @DeBug >= 0 )
|
|
1554
|
+
{
|
|
1555
|
+
"The singularity";
|
|
1556
|
+
" "+Show(jet(f, K))+"";
|
|
1557
|
+
if( typ != "error!" && typ != "NoClass" )
|
|
1558
|
+
{
|
|
1559
|
+
"is R-equivalent to "+typ+".";
|
|
1560
|
+
}
|
|
1561
|
+
if ( typ == "NoClass" )
|
|
1562
|
+
{
|
|
1563
|
+
"is not in Arnolds list.";
|
|
1564
|
+
}
|
|
1565
|
+
// if(K>=0) { " det = "+string(K); }
|
|
1566
|
+
if(Mu>=0) { " Milnor number = "+string(Mu); }
|
|
1567
|
+
if(m>=0) { " modality = "+string(m); }
|
|
1568
|
+
}
|
|
1569
|
+
v = f, typ, corank, cstn[4];
|
|
1570
|
+
return(v);
|
|
1571
|
+
}
|
|
1572
|
+
|
|
1573
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1574
|
+
static proc Funktion47 (poly f, list cstn)
|
|
1575
|
+
{
|
|
1576
|
+
int corank = cstn[1];
|
|
1577
|
+
int Mu = cstn[2];
|
|
1578
|
+
int K = cstn[3];
|
|
1579
|
+
string s = "The Singularity "+Show(jet(f, K));
|
|
1580
|
+
string tp="";
|
|
1581
|
+
// return(printresult(47, f, tp, cstn, -1));
|
|
1582
|
+
|
|
1583
|
+
s = s +" has 4-jet equal to zero. (F47), mu="+string(Mu);
|
|
1584
|
+
|
|
1585
|
+
s; // +" ("+SG_Typ+")";
|
|
1586
|
+
s = "No further classification available.";
|
|
1587
|
+
s;
|
|
1588
|
+
return(Show(f), tp, corank);
|
|
1589
|
+
}
|
|
1590
|
+
|
|
1591
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1592
|
+
static proc Funktion91 (poly f, list cstn, int k)
|
|
1593
|
+
{
|
|
1594
|
+
string tp = "U*[k,0]";
|
|
1595
|
+
return(printresult(91, f, tp, cstn, -1));
|
|
1596
|
+
}
|
|
1597
|
+
|
|
1598
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1599
|
+
static proc Funktion92 (poly f, list cstn, int k)
|
|
1600
|
+
{
|
|
1601
|
+
string tp = "UP[k]";
|
|
1602
|
+
return(printresult(92, f, tp, cstn, -1));
|
|
1603
|
+
}
|
|
1604
|
+
|
|
1605
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1606
|
+
static proc Funktion93 (poly f, list cstn, int k)
|
|
1607
|
+
{
|
|
1608
|
+
string tp = "UQ[k]";
|
|
1609
|
+
return(printresult(93, f, tp, cstn, -1));
|
|
1610
|
+
}
|
|
1611
|
+
|
|
1612
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1613
|
+
static proc Funktion94 (poly f, list cstn, int k)
|
|
1614
|
+
{
|
|
1615
|
+
string tp = "UR[k]";
|
|
1616
|
+
return(printresult(94, f, tp, cstn, -1));
|
|
1617
|
+
}
|
|
1618
|
+
|
|
1619
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1620
|
+
static proc Funktion95 (poly f, list cstn, int k)
|
|
1621
|
+
{
|
|
1622
|
+
string tp = "US[k]";
|
|
1623
|
+
return(printresult(95, f, tp, cstn, -1));
|
|
1624
|
+
}
|
|
1625
|
+
|
|
1626
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1627
|
+
static proc Funktion96 (poly f, list cstn, int k)
|
|
1628
|
+
{
|
|
1629
|
+
string tp = "UT[k]";
|
|
1630
|
+
return(printresult(96, f, tp, cstn, -1));
|
|
1631
|
+
}
|
|
1632
|
+
|
|
1633
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1634
|
+
proc morsesplit(poly f)
|
|
1635
|
+
"
|
|
1636
|
+
USAGE: morsesplit(f); f=poly
|
|
1637
|
+
RETURN: Normal form of f in M^3 after application of the splitting lemma
|
|
1638
|
+
COMPUTE: apply the splitting lemma (generalized Morse lemma) to f
|
|
1639
|
+
EXAMPLE: example morsesplit; shows an example"
|
|
1640
|
+
{
|
|
1641
|
+
//---------------------------- initialisation ---------------------------------
|
|
1642
|
+
poly f_out;
|
|
1643
|
+
int n, K, Mu, corank;
|
|
1644
|
+
list v;
|
|
1645
|
+
|
|
1646
|
+
if(defined(@ringdisplay) != 0 ) { kill @ringdisplay; }
|
|
1647
|
+
string @ringdisplay = "setring "+nameof(basering);
|
|
1648
|
+
export @ringdisplay;
|
|
1649
|
+
|
|
1650
|
+
def ring_ext=basering;
|
|
1651
|
+
|
|
1652
|
+
n = nvars(basering);
|
|
1653
|
+
|
|
1654
|
+
// if trace/debug mode not set, do it!
|
|
1655
|
+
init_debug();
|
|
1656
|
+
K, Mu, corank = basicinvariants(f);
|
|
1657
|
+
ring ring_top=char(basering),(x(1..n)),(c,ds);
|
|
1658
|
+
|
|
1659
|
+
map Conv=ring_ext,maxideal(1);
|
|
1660
|
+
setring ring_top;
|
|
1661
|
+
v = Morse(jet(Conv(f),K), K, corank, 0);
|
|
1662
|
+
poly f_out = v[1];
|
|
1663
|
+
setring ring_ext;
|
|
1664
|
+
map ConvUp = ring_top, maxideal(1);
|
|
1665
|
+
return(ConvUp(f_out));
|
|
1666
|
+
}
|
|
1667
|
+
example
|
|
1668
|
+
{ "EXAMPLE"; echo=2;
|
|
1669
|
+
ring r=0,(x,y,z),ds;
|
|
1670
|
+
export r;
|
|
1671
|
+
init_debug(1);
|
|
1672
|
+
poly f=(x2+3y-2z)^2+xyz-(x-y3+x2*z3)^3;
|
|
1673
|
+
poly g=morsesplit(f);
|
|
1674
|
+
g;
|
|
1675
|
+
}
|
|
1676
|
+
|
|
1677
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1678
|
+
static proc Coeffs (list #)
|
|
1679
|
+
{
|
|
1680
|
+
matrix m=matrix(coeffs(#[1],#[2]), deg(#[1])+1, 1);
|
|
1681
|
+
return(m);
|
|
1682
|
+
}
|
|
1683
|
+
|
|
1684
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1685
|
+
static proc Morse(poly f, int K, int corank, int ShowPhi)
|
|
1686
|
+
{
|
|
1687
|
+
//---------------------------- initialisation ---------------------------------
|
|
1688
|
+
poly fc, f2, a, P, Beta, fi;
|
|
1689
|
+
ideal Jfx, B;
|
|
1690
|
+
int n, i, j, k, Rang, Done;
|
|
1691
|
+
matrix Mat;
|
|
1692
|
+
map Id, Psi, Phi, PhiG;
|
|
1693
|
+
intvec Abb, RFlg;
|
|
1694
|
+
list v;
|
|
1695
|
+
|
|
1696
|
+
fi = f;
|
|
1697
|
+
n = nvars(basering);
|
|
1698
|
+
init_debug();
|
|
1699
|
+
|
|
1700
|
+
def ring_top=basering;
|
|
1701
|
+
|
|
1702
|
+
debug_log(3, "Split the polynomial below using determinacy: ", string(K));
|
|
1703
|
+
debug_log(3, Show(fi));
|
|
1704
|
+
|
|
1705
|
+
for( j=1; j<=n ; j++) { Abb[j] = 0; }
|
|
1706
|
+
|
|
1707
|
+
RFlg = GetRf(fi, n);
|
|
1708
|
+
debug_log(2, "Permutations:", RFlg );
|
|
1709
|
+
PhiG=ring_top,maxideal(1);
|
|
1710
|
+
|
|
1711
|
+
//----------------- find quadratic term, if there is only one -----------------
|
|
1712
|
+
B = maxideal(1);
|
|
1713
|
+
if(corank == (n-1))
|
|
1714
|
+
{
|
|
1715
|
+
Done = 0;
|
|
1716
|
+
f2 = jet(fi, 2);
|
|
1717
|
+
j = 1;
|
|
1718
|
+
Jfx = f2, diff(f2, x(j));
|
|
1719
|
+
while(j<=n && (diff(f2, x(j))==0))
|
|
1720
|
+
{
|
|
1721
|
+
j++;
|
|
1722
|
+
Jfx = f2, diff(f2, x(j));
|
|
1723
|
+
}
|
|
1724
|
+
Mat = matrix(syz(Jfx));
|
|
1725
|
+
Beta = 2*Mat[2,1]/Mat[1,1];
|
|
1726
|
+
for( j=1; j<=n ; j++)
|
|
1727
|
+
{
|
|
1728
|
+
f2 = Coeff(Beta, x(RFlg[j]), x(RFlg[j]));
|
|
1729
|
+
if(f2!=0)
|
|
1730
|
+
{
|
|
1731
|
+
k = RFlg[j];
|
|
1732
|
+
break;
|
|
1733
|
+
}
|
|
1734
|
+
}
|
|
1735
|
+
for( j=1; j<=n ; j=j+1)
|
|
1736
|
+
{
|
|
1737
|
+
f2 = Coeff(Beta, x(j), x(j));
|
|
1738
|
+
if(j == k) { B[rvar(x(j))] = (2*f2*x(j)-Beta) / number(f2); }
|
|
1739
|
+
}
|
|
1740
|
+
Phi =ring_top,B;
|
|
1741
|
+
fi = Phi(fi);
|
|
1742
|
+
PhiG = Phi(PhiG);
|
|
1743
|
+
}
|
|
1744
|
+
if( ShowPhi > 1) { PhiG; }
|
|
1745
|
+
|
|
1746
|
+
//------------------------ compute splitting lemma -----------------------------
|
|
1747
|
+
fc = fi;
|
|
1748
|
+
i = 1; // Index fuer Variablen wird bearbeitet
|
|
1749
|
+
while( i <= n)
|
|
1750
|
+
{
|
|
1751
|
+
Phi=ring_top,maxideal(1);
|
|
1752
|
+
debug_log(6, "Pruefe Variable x(" +string(RFlg[i]) + ")");
|
|
1753
|
+
debug_log(6, "--------------------");
|
|
1754
|
+
j = i + 1; // setze j fuer evtle Verschiebung
|
|
1755
|
+
f2 = jet(fc,2);
|
|
1756
|
+
debug_log(6, "Rechne 2-Jet =" , string(f2));
|
|
1757
|
+
if( (f2 - subst(f2, x(RFlg[i]), 0)) == 0 ) { Abb[RFlg[i]] = 1; }
|
|
1758
|
+
if( (f2 - subst(f2, x(RFlg[i]), 0)) != 0 )
|
|
1759
|
+
{
|
|
1760
|
+
while( (j<=n) || (i==n) )
|
|
1761
|
+
{
|
|
1762
|
+
debug_log(6, "Pruefe 2-Jet mit Wert : " + string(jet(fc,2)));
|
|
1763
|
+
a = Coeff(jet(fc,2), x(RFlg[i]), x(RFlg[i])^2);
|
|
1764
|
+
debug_log(6,"Koeffizient von x(" + string(RFlg[i]) + ")^2 ist:", a);
|
|
1765
|
+
if( (a != 0) || (i==n) )
|
|
1766
|
+
{
|
|
1767
|
+
debug_log(6, "BREAK!!!!!!!!!!!!!!");
|
|
1768
|
+
break;
|
|
1769
|
+
}
|
|
1770
|
+
debug_log(6,"Verschiebe evtl Variable x(",string(RFlg[j]),") um x(",
|
|
1771
|
+
string(RFlg[i]), ")");
|
|
1772
|
+
B = maxideal(1);
|
|
1773
|
+
for( k=1; k<=n ; k=k+1)
|
|
1774
|
+
{
|
|
1775
|
+
if(k==RFlg[j]) { B[rvar(x(k))] = x(k) + x(RFlg[i]); }
|
|
1776
|
+
}
|
|
1777
|
+
Phi = ring_top,B;
|
|
1778
|
+
fc = Phi(fi);
|
|
1779
|
+
j++;
|
|
1780
|
+
} // Ende while( (j<=n) || (i==n) )
|
|
1781
|
+
|
|
1782
|
+
debug_log(6, "Moegliche Verschiebung fertig!");
|
|
1783
|
+
PhiG = Phi(PhiG);
|
|
1784
|
+
if( ShowPhi > 1) { "NachVersch.:"; Phi; }
|
|
1785
|
+
|
|
1786
|
+
if( (j<=n) || (i==n))
|
|
1787
|
+
{
|
|
1788
|
+
P = Coeff(fc, x(RFlg[i]), x(RFlg[i]));
|
|
1789
|
+
debug_log(6, "Koeffizient von x("+string(RFlg[i])+") ist: ",
|
|
1790
|
+
string(P));
|
|
1791
|
+
if(P != 0)
|
|
1792
|
+
{
|
|
1793
|
+
debug_log(6, "1 Koeffizient von x("+string(RFlg[i])+") ist: ",
|
|
1794
|
+
string(P));
|
|
1795
|
+
debug_log(6, "a=" + string(a));
|
|
1796
|
+
P = P / number (2 * a);
|
|
1797
|
+
debug_log(6, "2 Koeffizient von x("+string(RFlg[i])+") ist: ",
|
|
1798
|
+
string(P));
|
|
1799
|
+
B = maxideal(1);
|
|
1800
|
+
for( k=1; k<=n ; k=k+1) {if(k==RFlg[i]) {B[rvar(x(k))]=x(k)-P;}}
|
|
1801
|
+
Phi =ring_top,B;
|
|
1802
|
+
debug_log(6, "Quadratische-Ergaenzung durch:", Phi);
|
|
1803
|
+
fi = Phi(fc);
|
|
1804
|
+
PhiG = Phi(PhiG);
|
|
1805
|
+
fc = jet(fi,K);
|
|
1806
|
+
P = Coeff(fc, x(RFlg[i]), x(RFlg[i]));
|
|
1807
|
+
if( P != 0)
|
|
1808
|
+
{
|
|
1809
|
+
fi = fc;
|
|
1810
|
+
continue;
|
|
1811
|
+
}
|
|
1812
|
+
} // Ende if(P != 0)
|
|
1813
|
+
// Fertig mit Quadratischer-Ergaenzung
|
|
1814
|
+
} // Ende if( (j<=n) || (i==n))
|
|
1815
|
+
} // Ende if( (f2 - subst(f2, x(RFlg[i]), 0)) != 0 )
|
|
1816
|
+
|
|
1817
|
+
fi = fc;
|
|
1818
|
+
i++;
|
|
1819
|
+
debug_log(6, "++++++++++++++++++++++++++++++++++++++++++++++++++++++++");
|
|
1820
|
+
}
|
|
1821
|
+
debug_log(6, "Ende ---------------------------------------------------");
|
|
1822
|
+
|
|
1823
|
+
//--------------------------- collect results ---------------------------------
|
|
1824
|
+
if( ShowPhi > 0 )
|
|
1825
|
+
{
|
|
1826
|
+
"Abbildung innerhalb des Morse-Lemmas:";
|
|
1827
|
+
PhiG;
|
|
1828
|
+
"Vergleich:";
|
|
1829
|
+
"PhiG(f)= " + Show(jet(PhiG(f), K));
|
|
1830
|
+
"fi = " + Show(fi);
|
|
1831
|
+
}
|
|
1832
|
+
|
|
1833
|
+
Rang = 0;
|
|
1834
|
+
B = maxideal(1);
|
|
1835
|
+
for( i=1; i<=n ; i++) { if(Abb[i] != 1) { Rang ++; B[rvar(x(i))] = 0; } }
|
|
1836
|
+
Phi = ring_top,B;
|
|
1837
|
+
PhiG = Phi(PhiG);
|
|
1838
|
+
fi = Phi(fi);
|
|
1839
|
+
v = fi, PhiG;
|
|
1840
|
+
debug_log(2, "rank determined with Morse rg=", Rang);
|
|
1841
|
+
debug_log(1, "Residual singularity f=",Show(fi));
|
|
1842
|
+
return(v);
|
|
1843
|
+
}
|
|
1844
|
+
|
|
1845
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1846
|
+
static proc Coeff(poly f, list #)
|
|
1847
|
+
{
|
|
1848
|
+
//---------------------------- initialisation ---------------------------------
|
|
1849
|
+
poly a, term;
|
|
1850
|
+
int n, i;
|
|
1851
|
+
matrix K;
|
|
1852
|
+
|
|
1853
|
+
n = nvars(basering);
|
|
1854
|
+
i = 1;
|
|
1855
|
+
term = #[2];
|
|
1856
|
+
K = coef(f, #[1]);
|
|
1857
|
+
|
|
1858
|
+
while( (i<=ncols(K)) && (K[1,i] != term) )
|
|
1859
|
+
{ i++;
|
|
1860
|
+
if(i>ncols(K)) break;
|
|
1861
|
+
}
|
|
1862
|
+
if(i<=ncols(K)) { a = K[2,i]; }
|
|
1863
|
+
if(i>ncols(K)) { a = 0; }
|
|
1864
|
+
|
|
1865
|
+
return(a);
|
|
1866
|
+
}
|
|
1867
|
+
|
|
1868
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1869
|
+
static proc ReOrder(poly f)
|
|
1870
|
+
{
|
|
1871
|
+
//---------------------------- initialisation ---------------------------------
|
|
1872
|
+
poly result;
|
|
1873
|
+
ideal B = maxideal(1);
|
|
1874
|
+
int i, n, Ctn, Ctv;
|
|
1875
|
+
map conv;
|
|
1876
|
+
|
|
1877
|
+
n = nvars(basering);
|
|
1878
|
+
Ctv = 1; // Zahl der Vorhandenen Variablen
|
|
1879
|
+
Ctn = n; // Zahl der Nicht-Vorhandenen Variablen
|
|
1880
|
+
def ring_top=basering;
|
|
1881
|
+
|
|
1882
|
+
for( i=1; i<=n; i=i+1)
|
|
1883
|
+
{ result = subst(f,x(i), 0) - f;
|
|
1884
|
+
if( result != 0 ) { B[rvar(x(i))] = x(Ctv); Ctv++; }
|
|
1885
|
+
else { B[rvar(x(i))] = x(Ctn); Ctn--; }
|
|
1886
|
+
}
|
|
1887
|
+
|
|
1888
|
+
conv = ring_top,B;
|
|
1889
|
+
return(conv);
|
|
1890
|
+
}
|
|
1891
|
+
|
|
1892
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1893
|
+
proc quickclass(poly f)
|
|
1894
|
+
"
|
|
1895
|
+
USAGE: quickclass(f); f=poly
|
|
1896
|
+
RETURN: Normal form of f in Arnold's list
|
|
1897
|
+
REMARK: try to determine the normal form of f by invariants, mainly by
|
|
1898
|
+
computing the Hilbert function of the Milnor algebra,
|
|
1899
|
+
no coordinate change is needed (see also proc 'milnorcode').
|
|
1900
|
+
EXAMPLE: example quickclass; shows an example"
|
|
1901
|
+
{
|
|
1902
|
+
//---------------------------- initialisation ---------------------------------
|
|
1903
|
+
string Typ;
|
|
1904
|
+
int cnt, K, Mu, corank;
|
|
1905
|
+
list v;
|
|
1906
|
+
def ring_top=basering;
|
|
1907
|
+
// check basic condition on the basering.
|
|
1908
|
+
if(checkring()) { return(f); }
|
|
1909
|
+
if( f==0 )
|
|
1910
|
+
{
|
|
1911
|
+
"Normal form : 0";
|
|
1912
|
+
return(f);
|
|
1913
|
+
}
|
|
1914
|
+
if( jet(f,0)!=0 )
|
|
1915
|
+
{
|
|
1916
|
+
"Normal form : 1";
|
|
1917
|
+
return(f);
|
|
1918
|
+
}
|
|
1919
|
+
K, Mu, corank = basicinvariants(f);
|
|
1920
|
+
if(Mu<0)
|
|
1921
|
+
{
|
|
1922
|
+
debug_log(0, "The Milnor number of the function is infinite.");
|
|
1923
|
+
return(f);
|
|
1924
|
+
}
|
|
1925
|
+
|
|
1926
|
+
// Do the classification of f
|
|
1927
|
+
// typ: list of types matching the milnorcode
|
|
1928
|
+
// cnt: number of matches found
|
|
1929
|
+
v = HKclass(milnorcode(f));
|
|
1930
|
+
Typ, cnt = v[1..2];
|
|
1931
|
+
"Singularity R-equivalent to :",Typ;
|
|
1932
|
+
if(cnt==0)
|
|
1933
|
+
{
|
|
1934
|
+
"Hilbert polynomial not recognised. Milnor code = ", milnorcode(f);
|
|
1935
|
+
return();
|
|
1936
|
+
}
|
|
1937
|
+
if(cnt==1)
|
|
1938
|
+
{
|
|
1939
|
+
debug_log(1,"Getting normal form from database.");
|
|
1940
|
+
"normal form :",A_L(Typ);
|
|
1941
|
+
return(A_L(Typ));
|
|
1942
|
+
}
|
|
1943
|
+
// Hier nun der Fall cnt>1
|
|
1944
|
+
"Hilbert-Code of Jf^2";
|
|
1945
|
+
"We have ", cnt, "cases to test";
|
|
1946
|
+
Cubic(f);
|
|
1947
|
+
return(v);
|
|
1948
|
+
}
|
|
1949
|
+
example
|
|
1950
|
+
{ "EXAMPLE:"; echo=2;
|
|
1951
|
+
ring r=0,(x,y,z),ds;
|
|
1952
|
+
poly f=(x2+3y-2z)^2+xyz-(x-y3+x2*z3)^3;
|
|
1953
|
+
quickclass(f);
|
|
1954
|
+
}
|
|
1955
|
+
|
|
1956
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1957
|
+
proc milnorcode (poly f, list #)
|
|
1958
|
+
"USAGE: milnorcode(f[,e]); f=poly, e=int
|
|
1959
|
+
RETURN: intvec, coding the Hilbert function of the e-th Milnor algebra
|
|
1960
|
+
of f, i.e. of basering/(jacob(f)^e) (default e=1), according
|
|
1961
|
+
to proc Hcode
|
|
1962
|
+
EXAMPLE: example milnorcode; shows an example"
|
|
1963
|
+
{
|
|
1964
|
+
int e=1;
|
|
1965
|
+
if(size(#)==1) { e=#[1]; }
|
|
1966
|
+
ideal jf=std(jacob(f)^e);
|
|
1967
|
+
intvec v=intvec(hilb(jf,2));
|
|
1968
|
+
|
|
1969
|
+
return(Hcode(v));
|
|
1970
|
+
}
|
|
1971
|
+
example
|
|
1972
|
+
{ "EXAMPLE:"; echo=2;
|
|
1973
|
+
ring r=0,(x,y,z),ds;
|
|
1974
|
+
poly f=x2y+y3+z2;
|
|
1975
|
+
milnorcode(f);
|
|
1976
|
+
milnorcode(f,2); // a big second argument may result in memory overflow
|
|
1977
|
+
}
|
|
1978
|
+
|
|
1979
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1980
|
+
proc Hcode (intvec v)
|
|
1981
|
+
"USAGE: Hcode(v); v=intvec
|
|
1982
|
+
RETURN: intvec, coding v according to the number of successive
|
|
1983
|
+
repetitions of an entry
|
|
1984
|
+
EXAMPLE: example Hcode; shows an example."
|
|
1985
|
+
{
|
|
1986
|
+
int col, len, i, cur, cnt, maxcoef, nlen;
|
|
1987
|
+
intvec hil1, hil2;
|
|
1988
|
+
|
|
1989
|
+
col = 1;
|
|
1990
|
+
len = size(v);
|
|
1991
|
+
v[len+1] = 0;
|
|
1992
|
+
|
|
1993
|
+
init_debug();
|
|
1994
|
+
debug_log(1, "Hcode:", v );
|
|
1995
|
+
|
|
1996
|
+
for(i=1; i<=len; i++) { if( v[i] > maxcoef) { maxcoef = v[i]; } }
|
|
1997
|
+
|
|
1998
|
+
nlen = 2*maxcoef - 1;
|
|
1999
|
+
hil1[nlen] = 0;
|
|
2000
|
+
hil2[nlen] = 0;
|
|
2001
|
+
|
|
2002
|
+
for(i=1; i<=nlen; i++)
|
|
2003
|
+
{ if( i > maxcoef) { hil2[i] = 2*maxcoef-i; }
|
|
2004
|
+
else { hil2[i] = i; }
|
|
2005
|
+
}
|
|
2006
|
+
|
|
2007
|
+
for(i=1; i<=nlen; i++)
|
|
2008
|
+
{ cnt=0;
|
|
2009
|
+
while( (col<=len) && (v[col] == hil2[i]) )
|
|
2010
|
+
{ cnt++; col++; }
|
|
2011
|
+
hil1[i] = cnt;
|
|
2012
|
+
}
|
|
2013
|
+
return(hil1);
|
|
2014
|
+
}
|
|
2015
|
+
example
|
|
2016
|
+
{ "EXAMPLE:"; echo=2;
|
|
2017
|
+
intvec v1 = 1,3,5,5,2;
|
|
2018
|
+
Hcode(v1);
|
|
2019
|
+
intvec v2 = 1,2,3,4,4,4,4,4,4,4,3,2,1;
|
|
2020
|
+
Hcode(v2);
|
|
2021
|
+
}
|
|
2022
|
+
|
|
2023
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2024
|
+
static proc Cubic (poly f)
|
|
2025
|
+
{
|
|
2026
|
+
//---------------------------- initialisation ---------------------------------
|
|
2027
|
+
poly f3;
|
|
2028
|
+
ideal Jf, Jf1, Jf2;
|
|
2029
|
+
int Dim, Mult;
|
|
2030
|
+
|
|
2031
|
+
f3 = jet(f, 3);
|
|
2032
|
+
if( jet(f,2) != 0) { return("2-jet non zero"); }
|
|
2033
|
+
if( f3 == 0 ) { return("null form"); }
|
|
2034
|
+
|
|
2035
|
+
Jf1 = jacob(f3);
|
|
2036
|
+
Jf = std(Jf1);
|
|
2037
|
+
Dim = dim(Jf);
|
|
2038
|
+
Mult = mult(Jf);
|
|
2039
|
+
|
|
2040
|
+
if(Dim == 0) { return("P[8]:smooth cubic"); } // x3 + y3 + z3 + axyz
|
|
2041
|
+
if(Dim == 1)
|
|
2042
|
+
{
|
|
2043
|
+
if(Mult == 2)
|
|
2044
|
+
{
|
|
2045
|
+
Jf2 = wedge(jacob(Jf1),3-Dim), Jf1;
|
|
2046
|
+
Jf2 = std(Jf2);
|
|
2047
|
+
Dim = dim(Jf2);
|
|
2048
|
+
if (Dim == 0) { return("R:conic + line"); } // x3 + xyz
|
|
2049
|
+
if (Dim == 1) { return("Q:cuspidal cubic"); } // x3 + yz2
|
|
2050
|
+
}
|
|
2051
|
+
if(Mult == 3)
|
|
2052
|
+
{
|
|
2053
|
+
Jf2 = wedge(jacob(Jf1),3-Dim), Jf1;
|
|
2054
|
+
Jf2 = std(Jf2);
|
|
2055
|
+
Dim = dim(Jf2);
|
|
2056
|
+
if(Dim == 0) { return("T:three lines"); } // xyz
|
|
2057
|
+
if(Dim == 1) { return("S:conic + tangent"); } // x2z + yz2
|
|
2058
|
+
}
|
|
2059
|
+
if(Mult == 4) { return("U:three concurrent lines"); } // x3 + xz2
|
|
2060
|
+
}
|
|
2061
|
+
if(Dim == 2)
|
|
2062
|
+
{
|
|
2063
|
+
if(Mult == 1) { return("V:doubleline + line"); } // x2y
|
|
2064
|
+
if(Mult == 2) { return("V': triple line"); } // x3
|
|
2065
|
+
}
|
|
2066
|
+
if(Dim == 3) { return("P[9]:nodal cubic"); } // x3 + y3 + xyz
|
|
2067
|
+
|
|
2068
|
+
return("");
|
|
2069
|
+
}
|
|
2070
|
+
|
|
2071
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2072
|
+
static proc parity (int e)
|
|
2073
|
+
"USAGE: parity()"
|
|
2074
|
+
{
|
|
2075
|
+
int r = e div 2;
|
|
2076
|
+
if( 2*r == e ) { return(0); }
|
|
2077
|
+
return(1);
|
|
2078
|
+
}
|
|
2079
|
+
|
|
2080
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2081
|
+
static proc HKclass (intvec sg)
|
|
2082
|
+
{
|
|
2083
|
+
//---------------------------- initialisation ---------------------------------
|
|
2084
|
+
int cnt = 0;
|
|
2085
|
+
string SG_Typ = "";
|
|
2086
|
+
list v;
|
|
2087
|
+
|
|
2088
|
+
// if trace/debug mode not set, do it!
|
|
2089
|
+
init_debug();
|
|
2090
|
+
debug_log(1, "Milnor code : ", sg );
|
|
2091
|
+
if(size(sg) == 1) { v ="A["+string(sg[1])+"]", 1; return(v); }
|
|
2092
|
+
if(size(sg) == 3) { return(HKclass3(sg, SG_Typ, cnt)); }
|
|
2093
|
+
if(size(sg) == 5) { return(HKclass5(sg, SG_Typ, cnt)); }
|
|
2094
|
+
if(size(sg) == 7) { return(HKclass7(sg, SG_Typ, cnt)); }
|
|
2095
|
+
debug_log(1, "No solution found." );
|
|
2096
|
+
v = "", 0;
|
|
2097
|
+
return(v);
|
|
2098
|
+
}
|
|
2099
|
+
|
|
2100
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2101
|
+
static proc HKclass3 (intvec sg, string SG_Typ, int cnt)
|
|
2102
|
+
{
|
|
2103
|
+
list v;
|
|
2104
|
+
|
|
2105
|
+
if(sg[1] == 1) { v = HKclass3_teil_1(sg, SG_Typ, cnt); }
|
|
2106
|
+
debug_log(6, "HKclass3: ", v[1], " cnt=", v[2]);
|
|
2107
|
+
return(v);
|
|
2108
|
+
}
|
|
2109
|
+
|
|
2110
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2111
|
+
static proc HKclass3_teil_1 (intvec sg, string SG_Typ, int cnt)
|
|
2112
|
+
{
|
|
2113
|
+
int k, r, s;
|
|
2114
|
+
list v;
|
|
2115
|
+
|
|
2116
|
+
debug_log(2, "entering HKclass3_teil_1", sg);
|
|
2117
|
+
if(sg[2]==1) { SG_Typ=SG_Typ+" D[k]=D["+string(sg[3]+3)+"]";cnt++;} // D[k]
|
|
2118
|
+
if(sg[2]>=1)
|
|
2119
|
+
{
|
|
2120
|
+
if( parity(sg[2]))
|
|
2121
|
+
{ // sg[2] ist ungerade
|
|
2122
|
+
if(sg[2]<=sg[3])
|
|
2123
|
+
{
|
|
2124
|
+
k = (sg[2]+1) div 2;
|
|
2125
|
+
if(k>1)
|
|
2126
|
+
{
|
|
2127
|
+
cnt++;
|
|
2128
|
+
SG_Typ=SG_Typ+" J[k,r]=J["+string(k)+","+string(sg[3]+1-2*k)+"]";
|
|
2129
|
+
}// J[k,r]
|
|
2130
|
+
}
|
|
2131
|
+
if(sg[2]==sg[3]+2)
|
|
2132
|
+
{ // E[6k+2]
|
|
2133
|
+
k = (sg[2]-1) div 2;
|
|
2134
|
+
if(k>0) {cnt++; SG_Typ=SG_Typ+" E[6k+2]=E[" + string(6*k+2) + "]"; }
|
|
2135
|
+
}
|
|
2136
|
+
}
|
|
2137
|
+
else
|
|
2138
|
+
{ // sg[2] ist gerade
|
|
2139
|
+
if( sg[2] == sg[3]+1)
|
|
2140
|
+
{ // E[6k]
|
|
2141
|
+
k = sg[2] div 2; cnt++; SG_Typ=SG_Typ + " E[6k]=E[" + string(6*k) + "]";
|
|
2142
|
+
}
|
|
2143
|
+
if( sg[2] == sg[3])
|
|
2144
|
+
{ // E[6k+1]
|
|
2145
|
+
k=sg[2] div 2; cnt++; SG_Typ=SG_Typ+" E[6k+1]=E["+string(6*k+1)+"]"; }
|
|
2146
|
+
}
|
|
2147
|
+
}
|
|
2148
|
+
|
|
2149
|
+
debug_log(2, "finishing HKclass3_teil_1");
|
|
2150
|
+
debug_log(6, "HKclass3: ", SG_Typ, " cnt=", cnt);
|
|
2151
|
+
v = SG_Typ, cnt;
|
|
2152
|
+
return(v);
|
|
2153
|
+
}
|
|
2154
|
+
|
|
2155
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2156
|
+
static proc HKclass5 (intvec sg, string SG_Typ, int cnt)
|
|
2157
|
+
{
|
|
2158
|
+
list v;
|
|
2159
|
+
|
|
2160
|
+
if(sg[1] == 1 && sg[2] == 1) { v = HKclass5_teil_1(sg, SG_Typ,cnt); }
|
|
2161
|
+
if(sg[1] == 1 && sg[2] == 0) { v = HKclass5_teil_2(sg, SG_Typ,cnt); }
|
|
2162
|
+
debug_log(6, "HKclass5: ", v[1], " cnt=", v[2]);
|
|
2163
|
+
return(v);
|
|
2164
|
+
}
|
|
2165
|
+
|
|
2166
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2167
|
+
static proc HKclass5_teil_1 (intvec sg, string SG_Typ, int cnt)
|
|
2168
|
+
{
|
|
2169
|
+
int k, r, s;
|
|
2170
|
+
list v;
|
|
2171
|
+
|
|
2172
|
+
debug_log(2, "entering HKclass5_teil_1", sg);
|
|
2173
|
+
if(parity(sg[3]))
|
|
2174
|
+
{ // Dritte Stelle soll ungerade sein
|
|
2175
|
+
k = (sg[3]+1) div 2;
|
|
2176
|
+
if(sg[3] > sg[4])
|
|
2177
|
+
{
|
|
2178
|
+
k--;
|
|
2179
|
+
if( (sg[4]==sg[5]) && (sg[3] == sg[4]+1) && k>0 )
|
|
2180
|
+
{ // W[12k+6]
|
|
2181
|
+
SG_Typ = SG_Typ + " W[12k+6]=W["+string(12*k+6)+"]"; cnt++;
|
|
2182
|
+
}
|
|
2183
|
+
if( (sg[3]==sg[5]) && (sg[3] == sg[4]+2) && k>0 )
|
|
2184
|
+
{ // W[12k+5]
|
|
2185
|
+
SG_Typ = SG_Typ + " W[12k+5]=W["+string(12*k+5)+"]"; cnt++;
|
|
2186
|
+
}
|
|
2187
|
+
}
|
|
2188
|
+
else
|
|
2189
|
+
{ // sg[3] <= sg[4]
|
|
2190
|
+
if( (sg[3]==sg[4]) && (sg[5] >= sg[3]) )
|
|
2191
|
+
{
|
|
2192
|
+
r = sg[5] - sg[4];
|
|
2193
|
+
SG_Typ=SG_Typ +" X[k,r]=X["+string(k)+","+string(r)+"]"; cnt++;
|
|
2194
|
+
}
|
|
2195
|
+
if( (sg[3]==1) && (sg[4]==3) && (sg[5]>=sg[4]))
|
|
2196
|
+
{ // Z[1,r]
|
|
2197
|
+
r = sg[5] - sg[4];
|
|
2198
|
+
SG_Typ = SG_Typ + " Z[1,r]=Z[1,"+string(r)+"]"; cnt++;
|
|
2199
|
+
}
|
|
2200
|
+
|
|
2201
|
+
if( sg[4] == sg[5])
|
|
2202
|
+
{
|
|
2203
|
+
if(parity(sg[4]))
|
|
2204
|
+
{ // Z[k,r,0]
|
|
2205
|
+
r = (sg[4] - sg[3]) div 2;
|
|
2206
|
+
if( r>0 )
|
|
2207
|
+
{ cnt++;
|
|
2208
|
+
SG_Typ = SG_Typ + " Z[k,r,0]=Z["+string(k)+","+string(r)+",0]";
|
|
2209
|
+
}
|
|
2210
|
+
}
|
|
2211
|
+
else
|
|
2212
|
+
{ // Z[k,12k+6r]
|
|
2213
|
+
r = (sg[4] - 2*k) div 2; cnt++;
|
|
2214
|
+
SG_Typ = SG_Typ+" Z[k,12k+6r]=Z["+string(k)+","+string(12*k+6*r)+"]";
|
|
2215
|
+
}
|
|
2216
|
+
}
|
|
2217
|
+
|
|
2218
|
+
if( parity(sg[4]) )
|
|
2219
|
+
{ // 4. Stelle ist ungerade
|
|
2220
|
+
if(sg[4] == sg[5]+2)
|
|
2221
|
+
{ // Z[k,12k+6r+1]
|
|
2222
|
+
r = (sg[4]-2*k-1) div 2; cnt++;
|
|
2223
|
+
SG_Typ=SG_Typ+" Z[k,12k+6r+1]=Z["+string(k)+",";
|
|
2224
|
+
SG_Typ=SG_Typ+string(12*k+6*r+1)+"]";
|
|
2225
|
+
}
|
|
2226
|
+
if( (sg[5]>sg[4]) && (sg[4]>sg[3]) )
|
|
2227
|
+
{ // Z[k,r,s]
|
|
2228
|
+
r = (sg[4] - sg[3]) div 2; cnt++;
|
|
2229
|
+
s = sg[5] - sg[4];
|
|
2230
|
+
SG_Typ = SG_Typ + " Z[k,r,s]=";
|
|
2231
|
+
SG_Typ = SG_Typ + "Z["+string(k)+","+string(r)+","+string(s)+"]";
|
|
2232
|
+
}
|
|
2233
|
+
}
|
|
2234
|
+
else
|
|
2235
|
+
{ // 4. Stelle ist gerade
|
|
2236
|
+
if( sg[4] == sg[5]+1)
|
|
2237
|
+
{ // Z[k,12k+6r-1]
|
|
2238
|
+
r = (sg[4] - 2*k) div 2; cnt++;
|
|
2239
|
+
SG_Typ=SG_Typ+" Z[k,12k+6r-1]=Z["+string(k)+",";
|
|
2240
|
+
SG_Typ=SG_Typ+string(12*k+6*r-1)+"]";
|
|
2241
|
+
}
|
|
2242
|
+
}
|
|
2243
|
+
|
|
2244
|
+
if(sg[4]>sg[3])
|
|
2245
|
+
{ // Y[k,r,s]
|
|
2246
|
+
r = sg[4] - sg[3];
|
|
2247
|
+
s = sg[5] - sg[3] + r;
|
|
2248
|
+
if( s<0 ) { s = -s; }
|
|
2249
|
+
SG_Typ = SG_Typ + " Y[k,r,s]="; cnt++;
|
|
2250
|
+
SG_Typ = SG_Typ + "Y["+string(k)+","+string(r)+","+string(s)+"]";
|
|
2251
|
+
}
|
|
2252
|
+
}
|
|
2253
|
+
}
|
|
2254
|
+
else
|
|
2255
|
+
{ // Dritte Stelle soll gerade sein
|
|
2256
|
+
k = sg[3] div 2;
|
|
2257
|
+
// sortiere verschiedene W's
|
|
2258
|
+
if(k>0)
|
|
2259
|
+
{
|
|
2260
|
+
if( (sg[4]==2*k-1) && (sg[4]==sg[5]) )
|
|
2261
|
+
{ // W[12k]
|
|
2262
|
+
SG_Typ = SG_Typ + " W[12k]=W["+string(12*k)+"]"; cnt++;
|
|
2263
|
+
}
|
|
2264
|
+
if( (sg[4]==2*k-1) && (sg[3]==sg[5]) )
|
|
2265
|
+
{ // W[12k+1]
|
|
2266
|
+
SG_Typ = SG_Typ + " W[12k+1]=W["+string(12*k+1)+"]"; cnt++;
|
|
2267
|
+
}
|
|
2268
|
+
if( (sg[4]==2*k) && (sg[5]>=sg[4]) )
|
|
2269
|
+
{ // W[k,r]
|
|
2270
|
+
r = sg[5] - sg[4];
|
|
2271
|
+
SG_Typ=SG_Typ+" W[k,r]=W["+string(k)+","+string(r)+"]"; cnt++;
|
|
2272
|
+
}
|
|
2273
|
+
if( (sg[5]==2*k-1) && (sg[4]>sg[3]) )
|
|
2274
|
+
{ // W#[k,2r-1]
|
|
2275
|
+
r = sg[4] - sg[3]; cnt++;
|
|
2276
|
+
SG_Typ = SG_Typ + " W#[k,2r-1]=W["+string(k)+","+string(2*r-1)+"]";
|
|
2277
|
+
}
|
|
2278
|
+
if( (sg[5]==2*k) && (sg[4]>sg[3]) )
|
|
2279
|
+
{ // W#[k,2r]
|
|
2280
|
+
r = sg[4] - sg[3]; cnt++;
|
|
2281
|
+
SG_Typ = SG_Typ + " W#[k,2r]=W["+string(k)+","+string(2*r)+"]";
|
|
2282
|
+
}
|
|
2283
|
+
} // ENDIF k>0
|
|
2284
|
+
}
|
|
2285
|
+
debug_log(2, "finishing HKclass5_teil_1");
|
|
2286
|
+
debug_log(6, "HKclass5_teil_1: ", SG_Typ, " cnt=", cnt);
|
|
2287
|
+
v = SG_Typ, cnt;
|
|
2288
|
+
return(v);
|
|
2289
|
+
}
|
|
2290
|
+
|
|
2291
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2292
|
+
static proc HKclass5_teil_2 (intvec sg, string SG_Typ, int cnt)
|
|
2293
|
+
{
|
|
2294
|
+
int k, r, s;
|
|
2295
|
+
list v;
|
|
2296
|
+
|
|
2297
|
+
debug_log(2, "entering HKclass5_teil_2", sg);
|
|
2298
|
+
// finde T[p,q,r]
|
|
2299
|
+
k = sg[3] + 1;
|
|
2300
|
+
r = sg[4] + k;
|
|
2301
|
+
s = sg[5] + r - 1;
|
|
2302
|
+
if(k>2 && r>2 && s>2)
|
|
2303
|
+
{ // T[k,r,s]
|
|
2304
|
+
cnt++;
|
|
2305
|
+
SG_Typ = SG_Typ + " T[k,r,s]=T["+string(k)+","+string(r)+","+string(s)+"]";
|
|
2306
|
+
}
|
|
2307
|
+
|
|
2308
|
+
// finde weitere Moeglicjkeiten.
|
|
2309
|
+
if(sg[3]==2)
|
|
2310
|
+
{ // Q[...]
|
|
2311
|
+
if(parity(sg[4]))
|
|
2312
|
+
{ // 4. Stelle ist ungerade.
|
|
2313
|
+
if(sg[4]==sg[5])
|
|
2314
|
+
{ // Q[6k+4]
|
|
2315
|
+
k=(sg[4]+1) div 2; cnt++; SG_Typ=SG_Typ+" Q[6k+4]=Q["+string(6*k+4)+"]";
|
|
2316
|
+
}
|
|
2317
|
+
if(sg[4]+1==sg[5])
|
|
2318
|
+
{ // Q[6k+5]
|
|
2319
|
+
k=sg[5] div 2; cnt++; SG_Typ=SG_Typ+" Q[6k+5]=Q["+string(6*k+5)+"]";
|
|
2320
|
+
}
|
|
2321
|
+
}
|
|
2322
|
+
else
|
|
2323
|
+
{ // 4. Stelle ist gerade.
|
|
2324
|
+
if(sg[4]==sg[5]+1)
|
|
2325
|
+
{ // Q[6k+6]
|
|
2326
|
+
k=sg[4] div 2; cnt++; SG_Typ=SG_Typ+" Q[6k+6]=Q["+string(6*k+6)+"]";
|
|
2327
|
+
}
|
|
2328
|
+
if(sg[4]<sg[5])
|
|
2329
|
+
{ // Q[k,r]
|
|
2330
|
+
k = (sg[4]+2) div 2;
|
|
2331
|
+
if(k>=2)
|
|
2332
|
+
{
|
|
2333
|
+
r=sg[5]+1-2*k; cnt++;
|
|
2334
|
+
SG_Typ=SG_Typ+" Q[k,r]=Q["+string(k)+","+string(r)+"]";
|
|
2335
|
+
}
|
|
2336
|
+
}
|
|
2337
|
+
}
|
|
2338
|
+
}
|
|
2339
|
+
else
|
|
2340
|
+
{ // S[...]
|
|
2341
|
+
if(parity(sg[3]))
|
|
2342
|
+
{ // 3. Stelle ist ungerade.
|
|
2343
|
+
k = (sg[3]-1) div 2;
|
|
2344
|
+
if(sg[3]==sg[4]+3 && sg[3]==sg[5]+2)
|
|
2345
|
+
{ // S[12k-1]
|
|
2346
|
+
cnt++; SG_Typ = SG_Typ + " S[12k-1]=S["+string(12*k-1)+"]";
|
|
2347
|
+
}
|
|
2348
|
+
if(sg[3]==sg[4]+3 && sg[3]==sg[5]+1)
|
|
2349
|
+
{ // s[12k]
|
|
2350
|
+
cnt++; SG_Typ = SG_Typ + " S[12k]=S["+string(12*k)+"]";
|
|
2351
|
+
}
|
|
2352
|
+
if(sg[3]==sg[4]+2 && sg[5]>=sg[4]+1)
|
|
2353
|
+
{ // S[k,r]
|
|
2354
|
+
r = sg[5] - 2*k; cnt++;
|
|
2355
|
+
SG_Typ = SG_Typ + " S[k,r]=S["+string(k)+","+string(r)+"]";
|
|
2356
|
+
}
|
|
2357
|
+
if(sg[3]==sg[5]+2 && sg[4]>=sg[5])
|
|
2358
|
+
{ // S#[k,2r-1]
|
|
2359
|
+
r = sg[4] - 2*k + 1; cnt++;
|
|
2360
|
+
SG_Typ = SG_Typ + " S#[k,2r-1]=S#["+string(k)+","+string(2*r-1)+"]";
|
|
2361
|
+
}
|
|
2362
|
+
if(sg[3]==sg[5]+1 && sg[4]>=sg[5])
|
|
2363
|
+
{ // S#[k,2r]
|
|
2364
|
+
r = sg[4] - 2*k + 1; cnt++;
|
|
2365
|
+
SG_Typ = SG_Typ + " S#[k,2r]=S#["+string(k)+","+string(2*r)+"]";
|
|
2366
|
+
}
|
|
2367
|
+
}
|
|
2368
|
+
else
|
|
2369
|
+
{ // 3. Stelle ist gerade.
|
|
2370
|
+
if(sg[3]==sg[5]+1 && sg[5]==sg[4]+3)
|
|
2371
|
+
{ // S[12k+4]
|
|
2372
|
+
k = (sg[3]-2) div 2; cnt++;
|
|
2373
|
+
SG_Typ = SG_Typ + " S[12k+4]=S["+string(12*k+4)+"]";
|
|
2374
|
+
}
|
|
2375
|
+
if(sg[3]==sg[5]+2 && sg[5]==sg[4]+1)
|
|
2376
|
+
{ // S[12k+5]
|
|
2377
|
+
k = (sg[3]-2) div 2; cnt++;
|
|
2378
|
+
SG_Typ = SG_Typ + " S[12k+5]=S["+string(12*k+5)+"]";
|
|
2379
|
+
}
|
|
2380
|
+
}
|
|
2381
|
+
}
|
|
2382
|
+
debug_log(2, "finishing HKclass5_teil_2");
|
|
2383
|
+
debug_log(6, "HKclass5_teil_2: ", SG_Typ, " cnt=", cnt);
|
|
2384
|
+
v = SG_Typ, cnt;
|
|
2385
|
+
return(v);
|
|
2386
|
+
}
|
|
2387
|
+
|
|
2388
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2389
|
+
static proc HKclass7 (intvec sg, string SG_Typ, int cnt)
|
|
2390
|
+
{
|
|
2391
|
+
list v;
|
|
2392
|
+
|
|
2393
|
+
if(sg[1]==1 && sg[2]==0 && sg[3]==1)
|
|
2394
|
+
{
|
|
2395
|
+
v=HKclass7_teil_1(sg, SG_Typ, cnt);
|
|
2396
|
+
}
|
|
2397
|
+
else
|
|
2398
|
+
{
|
|
2399
|
+
v[1]="not in list";
|
|
2400
|
+
v[2]=0;
|
|
2401
|
+
}
|
|
2402
|
+
debug_log(6, "HKclass7: ", v[1], " cnt=", v[2]);
|
|
2403
|
+
return(v);
|
|
2404
|
+
}
|
|
2405
|
+
|
|
2406
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2407
|
+
static proc HKclass7_teil_1 (intvec sg, string SG_Typ, int cnt)
|
|
2408
|
+
{
|
|
2409
|
+
int k, r, s;
|
|
2410
|
+
list v;
|
|
2411
|
+
|
|
2412
|
+
debug_log(2, "entering HKclass7_teil_1", sg);
|
|
2413
|
+
if(sg[4] == 2)
|
|
2414
|
+
{ // V[...]
|
|
2415
|
+
if(sg[5] == 0 && sg[6] == 1 && sg[7]>0)
|
|
2416
|
+
{ // V[1,r]
|
|
2417
|
+
r = sg[7] - 1; cnt++; SG_Typ = SG_Typ + " V[1,r]=V[1,"+string(r)+"]";
|
|
2418
|
+
}
|
|
2419
|
+
if(sg[5] == 1 && sg[7] == 1)
|
|
2420
|
+
{ // V#[1,2r-1]
|
|
2421
|
+
r=sg[6]+1; cnt++; SG_Typ=SG_Typ+" V#[1,2r-1]=V#[1,"+string(2*r-1)+"]";
|
|
2422
|
+
}
|
|
2423
|
+
if(sg[5] == 1 && sg[7] == 2)
|
|
2424
|
+
{ // V#[1,2r]
|
|
2425
|
+
r=sg[6]+1; cnt++; SG_Typ=SG_Typ+" V#[1,2r]=V#[1,"+string(2*r)+"]";
|
|
2426
|
+
}
|
|
2427
|
+
}
|
|
2428
|
+
// Moegliche U[...]'s
|
|
2429
|
+
k = sg[4];
|
|
2430
|
+
if(sg[5]==2*k-1 && sg[6]==0 && sg[7]==sg[5])
|
|
2431
|
+
{ // U[12k]
|
|
2432
|
+
cnt++;SG_Typ = SG_Typ + " U[12k]=U["+string(12*k)+"]";
|
|
2433
|
+
}
|
|
2434
|
+
if(sg[5]==2*k && sg[6]==0 && sg[7]==sg[5])
|
|
2435
|
+
{ // U[12k+4]
|
|
2436
|
+
cnt++;SG_Typ = SG_Typ + " U[12k+4]=U["+string(12*k+4)+"]";
|
|
2437
|
+
}
|
|
2438
|
+
if(sg[5]==2*k-1 && sg[6]>0 && sg[7]==sg[5])
|
|
2439
|
+
{ // U[k,2r-1]
|
|
2440
|
+
r=sg[6]-1; cnt++;
|
|
2441
|
+
SG_Typ=SG_Typ+" U[k,2r-1]=U["+string(k)+","+string(2*r-1)+"]";
|
|
2442
|
+
}
|
|
2443
|
+
if(sg[5]==2*k-1 && sg[6]>0 && sg[7]==2*k)
|
|
2444
|
+
{ // U[k,2r]
|
|
2445
|
+
r = sg[6]; cnt++;
|
|
2446
|
+
SG_Typ = SG_Typ + " U[k,2r]=U["+string(k)+","+string(2*r)+"]";
|
|
2447
|
+
}
|
|
2448
|
+
debug_log(2, "finishing HKclass7_teil_1");
|
|
2449
|
+
debug_log(6, "HKclass7_teil_1: ", SG_Typ, " cnt=", cnt);
|
|
2450
|
+
v = SG_Typ, cnt;
|
|
2451
|
+
return(v);
|
|
2452
|
+
}
|
|
2453
|
+
|
|
2454
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2455
|
+
proc singularity(string typ, list #)
|
|
2456
|
+
"USAGE: singularity(t, l); t=string (name of singularity),
|
|
2457
|
+
l=list of integers/polynomials (indices/parameters of singularity)
|
|
2458
|
+
COMPUTE: get the singularity named by type t from the database.
|
|
2459
|
+
list l is as follows: @*
|
|
2460
|
+
l= k [,r [,s [,a [,b [,c [,d]..]: k,r,s=int a,b,c,d=poly. @*
|
|
2461
|
+
The name of the dbm-databasefile is: NFlist.[dir,pag].
|
|
2462
|
+
The file is found in the current directory. If it does not
|
|
2463
|
+
exist, please run the script MakeDBM first.
|
|
2464
|
+
RETURN: Normal form and corank of the singularity named by type t and its
|
|
2465
|
+
index (indices) l.
|
|
2466
|
+
EXAMPLE: example singularity; shows an example"
|
|
2467
|
+
{
|
|
2468
|
+
poly a1, a2, a3, a4, f;
|
|
2469
|
+
int k, r, s;
|
|
2470
|
+
int len = size(#);
|
|
2471
|
+
list v, ret;
|
|
2472
|
+
|
|
2473
|
+
classify_init();
|
|
2474
|
+
ret = 0, 0;
|
|
2475
|
+
k = #[1];
|
|
2476
|
+
if(len>=2) { r = #[2]; }
|
|
2477
|
+
else { r = 0; }
|
|
2478
|
+
if(len>=3) { s = #[3]; }
|
|
2479
|
+
else { s = 0; }
|
|
2480
|
+
if( k<0 || r<0 || s<0)
|
|
2481
|
+
{
|
|
2482
|
+
"Initial condition failed: k>=0; r>=0; s>=0";
|
|
2483
|
+
"k="+string(k)+" r="+string(r)+" s="+string(s);
|
|
2484
|
+
return(ret);
|
|
2485
|
+
}
|
|
2486
|
+
int crk;
|
|
2487
|
+
|
|
2488
|
+
init_debug();
|
|
2489
|
+
def ring_top=basering;
|
|
2490
|
+
|
|
2491
|
+
if(len>=4) { a1 = #[4]; }
|
|
2492
|
+
else { a1=1; }
|
|
2493
|
+
if(len>=5) { a2 = #[5]; }
|
|
2494
|
+
else { a2=1; }
|
|
2495
|
+
if(len>=6) { a3 = #[6]; }
|
|
2496
|
+
else { a3=1; }
|
|
2497
|
+
if(len>=7) { a4 = #[7]; }
|
|
2498
|
+
else { a4=1; }
|
|
2499
|
+
|
|
2500
|
+
debug_log(4, "Values: len=", string(len), " k=", string(k), " r=",
|
|
2501
|
+
string(r));
|
|
2502
|
+
if(defined(RingNF) != 0 ) { kill RingNF; }
|
|
2503
|
+
ring RingNF=char(basering),(x,y,z),(c,ds);
|
|
2504
|
+
poly f;
|
|
2505
|
+
map Conv=ring_top,maxideal(1);
|
|
2506
|
+
v = Singularitaet(typ, k, r, s, Conv(a1), Conv(a2), Conv(a4), Conv(a4));
|
|
2507
|
+
f, crk = v[1..2];
|
|
2508
|
+
debug_log(2, "Info=", f );
|
|
2509
|
+
setring ring_top;
|
|
2510
|
+
if(defined(Phi) != 0 ) { kill Phi; }
|
|
2511
|
+
map Phi=RingNF,maxideal(1);
|
|
2512
|
+
|
|
2513
|
+
ret = Phi(f), crk;
|
|
2514
|
+
return(ret);
|
|
2515
|
+
}
|
|
2516
|
+
example
|
|
2517
|
+
{ "EXAMPLE"; echo=2;
|
|
2518
|
+
ring r=0,(x,y,z),(c,ds);
|
|
2519
|
+
init_debug(0);
|
|
2520
|
+
singularity("E[6k]",6);
|
|
2521
|
+
singularity("T[k,r,s]", 3, 7, 5);
|
|
2522
|
+
poly f=y;
|
|
2523
|
+
singularity("J[k,r]", 4, 0, 0, f);
|
|
2524
|
+
}
|
|
2525
|
+
|
|
2526
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2527
|
+
static proc Singularitaet (string typ,int k,int r,int s,poly a,poly b,poly c,poly d)
|
|
2528
|
+
{
|
|
2529
|
+
list v;
|
|
2530
|
+
string DBMPATH=system("getenv","DBMPATH");
|
|
2531
|
+
string DatabasePath, Database, S, Text, Tp;
|
|
2532
|
+
poly f, f1;
|
|
2533
|
+
int crk, Mu, ret;
|
|
2534
|
+
intvec MlnCd;
|
|
2535
|
+
|
|
2536
|
+
if( DBMPATH != "" ) { DatabasePath = DBMPATH+"/NFlist"; }
|
|
2537
|
+
else { DatabasePath = "NFlist"; }
|
|
2538
|
+
Database="DBM: ",DatabasePath;
|
|
2539
|
+
|
|
2540
|
+
link dbmLink=Database;
|
|
2541
|
+
debug_log(2, "Opening Singalarity-database: ", newline, Database);
|
|
2542
|
+
Tp = read(dbmLink, typ);
|
|
2543
|
+
debug_log(2,"DBMread(", typ, ")=", Tp, ".");
|
|
2544
|
+
if( Tp != "(null)" && Tp !="" )
|
|
2545
|
+
{
|
|
2546
|
+
string Key = "I_", typ;
|
|
2547
|
+
S = "f = ", Tp, ";";
|
|
2548
|
+
debug_log(2,"S=", S, " Tp=", Tp, "Key=", Key);
|
|
2549
|
+
execute(S);
|
|
2550
|
+
execute(read(dbmLink, Key)+";");
|
|
2551
|
+
debug_log(1, "Polynom f=", f, " crk=", crk, " Mu=", Mu,
|
|
2552
|
+
" MlnCd=", MlnCd);
|
|
2553
|
+
v = f, crk, Mu, MlnCd;
|
|
2554
|
+
}
|
|
2555
|
+
else
|
|
2556
|
+
{
|
|
2557
|
+
v = 0, 0, 0, 0;
|
|
2558
|
+
}
|
|
2559
|
+
close(dbmLink);
|
|
2560
|
+
return(v);
|
|
2561
|
+
}
|
|
2562
|
+
|
|
2563
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2564
|
+
proc RandomPolyK (int M, string Typ)
|
|
2565
|
+
"USAGE: RandomPolyK(M, Typ)"
|
|
2566
|
+
{
|
|
2567
|
+
//---------------------------- initialisation ---------------------------------
|
|
2568
|
+
int n, b, i, k, r, s, crk;
|
|
2569
|
+
ideal B;
|
|
2570
|
+
map Phi;
|
|
2571
|
+
string txt, Tp;
|
|
2572
|
+
list v;
|
|
2573
|
+
|
|
2574
|
+
def ring_ext=basering;
|
|
2575
|
+
n=4;
|
|
2576
|
+
if(M<5) { M = 5; }
|
|
2577
|
+
|
|
2578
|
+
k = random(1, M);
|
|
2579
|
+
r = random(-5, 2*M);
|
|
2580
|
+
s = random(-5, 2*M);
|
|
2581
|
+
if(r<0) { r = 0; }
|
|
2582
|
+
if(s<0) { s = 0; }
|
|
2583
|
+
|
|
2584
|
+
ring RgAnf=char(basering),(x,y,z,t),(c,ds);
|
|
2585
|
+
poly f;
|
|
2586
|
+
|
|
2587
|
+
v = singularity(Typ, k, r, s);
|
|
2588
|
+
f, crk = v[1..2];
|
|
2589
|
+
// f = f +t2;
|
|
2590
|
+
if(crk==1) { f = f + y2 + z2; }
|
|
2591
|
+
if(crk==2) { f = f + z2; }
|
|
2592
|
+
txt="RandomPoly-Series: gewaehlt fall "+Typ+" mit";
|
|
2593
|
+
txt=txt+" f="+string(f);
|
|
2594
|
+
txt;
|
|
2595
|
+
setring ring_ext;
|
|
2596
|
+
B = maxideal(1);
|
|
2597
|
+
|
|
2598
|
+
r=1;
|
|
2599
|
+
for(i=n; i>0; i--,r++)
|
|
2600
|
+
{
|
|
2601
|
+
// for(i=1; i<=n; i=i+1)
|
|
2602
|
+
B[rvar(x(r))] = x(i);
|
|
2603
|
+
if(i>2 && random(1,10)<3) { B[rvar(x(r))] = B[rvar(x(r))] + x(i-1); }
|
|
2604
|
+
// if(i==1 && random(1,10)<4) { B[rvar(x(r))] = B[rvar(x(r))]- x(n); }
|
|
2605
|
+
if(i>0)
|
|
2606
|
+
{
|
|
2607
|
+
for(b=3; b<5; b=b+1)
|
|
2608
|
+
{
|
|
2609
|
+
// B[rvar(x(r))] = B[rvar(x(r))] + random(0,9) * x(i)^(b+2);
|
|
2610
|
+
if(random(1,20)<3)
|
|
2611
|
+
{
|
|
2612
|
+
B[rvar(x(r))] = B[rvar(x(r))] - random(-2,2)*x(b)^2;
|
|
2613
|
+
}
|
|
2614
|
+
}
|
|
2615
|
+
}
|
|
2616
|
+
}
|
|
2617
|
+
Phi=RgAnf, B;
|
|
2618
|
+
Phi;
|
|
2619
|
+
poly fr=Phi(f);
|
|
2620
|
+
fr = fr+(x(1)+x(2))^2;
|
|
2621
|
+
// return(Phi(f));
|
|
2622
|
+
return(fr);
|
|
2623
|
+
}
|
|
2624
|
+
|
|
2625
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2626
|
+
proc debug_log (int level, list #)
|
|
2627
|
+
"USAGE: debug_log(level,li); level=int, li=comma separated \"message\" list
|
|
2628
|
+
COMPUTE: print \"messages\" if level>=@DeBug.
|
|
2629
|
+
useful for user-defined trace messages.
|
|
2630
|
+
EXAMPLE: example debug_log; shows an example
|
|
2631
|
+
SEE ALSO: init_debug
|
|
2632
|
+
"
|
|
2633
|
+
{
|
|
2634
|
+
int len = size(#);
|
|
2635
|
+
// int printresult = printlevel - level +1;
|
|
2636
|
+
// if(level>1)
|
|
2637
|
+
// {
|
|
2638
|
+
// dbprint(printresult, "Debug:("+ string(level)+ "): ", #[2..len]);
|
|
2639
|
+
// }
|
|
2640
|
+
// else { dbprint(printresult, #[1..len]); }
|
|
2641
|
+
if( defined(@DeBug) == 0 ) { init_debug(); }
|
|
2642
|
+
if(@DeBug>=level)
|
|
2643
|
+
{
|
|
2644
|
+
if(level>1) { "Debug:("+ string(level)+ "): ", #[1..len]; }
|
|
2645
|
+
else { #[1..len]; }
|
|
2646
|
+
}
|
|
2647
|
+
}
|
|
2648
|
+
example
|
|
2649
|
+
{ "EXAMPLE:"; echo=2;
|
|
2650
|
+
example init_debug;
|
|
2651
|
+
}
|
|
2652
|
+
|
|
2653
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2654
|
+
proc init_debug(list #)
|
|
2655
|
+
"USAGE: init_debug([level]); level=int
|
|
2656
|
+
COMPUTE: Set the global variable @DeBug to level. The variable @DeBug is
|
|
2657
|
+
used by the function debug_log(level, list of strings) to know
|
|
2658
|
+
when to print the list of strings. init_debug() reports only
|
|
2659
|
+
changes of @DeBug.
|
|
2660
|
+
NOTE: The procedure init_debug(n); is useful as trace-mode. n may
|
|
2661
|
+
range from 0 to 10, higher values of n give more information.
|
|
2662
|
+
EXAMPLE: example init_debug; shows an example"
|
|
2663
|
+
{
|
|
2664
|
+
int newDebug=0;
|
|
2665
|
+
if( defined(@DeBug) != 0 ) { newDebug = @DeBug; }
|
|
2666
|
+
|
|
2667
|
+
if( size(#) > 0 )
|
|
2668
|
+
{
|
|
2669
|
+
newDebug=#[1];
|
|
2670
|
+
}
|
|
2671
|
+
else
|
|
2672
|
+
{
|
|
2673
|
+
string s=system("getenv", "SG_DEBUG");
|
|
2674
|
+
if( s != "" && defined(@DeBug)==0)
|
|
2675
|
+
{
|
|
2676
|
+
s="newDebug="+s;
|
|
2677
|
+
execute(s);
|
|
2678
|
+
}
|
|
2679
|
+
}
|
|
2680
|
+
if( defined(@DeBug) == 0)
|
|
2681
|
+
{
|
|
2682
|
+
int @DeBug = newDebug;
|
|
2683
|
+
export @DeBug;
|
|
2684
|
+
if(@DeBug>0) { "Debugging level is set to ", @DeBug; }
|
|
2685
|
+
}
|
|
2686
|
+
else
|
|
2687
|
+
{
|
|
2688
|
+
if( (size(#) == 0) && (newDebug < @DeBug) ) { return(); }
|
|
2689
|
+
if( @DeBug != newDebug)
|
|
2690
|
+
{
|
|
2691
|
+
int oldDebug = @DeBug;
|
|
2692
|
+
@DeBug = newDebug;
|
|
2693
|
+
if(@DeBug>0) { "Debugging level change from ", oldDebug, " to ",@DeBug; }
|
|
2694
|
+
else
|
|
2695
|
+
{
|
|
2696
|
+
if( @DeBug==0 && oldDebug>0 ) { "Debugging switched off."; }
|
|
2697
|
+
}
|
|
2698
|
+
}
|
|
2699
|
+
}
|
|
2700
|
+
printlevel = @DeBug;
|
|
2701
|
+
}
|
|
2702
|
+
example
|
|
2703
|
+
{ "EXAMPLE:"; echo=2;
|
|
2704
|
+
init_debug();
|
|
2705
|
+
debug_log(1,"no trace information printed");
|
|
2706
|
+
init_debug(1);
|
|
2707
|
+
debug_log(1,"some trace information");
|
|
2708
|
+
init_debug(2);
|
|
2709
|
+
debug_log(2,"nice for debugging scripts");
|
|
2710
|
+
init_debug(0);
|
|
2711
|
+
}
|
|
2712
|
+
|
|
2713
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2714
|
+
proc basicinvariants(poly f)
|
|
2715
|
+
"USAGE: basicinvariants(f); f = poly
|
|
2716
|
+
COMPUTE: Compute basic invariants of f: an upper bound d for the
|
|
2717
|
+
determinacy, the milnor number mu and the corank c of f
|
|
2718
|
+
RETURN: intvec: d, mu, c
|
|
2719
|
+
EXAMPLE: example basicinvariants; shows an example"
|
|
2720
|
+
{
|
|
2721
|
+
intvec v;
|
|
2722
|
+
ideal Jfs = std(jacob(f));
|
|
2723
|
+
v[1] = system("HC")+1;
|
|
2724
|
+
v[2] = vdim(Jfs);
|
|
2725
|
+
v[3] = corank(f);
|
|
2726
|
+
if( v[2]<v[1] ) { v[1] = v[2]+1; }
|
|
2727
|
+
return(v);
|
|
2728
|
+
}
|
|
2729
|
+
example
|
|
2730
|
+
{ "EXAMPLE:"; echo=2;
|
|
2731
|
+
ring r=0,(x,y,z),ds;
|
|
2732
|
+
basicinvariants((x2+3y-2z)^2+xyz-(x-y3+x2*z3)^3);
|
|
2733
|
+
}
|
|
2734
|
+
|
|
2735
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2736
|
+
proc corank(poly f)
|
|
2737
|
+
"USAGE: corank(f); f=poly
|
|
2738
|
+
RETURN: the corank of the Hessian matrix of f, of type int
|
|
2739
|
+
REMARK: corank(f) is the number of variables occurring in the residual
|
|
2740
|
+
singularity after applying 'morsesplit' to f
|
|
2741
|
+
EXAMPLE: example corank; shows an example"
|
|
2742
|
+
{
|
|
2743
|
+
matrix M = jacob(jacob(jet(f,2)));
|
|
2744
|
+
list lba = bareiss(M);
|
|
2745
|
+
int cr = nvars(basering) - size(module(lba[1]));
|
|
2746
|
+
return(cr);
|
|
2747
|
+
}
|
|
2748
|
+
example
|
|
2749
|
+
{ "EXAMPLE:"; echo=2;
|
|
2750
|
+
ring r=0,(x,y,z),ds;
|
|
2751
|
+
poly f=(x2+3y-2z)^2+xyz-(x-y3+x2*z3)^3;
|
|
2752
|
+
corank(f);
|
|
2753
|
+
}
|
|
2754
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2755
|
+
static proc Faktorisiere(poly f, poly fk, int pt, int k, intvec RFlg)
|
|
2756
|
+
{
|
|
2757
|
+
//---------------------------- initialisation ---------------------------------
|
|
2758
|
+
poly a, b, Relation;
|
|
2759
|
+
ideal B, Jfsyz;
|
|
2760
|
+
map PhiG, VERT;
|
|
2761
|
+
matrix Mat;
|
|
2762
|
+
list v;
|
|
2763
|
+
def ring_top=basering;
|
|
2764
|
+
|
|
2765
|
+
// Ziel: bestimme a,b sodass fk = (ax+by^k)^pt gilt.
|
|
2766
|
+
B = maxideal(1);
|
|
2767
|
+
PhiG = ring_top,B;
|
|
2768
|
+
debug_log(2, "Faktor: f=",Show(f)," Jet=",Show(fk)," k=",k," exp=",pt);
|
|
2769
|
+
|
|
2770
|
+
//----------------------- compute role of x and y -----------------------------
|
|
2771
|
+
Jfsyz = fk, diff(fk, x(1));
|
|
2772
|
+
Mat = matrix(syz(Jfsyz));
|
|
2773
|
+
if( (fk-subst(fk,x(1),0)) != 0 && (fk-subst(fk,x(2),0)) != 0 )
|
|
2774
|
+
{
|
|
2775
|
+
// Wenn k>0 ist die Wahl fuer x & y bereits getroffen
|
|
2776
|
+
// sonst bestimmen x und y
|
|
2777
|
+
Jfsyz = fk, diff(fk, x(1));
|
|
2778
|
+
Mat = matrix(syz(Jfsyz));
|
|
2779
|
+
Relation = -pt * Mat[2,1] / Mat[1,1];
|
|
2780
|
+
a = Coeff(Relation, x(1), x(1));
|
|
2781
|
+
b = Coeff(Relation, x(2), x(2)^k);
|
|
2782
|
+
B = maxideal(1);
|
|
2783
|
+
if( (RFlg[1]==1 && k==1) || k>1) { B[rvar(x(1))] = x(1)-b*x(2)^k; }
|
|
2784
|
+
else { B[rvar(x(2))] = x(2)-b*x(1)^k; }
|
|
2785
|
+
VERT = basering,B;
|
|
2786
|
+
f = VERT(f);
|
|
2787
|
+
PhiG = VERT(PhiG);
|
|
2788
|
+
}
|
|
2789
|
+
|
|
2790
|
+
//------------------- permutation of x and y, if needed -----------------------
|
|
2791
|
+
if( k==1 )
|
|
2792
|
+
{
|
|
2793
|
+
debug_log(2, "Fak-7:",Show(f)," jet=",Show(fk));
|
|
2794
|
+
if(Coeff(jet(f, pt), x(1), x(1)^pt) == 0)
|
|
2795
|
+
{
|
|
2796
|
+
VERT = basering,x(2),x(1);
|
|
2797
|
+
f = VERT(f);
|
|
2798
|
+
PhiG = VERT(PhiG);
|
|
2799
|
+
}
|
|
2800
|
+
}
|
|
2801
|
+
debug_log(2, "Fak-8:",Show(f)," jet=",Show(fk));
|
|
2802
|
+
debug_log(6, "Faktorisiere liefert: f=", Show(f));
|
|
2803
|
+
v[1] = f;
|
|
2804
|
+
v[2] = PhiG;
|
|
2805
|
+
return(v);
|
|
2806
|
+
}
|
|
2807
|
+
|
|
2808
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2809
|
+
static proc Teile(poly f, poly fk)
|
|
2810
|
+
{
|
|
2811
|
+
ideal Jfsyz = f, fk;
|
|
2812
|
+
poly Relation;
|
|
2813
|
+
matrix Mat = matrix(syz(Jfsyz));
|
|
2814
|
+
Relation = -1 * Mat[2,1]/Mat[1,1];
|
|
2815
|
+
return(Relation);
|
|
2816
|
+
}
|
|
2817
|
+
|
|
2818
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2819
|
+
static proc GetRf (poly fi, int n)
|
|
2820
|
+
"USAGE: GetRf();"
|
|
2821
|
+
{
|
|
2822
|
+
//---------------------------- initialisation ---------------------------------
|
|
2823
|
+
int j, k, l1, l1w;
|
|
2824
|
+
matrix Koef;
|
|
2825
|
+
intvec RFlg;
|
|
2826
|
+
|
|
2827
|
+
RFlg[n] = 0;
|
|
2828
|
+
intvec Haeufigkeit = RFlg;
|
|
2829
|
+
|
|
2830
|
+
for( j=1; j<=n ; j=j+1)
|
|
2831
|
+
{
|
|
2832
|
+
Koef = coef(fi, x(j));
|
|
2833
|
+
Haeufigkeit[j] = ncols(Koef);
|
|
2834
|
+
if(Coeff(fi, x(j),0) == 0) { Haeufigkeit[j] = Haeufigkeit[j] + 1;}
|
|
2835
|
+
}
|
|
2836
|
+
for( j=n; j>0 ; j=j-1)
|
|
2837
|
+
{
|
|
2838
|
+
l1 = 0;
|
|
2839
|
+
l1w = 0;
|
|
2840
|
+
for(k=1;k<=n;k=k+1) { if(Haeufigkeit[k]>l1w) { l1=k; l1w=Haeufigkeit[k];}}
|
|
2841
|
+
RFlg[j] = l1;
|
|
2842
|
+
Haeufigkeit[l1] = 0;
|
|
2843
|
+
}
|
|
2844
|
+
debug_log(2, "Permutations:", RFlg);
|
|
2845
|
+
return(RFlg);
|
|
2846
|
+
}
|
|
2847
|
+
|
|
2848
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2849
|
+
static proc Show(poly g)
|
|
2850
|
+
{
|
|
2851
|
+
string s;
|
|
2852
|
+
def ring_save=basering;
|
|
2853
|
+
|
|
2854
|
+
execute(@ringdisplay);
|
|
2855
|
+
map showpoly=ring_save,maxideal(1);
|
|
2856
|
+
s = string(showpoly(g));
|
|
2857
|
+
setring ring_save;
|
|
2858
|
+
return (s);
|
|
2859
|
+
}
|
|
2860
|
+
|
|
2861
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2862
|
+
static proc checkring
|
|
2863
|
+
{
|
|
2864
|
+
int CH = char(basering);
|
|
2865
|
+
if(CH >= 2 && CH<=13)
|
|
2866
|
+
{
|
|
2867
|
+
"Ring has characteristic ",CH;
|
|
2868
|
+
"Characteristic other than 0 or 0<char<13 is not yet implemented";
|
|
2869
|
+
return(1);
|
|
2870
|
+
}
|
|
2871
|
+
return(0); // characteristic of ring is OK, return (0)
|
|
2872
|
+
}
|
|
2873
|
+
|
|
2874
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2875
|
+
static proc DecodeNormalFormString (string S_in)
|
|
2876
|
+
"USAGE: DecodeNormalFormString"
|
|
2877
|
+
{
|
|
2878
|
+
//---------------------------- initialisation ---------------------------------
|
|
2879
|
+
int C_eq, a, b, i, t, k, r, s;
|
|
2880
|
+
string s1, s2, s3, s4, s_in, Typ;
|
|
2881
|
+
list v = "Error", 0, 0, 0;
|
|
2882
|
+
|
|
2883
|
+
C_eq = find(S_in, "=")+1;
|
|
2884
|
+
s_in = S_in[C_eq,30];
|
|
2885
|
+
debug_log(2, "Decode:");
|
|
2886
|
+
|
|
2887
|
+
debug_log(2, "S_in=", S_in," s_in=",s_in );
|
|
2888
|
+
a = find(s_in, "[")+1;
|
|
2889
|
+
b = find(s_in, "]")-1;
|
|
2890
|
+
t = 1;
|
|
2891
|
+
k = 0;
|
|
2892
|
+
r = 0;
|
|
2893
|
+
s = 0;
|
|
2894
|
+
|
|
2895
|
+
if(a<0 || b<0) { return(v); }
|
|
2896
|
+
Typ = s_in[1..a-1];
|
|
2897
|
+
s1 = s_in[a..b];
|
|
2898
|
+
debug_log(6, "Suche Type:", Typ);
|
|
2899
|
+
//---------------------- decode between brackets ----------------------------
|
|
2900
|
+
if( find(s1, ",") == 0)
|
|
2901
|
+
{
|
|
2902
|
+
debug_log(8, " Number of columns: 0");
|
|
2903
|
+
s2 = "k = "+s1+";";
|
|
2904
|
+
execute(s2);
|
|
2905
|
+
if( (Typ=="A[") || (Typ=="D[") ) { s3 = "k"; }
|
|
2906
|
+
if( Typ == "E[") { t = 6; }
|
|
2907
|
+
if( Typ == "W[") { t = 12; }
|
|
2908
|
+
if( Typ == "Q[") { t = 6; }
|
|
2909
|
+
if( Typ == "Z[") { t = 6; }
|
|
2910
|
+
if( Typ == "U[") { t = 12; }
|
|
2911
|
+
if( t > 1 )
|
|
2912
|
+
{
|
|
2913
|
+
i = k;
|
|
2914
|
+
k = k div t;
|
|
2915
|
+
b = i - t*k;
|
|
2916
|
+
if( (s1 == "Q[") && (b==0) ) { k=k-1; b=6; }
|
|
2917
|
+
if(Typ == "Z[")
|
|
2918
|
+
{
|
|
2919
|
+
if(b==0) { k=k-1; b=6; }
|
|
2920
|
+
if(b==1) { k=k-1; b=7; }
|
|
2921
|
+
}
|
|
2922
|
+
if( b == 0 ) { s3 = string(t)+"k"; }
|
|
2923
|
+
else { s3 = string(t)+"k+"+string(b); }
|
|
2924
|
+
}
|
|
2925
|
+
if( Typ == "S[")
|
|
2926
|
+
{
|
|
2927
|
+
i = k+1;
|
|
2928
|
+
k = i/12;
|
|
2929
|
+
b = i - 12*k;
|
|
2930
|
+
if( b == 1 ) { s3 = "k"; }
|
|
2931
|
+
else
|
|
2932
|
+
{
|
|
2933
|
+
if(b==0) { s3 = "12k"+string(b-1); }
|
|
2934
|
+
else { s3 = "12k+"+string(b-1); }
|
|
2935
|
+
}
|
|
2936
|
+
}
|
|
2937
|
+
s2 = Typ + s3 +"]";
|
|
2938
|
+
} // es kommt mindestens ein komma vor...
|
|
2939
|
+
//----------------------- more than 1 parameter -----------------------------
|
|
2940
|
+
else
|
|
2941
|
+
{
|
|
2942
|
+
b = find(s1, ",");
|
|
2943
|
+
s2 = "k = ",s1[1..b-1],";";
|
|
2944
|
+
execute(s2);
|
|
2945
|
+
s1 = s1[b+1..size(s1)];
|
|
2946
|
+
if(find(s1, ",") == 0)
|
|
2947
|
+
{
|
|
2948
|
+
debug_log(8, " Number of columns 1");
|
|
2949
|
+
s2 = "r = "+s1+";";
|
|
2950
|
+
execute(s2);
|
|
2951
|
+
s4 = "r";
|
|
2952
|
+
s3 = "k";
|
|
2953
|
+
if(r==0) { s4 = string(0); }
|
|
2954
|
+
if(k==0 && Typ=="Z[") { s3 = string(1); }
|
|
2955
|
+
if(Typ[2] == "#")
|
|
2956
|
+
{
|
|
2957
|
+
i = r+1;
|
|
2958
|
+
r = i div 2;
|
|
2959
|
+
b = i - 2*r;
|
|
2960
|
+
if( b == 1 ) { s4 = "2r"; }
|
|
2961
|
+
else { s4 = "2r-1"; }
|
|
2962
|
+
}
|
|
2963
|
+
s2 = Typ + s3 + "," + s4 +"]";
|
|
2964
|
+
} // es kommt mindestens zwei komma vor...
|
|
2965
|
+
//----------------------- get third parameter -----------------------------
|
|
2966
|
+
else
|
|
2967
|
+
{
|
|
2968
|
+
debug_log(8, " Number of columns >=2");
|
|
2969
|
+
debug_log(2, "Y[k,r,s] / Z[k,r,s] / T[k,r,s]");
|
|
2970
|
+
b = find(s1, ",");
|
|
2971
|
+
s2 = "r = ",s1[1..b-1],";";
|
|
2972
|
+
if ((s2[5]>"0") && (s2[5]<="9")) { execute(s2); }
|
|
2973
|
+
s2 = "s = ",s1[b+1..size(s1)],";";
|
|
2974
|
+
if ((s2[5]>"0") && (s2[5]<="9")) { execute(s2); }
|
|
2975
|
+
if(Typ=="Y[") { s2 = "Y[k,r,s]"; }
|
|
2976
|
+
if(Typ=="Z[") { s2 = "Z[k,r,s]"; }
|
|
2977
|
+
if(Typ=="T[") { s2 = "T[k,r,s]"; }
|
|
2978
|
+
}
|
|
2979
|
+
}
|
|
2980
|
+
debug_log(2, "Looking for Normalform of ",s2,"with (k,r,s) = (",
|
|
2981
|
+
k,",",r,",", s, ")" );
|
|
2982
|
+
v = s2, k, r, s;
|
|
2983
|
+
return(v);
|
|
2984
|
+
}
|
|
2985
|
+
|
|
2986
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2987
|
+
proc A_L
|
|
2988
|
+
"USAGE: A_L(f); f poly
|
|
2989
|
+
A_L(s); s string, the name of the singularity
|
|
2990
|
+
COMPUTE: the normal form of f in Arnold's list of singularities in case 1,
|
|
2991
|
+
in case 2 nothing has to be computed.
|
|
2992
|
+
RETURN: A_L(f): compute via 'milnorcode' the class of f and return the normal
|
|
2993
|
+
form of f found in the database.
|
|
2994
|
+
A_L(\"name\"): get the normal form from the database for the
|
|
2995
|
+
singularity given by its name.
|
|
2996
|
+
EXAMPLE: example A_L; shows an example"
|
|
2997
|
+
{
|
|
2998
|
+
// if trace/debug mode not set, do it!
|
|
2999
|
+
init_debug();
|
|
3000
|
+
|
|
3001
|
+
if( typeof(#[1]) == "string" )
|
|
3002
|
+
{
|
|
3003
|
+
if(checkring()) { return(#[1]); }
|
|
3004
|
+
return(normalform(#[1]));
|
|
3005
|
+
}
|
|
3006
|
+
if( typeof(#[1]) == "poly" )
|
|
3007
|
+
{
|
|
3008
|
+
if(checkring()) { return(#[1]); }
|
|
3009
|
+
return(quickclass(#[1]));
|
|
3010
|
+
}
|
|
3011
|
+
|
|
3012
|
+
}
|
|
3013
|
+
example
|
|
3014
|
+
{ "EXAMPLE:"; echo=2;
|
|
3015
|
+
ring r=0,(a,b,c),ds;
|
|
3016
|
+
poly f=A_L("E[13]");
|
|
3017
|
+
f;
|
|
3018
|
+
A_L(f);
|
|
3019
|
+
}
|
|
3020
|
+
|
|
3021
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3022
|
+
proc normalform(string s_in)
|
|
3023
|
+
"USAGE: normalform(s); s=string
|
|
3024
|
+
RETURN: Arnold's normal form of singularity with name s
|
|
3025
|
+
EXAMPLE: example normalform; shows an example."
|
|
3026
|
+
{
|
|
3027
|
+
string Typ;
|
|
3028
|
+
int k, r, s, crk;
|
|
3029
|
+
int n, i;
|
|
3030
|
+
poly f;
|
|
3031
|
+
list v;
|
|
3032
|
+
def ring_ext = basering;
|
|
3033
|
+
n = nvars(basering);
|
|
3034
|
+
ring ring_top=char(basering),(x(1..n)),(c,ds);
|
|
3035
|
+
|
|
3036
|
+
if(checkring()) { return(s_in); }
|
|
3037
|
+
if(nvars(basering)<=1)
|
|
3038
|
+
{
|
|
3039
|
+
"We need at least 2 variables in basering, you have",nvars(basering),".";
|
|
3040
|
+
return();
|
|
3041
|
+
}
|
|
3042
|
+
// if trace/debug mode not set, do it!
|
|
3043
|
+
init_debug();
|
|
3044
|
+
|
|
3045
|
+
v = DecodeNormalFormString(s_in);
|
|
3046
|
+
Typ, k, r, s = v[1..4];
|
|
3047
|
+
if(Typ=="Error") { return(0); }
|
|
3048
|
+
v = singularity(Typ, k, r, s);
|
|
3049
|
+
poly f_out;
|
|
3050
|
+
f_out, crk = v[1..2];
|
|
3051
|
+
if(crk>1) { for(i=crk+1;i<=n;i=i+1) { f_out = f_out + x(i)^2; } }
|
|
3052
|
+
setring ring_ext;
|
|
3053
|
+
map conv_top2ext=ring_top,maxideal(1);
|
|
3054
|
+
f = conv_top2ext(f_out);
|
|
3055
|
+
// f, crk = v[1..2];
|
|
3056
|
+
return(f);
|
|
3057
|
+
}
|
|
3058
|
+
example
|
|
3059
|
+
{ "EXAMPLE:"; echo=2;
|
|
3060
|
+
ring r=0,(a,b,c),ds;
|
|
3061
|
+
normalform("E[13]");
|
|
3062
|
+
}
|
|
3063
|
+
|
|
3064
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3065
|
+
proc swap
|
|
3066
|
+
"USAGE: swap(a,b);
|
|
3067
|
+
RETURN: b,a if a,b is the input (any type)"
|
|
3068
|
+
{
|
|
3069
|
+
return(#[2],#[1]);
|
|
3070
|
+
}
|
|
3071
|
+
example
|
|
3072
|
+
{ "EXAMPLE:"; echo=2;
|
|
3073
|
+
swap("variable1","variable2");
|
|
3074
|
+
}
|
|
3075
|
+
|
|
3076
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3077
|
+
proc Setring(int c, string name)
|
|
3078
|
+
"USAGE: "
|
|
3079
|
+
{
|
|
3080
|
+
string s="ring "+name+"=0,(x(1.."+ string(c) +")),(c,ds);";
|
|
3081
|
+
return(s);
|
|
3082
|
+
}
|
|
3083
|
+
|
|
3084
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3085
|
+
proc internalfunctions()
|
|
3086
|
+
"USAGE: internalfunctions();
|
|
3087
|
+
RETURN: nothing, display names of internal procedures of classify.lib
|
|
3088
|
+
EXAMPLE: no example"
|
|
3089
|
+
{ " Internal functions for the classification using Arnold's method,";
|
|
3090
|
+
" the function numbers correspond to numbers in Arnold's classifier:";
|
|
3091
|
+
"Klassifiziere(poly f); //determine the type of the singularity f
|
|
3092
|
+
Funktion1bis (poly f, list cstn)
|
|
3093
|
+
Funktion3 (poly f, list cstn)
|
|
3094
|
+
Funktion6 (poly f, list cstn)
|
|
3095
|
+
Funktion13 (poly f, list cstn)
|
|
3096
|
+
Funktion17 (poly f, list cstn)
|
|
3097
|
+
Funktion25 (poly f, list cstn)
|
|
3098
|
+
Funktion40 (poly f, list cstn, int k)
|
|
3099
|
+
Funktion47 (poly f, list cstn)
|
|
3100
|
+
Funktion50 (poly f, list cstn)
|
|
3101
|
+
Funktion58 (poly fin, list cstn)
|
|
3102
|
+
Funktion59 (poly f, list cstn)
|
|
3103
|
+
Funktion66 (poly f, list cstn)
|
|
3104
|
+
Funktion82 (poly f, list cstn)
|
|
3105
|
+
Funktion83 (poly f, list cstn)
|
|
3106
|
+
Funktion91 (poly f, list cstn, int k)
|
|
3107
|
+
Funktion92 (poly f, list cstn, int k)
|
|
3108
|
+
Funktion93 (poly f, list cstn, int k)
|
|
3109
|
+
Funktion94 (poly f, list cstn, int k)
|
|
3110
|
+
Funktion95 (poly f, list cstn, int k)
|
|
3111
|
+
Funktion96 (poly f, list cstn, int k)
|
|
3112
|
+
Funktion97 (poly f, list cstn)
|
|
3113
|
+
Isomorphie_s82_x (poly f, poly fk, int k)
|
|
3114
|
+
Isomorphie_s82_z (poly f, poly fk, int k)
|
|
3115
|
+
Isomorphie_s17 (poly f, poly fk, int k, int ct)
|
|
3116
|
+
printresult (string f,string typ,int Mu,int m,int corank,int K)
|
|
3117
|
+
";
|
|
3118
|
+
" Internal functions for the classifcation by invariants:
|
|
3119
|
+
Cubic (poly f)
|
|
3120
|
+
parity (int e) //return the parity of e
|
|
3121
|
+
HKclass (intvec i)
|
|
3122
|
+
HKclass3( intvec i, string SG_Typ, int cnt)
|
|
3123
|
+
HKclass3_teil_1 (intvec i, string SG_Typ, int cnt)
|
|
3124
|
+
HKclass5 (intvec i, string SG_Typ, int cnt)
|
|
3125
|
+
HKclass5_teil_1 (intvec i, string SG_Typ, int cnt)
|
|
3126
|
+
HKclass5_teil_2 (intvec i, string SG_Typ, int cnt)
|
|
3127
|
+
HKclass7 (intvec i, string SG_Typ, int cnt)
|
|
3128
|
+
HKclass7_teil_1 (intvec i, string SG_Typ, int cnt)
|
|
3129
|
+
";
|
|
3130
|
+
" Internal functions for the Morse-splitting lemma:
|
|
3131
|
+
Morse(poly fi, int K, int corank) //splitting lemma itself
|
|
3132
|
+
Coeffs (list #)
|
|
3133
|
+
Coeff
|
|
3134
|
+
";
|
|
3135
|
+
" Internal functions providing tools:
|
|
3136
|
+
ReOrder(poly f)
|
|
3137
|
+
Singularitaet(string typ,int k,int r,int s,poly a,poly b,poly c,poly d)
|
|
3138
|
+
RandomPolyK
|
|
3139
|
+
Faktorisiere(poly f, poly g, int p, int k) compute g = (ax+by^k)^p
|
|
3140
|
+
Teile(poly f, poly g); //divides f by g
|
|
3141
|
+
GetRf(poly f, int n);
|
|
3142
|
+
Show(poly f);
|
|
3143
|
+
checkring();
|
|
3144
|
+
DecodeNormalFormString(string s);
|
|
3145
|
+
Setring(int n, string ringname);
|
|
3146
|
+
";
|
|
3147
|
+
}
|
|
3148
|
+
example
|
|
3149
|
+
{
|
|
3150
|
+
"EXAMPLE"; echo=2;
|
|
3151
|
+
internalfunctions();
|
|
3152
|
+
}
|
|
3153
|
+
|
|
3154
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3155
|
+
proc prepRealclassify(poly f)
|
|
3156
|
+
"
|
|
3157
|
+
USAGE: prepRealclassify(f); f poly
|
|
3158
|
+
RETURN: a list, containing the modality of the singularity and the type of
|
|
3159
|
+
the singularity as a string
|
|
3160
|
+
@* This procedure is needed in realclassify.lib in order to avoid
|
|
3161
|
+
classify() being called more than once.
|
|
3162
|
+
EXAMPLE: example prepRealclassify; shows an example"
|
|
3163
|
+
{
|
|
3164
|
+
exportinvariants(f);
|
|
3165
|
+
return(list(Modality, Type));
|
|
3166
|
+
}
|
|
3167
|
+
example
|
|
3168
|
+
{
|
|
3169
|
+
"EXAMPLE"; echo = 2;
|
|
3170
|
+
ring r = 0, (x,y,z), ds;
|
|
3171
|
+
poly f = (x2+3y-2z)^2+xyz-(x-y3+x2z3)^3;
|
|
3172
|
+
prepRealclassify(f);
|
|
3173
|
+
}
|
|
3174
|
+
|
|
3175
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3176
|
+
proc modality(poly f)
|
|
3177
|
+
"
|
|
3178
|
+
USAGE: modality(f); f poly
|
|
3179
|
+
RETURN: the modality of the singularity
|
|
3180
|
+
EXAMPLE: example modality; shows an example"
|
|
3181
|
+
{
|
|
3182
|
+
exportinvariants(f);
|
|
3183
|
+
return(Modality);
|
|
3184
|
+
}
|
|
3185
|
+
example
|
|
3186
|
+
{
|
|
3187
|
+
"EXAMPLE"; echo = 2;
|
|
3188
|
+
ring r = 0, (x,y,z), ds;
|
|
3189
|
+
poly f = (x2+3y-2z)^2+xyz-(x-y3+x2z3)^3;
|
|
3190
|
+
modality(f);
|
|
3191
|
+
}
|
|
3192
|
+
|
|
3193
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3194
|
+
proc complexSingType(poly f)
|
|
3195
|
+
"
|
|
3196
|
+
USAGE: complexSingType(f); f poly
|
|
3197
|
+
RETURN: the type of the singularity as a string
|
|
3198
|
+
EXAMPLE: example complexSingType; shows an example"
|
|
3199
|
+
{
|
|
3200
|
+
exportinvariants(f);
|
|
3201
|
+
return(Type);
|
|
3202
|
+
}
|
|
3203
|
+
example
|
|
3204
|
+
{
|
|
3205
|
+
"EXAMPLE"; echo = 2;
|
|
3206
|
+
ring r = 0, (x,y,z), ds;
|
|
3207
|
+
poly f = (x2+3y-2z)^2+xyz-(x-y3+x2z3)^3;
|
|
3208
|
+
complexSingType(f);
|
|
3209
|
+
}
|
|
3210
|
+
|
|
3211
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3212
|
+
/* some of the invariants will be exported during the computation of
|
|
3213
|
+
* classify(f) such that they are accessible at for all procs in the library
|
|
3214
|
+
*/
|
|
3215
|
+
static proc exportinvariants(poly f)
|
|
3216
|
+
{
|
|
3217
|
+
init_debug(-1);
|
|
3218
|
+
if(!defined(onlyreturninvariants))
|
|
3219
|
+
{
|
|
3220
|
+
int onlyreturninvariants;
|
|
3221
|
+
export(onlyreturninvariants);
|
|
3222
|
+
}
|
|
3223
|
+
onlyreturninvariants = 1;
|
|
3224
|
+
if(!defined(Modality))
|
|
3225
|
+
{
|
|
3226
|
+
int Modality;
|
|
3227
|
+
export(Modality);
|
|
3228
|
+
}
|
|
3229
|
+
if(!defined(Type))
|
|
3230
|
+
{
|
|
3231
|
+
string Type;
|
|
3232
|
+
export(Type);
|
|
3233
|
+
}
|
|
3234
|
+
f = classify(f);
|
|
3235
|
+
}
|
|
3236
|
+
|
|
3237
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
3238
|
+
// E n d O f F i l e
|
|
3239
|
+
|