passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1817 @@
|
|
|
1
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version curvepar.lib 4.1.2.0 Feb_2019 "; // $Id: 8b8836ec5fd3ee7e9752bdefc971a5e9de4b67b7 $
|
|
3
|
+
category="Singularity Theory";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: curvepar.lib Resolution of space curve singularities, semi-group
|
|
6
|
+
|
|
7
|
+
AUTHOR: Gerhard Pfister email: pfister@mathematik.uni-kl.de
|
|
8
|
+
Nil Sahin email: e150916@metu.edu.tr
|
|
9
|
+
Maryna Viazovska email: viazovsk@mathematik.uni-kl.de
|
|
10
|
+
|
|
11
|
+
SEE ALSO: spcurve_lib
|
|
12
|
+
|
|
13
|
+
PROCEDURES:
|
|
14
|
+
BlowingUp(f,I,l); BlowingUp of V(I) at the point 0;
|
|
15
|
+
CurveRes(I); Resolution of V(I)
|
|
16
|
+
CurveParam(I); Parametrization of algebraic branches of V(I)
|
|
17
|
+
WSemigroup(X,b); Weierstrass semigroup of the curve
|
|
18
|
+
primparam(x,y,c); HN matrix of parametrization(x(t),y(t))
|
|
19
|
+
MultiplicitySequence(I); Multiplicity sequences of the branches of plane curve V(I)
|
|
20
|
+
CharacteristicExponents(I); Characteristic exponents of the branches of plane curve V(I)
|
|
21
|
+
IntersectionMatrix(I); Intersection Matrix of the branches of plane curve V(I)
|
|
22
|
+
ContactMatrix(I); Contact Matrix of the branches of plane curve V(I)
|
|
23
|
+
plainInvariants(I); Invariants of the branches of plane curve V(I)
|
|
24
|
+
";
|
|
25
|
+
|
|
26
|
+
LIB "sing.lib";
|
|
27
|
+
LIB "primdec.lib";
|
|
28
|
+
LIB "linalg.lib";
|
|
29
|
+
LIB "ring.lib";
|
|
30
|
+
LIB "alexpoly.lib";
|
|
31
|
+
LIB "matrix.lib";
|
|
32
|
+
|
|
33
|
+
//////////////////////////////////////////////////////////////
|
|
34
|
+
//----------Resolution of singular curve--------------------//
|
|
35
|
+
//////////////////////////////////////////////////////////////
|
|
36
|
+
|
|
37
|
+
proc BlowingUp(poly f,ideal I,list l,list #)
|
|
38
|
+
"USAGE: BlowingUp(f,I,l);
|
|
39
|
+
f=poly
|
|
40
|
+
b=ideal
|
|
41
|
+
l=list
|
|
42
|
+
|
|
43
|
+
ASSUME: The basering is r=0,(x(1..n),a),dp
|
|
44
|
+
f is an irrreducible polynomial in k[a],
|
|
45
|
+
I is an ideal of a curve(if we consider a as a parameter)
|
|
46
|
+
|
|
47
|
+
COMPUTE: Blowing-up of the curve at point 0.
|
|
48
|
+
|
|
49
|
+
RETURN: list C of charts.
|
|
50
|
+
Each chart C[i] is a list of size 5 (reps. 6 in case of plane curves)
|
|
51
|
+
C[i][1] is an integer j. It shows, which standard chart do we consider.
|
|
52
|
+
C[i][2] is an irreducible poly g in k[a]. It is a minimal polynomial
|
|
53
|
+
for the new parameter.
|
|
54
|
+
C[i][3] is an ideal H in k[a].
|
|
55
|
+
c_i=F_i(a_new) for i=1..n,
|
|
56
|
+
a_old=H[n+1](a_new).
|
|
57
|
+
C[i][4] is a map teta:k[x(1)..x(n),a]-->k[x(1)..x(n),a] from the new
|
|
58
|
+
curve to the old one.
|
|
59
|
+
x(1)-->x(j)*x(1)
|
|
60
|
+
. . .
|
|
61
|
+
x(j)-->x(j)
|
|
62
|
+
. . .
|
|
63
|
+
x(n)-->x(j)*(c_n+x(n))
|
|
64
|
+
C[i][5] is an ideal J of a new curve. J=teta(I).
|
|
65
|
+
C[i][6] is the list of exceptional divisors in the chart
|
|
66
|
+
|
|
67
|
+
EXAMPLE: example BlowingUp; shows an example"
|
|
68
|
+
{
|
|
69
|
+
def r=basering;
|
|
70
|
+
int n=nvars(r)-1;
|
|
71
|
+
ring r1=(0,a),(x(1..n)),ds;
|
|
72
|
+
number f=leadcoef(imap(r,f));
|
|
73
|
+
minpoly=f;
|
|
74
|
+
ideal I=imap(r,I);
|
|
75
|
+
ideal locI=std(I);
|
|
76
|
+
ideal J=tangentcone(I);
|
|
77
|
+
setring r;
|
|
78
|
+
ideal J=imap(r1,J);
|
|
79
|
+
ideal locI=imap(r1,locI);
|
|
80
|
+
int j;
|
|
81
|
+
int i;
|
|
82
|
+
list C,E;
|
|
83
|
+
list C1;
|
|
84
|
+
ideal B;
|
|
85
|
+
poly g;
|
|
86
|
+
ideal F;
|
|
87
|
+
poly b,p;
|
|
88
|
+
list Z;
|
|
89
|
+
list Z1;
|
|
90
|
+
ideal D;
|
|
91
|
+
map teta;
|
|
92
|
+
ideal D1;
|
|
93
|
+
map teta1;
|
|
94
|
+
int k,e;
|
|
95
|
+
ideal I1;
|
|
96
|
+
ideal I2;
|
|
97
|
+
int ind;
|
|
98
|
+
list w=mlist(l,n);
|
|
99
|
+
for(j=1;j<=n;j++)
|
|
100
|
+
{
|
|
101
|
+
B=J;
|
|
102
|
+
for(i=1;i<j;i++) {B=B+x(w[i]);}
|
|
103
|
+
B=B+(x(w[j])-1);
|
|
104
|
+
B=B+f;
|
|
105
|
+
Z=Z1;
|
|
106
|
+
if(dim(std(B))==0)
|
|
107
|
+
{
|
|
108
|
+
Z=ZeroIdeal(B);
|
|
109
|
+
for(i=1;i<j;i++)
|
|
110
|
+
{
|
|
111
|
+
D[w[i]]=x(w[j])*x(w[i]);
|
|
112
|
+
}
|
|
113
|
+
D[w[j]]=x(w[j]);
|
|
114
|
+
for(i=j+1;i<=n;i++)
|
|
115
|
+
{
|
|
116
|
+
D[w[i]]=x(w[j])*x(w[i]);
|
|
117
|
+
}
|
|
118
|
+
D[n+1]=a;
|
|
119
|
+
teta=r,D;
|
|
120
|
+
I1=teta(locI);
|
|
121
|
+
I1=reduce(I1,std(f));
|
|
122
|
+
ind=1;
|
|
123
|
+
for(i=1;i<=size(I1);i++)
|
|
124
|
+
{
|
|
125
|
+
ind=1;
|
|
126
|
+
while(ind==1)
|
|
127
|
+
{
|
|
128
|
+
if(gcd(x(w[j]),I1[i])==x(w[j])){I1[i]=I1[i]/x(w[j]);}
|
|
129
|
+
else{ind=0;}
|
|
130
|
+
}
|
|
131
|
+
}
|
|
132
|
+
}
|
|
133
|
+
for(k=1;k<=size(Z);k++)
|
|
134
|
+
{
|
|
135
|
+
g=Z[k][1];
|
|
136
|
+
for(i=1;i<=n;i++){F[i]=Z[k][2][i];}
|
|
137
|
+
b=Z[k][3];
|
|
138
|
+
C1[1]=w[j];
|
|
139
|
+
C1[2]=g;
|
|
140
|
+
C1[3]=F;
|
|
141
|
+
for(i=1;i<j;i++)
|
|
142
|
+
{D[w[i]]=x(w[j])*x(w[i]);}
|
|
143
|
+
D[w[j]]=x(w[j]);
|
|
144
|
+
for(i=j+1;i<=n;i++)
|
|
145
|
+
{D[w[i]]=x(w[j])*(F[w[i]]+x(w[i]));}
|
|
146
|
+
D[n+1]=Z[k][2][n+1];
|
|
147
|
+
teta=r,D;
|
|
148
|
+
C1[4]=D;
|
|
149
|
+
for(i=1;i<=j;i++)
|
|
150
|
+
{D1[w[i]]=x(w[i]);}
|
|
151
|
+
for(i=j+1;i<=n;i++)
|
|
152
|
+
{D1[w[i]]=F[w[i]]+x(w[i]);}
|
|
153
|
+
D1[n+1]=a;
|
|
154
|
+
teta1=r,D1;
|
|
155
|
+
if(nvars(basering)==3)
|
|
156
|
+
{
|
|
157
|
+
I2=quickSubst(I1[1],teta1[1],teta1[2],std(g));
|
|
158
|
+
}
|
|
159
|
+
else
|
|
160
|
+
{
|
|
161
|
+
I2=teta1(I1);
|
|
162
|
+
I2=reduce(I2,std(g));
|
|
163
|
+
}
|
|
164
|
+
C1[5]=I2;
|
|
165
|
+
if(nvars(basering)==3)
|
|
166
|
+
{
|
|
167
|
+
if(size(#)>0)
|
|
168
|
+
{
|
|
169
|
+
E=#;
|
|
170
|
+
E=teta(E);
|
|
171
|
+
for(e=1;e<=size(E);e++)
|
|
172
|
+
{
|
|
173
|
+
p=E[e];
|
|
174
|
+
while(subst(p,x(w[j]),0)==0)
|
|
175
|
+
{
|
|
176
|
+
p=p/x(w[j]);
|
|
177
|
+
}
|
|
178
|
+
if((deg(E[e])>0)&&(deg(p)==0))
|
|
179
|
+
{
|
|
180
|
+
E[e]=size(E);
|
|
181
|
+
}
|
|
182
|
+
else
|
|
183
|
+
{
|
|
184
|
+
E[e]=p;
|
|
185
|
+
}
|
|
186
|
+
}
|
|
187
|
+
E[size(E)+1]=x(w[j]);
|
|
188
|
+
C1[6]=E;
|
|
189
|
+
}
|
|
190
|
+
else
|
|
191
|
+
{
|
|
192
|
+
C1[6]=list(x(w[j]));
|
|
193
|
+
}
|
|
194
|
+
}
|
|
195
|
+
C=insert(C,C1);
|
|
196
|
+
}
|
|
197
|
+
}
|
|
198
|
+
return(C);
|
|
199
|
+
}
|
|
200
|
+
example
|
|
201
|
+
{
|
|
202
|
+
"EXAMPLE:";echo = 2;
|
|
203
|
+
ring r=0,(x(1..3),a),dp;
|
|
204
|
+
poly f=a2+1;
|
|
205
|
+
ideal i=x(1)^2+a*x(2)^3,x(3)^2-x(2);
|
|
206
|
+
list l=1,3,2;
|
|
207
|
+
list B=BlowingUp(f,i,l);
|
|
208
|
+
B;
|
|
209
|
+
}
|
|
210
|
+
//============= ACHTUNG ZeroIdeal ueberarbeiten / minAssGTZ rein ========================
|
|
211
|
+
//////////////////////////////////////////////////////////////////////////////////////////
|
|
212
|
+
static proc ZeroIdeal(ideal J)
|
|
213
|
+
|
|
214
|
+
"USAGE: ZeroIdeal(J);
|
|
215
|
+
J=ideal
|
|
216
|
+
|
|
217
|
+
ASSUME: J is a zero-dimensional ideal in k[x(1),...,x(n)].
|
|
218
|
+
|
|
219
|
+
COMPUTE: Primary decomposition of radical(J). Each prime ideal J[i] has the form:
|
|
220
|
+
x(1)-f[1](b),...,x(n)-f[n](b),
|
|
221
|
+
f(b)=0, f irreducible
|
|
222
|
+
for some b=x(1)*a(1)+...+x(n)*a(n), a(i) in k.
|
|
223
|
+
|
|
224
|
+
RETURN: list Z of lists.
|
|
225
|
+
Each list Z[k] is a list of size 3
|
|
226
|
+
Z[k][1] is a poly f(b)
|
|
227
|
+
Z[k][2] is an ideal H, H[n]=f[n],
|
|
228
|
+
Z[k][3] is a poly x(1)*a(1)+...+x(n)*a(n)
|
|
229
|
+
|
|
230
|
+
EXAMPLE:"
|
|
231
|
+
{
|
|
232
|
+
intvec opt = option(get);
|
|
233
|
+
def r=basering;
|
|
234
|
+
int n=nvars(r);
|
|
235
|
+
if(dim(std(J))!=0){return(0);}
|
|
236
|
+
ring s=0,(x(1..n)),lp;
|
|
237
|
+
ideal A; ideal S; int i; int j;
|
|
238
|
+
for(i=1;i<=n;i++) {A[i]=x(i);}
|
|
239
|
+
map phi=r,A;
|
|
240
|
+
ideal J=phi(J);
|
|
241
|
+
ideal I=radical(J);
|
|
242
|
+
list D=zerodec(I);
|
|
243
|
+
list Z; ideal H; intvec w; intvec v; int ind; ideal T; map tau; int q; list u;
|
|
244
|
+
ideal Di; poly h;
|
|
245
|
+
for(i=1;i<=size(D);i++)
|
|
246
|
+
{
|
|
247
|
+
option(redSB);
|
|
248
|
+
ind=0;q=n;
|
|
249
|
+
while(ind==0 and q>0)
|
|
250
|
+
{
|
|
251
|
+
for(j=1;j<=n;j++){T[j]=x(j);}
|
|
252
|
+
T[q]=x(n);
|
|
253
|
+
T[n]=x(q);
|
|
254
|
+
tau=s,T;
|
|
255
|
+
Di=D[i];
|
|
256
|
+
S=std(tau(Di));
|
|
257
|
+
ind=1;
|
|
258
|
+
v=leadexp(S[1]);
|
|
259
|
+
if(leadmonom(S[1])!=x(n)^v[n]){ind=0;}
|
|
260
|
+
for(j=2;j<=n;j++)
|
|
261
|
+
{
|
|
262
|
+
if(leadmonom(S[j])!=x(n-j+1)){ind=0;}
|
|
263
|
+
H[n-j+1]= -S[j]/leadcoef(S[j])+x(n-j+1);
|
|
264
|
+
v=leadexp(H[n-j+1]);
|
|
265
|
+
if(leadcoef(H[n-j+1])*leadmonom(H[n-j+1])!=leadcoef(H[n-j+1])*x(n)^v[n])
|
|
266
|
+
{ind=0;}
|
|
267
|
+
}
|
|
268
|
+
if(ind==1)
|
|
269
|
+
{
|
|
270
|
+
u[1]=S[1];
|
|
271
|
+
H[n]=x(n);
|
|
272
|
+
H[n]=H[q];
|
|
273
|
+
H[q]=x(n);
|
|
274
|
+
u[2]=H;
|
|
275
|
+
u[3]=x(q);
|
|
276
|
+
Z[i]=u;
|
|
277
|
+
}
|
|
278
|
+
q--;
|
|
279
|
+
}
|
|
280
|
+
if(ind==0)
|
|
281
|
+
{
|
|
282
|
+
vector a;
|
|
283
|
+
while(ind==0)
|
|
284
|
+
{
|
|
285
|
+
h=x(n);
|
|
286
|
+
for(j=1;j<=n-1;j++){a=a+random(-10,10)*gen(j);h=h+a[j]*x(j);}
|
|
287
|
+
T=subst(S,x(n),h);
|
|
288
|
+
option(redSB);
|
|
289
|
+
T=std(T);
|
|
290
|
+
ind=1;
|
|
291
|
+
w=leadexp(T[1]);
|
|
292
|
+
if(leadmonom(T[1])!=x(n)^w[n]){ind=0;}
|
|
293
|
+
for(j=2;j<=n;j++)
|
|
294
|
+
{
|
|
295
|
+
if(leadmonom(T[j])!=x(n-j+1)){ind=0;}
|
|
296
|
+
H[n-j+1]= -T[j]/leadcoef(T[j])+x(n-j+1);
|
|
297
|
+
w=leadexp(H[n-j+1]);
|
|
298
|
+
if(leadmonom(H[n-j+1])*leadcoef(H[n-j+1])!=leadcoef(H[n-j+1])*x(n)^w[n])
|
|
299
|
+
{ind=0;}
|
|
300
|
+
}
|
|
301
|
+
if(ind==1)
|
|
302
|
+
{
|
|
303
|
+
list l;
|
|
304
|
+
l[1]=T[1];
|
|
305
|
+
H[n]=x(n);h=x(n);
|
|
306
|
+
for(j=1;j<=n-1;j++){H[n]=H[n]+a[j]*H[j];h=h-a[j]*x(j);}
|
|
307
|
+
l[2]=H;
|
|
308
|
+
l[3]=h;
|
|
309
|
+
Z[i]=l;
|
|
310
|
+
}
|
|
311
|
+
}
|
|
312
|
+
}
|
|
313
|
+
}
|
|
314
|
+
setring r;
|
|
315
|
+
ideal A;
|
|
316
|
+
list Z;
|
|
317
|
+
for(i=1;i<=n;i++)
|
|
318
|
+
{A[i]=var(i);}
|
|
319
|
+
map psi=s,A;
|
|
320
|
+
Z=psi(Z);
|
|
321
|
+
option(set, opt);
|
|
322
|
+
return(Z);
|
|
323
|
+
}
|
|
324
|
+
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
325
|
+
//assume that the basering is k[x(1),...,x(n),a]
|
|
326
|
+
|
|
327
|
+
static proc main(ideal I,ideal Psi,poly f,list m,list l,list HN,intvec v,list HI,list #)
|
|
328
|
+
{
|
|
329
|
+
def s=basering;
|
|
330
|
+
int i,z;
|
|
331
|
+
int j;
|
|
332
|
+
list C,E,resTree;
|
|
333
|
+
list C1;
|
|
334
|
+
list C2;
|
|
335
|
+
list C3;
|
|
336
|
+
list l1;
|
|
337
|
+
C2[8]=HI;
|
|
338
|
+
list m1;
|
|
339
|
+
list HN1;
|
|
340
|
+
ideal J;
|
|
341
|
+
map psi;
|
|
342
|
+
intvec w;
|
|
343
|
+
z=(SmoothTest(I,f)==1);
|
|
344
|
+
if((nvars(basering)==3)&&z&&(size(#)>0))
|
|
345
|
+
{
|
|
346
|
+
z=transversalTest(I,f,#);
|
|
347
|
+
}
|
|
348
|
+
if(z)
|
|
349
|
+
{
|
|
350
|
+
C2[1]=I;
|
|
351
|
+
C2[2]=Psi;
|
|
352
|
+
C2[3]=f;
|
|
353
|
+
C2[4]=m;
|
|
354
|
+
C2[5]=l;
|
|
355
|
+
C2[6]=HN;
|
|
356
|
+
if(nvars(basering)==3)
|
|
357
|
+
{
|
|
358
|
+
if(size(#)>0)
|
|
359
|
+
{
|
|
360
|
+
C2[9]=#;
|
|
361
|
+
}
|
|
362
|
+
C2[7]=v;
|
|
363
|
+
}
|
|
364
|
+
//C2[8][size(C2[8])+1]=list(C2[7],C2[9]);
|
|
365
|
+
C[1]=C2;
|
|
366
|
+
}
|
|
367
|
+
if(!z)
|
|
368
|
+
{
|
|
369
|
+
int mm=mmult(I,f);
|
|
370
|
+
m1=insert(m,mm,size(m));
|
|
371
|
+
if(nvars(basering)==3)
|
|
372
|
+
{
|
|
373
|
+
if(size(#)>0)
|
|
374
|
+
{
|
|
375
|
+
E=#;
|
|
376
|
+
C1=BlowingUp(f,I,l,E);
|
|
377
|
+
}
|
|
378
|
+
else
|
|
379
|
+
{
|
|
380
|
+
C1=BlowingUp(f,I,l);
|
|
381
|
+
}
|
|
382
|
+
}
|
|
383
|
+
else
|
|
384
|
+
{
|
|
385
|
+
C1=BlowingUp(f,I,l);
|
|
386
|
+
}
|
|
387
|
+
for(j=1;j<=size(C1);j++)
|
|
388
|
+
{
|
|
389
|
+
C2[1]=C1[j][5];
|
|
390
|
+
J=C1[j][4];
|
|
391
|
+
psi=s,J;
|
|
392
|
+
C2[2]=psi(Psi);
|
|
393
|
+
C2[3]=C1[j][2];
|
|
394
|
+
C2[4]=m1;
|
|
395
|
+
l1=insert(l,C1[j][1],size(l));
|
|
396
|
+
C2[5]=l1;
|
|
397
|
+
HN1=psi(HN);
|
|
398
|
+
HN1=insert(HN1,C1[j][3],size(HN1)-1);
|
|
399
|
+
C2[6]=HN1;
|
|
400
|
+
if(deg(C2[3])>1)
|
|
401
|
+
{
|
|
402
|
+
w=v,-j;
|
|
403
|
+
}
|
|
404
|
+
else
|
|
405
|
+
{
|
|
406
|
+
w=v,j;
|
|
407
|
+
}
|
|
408
|
+
C2[7]=w;
|
|
409
|
+
if(nvars(basering)==3)
|
|
410
|
+
{
|
|
411
|
+
C2[9]=C1[j][6];
|
|
412
|
+
C2[8][size(C2[8])+1]=list(C2[7],C2[9]);
|
|
413
|
+
C3=main(C2[1],C2[2],C2[3],C2[4],C2[5],C2[6],C2[7],C2[8],C2[9]);
|
|
414
|
+
C=C+C3;
|
|
415
|
+
}
|
|
416
|
+
else
|
|
417
|
+
{
|
|
418
|
+
C3=main(C2[1],C2[2],C2[3],C2[4],C2[5],C2[6],C2[7],C2[8]);
|
|
419
|
+
C=C+C3;
|
|
420
|
+
}
|
|
421
|
+
}
|
|
422
|
+
}
|
|
423
|
+
return(C);
|
|
424
|
+
}
|
|
425
|
+
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
426
|
+
|
|
427
|
+
static proc transversalTest(ideal I,poly f,list L)
|
|
428
|
+
{
|
|
429
|
+
def r=basering;
|
|
430
|
+
int n=nvars(r)-1;
|
|
431
|
+
int i;
|
|
432
|
+
ring r1=(0,a),(x(1..n)),ds;
|
|
433
|
+
number f=leadcoef(imap(r,f));
|
|
434
|
+
minpoly=f;
|
|
435
|
+
ideal I=imap(r,I);
|
|
436
|
+
list L=imap(r,L);
|
|
437
|
+
ideal K=jet(L[size(L)],deg(lead(L[size(L)])));
|
|
438
|
+
ideal T=1;
|
|
439
|
+
if(size(L)>1)
|
|
440
|
+
{
|
|
441
|
+
for(i=1;i<=size(L)-1;i++)
|
|
442
|
+
{
|
|
443
|
+
if(subst(L[i],x(1),0,x(2),0)==0) break;
|
|
444
|
+
}
|
|
445
|
+
if(i<=size(L)-1)
|
|
446
|
+
{
|
|
447
|
+
T=jet(L[i],deg(lead(L[i])));
|
|
448
|
+
}
|
|
449
|
+
}
|
|
450
|
+
ideal J=jet(I[1],deg(lead(I[1])));
|
|
451
|
+
setring r;
|
|
452
|
+
ideal J=imap(r1,J);
|
|
453
|
+
ideal K=imap(r1,K);
|
|
454
|
+
ideal T=imap(r1,T);
|
|
455
|
+
int m=size(reduce(J,std(K),5))+size(reduce(K,std(J),5));
|
|
456
|
+
if(m)
|
|
457
|
+
{
|
|
458
|
+
m=size(reduce(J+K+T,std(ideal(x(1),x(2))),5));
|
|
459
|
+
}
|
|
460
|
+
return(m);
|
|
461
|
+
}
|
|
462
|
+
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
463
|
+
static proc SmoothTest(ideal I,poly f)
|
|
464
|
+
//Assume I is a radical ideal of dimension 1 in a ring k[x(1..n),a]
|
|
465
|
+
//Returns 1 if a curve V(I) is smooth at point 0 and returns 0 otherwise
|
|
466
|
+
{
|
|
467
|
+
int ind;
|
|
468
|
+
int l;
|
|
469
|
+
def t=basering;
|
|
470
|
+
int n=nvars(t)-1;
|
|
471
|
+
ring r1=(0,a),(x(1..n)),dp;
|
|
472
|
+
number f=leadcoef(imap(t,f));
|
|
473
|
+
minpoly=f;
|
|
474
|
+
ideal I=imap(t,I);
|
|
475
|
+
matrix M=jacob(I);
|
|
476
|
+
for(l=1;l<=n;l++){M=subst(M,x(l),0);}
|
|
477
|
+
if(mat_rk(M)==(n-1)){ind=1;}
|
|
478
|
+
return(ind);
|
|
479
|
+
}
|
|
480
|
+
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
481
|
+
proc CurveRes(ideal I)
|
|
482
|
+
"USAGE: CurveRes(I);
|
|
483
|
+
I ideal
|
|
484
|
+
ASSUME: The basering is r=0,(x(1..n))
|
|
485
|
+
V(I) is a curve with a singular point 0.
|
|
486
|
+
COMPUTE: Resolution of the curve V(I).
|
|
487
|
+
RETURN: a ring R=basering+k[a]
|
|
488
|
+
Ring R contains a list Resolve
|
|
489
|
+
Resolve is a list of charts
|
|
490
|
+
Each Resolve[i] is a list of size 6
|
|
491
|
+
Resolve[i][1] is an ideal J of a new curve. J=teta(I).
|
|
492
|
+
Resolve[i][2] ideal which represents the map
|
|
493
|
+
teta:k[x(1)..x(n),a]-->k[x(1)..x(n),a] from the
|
|
494
|
+
new curve to the old one.
|
|
495
|
+
Resolve[i][3] is an irreducible poly g in k[a]. It is a minimal polynomial for the
|
|
496
|
+
new parameter a. deg(g) gives the number of branches in Resolve[i]
|
|
497
|
+
Resolve[i][4] sequence of multiplicities (sum over all branches in Resolve as long as
|
|
498
|
+
they intersect each other !)
|
|
499
|
+
Resolve[i][5] is a list of integers l. It shows, which standard charts we considered.
|
|
500
|
+
Resolve[i][6] HN matrix
|
|
501
|
+
Resolve[i][7] (only for plane curves) the development of exceptional divisors
|
|
502
|
+
the entries correspond to the i-th blowing up. The first entry is an
|
|
503
|
+
intvec. The first negative entry gives the splitting of the (over Q
|
|
504
|
+
irreducible) branches. The second entry is a list of the exceptional
|
|
505
|
+
divisors. If the entry is an integer i, it says that the divisor is not
|
|
506
|
+
visible in this chart after the i-th blowing up.
|
|
507
|
+
|
|
508
|
+
EXAMPLE: example CurveRes; shows an example"
|
|
509
|
+
{
|
|
510
|
+
def r=basering;
|
|
511
|
+
int n=nvars(r);
|
|
512
|
+
ring s=0,(x(1..n),a),dp;
|
|
513
|
+
ideal A;
|
|
514
|
+
int i;
|
|
515
|
+
int j;
|
|
516
|
+
for(i=1;i<=n;i++){A[i]=x(i);}
|
|
517
|
+
map phi=r,A;
|
|
518
|
+
ideal I=phi(I);
|
|
519
|
+
poly f=a;
|
|
520
|
+
list l;
|
|
521
|
+
list m;
|
|
522
|
+
list HN=x(1);
|
|
523
|
+
ideal psi;
|
|
524
|
+
for(i=1;i<=n;i++){psi[i]=x(i);}
|
|
525
|
+
psi[n+1]=a;
|
|
526
|
+
intvec v;
|
|
527
|
+
list L,Resolve;
|
|
528
|
+
if(n==2)
|
|
529
|
+
{
|
|
530
|
+
ideal J=factorize(I[1],1);
|
|
531
|
+
list resolve;
|
|
532
|
+
for(int k=1;k<=size(J);k++)
|
|
533
|
+
{
|
|
534
|
+
I=J[k];
|
|
535
|
+
resolve=main(I,psi,f,m,l,HN,v,L);
|
|
536
|
+
for(i=1;i<=size(resolve);i++)
|
|
537
|
+
{
|
|
538
|
+
resolve[i][6]=delete(resolve[i][6],size(resolve[i][6]));
|
|
539
|
+
if(size(resolve[i])>=9){resolve[i]=delete(resolve[i],9);}
|
|
540
|
+
resolve[i]=delete(resolve[i],7);
|
|
541
|
+
}
|
|
542
|
+
if(k==1){Resolve=resolve;}
|
|
543
|
+
else{Resolve=Resolve+resolve;}
|
|
544
|
+
}
|
|
545
|
+
}
|
|
546
|
+
else
|
|
547
|
+
{
|
|
548
|
+
Resolve=main(I,psi,f,m,l,HN,v,L);
|
|
549
|
+
for(i=1;i<=size(Resolve);i++)
|
|
550
|
+
{
|
|
551
|
+
Resolve[i][6]=delete(Resolve[i][6],size(Resolve[i][6]));
|
|
552
|
+
Resolve[i]=delete(Resolve[i],8);
|
|
553
|
+
}
|
|
554
|
+
}
|
|
555
|
+
export(Resolve);
|
|
556
|
+
return(s);
|
|
557
|
+
}
|
|
558
|
+
example
|
|
559
|
+
{
|
|
560
|
+
"EXAMPLE:"; echo=2;
|
|
561
|
+
ring r=0,(x,y,z),dp;
|
|
562
|
+
ideal i=x2-y3,z2-y5;
|
|
563
|
+
def s=CurveRes(i);
|
|
564
|
+
setring s;
|
|
565
|
+
Resolve;
|
|
566
|
+
}
|
|
567
|
+
//////////////////////////////////////////////////////////////////
|
|
568
|
+
static proc mlist(list l,int n)
|
|
569
|
+
{
|
|
570
|
+
list N;
|
|
571
|
+
list M;
|
|
572
|
+
int i;
|
|
573
|
+
int j;
|
|
574
|
+
for(i=1;i<=n;i++) {M[i]=i;}
|
|
575
|
+
N=l+M;
|
|
576
|
+
for(i=1;i<=size(N)-1;i++)
|
|
577
|
+
{
|
|
578
|
+
j=i+1;
|
|
579
|
+
while(j<=size(N))
|
|
580
|
+
{
|
|
581
|
+
if(N[i]==N[j]){N=delete(N,j);}
|
|
582
|
+
else
|
|
583
|
+
{j++;}
|
|
584
|
+
}
|
|
585
|
+
}
|
|
586
|
+
return(N);
|
|
587
|
+
}
|
|
588
|
+
/////////////////////////////////////////////////////////////////////
|
|
589
|
+
//Assume that the basering is k[x(1..n),a]
|
|
590
|
+
|
|
591
|
+
static proc mmult(ideal I,poly f)
|
|
592
|
+
{
|
|
593
|
+
def r=basering;
|
|
594
|
+
int n=nvars(r)-1;
|
|
595
|
+
ring r1=(0,a),(x(1..n)),ds;
|
|
596
|
+
number f=leadcoef(imap(r,f));
|
|
597
|
+
minpoly=f;
|
|
598
|
+
ideal I=imap(r,I);
|
|
599
|
+
int m=mult(std(I));
|
|
600
|
+
return(m);
|
|
601
|
+
}
|
|
602
|
+
//////////////////////////////////////////////////////////////
|
|
603
|
+
//--------Parametrization of smooth curve-------------------//
|
|
604
|
+
//////////////////////////////////////////////////////////////
|
|
605
|
+
|
|
606
|
+
////////////////////////////////////////////////////////////////////////
|
|
607
|
+
//computes jacobian matrix, considering x(1..n) as variables and a(1..m) as parameters
|
|
608
|
+
|
|
609
|
+
static proc mjacob(ideal I)
|
|
610
|
+
{
|
|
611
|
+
def r=basering;
|
|
612
|
+
int n=nvars(r);
|
|
613
|
+
int k=size(I);
|
|
614
|
+
matrix M[k][n];
|
|
615
|
+
int i;
|
|
616
|
+
int j;
|
|
617
|
+
int l;
|
|
618
|
+
for(i=1;i<=k;i++)
|
|
619
|
+
{
|
|
620
|
+
for(j=1;j<=n;j++)
|
|
621
|
+
{
|
|
622
|
+
M[i,j]=diff(I[i],x(j));
|
|
623
|
+
for(l=1;l<=n;l++){M[i,j]=subst(M[i,j],x(l),0);}
|
|
624
|
+
}
|
|
625
|
+
}
|
|
626
|
+
return(M);
|
|
627
|
+
}
|
|
628
|
+
//////////////////////////////////////////////////////////
|
|
629
|
+
static proc mmi(matrix M,int n)
|
|
630
|
+
{
|
|
631
|
+
ideal l;
|
|
632
|
+
int k=nrows(M);
|
|
633
|
+
int i;
|
|
634
|
+
int j;
|
|
635
|
+
for(i=1;i<=k;i++)
|
|
636
|
+
{
|
|
637
|
+
l[i]=0;
|
|
638
|
+
for(j=1;j<=n;j++)
|
|
639
|
+
{
|
|
640
|
+
l[i]=l[i]+x(j)*M[i,j];
|
|
641
|
+
}
|
|
642
|
+
}
|
|
643
|
+
l=std(l);
|
|
644
|
+
int t=size(l);
|
|
645
|
+
i=1;
|
|
646
|
+
int mi=0;
|
|
647
|
+
while( mi==0 and i<=n-1)
|
|
648
|
+
{
|
|
649
|
+
if(diff(l[i],x(n-i))!=0){mi=n-i+1;}
|
|
650
|
+
else{i++;}
|
|
651
|
+
}
|
|
652
|
+
if(mi==0){mi=1;}
|
|
653
|
+
matrix Mi[k][n-1];
|
|
654
|
+
for(i=1;i<=k;i++)
|
|
655
|
+
{
|
|
656
|
+
for(j=1;j<=mi-1;j++)
|
|
657
|
+
{
|
|
658
|
+
Mi[i,j]=M[i,j];
|
|
659
|
+
}
|
|
660
|
+
for(j=mi;j<=n-1;j++)
|
|
661
|
+
{
|
|
662
|
+
Mi[i,j]=M[i,j+1];
|
|
663
|
+
}
|
|
664
|
+
}
|
|
665
|
+
list lmi=mi,Mi;
|
|
666
|
+
return(lmi);
|
|
667
|
+
}
|
|
668
|
+
//////////////////////////////////////////////////////////
|
|
669
|
+
static proc mC(matrix Mi,int n)
|
|
670
|
+
{
|
|
671
|
+
int k=nrows(Mi);
|
|
672
|
+
ideal c;
|
|
673
|
+
int i,j;
|
|
674
|
+
for(i=1;i<=n-1;i++)
|
|
675
|
+
{
|
|
676
|
+
c[i]=0;
|
|
677
|
+
for(j=1;j<=k;j++)
|
|
678
|
+
{
|
|
679
|
+
c[i]=c[i]+y(j)*Mi[j,i];
|
|
680
|
+
}
|
|
681
|
+
}
|
|
682
|
+
c=std(c);
|
|
683
|
+
return(c);
|
|
684
|
+
}
|
|
685
|
+
//////////////////////////////////////////////////////////
|
|
686
|
+
static proc mmF(ideal C, matrix Mi,int n,int k)
|
|
687
|
+
{
|
|
688
|
+
int s=size(C);
|
|
689
|
+
intvec mf;
|
|
690
|
+
int p=0;
|
|
691
|
+
int t=0;
|
|
692
|
+
int i;
|
|
693
|
+
int j;
|
|
694
|
+
int v=0;
|
|
695
|
+
for(i=s;i>0;i--)
|
|
696
|
+
{
|
|
697
|
+
p=t;
|
|
698
|
+
j=1;
|
|
699
|
+
while(t==p and p+j<=k)
|
|
700
|
+
{
|
|
701
|
+
if(diff(C[i],y(p+j))==0){j++;}
|
|
702
|
+
if(diff(C[i],y(p+j))!=0){t=p+j;v++;mf[v]=t;}
|
|
703
|
+
}
|
|
704
|
+
}
|
|
705
|
+
matrix B[n-1][n-1];
|
|
706
|
+
for(i=1;i<=n-1;i++)
|
|
707
|
+
{
|
|
708
|
+
for(j=1;j<=n-1;j++)
|
|
709
|
+
{
|
|
710
|
+
B[i,j]=Mi[ mf[i],j];
|
|
711
|
+
}
|
|
712
|
+
}
|
|
713
|
+
list mmf=mf,B;
|
|
714
|
+
return(mmf);
|
|
715
|
+
}
|
|
716
|
+
/////////////////////////////////////////////////////
|
|
717
|
+
static proc cparam(ideal I,poly f,int n,int m,int N)
|
|
718
|
+
{
|
|
719
|
+
def r=basering;
|
|
720
|
+
ring s=(0,a),(x(1..n)),lp;
|
|
721
|
+
number f=leadcoef(imap(r,f));
|
|
722
|
+
minpoly=f;
|
|
723
|
+
ideal I=imap(r,I);
|
|
724
|
+
matrix M=mjacob(I);
|
|
725
|
+
list l0=mmi(M,n);
|
|
726
|
+
int mi=l0[1];
|
|
727
|
+
matrix Mi=l0[2];
|
|
728
|
+
int k=nrows(Mi);
|
|
729
|
+
ring q=(0,a),(y(1..k)),lp;
|
|
730
|
+
number f=leadcoef(imap(r,f));
|
|
731
|
+
minpoly=f;
|
|
732
|
+
matrix Mi=imap(s,Mi);
|
|
733
|
+
ideal D=mC(Mi,n);
|
|
734
|
+
list l1=mmF(D,Mi,n,k);
|
|
735
|
+
intvec mf=l1[1];
|
|
736
|
+
matrix B=l1[2];
|
|
737
|
+
setring s;
|
|
738
|
+
matrix B=imap(q,B);
|
|
739
|
+
matrix C=inverse(B);
|
|
740
|
+
int i;
|
|
741
|
+
int j;
|
|
742
|
+
ideal P;
|
|
743
|
+
for(i=1;i<mi;i++){P[i]=x(i);}
|
|
744
|
+
P[mi]=x(n);
|
|
745
|
+
for(i=1;i<=n-mi;i++){P[mi+i]=x(mi+i-1);}
|
|
746
|
+
map phi=s,P;
|
|
747
|
+
ideal I1=phi(I);
|
|
748
|
+
if(nvars(basering)==2)
|
|
749
|
+
{
|
|
750
|
+
setring r;
|
|
751
|
+
ideal I1=imap(s,I1);
|
|
752
|
+
matrix C=imap(s,C);
|
|
753
|
+
list X;
|
|
754
|
+
matrix d[n-1][1];
|
|
755
|
+
matrix b[n-1][1];
|
|
756
|
+
ideal Q;
|
|
757
|
+
map psi;
|
|
758
|
+
int l;
|
|
759
|
+
for(i=1;i<=N;i++)
|
|
760
|
+
{
|
|
761
|
+
for(j=1;j<=n-1;j++)
|
|
762
|
+
{
|
|
763
|
+
d[j,1]=diff(I1[mf[j]],x(n));
|
|
764
|
+
for(l=1;l<=n;l++)
|
|
765
|
+
{
|
|
766
|
+
d[j,1]=subst(d[j,1],x(l),0);
|
|
767
|
+
}
|
|
768
|
+
}
|
|
769
|
+
b=-C*d;
|
|
770
|
+
I1=jet(I1,N-i+2);
|
|
771
|
+
X[i]=b;
|
|
772
|
+
for(j=1;j<=n-1;j++){Q[j]=x(n)*(b[j,1]+x(j));}
|
|
773
|
+
Q[n]=x(n);
|
|
774
|
+
I1[1]=quickSubst(I1[1],Q[1],Q[2],std(f));
|
|
775
|
+
I1=I1/x(n);
|
|
776
|
+
}
|
|
777
|
+
list Y=X,mi;
|
|
778
|
+
return(Y);
|
|
779
|
+
}
|
|
780
|
+
list X;
|
|
781
|
+
matrix d[n-1][1];
|
|
782
|
+
matrix b[n-1][1];
|
|
783
|
+
ideal Q;
|
|
784
|
+
map psi;
|
|
785
|
+
int l;
|
|
786
|
+
for(i=1;i<=N;i++)
|
|
787
|
+
{
|
|
788
|
+
for(j=1;j<=n-1;j++)
|
|
789
|
+
{
|
|
790
|
+
d[j,1]=diff(I1[mf[j]],x(n));
|
|
791
|
+
for(l=1;l<=n;l++){d[j,1]=subst(d[j,1],x(l),0);}
|
|
792
|
+
}
|
|
793
|
+
b=-C*d;
|
|
794
|
+
I1=jet(I1,N-i+2);
|
|
795
|
+
X[i]=b;
|
|
796
|
+
for(j=1;j<=n-1;j++){Q[j]=x(n)*(b[j,1]+x(j));}
|
|
797
|
+
Q[n]=x(n);
|
|
798
|
+
psi=s,Q;
|
|
799
|
+
I1=psi(I1);
|
|
800
|
+
I1=I1/x(n);
|
|
801
|
+
}
|
|
802
|
+
list Y=X,mi,var(1);
|
|
803
|
+
setring r;
|
|
804
|
+
list Y=imap(s,Y);
|
|
805
|
+
Y=delete(Y,3);
|
|
806
|
+
return(Y);
|
|
807
|
+
}
|
|
808
|
+
//////////////////////////////////////////////////////////////
|
|
809
|
+
//--------Parametrization of singular curve-----------------//
|
|
810
|
+
//////////////////////////////////////////////////////////////
|
|
811
|
+
proc CurveParam (list #)
|
|
812
|
+
"USAGE: CurveParam(I);
|
|
813
|
+
I ideal
|
|
814
|
+
ASSUME: I is an ideal of a curve C with a singular point 0.
|
|
815
|
+
COMPUTE: Parametrization for algebraic branches of the curve C.
|
|
816
|
+
RETURN: list L of size 1.
|
|
817
|
+
L[1] is a ring ring rt=0,(t,a),ds;
|
|
818
|
+
Ring R contains a list Param
|
|
819
|
+
Param is a list of algebraic branches
|
|
820
|
+
Each Param[i] is a list of size 3
|
|
821
|
+
Param[i][1] is a list of polynomials
|
|
822
|
+
Param[i][2] is an irredusible polynomial f\in k[a].It is a minimal polynomial for
|
|
823
|
+
the parameter a.
|
|
824
|
+
Param[i][3] is an integer b--upper bound for the conductor of Weierstrass semigroup
|
|
825
|
+
EXAMPLE: example CurveParam; shows an example"
|
|
826
|
+
{
|
|
827
|
+
int i;
|
|
828
|
+
int j;
|
|
829
|
+
if(typeof(#[1])=="ideal")
|
|
830
|
+
{
|
|
831
|
+
int d=deg(#[1][1]);
|
|
832
|
+
def s=CurveRes(#[1]);
|
|
833
|
+
}
|
|
834
|
+
else
|
|
835
|
+
{
|
|
836
|
+
def s=#[1];
|
|
837
|
+
}
|
|
838
|
+
setring s;
|
|
839
|
+
int n=nvars(s)-1;
|
|
840
|
+
list Param;
|
|
841
|
+
list l;
|
|
842
|
+
ideal D,P,Q,T;
|
|
843
|
+
poly f;
|
|
844
|
+
map tau;
|
|
845
|
+
list Z;
|
|
846
|
+
list Y;
|
|
847
|
+
list X;
|
|
848
|
+
int mi;
|
|
849
|
+
int b;
|
|
850
|
+
int k;
|
|
851
|
+
int dd;
|
|
852
|
+
for(j=1;j<=size(Resolve);j++)
|
|
853
|
+
{
|
|
854
|
+
b=0;
|
|
855
|
+
for(k=1;k<=size(Resolve[j][4]);k++)
|
|
856
|
+
{
|
|
857
|
+
b=b+Resolve[j][4][k]*(Resolve[j][4][k]+1);
|
|
858
|
+
}
|
|
859
|
+
if((n==2)&&(size(Resolve[j][4])==0))
|
|
860
|
+
{b=d;}
|
|
861
|
+
Y=cparam(Resolve[j][1],Resolve[j][3],n,1,b);
|
|
862
|
+
X=Y[1];
|
|
863
|
+
mi=Y[2];
|
|
864
|
+
f=Resolve[j][3];
|
|
865
|
+
for(i=1;i<mi;i++)
|
|
866
|
+
{
|
|
867
|
+
P[i]=0;
|
|
868
|
+
for(k=1;k<=b;k++){P[i]=P[i]+X[k][i,1]*(x(1)^k);}
|
|
869
|
+
}
|
|
870
|
+
P[mi]=x(1);
|
|
871
|
+
for(i=mi+1;i<=n;i++)
|
|
872
|
+
{
|
|
873
|
+
P[i]=0;
|
|
874
|
+
for(k=1;k<=b;k++){P[i]=P[i]+X[k][i-1,1]*(x(1)^k);}
|
|
875
|
+
}
|
|
876
|
+
P[n+1]=a;
|
|
877
|
+
tau=s,P;
|
|
878
|
+
T=Resolve[j][2];
|
|
879
|
+
//HERE A TEST FOR dd
|
|
880
|
+
if(nvars(basering)==3)
|
|
881
|
+
{
|
|
882
|
+
dd=boundparam(P[2]);
|
|
883
|
+
if(dd==1){dd=boundparam(P[1]);}
|
|
884
|
+
dd++;
|
|
885
|
+
P[1]=jet(P[1],dd);
|
|
886
|
+
P[2]=jet(P[2],dd);
|
|
887
|
+
Q[1]=quickSubst(T[1],P[1],P[2],std(f));
|
|
888
|
+
Q[2]=quickSubst(T[2],P[1],P[2],std(f));
|
|
889
|
+
Q[3]=a;
|
|
890
|
+
}
|
|
891
|
+
else
|
|
892
|
+
{
|
|
893
|
+
Q=tau(T);
|
|
894
|
+
}
|
|
895
|
+
for(i=1;i<=n;i++){Z[i]=jet(reduce(Q[i],std(f)),b+1);}
|
|
896
|
+
l[1]=Z;
|
|
897
|
+
l[2]=f;
|
|
898
|
+
l[3]=b;
|
|
899
|
+
Param[j]=l;
|
|
900
|
+
}
|
|
901
|
+
ring rt=0,(t,a),ds;
|
|
902
|
+
ideal D;
|
|
903
|
+
D[1]=t;
|
|
904
|
+
D[n+1]=a;
|
|
905
|
+
map delta=s,D;
|
|
906
|
+
list Param=delta(Param);
|
|
907
|
+
export(Param);
|
|
908
|
+
return(rt);
|
|
909
|
+
}
|
|
910
|
+
example
|
|
911
|
+
{
|
|
912
|
+
"EXAMPLE:";echo=2;
|
|
913
|
+
ring r=0,(x,y,z),dp;
|
|
914
|
+
ideal i=x2-y3,z2-y5;
|
|
915
|
+
def s=CurveParam(i);
|
|
916
|
+
setring s;
|
|
917
|
+
Param;
|
|
918
|
+
}
|
|
919
|
+
///////////////////////////////////////////////////////////////////////////////////////////
|
|
920
|
+
//----------Computation of Weierstrass Semigroup from parametrization--------------------//
|
|
921
|
+
///////////////////////////////////////////////////////////////////////////////////////////
|
|
922
|
+
static proc Semi(intvec G,int b)
|
|
923
|
+
"USAGE: Semi(G,b);
|
|
924
|
+
G=intvec
|
|
925
|
+
b=int
|
|
926
|
+
ASSUME: G[1]<=G[2]<=...<=G[k],
|
|
927
|
+
COMPUTE: elements of semigroup S generated by the entries of G till the bound b.
|
|
928
|
+
For each element i of S computes the list of integer vectors v of dimension
|
|
929
|
+
k=size(G), such that g[1]*v[1]+g[2]*v[2]+...+g[k]*v[k]=i. If there exists
|
|
930
|
+
conductor of semigroup S c<b-n, where n is minimal element of G, then
|
|
931
|
+
computes also c+n.
|
|
932
|
+
RETURN: list M of size 2.
|
|
933
|
+
L=M[1] is a list of size min(b,c+n).
|
|
934
|
+
L[i] is a list of integer vectors.
|
|
935
|
+
If i is not in a semigroup S than L[i] is empty.
|
|
936
|
+
M[2] is an integer =min(b,c+n)
|
|
937
|
+
M[3] minimal generators of S
|
|
938
|
+
EXAMPLE:"
|
|
939
|
+
{
|
|
940
|
+
list L;
|
|
941
|
+
list l;
|
|
942
|
+
int i;
|
|
943
|
+
for(i=1;i<=b;i++){L[i]=l;}
|
|
944
|
+
int k=size(G);
|
|
945
|
+
int n=G[1];
|
|
946
|
+
int j;
|
|
947
|
+
int t;
|
|
948
|
+
int q;
|
|
949
|
+
int c=0;
|
|
950
|
+
intvec w;
|
|
951
|
+
intvec v;
|
|
952
|
+
for(i=1;i<=k;i++)
|
|
953
|
+
{
|
|
954
|
+
for(j=1;j<=k;j++)
|
|
955
|
+
{
|
|
956
|
+
if(j==i){w[j]=1;}
|
|
957
|
+
else{w[j]=0;}
|
|
958
|
+
}
|
|
959
|
+
L[G[i]]=insert(L[G[i]],w);
|
|
960
|
+
}
|
|
961
|
+
list L1=L;
|
|
962
|
+
int s=0;
|
|
963
|
+
int s1=0;
|
|
964
|
+
i=1;
|
|
965
|
+
int p;
|
|
966
|
+
while(i<=b and s<n)
|
|
967
|
+
{
|
|
968
|
+
for(j=1;j<=k;j++)
|
|
969
|
+
{
|
|
970
|
+
if(i-G[j]>0)
|
|
971
|
+
{
|
|
972
|
+
if(size(L[i-G[j]])>0)
|
|
973
|
+
{
|
|
974
|
+
for(t=1;t<=size(L[i-G[j]]);t++)
|
|
975
|
+
{
|
|
976
|
+
v=L[i-G[j]][t];
|
|
977
|
+
p=1;
|
|
978
|
+
for(q=1;q<j;q++)
|
|
979
|
+
{
|
|
980
|
+
if(v[q]>0){p=0;}
|
|
981
|
+
}
|
|
982
|
+
if(p==1){v[j]=v[j]+1;L[i]=insert(L[i],v);}
|
|
983
|
+
}
|
|
984
|
+
}
|
|
985
|
+
}
|
|
986
|
+
}
|
|
987
|
+
if(size(L[i])>0){s1=1;}
|
|
988
|
+
s=s1*(s+1);
|
|
989
|
+
s1=0;
|
|
990
|
+
i++;
|
|
991
|
+
}
|
|
992
|
+
intvec Gmin;
|
|
993
|
+
int jmin=1;
|
|
994
|
+
for(j=1;j<=k;j++)
|
|
995
|
+
{
|
|
996
|
+
if(size(L[G[j]])==size(L1[G[j]]) && G[j]<i)
|
|
997
|
+
{
|
|
998
|
+
Gmin[jmin]=G[j];
|
|
999
|
+
L1[G[j]]=insert(L1[G[j]],0);
|
|
1000
|
+
jmin++;
|
|
1001
|
+
}
|
|
1002
|
+
}
|
|
1003
|
+
list M=L,i-1,Gmin;
|
|
1004
|
+
return(M);
|
|
1005
|
+
}
|
|
1006
|
+
///////////////////////////////////////////////////////////////////////////////////////////
|
|
1007
|
+
static proc AddElem(list L,int b,int k,int g,int n)
|
|
1008
|
+
"ASSUME: L list of size b. L[i] list of integer vectors of dimension k.
|
|
1009
|
+
b=int
|
|
1010
|
+
k=int as above
|
|
1011
|
+
g=int new generator
|
|
1012
|
+
n=int. minimal generator
|
|
1013
|
+
RETURN: list M
|
|
1014
|
+
M[1]=new L;
|
|
1015
|
+
M[2]=new b;"
|
|
1016
|
+
{
|
|
1017
|
+
int i,j;
|
|
1018
|
+
intvec v;
|
|
1019
|
+
for(i=1;i<=b;i++)
|
|
1020
|
+
{
|
|
1021
|
+
if(size(L[i])>0)
|
|
1022
|
+
{
|
|
1023
|
+
for(j=1;j<=size(L[i]);j++)
|
|
1024
|
+
{
|
|
1025
|
+
v=L[i][j];
|
|
1026
|
+
v[k+1]=0;
|
|
1027
|
+
L[i][j]=v;
|
|
1028
|
+
}
|
|
1029
|
+
}
|
|
1030
|
+
}
|
|
1031
|
+
intvec w;
|
|
1032
|
+
w[k+1]=1;
|
|
1033
|
+
L[g]=insert(L[g],w);
|
|
1034
|
+
int s=0;
|
|
1035
|
+
int s1=0;
|
|
1036
|
+
i=1;
|
|
1037
|
+
while(i<=b and s<n)
|
|
1038
|
+
{
|
|
1039
|
+
if(i-g>0)
|
|
1040
|
+
{
|
|
1041
|
+
if(size(L[i-g])>0)
|
|
1042
|
+
{
|
|
1043
|
+
for(j=1;j<=size(L[i-g]);j++)
|
|
1044
|
+
{
|
|
1045
|
+
v=L[i-g][j];
|
|
1046
|
+
v[k+1]=v[k+1]+1;
|
|
1047
|
+
L[i]=insert(L[i],v);
|
|
1048
|
+
}
|
|
1049
|
+
}
|
|
1050
|
+
}
|
|
1051
|
+
if(size(L[i])>0){s1=1;}
|
|
1052
|
+
s=s1*(s+1);
|
|
1053
|
+
s1=0;
|
|
1054
|
+
i++;
|
|
1055
|
+
}
|
|
1056
|
+
int b1=i-1;
|
|
1057
|
+
list M=L,b1;
|
|
1058
|
+
return(M);
|
|
1059
|
+
}
|
|
1060
|
+
///////////////////////////////////////////////////////////////////////////////////////////
|
|
1061
|
+
proc WSemigroup(list X,int b0)
|
|
1062
|
+
"USAGE: WSemigroup(X,b0);
|
|
1063
|
+
X a list of polynomials in one variable, say t.
|
|
1064
|
+
b0 an integer
|
|
1065
|
+
COMPUTE: Weierstrass semigroup of space curve C,which is given by a parametrization
|
|
1066
|
+
X[1](t),...,X[k](t), till the bound b0.
|
|
1067
|
+
|
|
1068
|
+
ASSUME: b0 is greater then conductor
|
|
1069
|
+
RETURN: list M of size 5.
|
|
1070
|
+
M[1]= list of integers, which are minimal generators set of the Weierstrass semigroup.
|
|
1071
|
+
M[2]=integer, conductor of the Weierstrass semigroup.
|
|
1072
|
+
M[3]=intvec, all elements of the Weierstrass semigroup till some bound b,
|
|
1073
|
+
which is greater than conductor.
|
|
1074
|
+
WARNING: works only over the ring with one variable with ordering ds
|
|
1075
|
+
EXAMPLE: example WSemigroup; shows an example"
|
|
1076
|
+
|
|
1077
|
+
{
|
|
1078
|
+
int k=size(X);
|
|
1079
|
+
intvec G;
|
|
1080
|
+
int i,i2;
|
|
1081
|
+
poly t=var(1);
|
|
1082
|
+
poly h;
|
|
1083
|
+
int g;
|
|
1084
|
+
for(i=1;i<=k;i++)
|
|
1085
|
+
{G[i]=ord(X[i]);}
|
|
1086
|
+
for(i=1;i<k;i++)
|
|
1087
|
+
{
|
|
1088
|
+
for(i2=i;i2<=k;i2++)
|
|
1089
|
+
{
|
|
1090
|
+
if(G[i]>G[i2])
|
|
1091
|
+
{
|
|
1092
|
+
g=G[i];G[i]=G[i2];G[i2]=g;
|
|
1093
|
+
h=X[i];X[i]=X[i2];X[i2]=h;
|
|
1094
|
+
}
|
|
1095
|
+
}
|
|
1096
|
+
}
|
|
1097
|
+
list U=Semi(G,b0);
|
|
1098
|
+
list L=U[1];
|
|
1099
|
+
int b=U[2];
|
|
1100
|
+
G=U[3];
|
|
1101
|
+
int k1=size(G);
|
|
1102
|
+
list N;
|
|
1103
|
+
list l;
|
|
1104
|
+
for(i=1;i<=b;i++){N[i]=l;}
|
|
1105
|
+
int j;
|
|
1106
|
+
for(j=b0;j>b;j--){L=delete(L,j);}
|
|
1107
|
+
poly p;
|
|
1108
|
+
int s;
|
|
1109
|
+
int e;
|
|
1110
|
+
for(i=1;i<=b;i++)
|
|
1111
|
+
{
|
|
1112
|
+
for(j=1;j<=size(L[i]);j++)
|
|
1113
|
+
{
|
|
1114
|
+
p=1;
|
|
1115
|
+
for(s=1;s<=k;s++)
|
|
1116
|
+
{
|
|
1117
|
+
for(e=1;e<=L[i][j][s];e++)
|
|
1118
|
+
{
|
|
1119
|
+
p=p*X[s];
|
|
1120
|
+
p=jet(p,b);
|
|
1121
|
+
}
|
|
1122
|
+
}
|
|
1123
|
+
N[i]=insert(N[i],p);
|
|
1124
|
+
}
|
|
1125
|
+
}
|
|
1126
|
+
int j1;
|
|
1127
|
+
int j2;
|
|
1128
|
+
list M;
|
|
1129
|
+
poly c1;
|
|
1130
|
+
poly c2;
|
|
1131
|
+
poly f;
|
|
1132
|
+
int m;
|
|
1133
|
+
int b1;
|
|
1134
|
+
ideal I;
|
|
1135
|
+
matrix C;
|
|
1136
|
+
matrix C1;
|
|
1137
|
+
int q;
|
|
1138
|
+
int i1;
|
|
1139
|
+
i=1;
|
|
1140
|
+
while(i<=b)
|
|
1141
|
+
{
|
|
1142
|
+
for(j1=2;j1<=size(N[i]);j1++)
|
|
1143
|
+
{
|
|
1144
|
+
for(j2=1;j2<j1;j2++)
|
|
1145
|
+
{
|
|
1146
|
+
c1=coeffs(N[i][j1],t)[i+1,1];
|
|
1147
|
+
c2=coeffs(N[i][j2],t)[i+1,1];
|
|
1148
|
+
f=c2*N[i][j1]-c1*N[i][j2];
|
|
1149
|
+
m=ord(f);
|
|
1150
|
+
if(m>=0)
|
|
1151
|
+
{
|
|
1152
|
+
if(size(N[m])==0)
|
|
1153
|
+
{
|
|
1154
|
+
N[m]=insert(N[m],f);
|
|
1155
|
+
if(size(L[m])==0)
|
|
1156
|
+
{
|
|
1157
|
+
M=AddElem(L,b,k,m,G[1]);
|
|
1158
|
+
L=M[1];
|
|
1159
|
+
b1=M[2];
|
|
1160
|
+
G[k1+1]=m;
|
|
1161
|
+
X[k+1]=f;
|
|
1162
|
+
N[m]=insert(N[m],f);
|
|
1163
|
+
k=k+1;
|
|
1164
|
+
k1=k1+1;
|
|
1165
|
+
if(b1<b)
|
|
1166
|
+
{
|
|
1167
|
+
for(i1=1;i1<=b1;i1++)
|
|
1168
|
+
{
|
|
1169
|
+
for(s=1;s<=size(N[i1]);s++){N[i1][s]=jet(N[i1][s],b1);}
|
|
1170
|
+
}
|
|
1171
|
+
for(s=size(N);s>b1;s--){N=delete(N,s);}
|
|
1172
|
+
for(s=size(L);s>b1;s--){L=delete(L,s);}
|
|
1173
|
+
}
|
|
1174
|
+
b=b1;
|
|
1175
|
+
}
|
|
1176
|
+
}
|
|
1177
|
+
else
|
|
1178
|
+
{
|
|
1179
|
+
for(q=1;q<=size(N[m]);q++){I[q]=N[m][q];}
|
|
1180
|
+
I[size(N[m])+1]=f;
|
|
1181
|
+
C=coeffs(I,t);
|
|
1182
|
+
C1=gauss_col(C);
|
|
1183
|
+
if(C1[size(N[m])+1]!=0){N[m]=insert(N[m],f);}
|
|
1184
|
+
}
|
|
1185
|
+
}
|
|
1186
|
+
}
|
|
1187
|
+
}
|
|
1188
|
+
i++;
|
|
1189
|
+
}
|
|
1190
|
+
intvec S;
|
|
1191
|
+
j=1;
|
|
1192
|
+
for(i=1;i<=b;i++)
|
|
1193
|
+
{
|
|
1194
|
+
if(size(L[i])>0){S[j]=i;j++;}
|
|
1195
|
+
}
|
|
1196
|
+
U=Semi(G,b);
|
|
1197
|
+
G=U[3];
|
|
1198
|
+
list Q=G,b-G[1]+1,S;
|
|
1199
|
+
return(Q);
|
|
1200
|
+
}
|
|
1201
|
+
example
|
|
1202
|
+
{
|
|
1203
|
+
"EXAMPLE:";echo=2;
|
|
1204
|
+
ring r=0,(t),ds;
|
|
1205
|
+
list X=t4,t5+t11,t9+2*t7;
|
|
1206
|
+
list L=WSemigroup(X,30);
|
|
1207
|
+
L;
|
|
1208
|
+
}
|
|
1209
|
+
////////////////////////////////////////////////////////////////////////////////////////////
|
|
1210
|
+
|
|
1211
|
+
static proc quickSubst(poly h, poly r, poly s,ideal I)
|
|
1212
|
+
{
|
|
1213
|
+
//=== computes h(r,s) mod I for h in Q[x(1),x(2),a]
|
|
1214
|
+
attrib(I,"isSB",1);
|
|
1215
|
+
if((r==x(1))&&(s==x(2))){return(reduce(h,I));}
|
|
1216
|
+
poly q1 = 1;
|
|
1217
|
+
poly q2 = 1;
|
|
1218
|
+
poly q3 = 1;
|
|
1219
|
+
int i,j,e1,e2,e3;
|
|
1220
|
+
list L,L1,L2,L3;
|
|
1221
|
+
if(r==x(1))
|
|
1222
|
+
{
|
|
1223
|
+
matrix M=coeffs(h,x(2));
|
|
1224
|
+
L[1]=1;
|
|
1225
|
+
for(i=2;i<=nrows(M);i++)
|
|
1226
|
+
{
|
|
1227
|
+
q2 = reduce(q2*s,I);
|
|
1228
|
+
L[i]=q2;
|
|
1229
|
+
}
|
|
1230
|
+
i=1;
|
|
1231
|
+
h=0;
|
|
1232
|
+
while(i <= nrows(M))
|
|
1233
|
+
{
|
|
1234
|
+
if(M[i,1]!=0)
|
|
1235
|
+
{
|
|
1236
|
+
h=h+M[i,1]*L[i];
|
|
1237
|
+
}
|
|
1238
|
+
i++;
|
|
1239
|
+
}
|
|
1240
|
+
h=reduce(h,I);
|
|
1241
|
+
return(h);
|
|
1242
|
+
}
|
|
1243
|
+
if(s==x(2))
|
|
1244
|
+
{
|
|
1245
|
+
matrix M=coeffs(h,x(1));
|
|
1246
|
+
L[1]=1;
|
|
1247
|
+
for(i=2;i<=nrows(M);i++)
|
|
1248
|
+
{
|
|
1249
|
+
q1 = reduce(q1*r,I);
|
|
1250
|
+
L[i]=q1;
|
|
1251
|
+
}
|
|
1252
|
+
i=1;
|
|
1253
|
+
h=0;
|
|
1254
|
+
while(i <= nrows(M))
|
|
1255
|
+
{
|
|
1256
|
+
if(M[i,1]!=0)
|
|
1257
|
+
{
|
|
1258
|
+
h=h+M[i,1]*L[i];
|
|
1259
|
+
}
|
|
1260
|
+
i++;
|
|
1261
|
+
}
|
|
1262
|
+
h=reduce(h,I);
|
|
1263
|
+
return(h);
|
|
1264
|
+
}
|
|
1265
|
+
for(i=1;i<=size(h);i++)
|
|
1266
|
+
{
|
|
1267
|
+
if(leadexp(h[i])[1]>e1){e1=leadexp(h[i])[1];}
|
|
1268
|
+
if(leadexp(h[i])[2]>e2){e2=leadexp(h[i])[2];}
|
|
1269
|
+
if(leadexp(h[i])[3]>e3){e3=leadexp(h[i])[3];}
|
|
1270
|
+
}
|
|
1271
|
+
for(i = 1; i <= size(h); i++)
|
|
1272
|
+
{
|
|
1273
|
+
L[i] = list(leadcoef(h[i]),leadexp(h[i]));
|
|
1274
|
+
}
|
|
1275
|
+
L1[1]=1;
|
|
1276
|
+
L2[1]=1;
|
|
1277
|
+
L3[1]=1;
|
|
1278
|
+
for(i=1;i<=e1;i++)
|
|
1279
|
+
{
|
|
1280
|
+
q1 = reduce(q1*r,I);
|
|
1281
|
+
L1[i+1]=q1;
|
|
1282
|
+
}
|
|
1283
|
+
for(i=1;i<=e2;i++)
|
|
1284
|
+
{
|
|
1285
|
+
q2 = reduce(q2*s,I);
|
|
1286
|
+
L2[i+1]=q2;
|
|
1287
|
+
}
|
|
1288
|
+
for(i=1;i<=e3;i++)
|
|
1289
|
+
{
|
|
1290
|
+
q3 = reduce(q3*var(3),I);
|
|
1291
|
+
L3[i+1]=q3;
|
|
1292
|
+
}
|
|
1293
|
+
int m=size(L);
|
|
1294
|
+
i = 1;
|
|
1295
|
+
h = 0;
|
|
1296
|
+
while(i <= m)
|
|
1297
|
+
{
|
|
1298
|
+
h=h+L[i][1]*L1[L[i][2][1]+1]*L2[L[i][2][2]+1]*L3[L[i][2][3]+1];
|
|
1299
|
+
i++;
|
|
1300
|
+
}
|
|
1301
|
+
h=reduce(h,I);
|
|
1302
|
+
return(h);
|
|
1303
|
+
}
|
|
1304
|
+
|
|
1305
|
+
static proc semi2char(intvec v)
|
|
1306
|
+
{
|
|
1307
|
+
intvec k=v[1..2];
|
|
1308
|
+
intvec w=v[1];
|
|
1309
|
+
int i,j,p,q;
|
|
1310
|
+
for(i=2;i<size(v);i++)
|
|
1311
|
+
{
|
|
1312
|
+
w[i]=gcd(w[i-1],v[i]);
|
|
1313
|
+
}
|
|
1314
|
+
for(i=3;i<=size(v);i++)
|
|
1315
|
+
{
|
|
1316
|
+
k[i]=v[i];
|
|
1317
|
+
for(j=2;j<i;j++)
|
|
1318
|
+
{
|
|
1319
|
+
k[i]=k[i]-(w[j-1] div w[j]-1)*v[j];
|
|
1320
|
+
}
|
|
1321
|
+
}
|
|
1322
|
+
return(k);
|
|
1323
|
+
}
|
|
1324
|
+
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
1325
|
+
proc primparam(poly x,poly y,int c)
|
|
1326
|
+
"USAGE: MultiplicitySequence(x,y,c); x poly, y poly, c integer
|
|
1327
|
+
ASSUME: x and y are polynomials in k(a)[t] such that (x,y) is a primitive parametrization of
|
|
1328
|
+
a plane curve branch and ord(x)<ord(y).
|
|
1329
|
+
RETURN: Hamburger-Noether Matrix of the curve branch given parametrically by (x,y).
|
|
1330
|
+
EXAMPLE: example primparam; shows an example
|
|
1331
|
+
"
|
|
1332
|
+
{
|
|
1333
|
+
int i,h;
|
|
1334
|
+
poly F,z;
|
|
1335
|
+
list L;
|
|
1336
|
+
while(ord(x)>1)
|
|
1337
|
+
{
|
|
1338
|
+
list v;
|
|
1339
|
+
while(ord(y)>=ord(x))
|
|
1340
|
+
{
|
|
1341
|
+
F=divide(y,x,c);
|
|
1342
|
+
if(ord(F)==0)
|
|
1343
|
+
{
|
|
1344
|
+
v=insert(v,subst(F,t,0),size(v));
|
|
1345
|
+
y=F-subst(F,t,0);
|
|
1346
|
+
}
|
|
1347
|
+
else
|
|
1348
|
+
{
|
|
1349
|
+
v=insert(v,0,size(v));
|
|
1350
|
+
y=F;
|
|
1351
|
+
}
|
|
1352
|
+
}
|
|
1353
|
+
v=insert(v,t,size(v));
|
|
1354
|
+
L=insert(L,transform(v),size(L));
|
|
1355
|
+
z=x;
|
|
1356
|
+
x=y;
|
|
1357
|
+
y=z;
|
|
1358
|
+
kill v;
|
|
1359
|
+
}
|
|
1360
|
+
if(ord(x)==1)
|
|
1361
|
+
{
|
|
1362
|
+
list v;
|
|
1363
|
+
while(i<c)
|
|
1364
|
+
{
|
|
1365
|
+
F=divide(y,x,c);
|
|
1366
|
+
if(ord(F)==0)
|
|
1367
|
+
{
|
|
1368
|
+
v=insert(v,subst(F,t,0),size(v));
|
|
1369
|
+
y=F-subst(F,t,0);
|
|
1370
|
+
}
|
|
1371
|
+
else
|
|
1372
|
+
{
|
|
1373
|
+
v=insert(v,0,size(v));
|
|
1374
|
+
y=F;
|
|
1375
|
+
}
|
|
1376
|
+
if(y==0)
|
|
1377
|
+
{
|
|
1378
|
+
v=insert(v,t,size(v));
|
|
1379
|
+
break;
|
|
1380
|
+
}
|
|
1381
|
+
i++;
|
|
1382
|
+
}
|
|
1383
|
+
L=insert(L,transform(v),size(L));
|
|
1384
|
+
}
|
|
1385
|
+
return(compose(L));
|
|
1386
|
+
}
|
|
1387
|
+
example
|
|
1388
|
+
{
|
|
1389
|
+
"EXAMPLE:"; echo=2;
|
|
1390
|
+
ring r=(0,a),t,ds;
|
|
1391
|
+
poly x=t6;
|
|
1392
|
+
poly y=t8+t11;
|
|
1393
|
+
int c=15;
|
|
1394
|
+
primparam(x,y,c);
|
|
1395
|
+
}
|
|
1396
|
+
|
|
1397
|
+
//////////////////////////////////////
|
|
1398
|
+
//L is a list of polynomials
|
|
1399
|
+
//////////////////////////////////////
|
|
1400
|
+
static proc transform(list L)
|
|
1401
|
+
{
|
|
1402
|
+
matrix m2;
|
|
1403
|
+
matrix m1=matrix(L[1]);
|
|
1404
|
+
for(int i=2;i<=size(L);i++)
|
|
1405
|
+
{
|
|
1406
|
+
m2=matrix(L[i]);
|
|
1407
|
+
m1=concat(m1,m2);
|
|
1408
|
+
}
|
|
1409
|
+
return(m1);
|
|
1410
|
+
}
|
|
1411
|
+
/////////////////////////////////////////////////////////////////
|
|
1412
|
+
//L is a list of matrices
|
|
1413
|
+
///////////////////////////////////////
|
|
1414
|
+
static proc compose(list L)
|
|
1415
|
+
{
|
|
1416
|
+
matrix M[ncols(L[1])][1]=transpose(L[1]);
|
|
1417
|
+
for(int i=2;i<=size(L);i++)
|
|
1418
|
+
{
|
|
1419
|
+
M=concat(M,transpose(L[i]));
|
|
1420
|
+
}
|
|
1421
|
+
return(transpose(M));
|
|
1422
|
+
}
|
|
1423
|
+
//////////////////////////////////////////////////////////
|
|
1424
|
+
static proc rduce(poly p)
|
|
1425
|
+
{
|
|
1426
|
+
int n=ord(p);
|
|
1427
|
+
poly q=p/(t^n);
|
|
1428
|
+
return(q);
|
|
1429
|
+
}
|
|
1430
|
+
////////////////////////////////////////////////////
|
|
1431
|
+
static proc divide(poly p,poly q,int c)i
|
|
1432
|
+
{
|
|
1433
|
+
int n=ord(p);
|
|
1434
|
+
int m=ord(q);
|
|
1435
|
+
poly p'=rduce(p);
|
|
1436
|
+
poly q'=rduce(q);
|
|
1437
|
+
poly r=t^(n-m)*p'*jet(1,q',c);
|
|
1438
|
+
return(jet(r,c));
|
|
1439
|
+
}
|
|
1440
|
+
/////////////////////////////////////////////////////
|
|
1441
|
+
static proc contact(list L)
|
|
1442
|
+
{
|
|
1443
|
+
def M=L[1];
|
|
1444
|
+
intvec v=L[2];
|
|
1445
|
+
int s,j,i;
|
|
1446
|
+
for(i=1;i<=size(v);i++)
|
|
1447
|
+
{
|
|
1448
|
+
if(v[i]<0){v[i]=-1-v[i];}
|
|
1449
|
+
for(j=1;j<=v[i];j++)
|
|
1450
|
+
{
|
|
1451
|
+
s=s+1;
|
|
1452
|
+
if(find(string(M[i,j]),"a")!=0){return(s);}
|
|
1453
|
+
}
|
|
1454
|
+
}
|
|
1455
|
+
}
|
|
1456
|
+
///////////////////////////////////////////////////////////
|
|
1457
|
+
static proc converter(list L)
|
|
1458
|
+
{
|
|
1459
|
+
def s=basering;
|
|
1460
|
+
list D;
|
|
1461
|
+
int i,c;
|
|
1462
|
+
for(i=1;i<=size(L);i++)
|
|
1463
|
+
{D=insert(D,deg(L[i][2]),size(D));}
|
|
1464
|
+
ring r=(0,a),(t),ds;
|
|
1465
|
+
list L=imap(s,L);
|
|
1466
|
+
poly x,y,z;
|
|
1467
|
+
list A,B;
|
|
1468
|
+
for(i=1;i<=size(L);i++)
|
|
1469
|
+
{A[5]=D[i];
|
|
1470
|
+
x=L[i][1][1];
|
|
1471
|
+
y=L[i][1][2];
|
|
1472
|
+
if(ord(x)<=ord(y)){A[3]=0;}
|
|
1473
|
+
else{A[3]=1;
|
|
1474
|
+
z=x;
|
|
1475
|
+
x=y;
|
|
1476
|
+
y=z;
|
|
1477
|
+
}
|
|
1478
|
+
c=bound(x,y);
|
|
1479
|
+
if(c==-1){ERROR("Bound is not enough");}
|
|
1480
|
+
A[1]=primparam(x,y,c);
|
|
1481
|
+
A[2]=lengths(A[1]);
|
|
1482
|
+
A[4]=0;
|
|
1483
|
+
B=insert(B,A,size(B));
|
|
1484
|
+
A=list();
|
|
1485
|
+
}
|
|
1486
|
+
ring r1=(0,a),(x,y),ds;
|
|
1487
|
+
list hne=fetch(r,B);
|
|
1488
|
+
export(hne);
|
|
1489
|
+
return(r1);
|
|
1490
|
+
}
|
|
1491
|
+
//////////////////////////////////////////////////////////
|
|
1492
|
+
static proc intermat(list L)
|
|
1493
|
+
{
|
|
1494
|
+
int s=size(L);
|
|
1495
|
+
intvec v=L[1][5];
|
|
1496
|
+
intvec w1;
|
|
1497
|
+
int i,j,d,b,l,k,c,o,p;
|
|
1498
|
+
for(i=2;i<=s;i++)
|
|
1499
|
+
{v=v,L[i][5];}
|
|
1500
|
+
intvec u=v[1];
|
|
1501
|
+
for(i=2;i<=s;i++)
|
|
1502
|
+
{
|
|
1503
|
+
l=u[size(u)]+v[i];
|
|
1504
|
+
u=u,l;
|
|
1505
|
+
}
|
|
1506
|
+
int m=u[size(u)];
|
|
1507
|
+
intmat M[m][m];
|
|
1508
|
+
for(i=1;i<=m;i++)
|
|
1509
|
+
{
|
|
1510
|
+
for(j=i+1;j<=m;j++)
|
|
1511
|
+
{
|
|
1512
|
+
d=sorting(u,i);
|
|
1513
|
+
b=sorting(u,j);
|
|
1514
|
+
if(d==b){k=contact(L[d]);
|
|
1515
|
+
w1=multsequence(L[d]);
|
|
1516
|
+
if(size(w1)<k){for(p=size(w1)+1;p<=k;p++)
|
|
1517
|
+
{w1=w1,1;} }
|
|
1518
|
+
for(o=1;o<=k;o++){c=c+w1[o]*w1[o];}
|
|
1519
|
+
M[i,j]=c;
|
|
1520
|
+
c=0;
|
|
1521
|
+
}
|
|
1522
|
+
else
|
|
1523
|
+
{M[i,j]=intersection(L[d],L[b]);}
|
|
1524
|
+
}
|
|
1525
|
+
}
|
|
1526
|
+
return(M);
|
|
1527
|
+
}
|
|
1528
|
+
/////////////////////////////////////////////////////////////////
|
|
1529
|
+
static proc lengths(matrix M)
|
|
1530
|
+
{
|
|
1531
|
+
intvec v;
|
|
1532
|
+
int s,i,j;
|
|
1533
|
+
for(i=1;i<=nrows(M);i++)
|
|
1534
|
+
{
|
|
1535
|
+
for(j=1;j<=ncols(M);j++)
|
|
1536
|
+
{
|
|
1537
|
+
if(M[i,j]==t)
|
|
1538
|
+
{
|
|
1539
|
+
v[i]=j-1;
|
|
1540
|
+
if(i==nrows(M)){s=1;}
|
|
1541
|
+
break;
|
|
1542
|
+
}
|
|
1543
|
+
}
|
|
1544
|
+
}
|
|
1545
|
+
if(s==0){v[nrows(M)]=-j;}
|
|
1546
|
+
return(v);
|
|
1547
|
+
}
|
|
1548
|
+
//////////////////////////////////////////////////////////////////////
|
|
1549
|
+
static proc sorting(intvec u,int k)
|
|
1550
|
+
{
|
|
1551
|
+
int s=size(u);
|
|
1552
|
+
int i;
|
|
1553
|
+
for(i=1;i<=s;i++)
|
|
1554
|
+
{
|
|
1555
|
+
if(u[i]>=k){break;}
|
|
1556
|
+
}
|
|
1557
|
+
return(i);
|
|
1558
|
+
}
|
|
1559
|
+
//////////////////////////////////////////////////////////////////////
|
|
1560
|
+
proc MultiplicitySequence(ideal i)
|
|
1561
|
+
"USAGE: MultiplicitySequence(i); i ideal
|
|
1562
|
+
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
|
|
1563
|
+
RETURN: list X of charts. Each chart contains the multiplicity sequence of
|
|
1564
|
+
the corresponding branch.
|
|
1565
|
+
EXAMPLE: example MultiplicitySequence; shows an example
|
|
1566
|
+
"
|
|
1567
|
+
{
|
|
1568
|
+
def s=CurveParam(i);
|
|
1569
|
+
setring s;
|
|
1570
|
+
int j,k;
|
|
1571
|
+
def r1=converter(Param);
|
|
1572
|
+
setring r1;
|
|
1573
|
+
list Y=hne;
|
|
1574
|
+
list X;
|
|
1575
|
+
for(j=1;j<=size(Y);j++)
|
|
1576
|
+
{
|
|
1577
|
+
for(k=1;k<=Y[j][5];k++)
|
|
1578
|
+
{
|
|
1579
|
+
X=insert(X,multsequence(Y[j]),size(X));
|
|
1580
|
+
}
|
|
1581
|
+
}
|
|
1582
|
+
return(X);
|
|
1583
|
+
}
|
|
1584
|
+
example
|
|
1585
|
+
{
|
|
1586
|
+
"EXAMPLE:"; echo = 2;
|
|
1587
|
+
ring r=0,(x,y),ds;
|
|
1588
|
+
ideal i=x14-x4y7-y11;
|
|
1589
|
+
MultiplicitySequence(i);
|
|
1590
|
+
}
|
|
1591
|
+
/////////////////////////////////////////////////////////////////////////
|
|
1592
|
+
proc IntersectionMatrix(ideal i)
|
|
1593
|
+
"USAGE: IntersectionMatrix(i); i ideal
|
|
1594
|
+
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
|
|
1595
|
+
RETURN: intmat of the intersection multiplicities of the branches.
|
|
1596
|
+
EXAMPLE: example IntersectionMatrix; shows an example
|
|
1597
|
+
"
|
|
1598
|
+
{
|
|
1599
|
+
def s=CurveParam(i);
|
|
1600
|
+
setring s;
|
|
1601
|
+
int j,k;
|
|
1602
|
+
def r1=converter(Param);
|
|
1603
|
+
setring r1;
|
|
1604
|
+
list Y=hne;
|
|
1605
|
+
return(intermat(Y));
|
|
1606
|
+
}
|
|
1607
|
+
example
|
|
1608
|
+
{
|
|
1609
|
+
"EXAMPLE:"; echo = 2;
|
|
1610
|
+
ring r=0,(x,y),ds;
|
|
1611
|
+
ideal i=x14-x4y7-y11;
|
|
1612
|
+
IntersectionMatrix(i);
|
|
1613
|
+
}
|
|
1614
|
+
///////////////////////////////////////////////////////////////////////////
|
|
1615
|
+
proc CharacteristicExponents(ideal i)
|
|
1616
|
+
"USAGE: CharacteristicExponents(i); i ideal
|
|
1617
|
+
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
|
|
1618
|
+
RETURN: list X of charts. Each chart contains the characteristic exponents
|
|
1619
|
+
of the corresponding branch.
|
|
1620
|
+
EXAMPLE: example CharacteristicExponents; shows an example
|
|
1621
|
+
"
|
|
1622
|
+
{
|
|
1623
|
+
def s=CurveParam(i);
|
|
1624
|
+
setring s;
|
|
1625
|
+
int j,k;
|
|
1626
|
+
def r1=converter(Param);
|
|
1627
|
+
setring r1;
|
|
1628
|
+
list X;
|
|
1629
|
+
list Y=hne;
|
|
1630
|
+
for(j=1;j<=size(Y);j++)
|
|
1631
|
+
{
|
|
1632
|
+
for(k=1;k<=Y[j][5];k++)
|
|
1633
|
+
{
|
|
1634
|
+
X=insert(X,invariants(Y[j])[1],size(X));
|
|
1635
|
+
}
|
|
1636
|
+
}
|
|
1637
|
+
return(X);
|
|
1638
|
+
}
|
|
1639
|
+
example
|
|
1640
|
+
{
|
|
1641
|
+
"EXAMPLE:"; echo = 2;
|
|
1642
|
+
ring r=0,(x,y),ds;
|
|
1643
|
+
ideal i=x14-x4y7-y11;
|
|
1644
|
+
CharacteristicExponents(i);
|
|
1645
|
+
}
|
|
1646
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
1647
|
+
static proc contactNumber(int a,intvec v1,intvec v2)
|
|
1648
|
+
{
|
|
1649
|
+
//==== a is the intersection multiplicity of the branches
|
|
1650
|
+
//==== v1,v2 are the multiplicity sequences
|
|
1651
|
+
int i,c,d;
|
|
1652
|
+
if(size(v1)>size(v2))
|
|
1653
|
+
{
|
|
1654
|
+
for(i=size(v2)+1;i<=size(v1);i++)
|
|
1655
|
+
{
|
|
1656
|
+
v2[i]=1;
|
|
1657
|
+
}
|
|
1658
|
+
}
|
|
1659
|
+
if(size(v1)<size(v2))
|
|
1660
|
+
{
|
|
1661
|
+
for(i=size(v1)+1;i<=size(v2);i++)
|
|
1662
|
+
{
|
|
1663
|
+
v1[i]=1;
|
|
1664
|
+
}
|
|
1665
|
+
}
|
|
1666
|
+
while((c<a)&&(d<size(v1)))
|
|
1667
|
+
{
|
|
1668
|
+
d++;
|
|
1669
|
+
c=c+v1[d]*v2[d];
|
|
1670
|
+
}
|
|
1671
|
+
if(c<a)
|
|
1672
|
+
{
|
|
1673
|
+
d=d+a-c;
|
|
1674
|
+
}
|
|
1675
|
+
return(d);
|
|
1676
|
+
}
|
|
1677
|
+
////////////////////////////////////////////////////////////////////////////
|
|
1678
|
+
proc ContactMatrix(ideal I)
|
|
1679
|
+
"USAGE: ContactMatrix(I); I ideal
|
|
1680
|
+
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
|
|
1681
|
+
RETURN: intmat N of the contact matrix of the branches of the curve.
|
|
1682
|
+
EXAMPLE: example ContactMatrix; shows an example
|
|
1683
|
+
"
|
|
1684
|
+
{
|
|
1685
|
+
def s=CurveParam(I);
|
|
1686
|
+
setring s;
|
|
1687
|
+
int j,k,i;
|
|
1688
|
+
def r1=converter(Param);
|
|
1689
|
+
setring r1;
|
|
1690
|
+
list Y=hne;
|
|
1691
|
+
list L;
|
|
1692
|
+
for(j=1;j<=size(Y);j++)
|
|
1693
|
+
{
|
|
1694
|
+
for(k=1;k<=Y[j][5];k++)
|
|
1695
|
+
{
|
|
1696
|
+
L=insert(L,multsequence(Y[j]),size(L));
|
|
1697
|
+
}
|
|
1698
|
+
}
|
|
1699
|
+
intmat M=intermat(Y);
|
|
1700
|
+
intmat N[nrows(M)][ncols(M)];
|
|
1701
|
+
for(i=1;i<=nrows(M);i++)
|
|
1702
|
+
{
|
|
1703
|
+
for(j=i+1;j<=ncols(M);j++)
|
|
1704
|
+
{
|
|
1705
|
+
N[i,j]=contactNumber(M[i,j],L[i],L[j]);
|
|
1706
|
+
N[j,i]=N[i,j];}
|
|
1707
|
+
}
|
|
1708
|
+
return(N);
|
|
1709
|
+
}
|
|
1710
|
+
example
|
|
1711
|
+
{
|
|
1712
|
+
"EXAMPLE:"; echo = 2;
|
|
1713
|
+
ring r=0,(x,y),ds;
|
|
1714
|
+
ideal i=x14-x4y7-y11;
|
|
1715
|
+
ContactMatrix(i);
|
|
1716
|
+
}
|
|
1717
|
+
///////////////////////////////////////////////////////////////////////////
|
|
1718
|
+
proc plainInvariants(ideal i)
|
|
1719
|
+
"USAGE: plainInvariants(i); i ideal
|
|
1720
|
+
ASSUME: i is the defining ideal of a (reducible) plane curve singularity.
|
|
1721
|
+
RETURN: list L of charts. L[j] is the invariants of the jth branch and the last entry
|
|
1722
|
+
of L is a list containing the intersection matrix,contact matrix,resolution
|
|
1723
|
+
graph of the curve.
|
|
1724
|
+
L[j][1]: intvec (characteristic exponents of the jth branch)
|
|
1725
|
+
L[j][2]: intvec (generators of the semigroup of the jth branch)
|
|
1726
|
+
L[j][3]: intvec (first components of the puiseux pairs of the jth branch)
|
|
1727
|
+
L[j][4]: intvec (second components of the puiseux pairs of the jth branch)
|
|
1728
|
+
L[j][5]: int (degree of conductor of the jth branch)
|
|
1729
|
+
L[j][6]: intvec (multiplicity sequence of the jth branch.
|
|
1730
|
+
L[last][1]: intmat (intersection matrix of the branches)
|
|
1731
|
+
L[last][2]: intmat (contact matrix of the branches)
|
|
1732
|
+
L[last][3]: intmat (resolution graph of the curve)
|
|
1733
|
+
SEE ALSO: MultiplicitySequence, CharacteristicExponents, IntersectionMatrix,
|
|
1734
|
+
ContactMatrix
|
|
1735
|
+
EXAMPLE: example plainInvariants; shows an example
|
|
1736
|
+
"
|
|
1737
|
+
{
|
|
1738
|
+
def s=CurveParam(i);
|
|
1739
|
+
setring s;
|
|
1740
|
+
int j,k;
|
|
1741
|
+
def r1=converter(Param);
|
|
1742
|
+
setring r1;
|
|
1743
|
+
list Y=hne;
|
|
1744
|
+
list L,X,Q;
|
|
1745
|
+
for(j=1;j<=size(Y);j++)
|
|
1746
|
+
{
|
|
1747
|
+
for(k=1;k<=Y[j][5];k++)
|
|
1748
|
+
{
|
|
1749
|
+
L=insert(L,invariants(Y[j]),size(L)); //computes the same thing again
|
|
1750
|
+
X=insert(X,invariants(Y[j])[1],size(X));
|
|
1751
|
+
}
|
|
1752
|
+
}
|
|
1753
|
+
L=insert(L,list(),size(L));
|
|
1754
|
+
L[size(L)]=insert(L[size(L)],intermat(Y),size(L[size(L)]));
|
|
1755
|
+
intmat N[nrows(intermat(Y))][ncols(intermat(Y))];
|
|
1756
|
+
for(k=1;k<=nrows(intermat(Y));k++)
|
|
1757
|
+
{
|
|
1758
|
+
for(j=k+1;j<=ncols(intermat(Y));j++)
|
|
1759
|
+
{
|
|
1760
|
+
N[k,j]=contactNumber(intermat(Y)[k,j],L[k][6],L[j][6]);
|
|
1761
|
+
N[j,k]=N[k,j];
|
|
1762
|
+
}
|
|
1763
|
+
}
|
|
1764
|
+
L[size(L)]=insert(L[size(L)],N,size(L[size(L)]));
|
|
1765
|
+
Q=L[size(L)][2],X;
|
|
1766
|
+
L[size(L)]=insert(L[size(L)],resolutiongraph(Q),size(L[size(L)]));
|
|
1767
|
+
return(L);
|
|
1768
|
+
}
|
|
1769
|
+
example
|
|
1770
|
+
{
|
|
1771
|
+
"EXAMPLE:"; echo = 2;
|
|
1772
|
+
ring r=0,(x,y),ds;
|
|
1773
|
+
ideal i=x14-x4y7-y11;
|
|
1774
|
+
plainInvariants(i);
|
|
1775
|
+
}
|
|
1776
|
+
////////////////////////////////////////////////////////////////////////////////////
|
|
1777
|
+
static proc bound(poly x,poly y)
|
|
1778
|
+
{
|
|
1779
|
+
poly z=x+y;
|
|
1780
|
+
int m=ord(z);
|
|
1781
|
+
int i;
|
|
1782
|
+
int c=-1;
|
|
1783
|
+
for(i=2;i<=size(z);i++)
|
|
1784
|
+
{
|
|
1785
|
+
if(gcd(m,leadexp(z[i])[1])==1)
|
|
1786
|
+
{
|
|
1787
|
+
c=2*leadexp(z[i])[1];
|
|
1788
|
+
break;
|
|
1789
|
+
}
|
|
1790
|
+
else
|
|
1791
|
+
{
|
|
1792
|
+
m=gcd(m,leadexp(z[i])[1]);
|
|
1793
|
+
}
|
|
1794
|
+
}
|
|
1795
|
+
return(c);
|
|
1796
|
+
}
|
|
1797
|
+
/////////////////////////////////////////////////////////////////////////////////////
|
|
1798
|
+
static proc boundparam(poly f)
|
|
1799
|
+
{
|
|
1800
|
+
if(f==0){return(1);}
|
|
1801
|
+
int i;
|
|
1802
|
+
int l=size(f);
|
|
1803
|
+
int m=leadexp(f[l])[1];
|
|
1804
|
+
for(i=l-1;i>=1;i--)
|
|
1805
|
+
{
|
|
1806
|
+
if(gcd(m,leadexp(f[i])[1])==1)
|
|
1807
|
+
{
|
|
1808
|
+
i=i-1;
|
|
1809
|
+
break;
|
|
1810
|
+
}
|
|
1811
|
+
else
|
|
1812
|
+
{
|
|
1813
|
+
m=gcd(m,leadexp(f[i])[1]);
|
|
1814
|
+
}
|
|
1815
|
+
}
|
|
1816
|
+
return(2*leadexp(f[i+1])[1]);
|
|
1817
|
+
}
|