passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-singular might be problematic. Click here for more details.

Files changed (490) hide show
  1. PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
  2. passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
  3. passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
  4. passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
  5. passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
  6. passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
  7. passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
  8. passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
  9. passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
  10. passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
  11. passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
  12. passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
  13. passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
  14. passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
  15. passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
  16. passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
  17. passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
  18. passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
  19. passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
  20. passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
  21. passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
  22. sage/algebras/all__sagemath_singular.py +3 -0
  23. sage/algebras/fusion_rings/all.py +19 -0
  24. sage/algebras/fusion_rings/f_matrix.py +2448 -0
  25. sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
  26. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
  27. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
  28. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
  29. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
  30. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
  31. sage/algebras/fusion_rings/fusion_double.py +899 -0
  32. sage/algebras/fusion_rings/fusion_ring.py +1580 -0
  33. sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
  34. sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
  35. sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
  36. sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
  37. sage/algebras/fusion_rings/shm_managers.pxd +24 -0
  38. sage/algebras/fusion_rings/shm_managers.pyx +780 -0
  39. sage/algebras/letterplace/all.py +1 -0
  40. sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
  41. sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
  42. sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
  43. sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
  44. sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
  45. sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
  46. sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
  47. sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
  48. sage/algebras/quatalg/all.py +2 -0
  49. sage/algebras/quatalg/quaternion_algebra.py +4778 -0
  50. sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
  51. sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
  52. sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
  53. sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
  54. sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
  55. sage/all__sagemath_singular.py +11 -0
  56. sage/ext_data/all__sagemath_singular.py +1 -0
  57. sage/ext_data/singular/function_field/core.lib +98 -0
  58. sage/interfaces/all__sagemath_singular.py +1 -0
  59. sage/interfaces/singular.py +2835 -0
  60. sage/libs/all__sagemath_singular.py +1 -0
  61. sage/libs/singular/__init__.py +1 -0
  62. sage/libs/singular/decl.pxd +1168 -0
  63. sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
  64. sage/libs/singular/function.pxd +87 -0
  65. sage/libs/singular/function.pyx +1901 -0
  66. sage/libs/singular/function_factory.py +61 -0
  67. sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
  68. sage/libs/singular/groebner_strategy.pxd +22 -0
  69. sage/libs/singular/groebner_strategy.pyx +582 -0
  70. sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
  71. sage/libs/singular/option.pyx +671 -0
  72. sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
  73. sage/libs/singular/polynomial.pxd +39 -0
  74. sage/libs/singular/polynomial.pyx +661 -0
  75. sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
  76. sage/libs/singular/ring.pxd +58 -0
  77. sage/libs/singular/ring.pyx +893 -0
  78. sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
  79. sage/libs/singular/singular.pxd +72 -0
  80. sage/libs/singular/singular.pyx +1944 -0
  81. sage/libs/singular/standard_options.py +145 -0
  82. sage/matrix/all__sagemath_singular.py +1 -0
  83. sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
  84. sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
  85. sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
  86. sage/rings/all__sagemath_singular.py +1 -0
  87. sage/rings/function_field/all__sagemath_singular.py +1 -0
  88. sage/rings/function_field/derivations_polymod.py +911 -0
  89. sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
  90. sage/rings/function_field/element_polymod.pyx +406 -0
  91. sage/rings/function_field/function_field_polymod.py +2611 -0
  92. sage/rings/function_field/ideal_polymod.py +1775 -0
  93. sage/rings/function_field/order_polymod.py +1475 -0
  94. sage/rings/function_field/place_polymod.py +681 -0
  95. sage/rings/polynomial/all__sagemath_singular.py +1 -0
  96. sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
  97. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
  98. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
  99. sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
  100. sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
  101. sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
  102. sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
  103. sage/rings/polynomial/plural.pxd +48 -0
  104. sage/rings/polynomial/plural.pyx +3171 -0
  105. sage/symbolic/all__sagemath_singular.py +1 -0
  106. sage/symbolic/comparison_impl.pxi +428 -0
  107. sage/symbolic/constants_c_impl.pxi +178 -0
  108. sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
  109. sage/symbolic/expression.pxd +7 -0
  110. sage/symbolic/expression.pyx +14200 -0
  111. sage/symbolic/getitem_impl.pxi +202 -0
  112. sage/symbolic/pynac.pxi +572 -0
  113. sage/symbolic/pynac_constant_impl.pxi +133 -0
  114. sage/symbolic/pynac_function_impl.pxi +206 -0
  115. sage/symbolic/pynac_impl.pxi +2576 -0
  116. sage/symbolic/pynac_wrap.h +124 -0
  117. sage/symbolic/series_impl.pxi +272 -0
  118. sage/symbolic/substitution_map_impl.pxi +94 -0
  119. sage_wheels/bin/ESingular +0 -0
  120. sage_wheels/bin/Singular +0 -0
  121. sage_wheels/bin/TSingular +0 -0
  122. sage_wheels/lib/singular/MOD/cohomo.la +41 -0
  123. sage_wheels/lib/singular/MOD/cohomo.so +0 -0
  124. sage_wheels/lib/singular/MOD/customstd.la +41 -0
  125. sage_wheels/lib/singular/MOD/customstd.so +0 -0
  126. sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
  127. sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
  128. sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
  129. sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
  130. sage_wheels/lib/singular/MOD/gitfan.la +41 -0
  131. sage_wheels/lib/singular/MOD/gitfan.so +0 -0
  132. sage_wheels/lib/singular/MOD/interval.la +41 -0
  133. sage_wheels/lib/singular/MOD/interval.so +0 -0
  134. sage_wheels/lib/singular/MOD/loctriv.la +41 -0
  135. sage_wheels/lib/singular/MOD/loctriv.so +0 -0
  136. sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
  137. sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
  138. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
  139. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
  140. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
  141. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
  142. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
  143. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
  144. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
  145. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
  146. sage_wheels/lib/singular/MOD/partialgb.la +41 -0
  147. sage_wheels/lib/singular/MOD/partialgb.so +0 -0
  148. sage_wheels/lib/singular/MOD/pyobject.la +41 -0
  149. sage_wheels/lib/singular/MOD/pyobject.so +0 -0
  150. sage_wheels/lib/singular/MOD/singmathic.la +41 -0
  151. sage_wheels/lib/singular/MOD/singmathic.so +0 -0
  152. sage_wheels/lib/singular/MOD/sispasm.la +41 -0
  153. sage_wheels/lib/singular/MOD/sispasm.so +0 -0
  154. sage_wheels/lib/singular/MOD/subsets.la +41 -0
  155. sage_wheels/lib/singular/MOD/subsets.so +0 -0
  156. sage_wheels/lib/singular/MOD/systhreads.la +41 -0
  157. sage_wheels/lib/singular/MOD/systhreads.so +0 -0
  158. sage_wheels/lib/singular/MOD/syzextra.la +41 -0
  159. sage_wheels/lib/singular/MOD/syzextra.so +0 -0
  160. sage_wheels/libexec/singular/MOD/change_cost +0 -0
  161. sage_wheels/libexec/singular/MOD/singularsurf +11 -0
  162. sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
  163. sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
  164. sage_wheels/libexec/singular/MOD/solve_IP +0 -0
  165. sage_wheels/libexec/singular/MOD/surfex +16 -0
  166. sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
  167. sage_wheels/share/factory/gftables/10201 +342 -0
  168. sage_wheels/share/factory/gftables/1024 +37 -0
  169. sage_wheels/share/factory/gftables/10609 +356 -0
  170. sage_wheels/share/factory/gftables/11449 +384 -0
  171. sage_wheels/share/factory/gftables/11881 +398 -0
  172. sage_wheels/share/factory/gftables/121 +6 -0
  173. sage_wheels/share/factory/gftables/12167 +408 -0
  174. sage_wheels/share/factory/gftables/125 +7 -0
  175. sage_wheels/share/factory/gftables/12769 +428 -0
  176. sage_wheels/share/factory/gftables/128 +7 -0
  177. sage_wheels/share/factory/gftables/1331 +47 -0
  178. sage_wheels/share/factory/gftables/1369 +48 -0
  179. sage_wheels/share/factory/gftables/14641 +490 -0
  180. sage_wheels/share/factory/gftables/15625 +523 -0
  181. sage_wheels/share/factory/gftables/16 +3 -0
  182. sage_wheels/share/factory/gftables/16129 +540 -0
  183. sage_wheels/share/factory/gftables/16384 +549 -0
  184. sage_wheels/share/factory/gftables/16807 +563 -0
  185. sage_wheels/share/factory/gftables/1681 +58 -0
  186. sage_wheels/share/factory/gftables/169 +8 -0
  187. sage_wheels/share/factory/gftables/17161 +574 -0
  188. sage_wheels/share/factory/gftables/1849 +64 -0
  189. sage_wheels/share/factory/gftables/18769 +628 -0
  190. sage_wheels/share/factory/gftables/19321 +646 -0
  191. sage_wheels/share/factory/gftables/19683 +659 -0
  192. sage_wheels/share/factory/gftables/2048 +71 -0
  193. sage_wheels/share/factory/gftables/2187 +75 -0
  194. sage_wheels/share/factory/gftables/2197 +76 -0
  195. sage_wheels/share/factory/gftables/2209 +76 -0
  196. sage_wheels/share/factory/gftables/22201 +742 -0
  197. sage_wheels/share/factory/gftables/22801 +762 -0
  198. sage_wheels/share/factory/gftables/2401 +82 -0
  199. sage_wheels/share/factory/gftables/243 +11 -0
  200. sage_wheels/share/factory/gftables/24389 +815 -0
  201. sage_wheels/share/factory/gftables/24649 +824 -0
  202. sage_wheels/share/factory/gftables/25 +3 -0
  203. sage_wheels/share/factory/gftables/256 +11 -0
  204. sage_wheels/share/factory/gftables/26569 +888 -0
  205. sage_wheels/share/factory/gftables/27 +3 -0
  206. sage_wheels/share/factory/gftables/27889 +932 -0
  207. sage_wheels/share/factory/gftables/2809 +96 -0
  208. sage_wheels/share/factory/gftables/28561 +954 -0
  209. sage_wheels/share/factory/gftables/289 +12 -0
  210. sage_wheels/share/factory/gftables/29791 +995 -0
  211. sage_wheels/share/factory/gftables/29929 +1000 -0
  212. sage_wheels/share/factory/gftables/3125 +107 -0
  213. sage_wheels/share/factory/gftables/32 +4 -0
  214. sage_wheels/share/factory/gftables/32041 +1070 -0
  215. sage_wheels/share/factory/gftables/32761 +1094 -0
  216. sage_wheels/share/factory/gftables/32768 +1095 -0
  217. sage_wheels/share/factory/gftables/343 +14 -0
  218. sage_wheels/share/factory/gftables/3481 +118 -0
  219. sage_wheels/share/factory/gftables/361 +14 -0
  220. sage_wheels/share/factory/gftables/36481 +1218 -0
  221. sage_wheels/share/factory/gftables/3721 +126 -0
  222. sage_wheels/share/factory/gftables/37249 +1244 -0
  223. sage_wheels/share/factory/gftables/38809 +1296 -0
  224. sage_wheels/share/factory/gftables/39601 +1322 -0
  225. sage_wheels/share/factory/gftables/4 +3 -0
  226. sage_wheels/share/factory/gftables/4096 +139 -0
  227. sage_wheels/share/factory/gftables/44521 +1486 -0
  228. sage_wheels/share/factory/gftables/4489 +152 -0
  229. sage_wheels/share/factory/gftables/49 +4 -0
  230. sage_wheels/share/factory/gftables/4913 +166 -0
  231. sage_wheels/share/factory/gftables/49729 +1660 -0
  232. sage_wheels/share/factory/gftables/5041 +170 -0
  233. sage_wheels/share/factory/gftables/50653 +1691 -0
  234. sage_wheels/share/factory/gftables/512 +20 -0
  235. sage_wheels/share/factory/gftables/51529 +1720 -0
  236. sage_wheels/share/factory/gftables/52441 +1750 -0
  237. sage_wheels/share/factory/gftables/529 +20 -0
  238. sage_wheels/share/factory/gftables/5329 +180 -0
  239. sage_wheels/share/factory/gftables/54289 +1812 -0
  240. sage_wheels/share/factory/gftables/57121 +1906 -0
  241. sage_wheels/share/factory/gftables/58081 +1938 -0
  242. sage_wheels/share/factory/gftables/59049 +1971 -0
  243. sage_wheels/share/factory/gftables/6241 +210 -0
  244. sage_wheels/share/factory/gftables/625 +23 -0
  245. sage_wheels/share/factory/gftables/63001 +2102 -0
  246. sage_wheels/share/factory/gftables/64 +5 -0
  247. sage_wheels/share/factory/gftables/6561 +221 -0
  248. sage_wheels/share/factory/gftables/6859 +231 -0
  249. sage_wheels/share/factory/gftables/6889 +232 -0
  250. sage_wheels/share/factory/gftables/729 +27 -0
  251. sage_wheels/share/factory/gftables/7921 +266 -0
  252. sage_wheels/share/factory/gftables/8 +3 -0
  253. sage_wheels/share/factory/gftables/81 +5 -0
  254. sage_wheels/share/factory/gftables/8192 +276 -0
  255. sage_wheels/share/factory/gftables/841 +30 -0
  256. sage_wheels/share/factory/gftables/9 +3 -0
  257. sage_wheels/share/factory/gftables/9409 +316 -0
  258. sage_wheels/share/factory/gftables/961 +34 -0
  259. sage_wheels/share/info/singular.info +191898 -0
  260. sage_wheels/share/singular/LIB/GND.lib +1359 -0
  261. sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
  262. sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
  263. sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
  264. sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
  265. sage_wheels/share/singular/LIB/VecField.lib +1542 -0
  266. sage_wheels/share/singular/LIB/absfact.lib +959 -0
  267. sage_wheels/share/singular/LIB/ainvar.lib +730 -0
  268. sage_wheels/share/singular/LIB/aksaka.lib +419 -0
  269. sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
  270. sage_wheels/share/singular/LIB/algebra.lib +1193 -0
  271. sage_wheels/share/singular/LIB/all.lib +136 -0
  272. sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
  273. sage_wheels/share/singular/LIB/arnold.lib +4553 -0
  274. sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
  275. sage_wheels/share/singular/LIB/arr.lib +3486 -0
  276. sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
  277. sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
  278. sage_wheels/share/singular/LIB/bfun.lib +1964 -0
  279. sage_wheels/share/singular/LIB/bimodules.lib +774 -0
  280. sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
  281. sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
  282. sage_wheels/share/singular/LIB/central.lib +2169 -0
  283. sage_wheels/share/singular/LIB/chern.lib +4162 -0
  284. sage_wheels/share/singular/LIB/cimonom.lib +571 -0
  285. sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
  286. sage_wheels/share/singular/LIB/classify.lib +3239 -0
  287. sage_wheels/share/singular/LIB/classify2.lib +1462 -0
  288. sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
  289. sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
  290. sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
  291. sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
  292. sage_wheels/share/singular/LIB/combinat.lib +91 -0
  293. sage_wheels/share/singular/LIB/compregb.lib +276 -0
  294. sage_wheels/share/singular/LIB/control.lib +1636 -0
  295. sage_wheels/share/singular/LIB/crypto.lib +3795 -0
  296. sage_wheels/share/singular/LIB/curveInv.lib +667 -0
  297. sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
  298. sage_wheels/share/singular/LIB/customstd.lib +100 -0
  299. sage_wheels/share/singular/LIB/deRham.lib +5979 -0
  300. sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
  301. sage_wheels/share/singular/LIB/decomp.lib +1655 -0
  302. sage_wheels/share/singular/LIB/deflation.lib +872 -0
  303. sage_wheels/share/singular/LIB/deform.lib +925 -0
  304. sage_wheels/share/singular/LIB/difform.lib +3055 -0
  305. sage_wheels/share/singular/LIB/divisors.lib +750 -0
  306. sage_wheels/share/singular/LIB/dmod.lib +5817 -0
  307. sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
  308. sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
  309. sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
  310. sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
  311. sage_wheels/share/singular/LIB/dummy.lib +17 -0
  312. sage_wheels/share/singular/LIB/elim.lib +1009 -0
  313. sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
  314. sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
  315. sage_wheels/share/singular/LIB/equising.lib +2127 -0
  316. sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
  317. sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
  318. sage_wheels/share/singular/LIB/findifs.lib +778 -0
  319. sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
  320. sage_wheels/share/singular/LIB/finvar.lib +7989 -0
  321. sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
  322. sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
  323. sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
  324. sage_wheels/share/singular/LIB/freegb.lib +3853 -0
  325. sage_wheels/share/singular/LIB/general.lib +1350 -0
  326. sage_wheels/share/singular/LIB/gfan.lib +1768 -0
  327. sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
  328. sage_wheels/share/singular/LIB/gkdim.lib +99 -0
  329. sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
  330. sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
  331. sage_wheels/share/singular/LIB/goettsche.lib +909 -0
  332. sage_wheels/share/singular/LIB/graal.lib +1366 -0
  333. sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
  334. sage_wheels/share/singular/LIB/graphics.lib +360 -0
  335. sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
  336. sage_wheels/share/singular/LIB/groups.lib +1123 -0
  337. sage_wheels/share/singular/LIB/grwalk.lib +507 -0
  338. sage_wheels/share/singular/LIB/hdepth.lib +194 -0
  339. sage_wheels/share/singular/LIB/help.cnf +57 -0
  340. sage_wheels/share/singular/LIB/hess.lib +1946 -0
  341. sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
  342. sage_wheels/share/singular/LIB/hodge.lib +400 -0
  343. sage_wheels/share/singular/LIB/homolog.lib +1965 -0
  344. sage_wheels/share/singular/LIB/hyperel.lib +975 -0
  345. sage_wheels/share/singular/LIB/inout.lib +679 -0
  346. sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
  347. sage_wheels/share/singular/LIB/interval.lib +1418 -0
  348. sage_wheels/share/singular/LIB/intprog.lib +778 -0
  349. sage_wheels/share/singular/LIB/invar.lib +443 -0
  350. sage_wheels/share/singular/LIB/involut.lib +980 -0
  351. sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
  352. sage_wheels/share/singular/LIB/kskernel.lib +534 -0
  353. sage_wheels/share/singular/LIB/latex.lib +3146 -0
  354. sage_wheels/share/singular/LIB/lejeune.lib +651 -0
  355. sage_wheels/share/singular/LIB/linalg.lib +2040 -0
  356. sage_wheels/share/singular/LIB/locnormal.lib +212 -0
  357. sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
  358. sage_wheels/share/singular/LIB/makedbm.lib +294 -0
  359. sage_wheels/share/singular/LIB/mathml.lib +813 -0
  360. sage_wheels/share/singular/LIB/matrix.lib +1372 -0
  361. sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
  362. sage_wheels/share/singular/LIB/methods.lib +212 -0
  363. sage_wheels/share/singular/LIB/moddiq.lib +322 -0
  364. sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
  365. sage_wheels/share/singular/LIB/modnormal.lib +218 -0
  366. sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
  367. sage_wheels/share/singular/LIB/modquotient.lib +269 -0
  368. sage_wheels/share/singular/LIB/modstd.lib +1024 -0
  369. sage_wheels/share/singular/LIB/modular.lib +545 -0
  370. sage_wheels/share/singular/LIB/modules.lib +2561 -0
  371. sage_wheels/share/singular/LIB/modwalk.lib +609 -0
  372. sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
  373. sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
  374. sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
  375. sage_wheels/share/singular/LIB/mregular.lib +1863 -0
  376. sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
  377. sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
  378. sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
  379. sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
  380. sage_wheels/share/singular/LIB/ncall.lib +31 -0
  381. sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
  382. sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
  383. sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
  384. sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
  385. sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
  386. sage_wheels/share/singular/LIB/ncloc.lib +361 -0
  387. sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
  388. sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
  389. sage_wheels/share/singular/LIB/nctools.lib +1887 -0
  390. sage_wheels/share/singular/LIB/nets.lib +1456 -0
  391. sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
  392. sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
  393. sage_wheels/share/singular/LIB/noether.lib +1106 -0
  394. sage_wheels/share/singular/LIB/normal.lib +8700 -0
  395. sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
  396. sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
  397. sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
  398. sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
  399. sage_wheels/share/singular/LIB/olga.lib +1933 -0
  400. sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
  401. sage_wheels/share/singular/LIB/parallel.lib +319 -0
  402. sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
  403. sage_wheels/share/singular/LIB/perron.lib +202 -0
  404. sage_wheels/share/singular/LIB/pfd.lib +2223 -0
  405. sage_wheels/share/singular/LIB/phindex.lib +642 -0
  406. sage_wheels/share/singular/LIB/pointid.lib +673 -0
  407. sage_wheels/share/singular/LIB/polybori.lib +1430 -0
  408. sage_wheels/share/singular/LIB/polyclass.lib +525 -0
  409. sage_wheels/share/singular/LIB/polylib.lib +1174 -0
  410. sage_wheels/share/singular/LIB/polymake.lib +1902 -0
  411. sage_wheels/share/singular/LIB/presolve.lib +1533 -0
  412. sage_wheels/share/singular/LIB/primdec.lib +9576 -0
  413. sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
  414. sage_wheels/share/singular/LIB/primitiv.lib +401 -0
  415. sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
  416. sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
  417. sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
  418. sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
  419. sage_wheels/share/singular/LIB/random.lib +455 -0
  420. sage_wheels/share/singular/LIB/ratgb.lib +489 -0
  421. sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
  422. sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
  423. sage_wheels/share/singular/LIB/realrad.lib +1197 -0
  424. sage_wheels/share/singular/LIB/recover.lib +2628 -0
  425. sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
  426. sage_wheels/share/singular/LIB/reesclos.lib +465 -0
  427. sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
  428. sage_wheels/share/singular/LIB/resgraph.lib +789 -0
  429. sage_wheels/share/singular/LIB/resjung.lib +820 -0
  430. sage_wheels/share/singular/LIB/resolve.lib +5110 -0
  431. sage_wheels/share/singular/LIB/resources.lib +170 -0
  432. sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
  433. sage_wheels/share/singular/LIB/ring.lib +1328 -0
  434. sage_wheels/share/singular/LIB/ringgb.lib +343 -0
  435. sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
  436. sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
  437. sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
  438. sage_wheels/share/singular/LIB/rootsur.lib +886 -0
  439. sage_wheels/share/singular/LIB/rstandard.lib +607 -0
  440. sage_wheels/share/singular/LIB/rwalk.lib +336 -0
  441. sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
  442. sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
  443. sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
  444. sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
  445. sage_wheels/share/singular/LIB/schreyer.lib +321 -0
  446. sage_wheels/share/singular/LIB/schubert.lib +2551 -0
  447. sage_wheels/share/singular/LIB/sets.lib +524 -0
  448. sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
  449. sage_wheels/share/singular/LIB/signcond.lib +437 -0
  450. sage_wheels/share/singular/LIB/sing.lib +1094 -0
  451. sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
  452. sage_wheels/share/singular/LIB/solve.lib +2243 -0
  453. sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
  454. sage_wheels/share/singular/LIB/spectrum.lib +62 -0
  455. sage_wheels/share/singular/LIB/sresext.lib +757 -0
  456. sage_wheels/share/singular/LIB/ssi.lib +143 -0
  457. sage_wheels/share/singular/LIB/standard.lib +2769 -0
  458. sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
  459. sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
  460. sage_wheels/share/singular/LIB/stratify.lib +1070 -0
  461. sage_wheels/share/singular/LIB/surf.lib +506 -0
  462. sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
  463. sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
  464. sage_wheels/share/singular/LIB/surfex.lib +1462 -0
  465. sage_wheels/share/singular/LIB/swalk.lib +877 -0
  466. sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
  467. sage_wheels/share/singular/LIB/systhreads.lib +74 -0
  468. sage_wheels/share/singular/LIB/tasks.lib +1324 -0
  469. sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
  470. sage_wheels/share/singular/LIB/teachstd.lib +858 -0
  471. sage_wheels/share/singular/LIB/template.lib +116 -0
  472. sage_wheels/share/singular/LIB/toric.lib +1119 -0
  473. sage_wheels/share/singular/LIB/transformation.lib +116 -0
  474. sage_wheels/share/singular/LIB/triang.lib +1197 -0
  475. sage_wheels/share/singular/LIB/tropical.lib +8741 -0
  476. sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
  477. sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
  478. sage_wheels/share/singular/LIB/tst.lib +1108 -0
  479. sage_wheels/share/singular/LIB/weierstr.lib +241 -0
  480. sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
  481. sage_wheels/share/singular/emacs/.emacs-general +184 -0
  482. sage_wheels/share/singular/emacs/.emacs-singular +234 -0
  483. sage_wheels/share/singular/emacs/COPYING +44 -0
  484. sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
  485. sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
  486. sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
  487. sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
  488. sage_wheels/share/singular/emacs/singular.el +4273 -0
  489. sage_wheels/share/singular/emacs/singular.xpm +39 -0
  490. sage_wheels/share/singular/singular.idx +5002 -0
@@ -0,0 +1,709 @@
1
+ /////////////////////////////////////////////////////////////////////////////
2
+ version="version rootsmr.lib 4.1.2.0 Feb_2019 "; // $Id: 61f6221ba96ea5ce685101bb5c8ba12b0ec08a57 $
3
+ category="Teaching";
4
+ info="
5
+ LIBRARY: rootsmr.lib Counting the number of real roots of polynomial systems
6
+ AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar
7
+
8
+ OVERVIEW: Routines for counting the number of real roots of a multivariate
9
+ polynomial system. Two methods are implemented: deterministic
10
+ computation of the number of roots, via the signature of a certain
11
+ bilinear form (nrRootsDeterm); and a rational univariate projection,
12
+ using a pseudorandom polynomial (nrRootsProbab). It also includes a
13
+ command to verify the correctness of the pseudorandom answer.
14
+ REFERENCES: Basu, Pollack, Roy, \"Algorithms in Real Algebraic
15
+ Geometry\", Springer, 2003.
16
+
17
+ PROCEDURES:
18
+ nrRootsProbab(I) Number of real roots of 0-dim ideal (probabilistic)
19
+ nrRootsDeterm(I) Number of real roots of 0-dim ideal (deterministic)
20
+ symsignature(m) Signature of the symmetric matrix m
21
+ sturmquery(h,B,I) Sturm query of h on V(I)
22
+ matbil(h,B,I) Matrix of the bilinear form on R/I associated to h
23
+ matmult(f,B,I) Matrix of multiplication by f (m_f) on R/I in the basis B
24
+ tracemult(f,B,I) Trace of m_f (B is an ordered basis of R/I)
25
+ coords(f,B,I) Coordinates of f in the ordered basis B
26
+ randcharpoly(B,I,n) Pseudorandom charpoly of univ. projection, n optional
27
+ verify(p,B,i) Verifies the result of randcharpoly
28
+ randlinpoly(n) Pseudorandom linear polynomial, n optional
29
+ powersums(f,B,I) Powersums of the roots of a char polynomial
30
+ symmfunc(S) Symmetric functions from the powersums S
31
+ univarpoly(l) Polynomial with coefficients from l
32
+ qbase(i) Like kbase, but the monomials are ordered
33
+
34
+ KEYWORDS: real roots, univariate projection
35
+ ";
36
+ ///////////////////////////////////////////////////////////////////
37
+ LIB "linalg.lib"; // We use charpoly
38
+ LIB "rootsur.lib"; // We use varsigns
39
+
40
+ proc nrRootsProbab(ideal I, list #)
41
+ "USAGE: nrRootsProbab(I,[n]); ideal I, int n
42
+ RETURN: int: the number of real roots of the ideal I by a probabilistic
43
+ algorithm
44
+ ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
45
+ by using std. If I is already a Groebner basis (i.e. if
46
+ attrib(I,"isSB"); returns 1) then this Groebner basis will be
47
+ used, hence it must be one w.r.t. (any) global ordering. This may
48
+ be useful if the ideal is known to be a Groebner basis or if it
49
+ can be computed faster by a different method.
50
+ NOTE: If n<10 is given, n is the number of digits being used for
51
+ constructing a random characteristic polynomial, a bigger n is
52
+ more safe but slower (default: n=5).
53
+ If printlevel>0 the number of complex solutions is displayed
54
+ (default: printlevel=0).
55
+ SEE ALSO: nrroots, nrRootsDeterm, randcharpoly, solve
56
+ EXAMPLE: example nrRootsProbab; shows an example"
57
+ {
58
+ //Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
59
+ //Then the algorithm needs:
60
+ //1 std(I) and ~n NF computations (of randcharpoly w.r.t. I)
61
+
62
+ if (isparam(I)) {
63
+ ERROR("This procedure cannot operate with parametric arguments");
64
+ }
65
+ int pr = printlevel-voice+2;
66
+ int v;
67
+ int n=5;
68
+ if (size(#) == 1) {
69
+ n=#[1];
70
+ }
71
+ if (attrib(I,"isSB")!=1) {
72
+ I = std(I);
73
+ }
74
+
75
+ ideal b = qbase(I);
76
+ v = size(b);
77
+ if (v == 0) {
78
+ ERROR("ideal is not 0-dimensional");
79
+ }
80
+ dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
81
+
82
+ poly p = randcharpoly(b,I,n);
83
+
84
+ return (nrroots(p));
85
+ }
86
+
87
+ example
88
+ {
89
+ echo = 2;
90
+ ring r = 0,(x,y,z),lp;
91
+ ideal i = (x-1)*(x-2),(y-1)^3*(x-y),(z-1)*(z-2)*(z-3)^2;
92
+ nrRootsProbab(i); //no of real roots (using internally std)
93
+
94
+ i = groebner(i); //using the hilbert driven GB computation
95
+ int pr = printlevel;
96
+ printlevel = 2;
97
+ nrRootsProbab(i);
98
+ printlevel = pr;
99
+ }
100
+ ///////////////////////////////////////////////////////////////////////////////
101
+
102
+ proc nrRootsDeterm(ideal I)
103
+ "USAGE: nrRootsDeterm(I); ideal I
104
+ RETURN: int: the number of real roots of the ideal I by a deterministic
105
+ algorithm
106
+ ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
107
+ by using std. If I is already a Groebner basis (i.e. if
108
+ attrib(I,"isSB"); returns 1) then this Groebner basis will be
109
+ used, hence it must be one w.r.t. (any) global ordering. This may
110
+ be useful if the ideal is known to be a Groebner basis or if it
111
+ can be computed faster by a different method.
112
+ NOTE: If printlevel>0 the number of complex solutions is displayed
113
+ (default: printlevel=0). The procedure nrRootsProbab is usually faster.
114
+ SEE ALSO: nrroots, nrRootsProbab, sturmquery, solve
115
+ EXAMPLE: example nrRootsDeterm; shows an example"
116
+ {
117
+ //Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
118
+ //Then the algorithm needs:
119
+ //1 std(I) and (1/2)n*(n+1)^2 ~ 1/2n^3 NF computations (of monomials w.r.t. I)
120
+
121
+ if (isparam(I)) {
122
+ ERROR("This procedure cannot operate with parametric arguments");
123
+ }
124
+ int pr = printlevel-voice+2;
125
+ int v;
126
+
127
+ if (attrib(I,"isSB")!=1) {
128
+ I = std(I);
129
+ }
130
+
131
+ ideal b = qbase(I);
132
+ v = size(b);
133
+ if (v == 0) {
134
+ ERROR("ideal is not 0-dimensional");
135
+ }
136
+ dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
137
+
138
+ return (sturmquery(1,b,I));
139
+ }
140
+
141
+ example
142
+ {
143
+ echo = 2;
144
+ ring r = 0,(x,y,z),lp;
145
+ ideal I = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
146
+ nrRootsDeterm(I); //no of real roots (using internally std)
147
+
148
+ I = groebner(I); //using the hilbert driven GB computation
149
+ int pr = printlevel;
150
+ printlevel = 2;
151
+ nrRootsDeterm(I);
152
+ printlevel = pr;
153
+ }
154
+ ///////////////////////////////////////////////////////////////////////////////
155
+
156
+ proc symsignature(matrix m)
157
+ "USAGE: symsignature(m); m matrix. m must be symmetric.
158
+ RETURN: int: the signature of m
159
+ SEE ALSO: matbil,sturmquery
160
+ EXAMPLE: example symsignature; shows an example"
161
+ {
162
+ int positive, negative, i, j;
163
+ list l;
164
+ poly variable;
165
+
166
+ if (isparam(m)) {
167
+ ERROR("This procedure cannot operate with parametric arguments");
168
+ }
169
+
170
+ if (!isSquare(m)) {
171
+ ERROR ("m must be a square matrix");
172
+ }
173
+
174
+ // We check whether m is symmetric
175
+ for (i = 1;i <= nrows(m);i++) {
176
+ for (j = i;j <= nrows(m);j++) {
177
+ if (m[i,j] != m[j,i]) {
178
+ ERROR ("m must be a symmetric matrix");
179
+ }
180
+ }
181
+ }
182
+
183
+ poly f = charpoly(m); // Uses the last variable of the ring
184
+
185
+ for (i = size(f);i >= 1;i--) {
186
+ l[i] = leadcoef(f[i]);
187
+ }
188
+ positive = varsigns(l);
189
+
190
+ variable = var(nvars(basering)); // charpoly uses the last variable
191
+ f = subst(f,variable,-variable);
192
+
193
+ for (i = size(f);i >= 1;i--) {
194
+ l[i] = leadcoef(f[i]);
195
+ }
196
+
197
+ negative = varsigns(l);
198
+ return (positive - negative);
199
+ }
200
+ example
201
+ {
202
+ echo = 2;
203
+ ring r = 0,(x,y),dp;
204
+ ideal i = x4-y2x,y2-13;
205
+ i = std(i);
206
+ ideal b = qbase(i);
207
+
208
+ matrix m = matbil(1,b,i);
209
+ symsignature(m);
210
+ }
211
+ ///////////////////////////////////////////////////////////////////////////////
212
+
213
+ proc sturmquery(poly h,ideal B,ideal I)
214
+ "USAGE: sturmquery(h,b,i); h poly, b,i ideal
215
+ RETURN: int: the Sturm query of h in V(i)
216
+ ASSUME: i is a Groebner basis, b is an ordered monomial basis
217
+ of r/i, r = basering.
218
+ SEE ALSO: symsignature,matbil
219
+ EXAMPLE: example sturmquery; shows an example"
220
+ {
221
+ if (isparam(h) || isparam(B) || isparam(I)) {
222
+ ERROR("This procedure cannot operate with parametric arguments");
223
+ }
224
+
225
+ return (mysymmsig(matbil(h,B,I)));
226
+ }
227
+ example
228
+ {
229
+ echo = 2;
230
+ ring r = 0,(x,y),dp;
231
+ ideal i = x4-y2x,y2-13;
232
+ i = std(i);
233
+ ideal b = qbase(i);
234
+
235
+ sturmquery(1,b,i);
236
+ }
237
+ ///////////////////////////////////////////////////////////////////////////////
238
+
239
+ static proc mysymmsig(matrix m)
240
+ // returns the signature of a square symmetric matrix m
241
+ {
242
+ int positive, negative, i;
243
+ list l;
244
+ poly variable;
245
+
246
+ poly f = charpoly(m); // Uses the last variable of the ring
247
+
248
+ for (i = size(f);i >= 1;i--) {
249
+ l[i] = leadcoef(f[i]);
250
+ }
251
+ positive = varsigns(l);
252
+
253
+ variable = var(nvars(basering)); // charpoly uses the last variable
254
+ f = subst(f,variable,-variable);
255
+
256
+ for (i = size(f);i >= 1;i--) {
257
+ l[i] = leadcoef(f[i]);
258
+ }
259
+
260
+ negative = varsigns(l);
261
+ return (positive - negative);
262
+ }
263
+ ///////////////////////////////////////////////////////////////////////////////
264
+
265
+ proc matbil(poly h,ideal B,ideal I)
266
+ "USAGE: matbil(h,b,i); h poly, b,i ideal
267
+ RETURN: matrix: the matrix of the bilinear form (f,g) |-> trace(m_fhg),
268
+ m_fhg = multiplication with fhg on r/i
269
+ ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
270
+ r = basering
271
+ SEE ALSO: matmult,tracemult
272
+ EXAMPLE: example matbil; shows an example"
273
+ {
274
+ matrix m[size(B)][size(B)];
275
+ poly f;
276
+ int k,l;
277
+ //h = reduce(h,I);
278
+
279
+ for (k = 1; k <= size(B); k++) {
280
+ for (l = 1; l <= k; l++) {
281
+ m[k,l] = tracemult(h*B[k]*B[l],B,I)[1];
282
+ m[l,k] = m[k,l]; // The matrix we are trying to compute is symmetric
283
+ }
284
+ }
285
+ return(m);
286
+ }
287
+ example
288
+ {
289
+ echo = 2;
290
+ ring r = 0,(x,y),dp;
291
+ ideal i = x4-y2x,y2-13;
292
+ i = std(i);
293
+ ideal b = qbase(i);
294
+ poly f = x3-xy+y-13+x4-y2x;
295
+
296
+ matrix m = matbil(f,b,i);
297
+ print(m);
298
+
299
+ }
300
+ ///////////////////////////////////////////////////////////////////////////////
301
+
302
+ proc tracemult(poly f,ideal B,ideal I)
303
+ "USAGE: tracemult(f,B,I);f poly, B,I ideal
304
+ RETURN: number: the trace of the multiplication by f (m_f) on r/I, written in
305
+ the monomial basis B of r/I, r = basering (faster than matmult + trace)
306
+ ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I
307
+ SEE ALSO: matmult,trace
308
+ EXAMPLE: example tracemult; shows an example"
309
+ {
310
+ int k; // Iterates over the basis monomials
311
+ int l; // Iterates over the rows of the matrix
312
+ list coordinates;
313
+ number m;
314
+ poly g;
315
+
316
+ //f = reduce(f,I);
317
+ for (k = 1; k <= size(B); k++) {
318
+ l=1;
319
+ g = reduce(f*B[k],I);
320
+ while (l <= k) {
321
+ if (leadmonom(g[l]) == B[k]) {
322
+ m = m + leadcoef(g[l]);
323
+ break;
324
+ }
325
+ l++;
326
+ }
327
+ }
328
+ return (m);
329
+ }
330
+ example
331
+ {
332
+ echo = 2;
333
+ ring r = 0,(x,y),dp;
334
+ ideal i = x4-y2x,y2-13;
335
+ i = std(i);
336
+ ideal b = qbase(i);
337
+
338
+ poly f = x3-xy+y-13+x4-y2x;
339
+ matrix m = matmult(f,b,i);
340
+ print(m);
341
+
342
+ tracemult(f,b,i); //the trace of m
343
+ }
344
+ ///////////////////////////////////////////////////////////////////////////////
345
+
346
+ proc matmult(poly f, ideal B, ideal I)
347
+ "USAGE: matmult(f,b,i); f poly, b,i ideal
348
+ RETURN: matrix: the matrix of the multiplication map by f (m_f) on r/i
349
+ w.r.t. to the monomial basis b of r/i (r = basering)
350
+ ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
351
+ as given by qbase(i)
352
+ SEE ALSO: coords,matbil
353
+ EXAMPLE: example matmult; shows an example"
354
+ {
355
+ int k; // Iterates over the basis monomials
356
+ int l; // Iterates over the rows of the matrix
357
+ list coordinates;
358
+ matrix m[size(B)][size(B)];
359
+
360
+ //f = reduce(f,I);
361
+ for (k = 1;k <= size(B);k++) {
362
+ coordinates = coords(f*(B[k]),B,I); // f*x_k written on the basis B
363
+ for (l = 1;l <= size(B);l++) {
364
+ m[l,k] = coordinates[l];
365
+ }
366
+ }
367
+ return (m);
368
+ }
369
+ example
370
+ {
371
+ echo = 2;
372
+ ring r = 0,(x,y),dp;
373
+ ideal i = x4-y2x,y2-13;
374
+ i = std(i);
375
+ ideal b = qbase(i);
376
+
377
+ poly f = x3-xy+y-13+x4-y2x;
378
+ matrix m = matmult(f,b,i);
379
+ print(m);
380
+ }
381
+ ///////////////////////////////////////////////////////////////////////////////
382
+
383
+ proc coords(poly f,ideal B,ideal I)
384
+ "USAGE: coords(f,b,i), f poly, b,i ideal
385
+ RETURN: list of numbers: the coordinates of the class of f (mod i)
386
+ in the monomial basis b
387
+ ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
388
+ r = basering
389
+ SEE ALSO: matmult,matbil
390
+ KEYWORDS: coordinates
391
+ EXAMPLE: example coords; shows an example"
392
+ {
393
+ // We assume the basis is sorted according to the ring order
394
+ poly g;
395
+ int k,l=1,1;
396
+ list coordinates;
397
+ int N = size(B);
398
+
399
+ // We first compute the normal form of f w.r.t. I
400
+ g = reduce(f,I);
401
+ int n = size(g); //always n <= N
402
+
403
+ while (k <= N) {
404
+ if (leadmonom(g[l]) == B[k]) {
405
+ coordinates[k] = leadcoef(g[l]);
406
+ l++;
407
+ } else {
408
+ coordinates[k] = number(0);
409
+ }
410
+ k++;
411
+ }
412
+ return (coordinates);
413
+ }
414
+ example
415
+ {
416
+ echo = 2;
417
+ ring r = 0,(x,y),dp;
418
+ ideal i = x4-y2x,y2-13;
419
+ poly f = x3-xy+y-13+x4-y2x;
420
+ i = std(i);
421
+ ideal b = qbase(i);
422
+ b;
423
+ coords(f,b,i);
424
+ }
425
+ ///////////////////////////////////////////////////////////////////////////////
426
+
427
+ static proc isSquare(matrix m)
428
+ // returns 1 if and only if m is a square matrix
429
+ {
430
+ return (nrows(m)==ncols(m));
431
+ }
432
+ ///////////////////////////////////////////////////////////////////////////////
433
+
434
+ proc randcharpoly(ideal B,ideal I,list #)
435
+ "USAGE: randcharpoly(b,i); randcharpoly(b,i,n); b,i ideal; n int
436
+ RETURN: poly: the characteristic polynomial of a pseudorandom
437
+ rational univariate projection having one zero per zero of i.
438
+ If n<10 is given, it is the number of digits being used for the
439
+ pseudorandom coefficients (default: n=5)
440
+ ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
441
+ r = basering
442
+ NOTE: shows a warning if printlevel>0 (default: printlevel=0)
443
+ KEYWORDS: rational univariate projection
444
+ EXAMPLE: example randcharpoly; shows an example"
445
+ {
446
+ int pr = printlevel - voice + 2;
447
+ poly p;
448
+ poly generic;
449
+ list l;
450
+ matrix m;
451
+ poly q;
452
+
453
+ if (size(#) == 1) {
454
+ generic = randlinpoly(#[1]);
455
+ } else {
456
+ generic = randlinpoly();
457
+ }
458
+
459
+ p = reduce(generic,I);
460
+ m = matmult(p,B,I);
461
+ q = charpoly(m);
462
+
463
+ dbprint(pr,"*********************************************************************");
464
+ dbprint(pr,"* WARNING: This polynomial was obtained using pseudorandom numbers.*");
465
+ dbprint(pr,"* If you want to verify the result, please use the command *");
466
+ dbprint(pr,"* *");
467
+ dbprint(pr,"* verify(p,b,i) *");
468
+ dbprint(pr,"* *");
469
+ dbprint(pr,"* where p is the polynomial I returned, b is the monomial basis *");
470
+ dbprint(pr,"* used, and i the Groebner basis of the ideal *");
471
+ dbprint(pr,"*********************************************************************");
472
+
473
+ return(q);
474
+ }
475
+ example
476
+ {
477
+ echo = 2;
478
+ ring r = 0,(x,y,z),dp;
479
+ ideal i = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
480
+ i = std(i);
481
+ ideal b = qbase(i);
482
+ poly p = randcharpoly(b,i);
483
+ p;
484
+ nrroots(p); // See nrroots in urrcount.lib
485
+
486
+ int pr = printlevel;
487
+ printlevel = pr+2;
488
+ p = randcharpoly(b,i,5);
489
+ nrroots(p);
490
+ printlevel = pr;
491
+ }
492
+
493
+ ///////////////////////////////////////////////////////////////////////////////
494
+
495
+ proc verify(poly p,ideal B,ideal I)
496
+ "USAGE: verify(p,B,I); p poly, B,I,ideal
497
+ RETURN: integer: 1 if and only if the polynomial p splits the points of V(I).
498
+ It's used to check the result of randcharpoly
499
+ ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I,
500
+ r = basering
501
+ NOTE: comments the result if printlevel>0 (default: printlevel=0)
502
+ SEE ALSO: randcharpoly
503
+ EXAMPLE: example verify; shows an example"
504
+ {
505
+ int pr = printlevel - voice + 2;
506
+ poly sqr_free;
507
+ int correct;
508
+ poly variable;
509
+
510
+ if (isparam(p) || isparam(B) || isparam(I)) {
511
+ ERROR("This procedure cannot operate with parametric arguments");
512
+ }
513
+
514
+ variable = isuni(p);
515
+ sqr_free = p/gcd(p,diff(p,variable));
516
+ correct = (mat_rk(matbil(1,B,I)) == deg(sqr_free));
517
+
518
+ if (correct) {
519
+ dbprint(pr,"//Verification successful");
520
+ } else {
521
+ dbprint(pr,"//The choice of random numbers was not useful");
522
+ dbprint(pr,"//You might want to try randcharpoly with a larger number of digits");
523
+ }
524
+ return (correct);
525
+ }
526
+ example
527
+ {
528
+ echo = 2;
529
+ ring r = 0,(x,y),dp;
530
+ poly f = x3-xy+y-13+x4-y2x;
531
+ ideal i = x4-y2x,y2-13;
532
+ i = std(i);
533
+ ideal b = qbase(i);
534
+ poly p = randcharpoly(b,i);
535
+ verify(p,b,i);
536
+ }
537
+ ///////////////////////////////////////////////////////////////////////////////
538
+
539
+ proc randlinpoly(list #)
540
+ "USAGE: randlinpoly(); randlinpoly(n); n int
541
+ RETURN: poly: linear combination of the variables of the ring, with
542
+ pseudorandom coefficients. If n<10 is given, it is the number of
543
+ digits being used for the range of the coefficients (default: n=5)
544
+ SEE ALSO: randcharpoly;
545
+ EXAMPLE: example randlinpoly; shows an example"
546
+ {
547
+ int n,i;
548
+ poly p = 0;
549
+ int ndigits = 5;
550
+
551
+ if (size(#) == 1) {
552
+ ndigits = #[1];
553
+ }
554
+
555
+ n = nvars(basering);
556
+ for (i = 1;i <= n;i++) {
557
+ p = p + var(i)*random(1,10^ndigits);
558
+ }
559
+ return (p);
560
+ }
561
+ example
562
+ {
563
+ echo = 2;
564
+ ring r = 0,(x,y,z,w),dp;
565
+ poly p = randlinpoly();
566
+ p;
567
+ randlinpoly(5);
568
+ }
569
+ ///////////////////////////////////////////////////////////////////////////////
570
+
571
+ proc powersums(poly f,ideal B,ideal I)
572
+ "USAGE: powersums(f,b,i); f poly; b,i ideal
573
+ RETURN: list: the powersums of the results of evaluating f at the zeros of I
574
+ ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
575
+ r = basering
576
+ SEE ALSO: symmfunc
577
+ EXAMPLE: example symmfunc; shows an example"
578
+ {
579
+ int N,k;
580
+ list sums;
581
+
582
+ N = size(B);
583
+ for (k = 1;k <= N;k++) {
584
+ sums = sums + list(leadcoef(trace(matmult(f^k,B,I))));
585
+ }
586
+ return (sums);
587
+ }
588
+ example
589
+ {
590
+ echo = 2;
591
+ ring r = 0,(x,y,z),dp;
592
+
593
+ ideal i = (x-1)*(x-2),(y-1),(z+5); // V(I) = {(1,1,-5),(2,1,-5)}
594
+ i = std(i);
595
+
596
+ ideal b = qbase(i);
597
+ poly f = x+y+z;
598
+ list psums = list(-2-3,4+9); // f evaluated at V(I) gives {-3,-2}
599
+ list l = powersums(f,b,i);
600
+ psums;
601
+ l;
602
+ }
603
+ ///////////////////////////////////////////////////////////////////////////////
604
+
605
+ proc symmfunc(list S)
606
+ "USAGE: symmfunc(s); s list
607
+ RETURN: list: the symmetric functions of the roots of a polynomial, given
608
+ the power sums of those roots.
609
+ SEE ALSO: powersums
610
+ EXAMPLE: example symmfunc; shows an example"
611
+ {
612
+ // Takes the list of power sums and returns the symmetric functions
613
+ list a;
614
+ int j,l,N;
615
+ number sum;
616
+
617
+ N = size(S);
618
+ a[N+1] = 1; // We set the length of the list and initialize its last element.
619
+
620
+ for (l = N - 1;l >= 0;l--) {
621
+ sum = 0;
622
+ for (j = l + 1;j <= N;j++) {
623
+ sum = sum + ((a[j+1])*(S[j-l]));
624
+ }
625
+ sum = -sum;
626
+ a[l+1] = sum/(N-l);
627
+ }
628
+
629
+ a = reverse(a);
630
+ return (a);
631
+ }
632
+ example
633
+ {
634
+ echo = 2;
635
+ ring r = 0,x,dp;
636
+ poly p = (x-1)*(x-2)*(x-3);
637
+ list psums = list(1+2+3,1+4+9,1+8+27);
638
+ list l = symmfunc(psums);
639
+ l;
640
+ p; // Compare p with the elements of l
641
+ }
642
+ ///////////////////////////////////////////////////////////////////////////////
643
+
644
+ proc univarpoly(list l)
645
+ "USAGE: univarpoly(l); l list
646
+ RETURN: poly: a polynomial p on the first variable of basering, say x,
647
+ with p = l[1] + l[2]*x + l[3]*x^2 + ...
648
+ EXAMPLE: example univarpoly; shows an example"
649
+ {
650
+ poly p;
651
+ int i,n;
652
+
653
+ n = size(l);
654
+ for (i = 1;i <= n;i++) {
655
+ p = p + l[i]*var(1)^(n-i);
656
+ }
657
+ return (p);
658
+ }
659
+ example
660
+ {
661
+ echo = 2;
662
+ ring r = 0,x,dp;
663
+ list l = list(1,2,3,4,5);
664
+ poly p = univarpoly(l);
665
+ p;
666
+ }
667
+ ///////////////////////////////////////////////////////////////////////////////
668
+
669
+ proc qbase(ideal i)
670
+ "USAGE: qbase(I); I zero-dimensional ideal
671
+ RETURN: ideal: A monomial basis of the quotient between the basering and the
672
+ ideal I, sorted according to the basering order.
673
+ SEE ALSO: kbase
674
+ KEYWORDS: zero-dimensional
675
+ EXAMPLE: example qbase; shows an example"
676
+ {
677
+ ideal b;
678
+
679
+ b = kbase(i);
680
+ b = reverseideal(sort(b)[1]); // sort sorts in ascending order
681
+ return (b);
682
+ }
683
+ example
684
+ {
685
+ echo = 2;
686
+ ring r = 0,(x,y,z),dp;
687
+
688
+ ideal i = 2x2,-y2,z3;
689
+ i = std(i);
690
+ ideal b = qbase(i);
691
+ b;
692
+ b = kbase(i);
693
+ b; // Compare this with the result of qbase
694
+ }
695
+ ///////////////////////////////////////////////////////////////////////////////
696
+
697
+ static proc reverseideal(ideal b) // Returns b reversed
698
+ {
699
+ int i;
700
+ ideal result;
701
+
702
+ result = b[1];
703
+ for (i = 2;i <= size(b);i++) {
704
+ result = b[i], result;
705
+ }
706
+ return (result);
707
+ }
708
+ ///////////////////////////////////////////////////////////////////////////////
709
+