passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1515 @@
|
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version classifyMapGerms.lib 4.1.2.0 Feb_2019 "; // $Id: ba856067e5b0bbdadaf45e8975bb5ce155e229a3 $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: classifyMapGerms.lib
|
|
6
|
+
AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de
|
|
7
|
+
Deeba Afzal, deebafzal@gmail.com
|
|
8
|
+
Shamsa Kanwal, lotus_zone16@yahoo.com
|
|
9
|
+
|
|
10
|
+
OVERVIEW:
|
|
11
|
+
A library for computing the standard basis of the tangent space at the orbit
|
|
12
|
+
of an algebraic group action. The tangent space is usually described as the sum
|
|
13
|
+
of two modules over different rings. It computes the standard basis using
|
|
14
|
+
modular methods and parallel modular methods. It also computes the normal form
|
|
15
|
+
of the germ given by Riegers classification.
|
|
16
|
+
|
|
17
|
+
REFERENCES:
|
|
18
|
+
[1] Idrees N.; Pfister, G.; Steidel, S.: Parallelization of modular algorithms.
|
|
19
|
+
J. Symbolic Comput. 46(2011), no. 6, 672-684.
|
|
20
|
+
[2] Gibson,C.G; Hobbs,C.A.: Simple SIngularities of Space Curves.
|
|
21
|
+
Math.Proc. Comb.Phil.Soc.(1993),113,297.
|
|
22
|
+
[3] Bruce, J.W.,Gaffney, T.J.: Simple singularities of mappings (C, 0) ->(C2,0).
|
|
23
|
+
J. London Math. Soc. (2) 26 (1982), 465-474.
|
|
24
|
+
[4] Rieger, J. H.: Families of maps from the plane to the plane. J. London Math.
|
|
25
|
+
Soc. (2)36(1987), no. 2. 351-369.
|
|
26
|
+
|
|
27
|
+
PROCEDURES:
|
|
28
|
+
coDimMap(I); computes a bound of the A-determinacy of the map germ defined by I
|
|
29
|
+
coDim(M,N,I,b); computes the K-vectorspace dimension of A^r/M+N+maxideal(b)*A^r
|
|
30
|
+
vStd(M,N,I,b); computes a standard basis of M+N+maxideal(b)*A^r
|
|
31
|
+
modVStd(M,N,I,b); computes a standard basis of M+N+maxideal(bound)*A^r (modular)
|
|
32
|
+
modVStd0(M,N,I,b); computes a standard basis of M+N+maxideal(bound)*A^r (parallel)
|
|
33
|
+
classifySimpleMaps(I); computes the normal form of a germ in Riegers classification
|
|
34
|
+
classifySimpleMaps1(I); computes the normal form of a germ in Riegers classification
|
|
35
|
+
classifyUnimodalMaps(I); computes the normal form of a germ in Riegers classification
|
|
36
|
+
";
|
|
37
|
+
|
|
38
|
+
LIB "general.lib";
|
|
39
|
+
LIB "modstd.lib";
|
|
40
|
+
LIB "teachstd.lib";
|
|
41
|
+
LIB "algebra.lib";
|
|
42
|
+
|
|
43
|
+
//===================================================================================
|
|
44
|
+
proc coDimMap(ideal I, list #)
|
|
45
|
+
"USAGE: coDimMap(I, #); I=ideal, #=list
|
|
46
|
+
COMPUTE: a bound of the A-determinacy of the map germ defined by I.
|
|
47
|
+
RETURN: a list in which 1st entry gives the bound of the A-determinancy and
|
|
48
|
+
the second entry gives the codimension of the map germ defined by I.
|
|
49
|
+
NOTE: if # is empty it computes A^e-codimension(the extended codimension).
|
|
50
|
+
EXAMPLE: example coDimMap; shows an example"
|
|
51
|
+
{
|
|
52
|
+
int bound=10;
|
|
53
|
+
module M=jacob(I);
|
|
54
|
+
module N=freemodule(ncols(I));
|
|
55
|
+
if(size(#)==0){return(coDim(M,N,I,bound,0));}
|
|
56
|
+
M=maxideal(1)*M;
|
|
57
|
+
N=I*N;
|
|
58
|
+
list L=coDim(M,N,I,bound,0);
|
|
59
|
+
L[2]=L[2]-nvars(basering);
|
|
60
|
+
return(L);
|
|
61
|
+
}
|
|
62
|
+
example
|
|
63
|
+
{
|
|
64
|
+
"EXAMPLE"; echo=2;
|
|
65
|
+
ring R=0,(x,y),(c,ds);
|
|
66
|
+
poly f1=x;
|
|
67
|
+
poly f2=xy+y5+y7;
|
|
68
|
+
poly f11=f1+f2*f1;
|
|
69
|
+
poly f22=f2+f1^2;
|
|
70
|
+
map phi=basering,x+y,y+y2;
|
|
71
|
+
f1=phi(f11);
|
|
72
|
+
f2=phi(f22);
|
|
73
|
+
ideal I=f1,f2;
|
|
74
|
+
coDimMap(I);
|
|
75
|
+
coDimMap(I,1);
|
|
76
|
+
}
|
|
77
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
78
|
+
proc coDim(module M, module N, ideal I,int bound, list #)
|
|
79
|
+
"USAGE: coDim(module M, module N, ideal I,int bound, list #); M is a submodule
|
|
80
|
+
in A^r over the basering=:A, N is a submodule in R^r over the subring
|
|
81
|
+
R of the basering generated by the entries of I
|
|
82
|
+
COMPUTE: computes the K-vectorspace dimension of A^r/M+N+maxideal(bound)*A^r
|
|
83
|
+
RETURN: an integer
|
|
84
|
+
NOTE: if # is not empty the bound is corrected by computing determinacy
|
|
85
|
+
EXAMPLE: example coDim; shows an example"
|
|
86
|
+
{
|
|
87
|
+
//---------------------------- initialisation ---------------------------------
|
|
88
|
+
int r=nrows(M);
|
|
89
|
+
int k;
|
|
90
|
+
int oldbound=bound;
|
|
91
|
+
module M0=M;
|
|
92
|
+
module N0=N;
|
|
93
|
+
if(size(#)!=0)
|
|
94
|
+
{
|
|
95
|
+
if(#[1]==0)
|
|
96
|
+
{
|
|
97
|
+
k=boundK(M,N,I);
|
|
98
|
+
if(k<0){return(list(-1,-1));}
|
|
99
|
+
}
|
|
100
|
+
else
|
|
101
|
+
{
|
|
102
|
+
k=#[1];
|
|
103
|
+
}
|
|
104
|
+
bound=bound+k;
|
|
105
|
+
}
|
|
106
|
+
list S=vStd(M,N,I,bound);
|
|
107
|
+
M=S[1];
|
|
108
|
+
module L=S[2];
|
|
109
|
+
L=simplify(reduce(lead(L),std(lead(M)+maxideal(bound)*freemodule(r))),1);
|
|
110
|
+
L=simplify(L,6);
|
|
111
|
+
if(size(#)==0){
|
|
112
|
+
return(vdim(std(lead(M)+maxideal(bound)*freemodule(r)))-size(L));
|
|
113
|
+
}
|
|
114
|
+
if(correctBound(M,L,bound,oldbound))
|
|
115
|
+
{
|
|
116
|
+
int co=vdim(std(lead(M)+maxideal(bound)*freemodule(r)))-size(L);
|
|
117
|
+
return(list(bound,co));
|
|
118
|
+
}
|
|
119
|
+
bound++;
|
|
120
|
+
return(coDim(M0,N0,I,bound,k));
|
|
121
|
+
}
|
|
122
|
+
example
|
|
123
|
+
{
|
|
124
|
+
"EXAMPLE"; echo=2;
|
|
125
|
+
ring R=0,(x,y),(c,ds);
|
|
126
|
+
poly f1=x;
|
|
127
|
+
poly f2=xy+y5+y7;
|
|
128
|
+
poly f11=f1+f2*f1;
|
|
129
|
+
poly f22=f2+f1^2;
|
|
130
|
+
map phi=basering,x+y,y+y2;
|
|
131
|
+
f1=phi(f11);
|
|
132
|
+
f2=phi(f22);
|
|
133
|
+
ideal I=f1,f2;
|
|
134
|
+
module M=maxideal(1)*jacob(I);
|
|
135
|
+
module N=I*freemodule(2);
|
|
136
|
+
coDim(M,N,I,15);
|
|
137
|
+
}
|
|
138
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
139
|
+
proc vStd(module M, module N, ideal I,int bound)
|
|
140
|
+
"USAGE: vStd(M, N, I, bound);M is a submodule in A^r over the basering=:A,
|
|
141
|
+
N ist a submodule in R^r over the subring R of the basering generated
|
|
142
|
+
by the entries of I
|
|
143
|
+
COMPUTE: a standard basis of M+N+maxideal(bound)*A^r
|
|
144
|
+
RETURN: a list whose ist entry gives a list where each entry is a genrator of
|
|
145
|
+
standard basis and second entry gives a list of generators after the
|
|
146
|
+
reduced echelon form
|
|
147
|
+
EXAMPLE: example vStd; shows an example"
|
|
148
|
+
{
|
|
149
|
+
if(size(M)!=1)
|
|
150
|
+
{
|
|
151
|
+
M=jet(std(M+maxideal(bound)*freemodule(nrows(M))),bound);
|
|
152
|
+
}
|
|
153
|
+
if (system("version")>4033)
|
|
154
|
+
{
|
|
155
|
+
N=system("reduce_bound",N,M,bound);
|
|
156
|
+
}
|
|
157
|
+
else
|
|
158
|
+
{
|
|
159
|
+
N=myReduceM(N,M,bound);
|
|
160
|
+
}
|
|
161
|
+
N=echelon(M,N,bound);
|
|
162
|
+
module L=computeN(M,N,I,bound-1);
|
|
163
|
+
L=echelon(M,L,bound);
|
|
164
|
+
return(list(M,L));
|
|
165
|
+
}
|
|
166
|
+
example
|
|
167
|
+
{
|
|
168
|
+
"EXAMPLE"; echo=2;
|
|
169
|
+
ring R=0,(x,y),(c,ds);
|
|
170
|
+
poly f1=x;
|
|
171
|
+
poly f2=xy+y5+y7;
|
|
172
|
+
poly f11=f1+f2*f1;
|
|
173
|
+
poly f22=f2+f1^2;
|
|
174
|
+
map phi=basering,x+y,y+y2;
|
|
175
|
+
f1=phi(f11);
|
|
176
|
+
f2=phi(f22);
|
|
177
|
+
ideal I=f1,f2;
|
|
178
|
+
module M=maxideal(1)*jacob(I);
|
|
179
|
+
module N=I*freemodule(2);
|
|
180
|
+
vStd(M,N,I,15);
|
|
181
|
+
}
|
|
182
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
183
|
+
static proc vStd_size1(module M, module N, ideal I, int bound)
|
|
184
|
+
"USAGE: vStd(M, N, I, bound);M is a submodule generated by one element in A^r over the
|
|
185
|
+
basering=:A, N ist a submodule in R^r over the subring R of the basering
|
|
186
|
+
generated by the entries of I
|
|
187
|
+
COMPUTE: a standard basis of M+N+maxideal(bound)*A^r
|
|
188
|
+
RETURN: a list whose ist entry gives a list where each entry is a genrator of
|
|
189
|
+
standard basis and second entry gives a list of generators after the
|
|
190
|
+
reduced echelon form
|
|
191
|
+
EXAMPLE: example vStd_size1; shows an example"
|
|
192
|
+
{
|
|
193
|
+
if(size(M)!=1)
|
|
194
|
+
{
|
|
195
|
+
M=jet(std(M+maxideal(bound)*freemodule(nrows(M))),bound);
|
|
196
|
+
}
|
|
197
|
+
if (system("version")>4033)
|
|
198
|
+
{
|
|
199
|
+
N=system("reduce_bound",N,M,bound);
|
|
200
|
+
}
|
|
201
|
+
else
|
|
202
|
+
{
|
|
203
|
+
N=myReduceM(N,M,bound);
|
|
204
|
+
}
|
|
205
|
+
N=echelon(M,N,bound);
|
|
206
|
+
module L=computeN(M,N,I,bound-1);
|
|
207
|
+
L=echelon(M,L,bound);
|
|
208
|
+
return(L);
|
|
209
|
+
}
|
|
210
|
+
example
|
|
211
|
+
{
|
|
212
|
+
"EXAMPLE"; echo=2;
|
|
213
|
+
ring R=0,(x,y),(c,ds);
|
|
214
|
+
poly f1=x;
|
|
215
|
+
poly f2=xy+y5+y7;
|
|
216
|
+
poly f11=f1+f2*f1;
|
|
217
|
+
poly f22=f2+f1^2;
|
|
218
|
+
map phi=basering,x+y,y+y2;
|
|
219
|
+
f1=phi(f11);
|
|
220
|
+
f2=phi(f22);
|
|
221
|
+
ideal I=f1,f2;
|
|
222
|
+
module M=maxideal(1)*jacob(I);
|
|
223
|
+
module N=I*freemodule(2);
|
|
224
|
+
vStd_size1(M,N,I,15);
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
228
|
+
static proc boundK(module M,module N, ideal I)
|
|
229
|
+
"USAGE: boundK(M, N, I);
|
|
230
|
+
COMPUTE: Let T=freemodule(nrows(M)), computes k such that
|
|
231
|
+
maxideal(k)*T<=M+I*T+maxideal(k+1)*T
|
|
232
|
+
RETURN: an integer
|
|
233
|
+
REMARk: needed to compute the determinacy
|
|
234
|
+
"
|
|
235
|
+
{
|
|
236
|
+
int i;
|
|
237
|
+
module T=freemodule(nrows(M));
|
|
238
|
+
module M0=M+I*T;
|
|
239
|
+
while(1)
|
|
240
|
+
{
|
|
241
|
+
i++;
|
|
242
|
+
T=maxideal(1)*T;
|
|
243
|
+
|
|
244
|
+
M=std(jet(M0,i)+maxideal(1)*T);
|
|
245
|
+
if(size(reduce(T,M,5))==0){return(i);}
|
|
246
|
+
if(i>100){M0=std(M0);if(vdim(M0)==-1){break;}}
|
|
247
|
+
}
|
|
248
|
+
return(-1);
|
|
249
|
+
}
|
|
250
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
251
|
+
static proc correctBound(module M,module L,int bound,int oldbound)
|
|
252
|
+
"USAGE: correctBound(M, L, bound, oldbound)
|
|
253
|
+
COMPUTE: let T=freemodule(nrows(M)),test if
|
|
254
|
+
maxideal(old bound)*T<=M+L+maxideal(bound)*T
|
|
255
|
+
RETURN: 0 or 1
|
|
256
|
+
REMARK: needed to compute the A-determinacy and codimension
|
|
257
|
+
"
|
|
258
|
+
{
|
|
259
|
+
int i;
|
|
260
|
+
L=jet(L+std(lead(M)),bound-1);
|
|
261
|
+
module T=maxideal(oldbound)*freemodule(nrows(M));
|
|
262
|
+
while(i<bound-oldbound)
|
|
263
|
+
{
|
|
264
|
+
T=jet(myReduceM(T,M,bound),bound-1);
|
|
265
|
+
if(size(reduceV(M,T,L,bound))!=0)
|
|
266
|
+
{
|
|
267
|
+
return(0);
|
|
268
|
+
}
|
|
269
|
+
T=maxideal(1)*T;
|
|
270
|
+
i++;
|
|
271
|
+
}
|
|
272
|
+
return(1);
|
|
273
|
+
}
|
|
274
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
275
|
+
static proc reduceV(module M,module T, module L,int bound)
|
|
276
|
+
"USAGE: reduceV(M, T, L, bound)
|
|
277
|
+
COMPUTE: special reduction procedure for correctBound (reduction modulo a sum
|
|
278
|
+
of modules over different rings
|
|
279
|
+
RETURN: a list
|
|
280
|
+
"
|
|
281
|
+
{
|
|
282
|
+
int i,j;
|
|
283
|
+
vector f,g;
|
|
284
|
+
for(i=1;i<=ncols(T);i++)
|
|
285
|
+
{
|
|
286
|
+
f=T[i];
|
|
287
|
+
while(1)
|
|
288
|
+
{
|
|
289
|
+
g=reducer(f,L);
|
|
290
|
+
if(g==0){break;}
|
|
291
|
+
f=f-leadcoef(f)/leadcoef(g)*g;
|
|
292
|
+
//f=jet(system("reduce_bound",f,M,bound),bound-1);
|
|
293
|
+
f=jet(myReduce(f,M,bound),bound-1);
|
|
294
|
+
if(f==0){break;}
|
|
295
|
+
}
|
|
296
|
+
T[i]=f;
|
|
297
|
+
}
|
|
298
|
+
return(T);
|
|
299
|
+
}
|
|
300
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
301
|
+
static proc reducer(vector f, module L)
|
|
302
|
+
"USAGE: reducer(f, module L)
|
|
303
|
+
COMPUTE: find the reductor for reduceV
|
|
304
|
+
RETURN: a vector
|
|
305
|
+
"
|
|
306
|
+
{
|
|
307
|
+
vector g;
|
|
308
|
+
int i;
|
|
309
|
+
for(i=1;i<=size(L);i++)
|
|
310
|
+
{
|
|
311
|
+
if(leadmonom(f)==leadmonom(L[i]))
|
|
312
|
+
{
|
|
313
|
+
g=L[i];
|
|
314
|
+
break;
|
|
315
|
+
}
|
|
316
|
+
}
|
|
317
|
+
return(g);
|
|
318
|
+
}
|
|
319
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
320
|
+
static proc computeN(module M, module N, ideal I, int bound)
|
|
321
|
+
"USAGE: computeN(M, N, I, bound) M is a submodule in A^r over the basering=:A
|
|
322
|
+
N ist a submodule in R^r over the subring R of the basering
|
|
323
|
+
generated by the entries of I
|
|
324
|
+
COMPUTE: all products of powers of generators of I with N
|
|
325
|
+
"
|
|
326
|
+
{
|
|
327
|
+
I=jet(I,bound);
|
|
328
|
+
I=simplify(I,2);
|
|
329
|
+
module L;
|
|
330
|
+
int j,k;
|
|
331
|
+
int r=size(I);
|
|
332
|
+
ideal F=1;
|
|
333
|
+
ideal G;
|
|
334
|
+
|
|
335
|
+
while(F!=0)
|
|
336
|
+
{
|
|
337
|
+
for(k=1;k<=size(N);k++)
|
|
338
|
+
{
|
|
339
|
+
for(j=1;j<=size(F);j++)
|
|
340
|
+
{
|
|
341
|
+
L[size(L)+1]=jet(myReduce(F[j]*N[k],M,bound),bound);
|
|
342
|
+
//L[ncols(L)+1]=jet(system("reduce_bound",F[j]*N[k],M,bound),bound);
|
|
343
|
+
}
|
|
344
|
+
}
|
|
345
|
+
G=F;
|
|
346
|
+
F=0;
|
|
347
|
+
for(j=1;j<=size(G);j++)
|
|
348
|
+
{
|
|
349
|
+
for(k=1;k<=r;k++)
|
|
350
|
+
{
|
|
351
|
+
F=F,jet(jet(G[j],bound-ord(I[k]))*I[k],bound);
|
|
352
|
+
}
|
|
353
|
+
}
|
|
354
|
+
F=simplify(F,2);
|
|
355
|
+
F=simplify(F,4);
|
|
356
|
+
F=simplify(F,2);
|
|
357
|
+
}
|
|
358
|
+
return(L);
|
|
359
|
+
}
|
|
360
|
+
|
|
361
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
362
|
+
static proc myReduceM(module N, module M, int bound)
|
|
363
|
+
"USAGE: myReduceM(N, M, bound) M is a submodule in A^r over the basering=:A
|
|
364
|
+
N ist a submodule in R^r over the subring R of the basering
|
|
365
|
+
generated by the entries of I
|
|
366
|
+
COMPUTE: myReduce for ideals
|
|
367
|
+
"
|
|
368
|
+
{
|
|
369
|
+
int i;
|
|
370
|
+
for(i=1;i<=ncols(N);i++)
|
|
371
|
+
{
|
|
372
|
+
N[i]=myReduce(N[i],M,bound);
|
|
373
|
+
}
|
|
374
|
+
return(N);
|
|
375
|
+
}
|
|
376
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
377
|
+
static proc myReduce(vector f, module M, int bound)
|
|
378
|
+
{
|
|
379
|
+
f=jet(f,bound);
|
|
380
|
+
if(f==0){return(f);}
|
|
381
|
+
vector g, vv,ww;
|
|
382
|
+
poly p;
|
|
383
|
+
number c;
|
|
384
|
+
int i;
|
|
385
|
+
vector re;
|
|
386
|
+
while(f!=0)
|
|
387
|
+
{
|
|
388
|
+
for(i=1;i<=size(M);i++)
|
|
389
|
+
{
|
|
390
|
+
if(reduce(lead(f),std(lead(M[i])),5)==0)
|
|
391
|
+
{
|
|
392
|
+
c=leadcoef(f)/leadcoef(M[i]);
|
|
393
|
+
vv=lead(f);ww=lead(M[i]);
|
|
394
|
+
p=quotient(vv,ww)[1];
|
|
395
|
+
g=M[i];break;
|
|
396
|
+
}
|
|
397
|
+
}
|
|
398
|
+
while((f!=0)&&(g!=0))
|
|
399
|
+
{
|
|
400
|
+
f=f-c*p*g;
|
|
401
|
+
f=jet(f,bound);
|
|
402
|
+
if(f==0){break;}
|
|
403
|
+
g=0;
|
|
404
|
+
for(i=1;i<=size(M);i++)
|
|
405
|
+
{
|
|
406
|
+
if(reduce(lead(f),std(lead(M[i])),5)==0)
|
|
407
|
+
{
|
|
408
|
+
c=leadcoef(f)/leadcoef(M[i]);
|
|
409
|
+
vv=lead(f);ww=lead(M[i]);
|
|
410
|
+
p=quotient(vv,ww)[1];
|
|
411
|
+
g=M[i];break;
|
|
412
|
+
}
|
|
413
|
+
}
|
|
414
|
+
}
|
|
415
|
+
re=re+lead(f);
|
|
416
|
+
f=f-lead(f);
|
|
417
|
+
}
|
|
418
|
+
return(re);
|
|
419
|
+
}
|
|
420
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
421
|
+
static proc echelon(module M, module N, int b)
|
|
422
|
+
"USAGE: echelon(M, N, b)
|
|
423
|
+
COMPUTE: the echelon form of N modulo M
|
|
424
|
+
RETURN: the echelon form of N modulo M
|
|
425
|
+
"
|
|
426
|
+
{
|
|
427
|
+
int i,j,d;
|
|
428
|
+
N=simplify(N,4);
|
|
429
|
+
N=simplify(N,3);
|
|
430
|
+
N=sort(N)[1];
|
|
431
|
+
d=size(N);
|
|
432
|
+
i=d;
|
|
433
|
+
while(i>=2)
|
|
434
|
+
{
|
|
435
|
+
for(j=i-1;j>=1;j=j-1)
|
|
436
|
+
{
|
|
437
|
+
if(lead(N[i])==lead(N[j]))
|
|
438
|
+
{
|
|
439
|
+
N[j]=N[j]-N[i];
|
|
440
|
+
|
|
441
|
+
}
|
|
442
|
+
}
|
|
443
|
+
N=simplify(N,4);
|
|
444
|
+
N=simplify(N,3);
|
|
445
|
+
N=sort(N)[1];
|
|
446
|
+
i=i-(d-size(N))-1;
|
|
447
|
+
d=size(N);
|
|
448
|
+
}
|
|
449
|
+
N=simplify(N,6);
|
|
450
|
+
return(N);
|
|
451
|
+
}
|
|
452
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
453
|
+
static proc reduc(poly f,ideal I, int b)
|
|
454
|
+
"USAGE: reduc(f, I, b)
|
|
455
|
+
COMPUTE: the normal form of f with respect to the algebra generated by I
|
|
456
|
+
"
|
|
457
|
+
{
|
|
458
|
+
list L=1;
|
|
459
|
+
map psi;
|
|
460
|
+
f=jet(f,b);
|
|
461
|
+
if(f==0){return(f);}
|
|
462
|
+
while((f!=0) && (L[1]!=0))
|
|
463
|
+
{
|
|
464
|
+
L= algebra_containment(lead(f),lead(I),1);
|
|
465
|
+
if (L[1]==1)
|
|
466
|
+
{
|
|
467
|
+
def S= L[2];
|
|
468
|
+
psi= S,maxideal(1),I;
|
|
469
|
+
f=jet(f-psi(check),b);
|
|
470
|
+
kill S;
|
|
471
|
+
}
|
|
472
|
+
}
|
|
473
|
+
return (lead(f)+reduc(f-lead(f),I,b));
|
|
474
|
+
}
|
|
475
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
476
|
+
proc classifySimpleMaps(ideal I)
|
|
477
|
+
"USAGE: classifySimpleMaps(I); I=an ideal with 2 generators in a polynomial
|
|
478
|
+
ring with 2 variables and local ordering defining a map germ C^2 to C^2
|
|
479
|
+
COMPUTE: The normal form of the germ in Riegers classification if it is
|
|
480
|
+
simple
|
|
481
|
+
RETURN: normal form of I, of type ideal
|
|
482
|
+
NOTE: If I is not simple it returns (0,0)
|
|
483
|
+
EXAMPLE: example classifySimpleMaps; shows an example"
|
|
484
|
+
{
|
|
485
|
+
if(size(jet(I,1))==0){return(ideal(0,0));}
|
|
486
|
+
list L=coDimMap(I,1);
|
|
487
|
+
int determinacy=L[1];
|
|
488
|
+
int codimension=L[2];
|
|
489
|
+
if(determinacy<0){return(ideal(0,0));}
|
|
490
|
+
I=normalMap(I,determinacy);
|
|
491
|
+
poly p=lead(I[2]);
|
|
492
|
+
if(p==0){return(ideal(0,0));}
|
|
493
|
+
if(p==var(2)){return(maxideal(1));}
|
|
494
|
+
if(p==var(2)^2){return(ideal(var(1),var(2)^2));}
|
|
495
|
+
if(p==var(1)*var(2))
|
|
496
|
+
{
|
|
497
|
+
if(codimension==2){return(ideal(var(1),p+var(2)^3));}
|
|
498
|
+
if(codimension==3){return(ideal(var(1),p+var(2)^4));}
|
|
499
|
+
if(codimension==4){return(ideal(var(1),p+var(2)^5+var(2)^7));}
|
|
500
|
+
if(codimension==5){return(ideal(var(1),p+var(2)^5));}
|
|
501
|
+
return(ideal(0,0));
|
|
502
|
+
}
|
|
503
|
+
if(p==var(2)^3)
|
|
504
|
+
{
|
|
505
|
+
return(ideal(var(1),p+var(1)^(codimension-1)*var(2)));
|
|
506
|
+
}
|
|
507
|
+
if(p==var(1)*var(2)^2)
|
|
508
|
+
{
|
|
509
|
+
if(vdim(std(I))==4)
|
|
510
|
+
{
|
|
511
|
+
return(ideal(var(1),p+var(2)^4+var(2)^(2*codimension-3)));
|
|
512
|
+
}
|
|
513
|
+
if(codimension==5){return(ideal(var(1),p+var(2)^5+var(2)^6));}
|
|
514
|
+
if(codimension==6){return(ideal(var(1),p+var(2)^5+var(2)^9));}
|
|
515
|
+
if(codimension==7){return(ideal(var(1),p+var(2)^5));}
|
|
516
|
+
return(ideal(0,0));
|
|
517
|
+
}
|
|
518
|
+
if(p==var(1)^2*var(2))
|
|
519
|
+
{
|
|
520
|
+
if(codimension==3){return(ideal(var(1),p+var(2)^3));}
|
|
521
|
+
if(codimension==5){return(ideal(var(1),p+var(2)^4+var(2)^5));}
|
|
522
|
+
if(codimension==6){return(ideal(var(1),p+var(2)^4));}
|
|
523
|
+
return(ideal(0,0));
|
|
524
|
+
}
|
|
525
|
+
return(ideal(0,0));
|
|
526
|
+
}
|
|
527
|
+
example
|
|
528
|
+
{
|
|
529
|
+
"EXAMPLE"; echo=2;
|
|
530
|
+
ring R=0,(x,y),(c,ds);
|
|
531
|
+
poly f1=x;
|
|
532
|
+
poly f2=xy+y5+y7;
|
|
533
|
+
poly f11=f1+f2*f1;
|
|
534
|
+
poly f22=f2+f1^2;
|
|
535
|
+
map phi=basering,x+y,y+y2;
|
|
536
|
+
f1=phi(f11);
|
|
537
|
+
f2=phi(f22);
|
|
538
|
+
ideal I=f1,f2;
|
|
539
|
+
classifySimpleMaps(I);
|
|
540
|
+
}
|
|
541
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
542
|
+
proc classifySimpleMaps1(ideal I)
|
|
543
|
+
"USAGE: classifySimpleMaps1(I); I=an ideal with 2 generators in a polynomial
|
|
544
|
+
ring with 2 variables and local ordering defining a map germ C^2 to C^2
|
|
545
|
+
COMPUTE: The normal form of the germ in Riegers classification if it is
|
|
546
|
+
simple
|
|
547
|
+
RETURN: normal form of I, of type ideal
|
|
548
|
+
NOTE: If I is not simple it returns (0,0)
|
|
549
|
+
EXAMPLE: example classifySimpleMaps1; shows an example"
|
|
550
|
+
{
|
|
551
|
+
if(size(jet(I,1))==0){return(ideal(0,0));}
|
|
552
|
+
list L=coDimMap(I,1);
|
|
553
|
+
int determinacy=L[1];
|
|
554
|
+
int c=L[2];
|
|
555
|
+
if(determinacy<0){return(ideal(0,0));}
|
|
556
|
+
I=normalMap(I,determinacy);
|
|
557
|
+
int m =vdim(std(I));
|
|
558
|
+
int mu=vdim(std(jacob(diff(I[2],var(2)))));
|
|
559
|
+
|
|
560
|
+
if((mu==-1)&&(m>=2)){return(ideal(0,0));}
|
|
561
|
+
if(m==1){return(maxideal(1));}
|
|
562
|
+
|
|
563
|
+
if(mu==0)
|
|
564
|
+
{
|
|
565
|
+
if(m==2){return(ideal(var(1),var(2)^2));}
|
|
566
|
+
if(m==3){return(ideal(var(1),var(1)*var(2)+var(2)^3));}
|
|
567
|
+
if(m==4){return(ideal(var(1),var(1)*var(2)+var(2)^4));}
|
|
568
|
+
if(m==5)
|
|
569
|
+
{
|
|
570
|
+
if(c==4)
|
|
571
|
+
{
|
|
572
|
+
return(ideal(var(1),var(1)*var(2)+var(2)^5+var(2)^7));
|
|
573
|
+
}
|
|
574
|
+
if(c==5)
|
|
575
|
+
{
|
|
576
|
+
return(ideal(var(1),var(1)*var(2)+var(2)^5));
|
|
577
|
+
}
|
|
578
|
+
}
|
|
579
|
+
return(ideal(0,0));
|
|
580
|
+
}
|
|
581
|
+
if(mu==1)
|
|
582
|
+
{
|
|
583
|
+
if(m==3){return(ideal(var(1),var(1)^2*var(2)+var(2)^3));}
|
|
584
|
+
if(m==4){return(ideal(var(1),var(1)*var(2)^2+var(2)^4+var(2)^(2*c-3)));}
|
|
585
|
+
if(m==5)
|
|
586
|
+
{
|
|
587
|
+
if(c==5)
|
|
588
|
+
{
|
|
589
|
+
return(ideal(var(1),var(1)*var(2)^2+var(2)^5+var(2)^6));
|
|
590
|
+
}
|
|
591
|
+
if(c==6)
|
|
592
|
+
{
|
|
593
|
+
return(ideal(var(1),var(1)*var(2)^2+var(2)^5+var(2)^9));
|
|
594
|
+
}
|
|
595
|
+
if(c==7)
|
|
596
|
+
{
|
|
597
|
+
return(ideal(var(1),var(1)*var(2)^2+var(2)^5));
|
|
598
|
+
}
|
|
599
|
+
}
|
|
600
|
+
return(ideal(0,0));
|
|
601
|
+
}
|
|
602
|
+
if(mu==2)
|
|
603
|
+
{
|
|
604
|
+
if(m==3){return(ideal(var(1),var(2)^3+var(1)^3*var(2)));}
|
|
605
|
+
if(m==4)
|
|
606
|
+
{
|
|
607
|
+
if(c==5)
|
|
608
|
+
{
|
|
609
|
+
return(ideal(var(1),var(1)^2*var(2)+var(2)^4+var(2)^5));
|
|
610
|
+
}
|
|
611
|
+
if(c==6)
|
|
612
|
+
{
|
|
613
|
+
return(ideal(var(1),var(1)^2*var(2)+var(2)^4));
|
|
614
|
+
}
|
|
615
|
+
}
|
|
616
|
+
return(ideal(0,0));
|
|
617
|
+
}
|
|
618
|
+
if(mu>2)
|
|
619
|
+
{
|
|
620
|
+
if(m==3)
|
|
621
|
+
{
|
|
622
|
+
return(ideal(var(1),var(2)^3+var(1)^(c+1)*var(2)));
|
|
623
|
+
}
|
|
624
|
+
return(ideal(0,0));
|
|
625
|
+
}
|
|
626
|
+
return(ideal(0,0));
|
|
627
|
+
}
|
|
628
|
+
example
|
|
629
|
+
{
|
|
630
|
+
"EXAMPLE"; echo=2;
|
|
631
|
+
ring R=0,(x,y),(c,ds);
|
|
632
|
+
poly f1=x;
|
|
633
|
+
poly f2=xy+y5+y7;
|
|
634
|
+
poly f11=f1+f2*f1;
|
|
635
|
+
poly f22=f2+f1^2;
|
|
636
|
+
map phi=basering,x+y,y+y2;
|
|
637
|
+
f1=phi(f11);
|
|
638
|
+
f2=phi(f22);
|
|
639
|
+
ideal I=f1,f2;
|
|
640
|
+
classifySimpleMaps1(I);
|
|
641
|
+
}
|
|
642
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
643
|
+
proc modVStd0(module M, module N, ideal I, int bound)
|
|
644
|
+
"USAGE: modVStd0((M, N, I,bound, #); M is a submodule
|
|
645
|
+
in A^r over the basering=:A, N ist a submodule in R^r over the subring
|
|
646
|
+
R of the basering generated by the entries of I
|
|
647
|
+
COMPUTE: a standard basis of M+N+maxideal(bound)*A^r using the parallel modular
|
|
648
|
+
version
|
|
649
|
+
RETURN: a list whose ist entry gives a list where each entry is a genrator of
|
|
650
|
+
standard basis and second entry gives a list of generators after the
|
|
651
|
+
reduced echelon form
|
|
652
|
+
NOTE: if # is not empty the bound is corrected by computing determinacy
|
|
653
|
+
EXAMPLE: example modVStd0; shows an example"
|
|
654
|
+
{
|
|
655
|
+
/* call modular() */
|
|
656
|
+
if (size(M) > 1) {
|
|
657
|
+
list W = modular("vStd", list(M, N, I, bound),
|
|
658
|
+
Modular::primeTest_default, deleteUnluckyPrimesM0,
|
|
659
|
+
pTestSBM0, finalTestM0);
|
|
660
|
+
attrib(W[1], "isSB", 1);
|
|
661
|
+
}
|
|
662
|
+
else {
|
|
663
|
+
module L = modular("vStd_size1", list(M, N, I, bound),
|
|
664
|
+
Modular::primeTest_default, Modstd::deleteUnluckyPrimes_std,
|
|
665
|
+
pTestSBM0_size1, finalTestM0_size1);
|
|
666
|
+
attrib(M, "isSB", 1);
|
|
667
|
+
list W = list(M, L);
|
|
668
|
+
}
|
|
669
|
+
|
|
670
|
+
/* return the result */
|
|
671
|
+
return(W);
|
|
672
|
+
}
|
|
673
|
+
example
|
|
674
|
+
{
|
|
675
|
+
"EXAMPLE"; echo=2;
|
|
676
|
+
ring R=0,(x,y),(c,ds);
|
|
677
|
+
poly f1=x;
|
|
678
|
+
poly f2=xy+y5+y7;
|
|
679
|
+
poly f11=f1+f2*f1;
|
|
680
|
+
poly f22=f2+f1^2;
|
|
681
|
+
map phi=basering,x+y,y+y2;
|
|
682
|
+
f1=phi(f11);
|
|
683
|
+
f2=phi(f22);
|
|
684
|
+
ideal I=f1,f2;
|
|
685
|
+
module M=maxideal(1)*jacob(I);
|
|
686
|
+
module N=I*freemodule(2);
|
|
687
|
+
modVStd0(M,N,I,15);
|
|
688
|
+
}
|
|
689
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
690
|
+
proc modVStd(module M, module N, ideal I,int bound,list #)
|
|
691
|
+
"USAGE: modVStd((M, N, I,bound, #); M is a submodule
|
|
692
|
+
in A^r over the basering=:A, N ist a submodule in R^r over the subring
|
|
693
|
+
R of the basering generated by the entries of I
|
|
694
|
+
COMPUTE: a standard basis of A^r/M+N+maxideal(bound)*A^r using modular version
|
|
695
|
+
RETURN: a list whose ist entry gives a list where each entry is a genrator of
|
|
696
|
+
standard basis and second entry gives a list of generators after the
|
|
697
|
+
reduced echelon form
|
|
698
|
+
NOTE: if # is not empty the bound is corrected by computing determinacy
|
|
699
|
+
EXAMPLE: example modVStd; shows an example"
|
|
700
|
+
{
|
|
701
|
+
//---------------------------- initialisation --------------------------------
|
|
702
|
+
int np=10;
|
|
703
|
+
bigint H;
|
|
704
|
+
if(size(#)>0){np=#[1];}
|
|
705
|
+
list P=2134567879;
|
|
706
|
+
int j,cc;
|
|
707
|
+
def R0 = basering;
|
|
708
|
+
module L;
|
|
709
|
+
module M0=M;
|
|
710
|
+
module N0=N;
|
|
711
|
+
list T1,T2,L1,L2;
|
|
712
|
+
list rl = ringlist(R0);
|
|
713
|
+
|
|
714
|
+
while(1)
|
|
715
|
+
{
|
|
716
|
+
cc=timer;
|
|
717
|
+
for(j = 1; j <= np; j++)
|
|
718
|
+
{
|
|
719
|
+
P[size(P)+1]=prime(P[size(P)]-1);
|
|
720
|
+
}
|
|
721
|
+
for(j = 1; j <= size(P); j++)
|
|
722
|
+
{
|
|
723
|
+
rl[1] = P[j];
|
|
724
|
+
def @r = ring(rl);
|
|
725
|
+
setring @r;
|
|
726
|
+
ideal I = fetch(R0,I);
|
|
727
|
+
module M = fetch(R0,M0);
|
|
728
|
+
module N = fetch(R0,N0);
|
|
729
|
+
list W = vStd(M,N,I,bound);
|
|
730
|
+
setring R0;
|
|
731
|
+
list W = fetch(@r,W);
|
|
732
|
+
T1[j]=W[1];
|
|
733
|
+
T2[j]=W[2];
|
|
734
|
+
kill W;
|
|
735
|
+
kill @r;
|
|
736
|
+
}
|
|
737
|
+
L1 = deleteUnluckyPrimesM(T1,P);
|
|
738
|
+
L2 = deleteUnluckyPrimesM(T2,P);
|
|
739
|
+
if(size(M0)>1)
|
|
740
|
+
{
|
|
741
|
+
H=1;
|
|
742
|
+
for(j = 1; j <= size(L1[2]); j++)
|
|
743
|
+
{
|
|
744
|
+
H = H*L1[2][j];
|
|
745
|
+
}
|
|
746
|
+
M= chinrem(L1[1],L1[2]);
|
|
747
|
+
M = farey(M,H);
|
|
748
|
+
attrib(M,"isSB",1);
|
|
749
|
+
}
|
|
750
|
+
else
|
|
751
|
+
{
|
|
752
|
+
M=M0;
|
|
753
|
+
}
|
|
754
|
+
H=1;
|
|
755
|
+
for(j = 1; j <= size(L2[2]); j++)
|
|
756
|
+
{
|
|
757
|
+
H = H*L2[2][j];
|
|
758
|
+
}
|
|
759
|
+
L= chinrem(L2[1],L2[2]);
|
|
760
|
+
L = farey(L,H);
|
|
761
|
+
|
|
762
|
+
if(pTestSBM(M0,N0,I,M,L,P,bound))
|
|
763
|
+
{
|
|
764
|
+
//int bb=timer;
|
|
765
|
+
if(finalTestM(M0,N0,I,M,L,bound))
|
|
766
|
+
{
|
|
767
|
+
// "time for final test";timer-bb;
|
|
768
|
+
return(list(M,L));
|
|
769
|
+
}
|
|
770
|
+
// "time for final test";timer-bb;
|
|
771
|
+
// "final test failed";
|
|
772
|
+
}
|
|
773
|
+
// "pTest failed";size(P);
|
|
774
|
+
}
|
|
775
|
+
}
|
|
776
|
+
example
|
|
777
|
+
{
|
|
778
|
+
"EXAMPLE"; echo=2;
|
|
779
|
+
ring R=0,(x,y),(c,ds);
|
|
780
|
+
poly f1=x;
|
|
781
|
+
poly f2=xy+y5+y7;
|
|
782
|
+
poly f11=f1+f2*f1;
|
|
783
|
+
poly f22=f2+f1^2;
|
|
784
|
+
map phi=basering,x+y,y+y2;
|
|
785
|
+
f1=phi(f11);
|
|
786
|
+
f2=phi(f22);
|
|
787
|
+
ideal I=f1,f2;
|
|
788
|
+
module M=maxideal(1)*jacob(I);
|
|
789
|
+
module N=I*freemodule(2);
|
|
790
|
+
modVStd(M,N,I,15);
|
|
791
|
+
}
|
|
792
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
793
|
+
static proc deleteUnluckyPrimesM(list T, list L)
|
|
794
|
+
{
|
|
795
|
+
int j,k,c;
|
|
796
|
+
intvec hl,hc;
|
|
797
|
+
module cT,lT,cK;
|
|
798
|
+
lT = lead(T[size(T)]);
|
|
799
|
+
attrib(lT,"isSB",1);
|
|
800
|
+
for(j = 1; j < size(T); j++)
|
|
801
|
+
{
|
|
802
|
+
cT = lead(T[j]);
|
|
803
|
+
attrib(cT,"isSB",1);
|
|
804
|
+
if(size(reduce(cT,lT,5))!=0)
|
|
805
|
+
{
|
|
806
|
+
cK = cT;
|
|
807
|
+
c++;
|
|
808
|
+
}
|
|
809
|
+
else
|
|
810
|
+
{
|
|
811
|
+
if(size(reduce(lT,cT,5))!=0)
|
|
812
|
+
{
|
|
813
|
+
cK = cT;
|
|
814
|
+
c++;
|
|
815
|
+
}
|
|
816
|
+
}
|
|
817
|
+
}
|
|
818
|
+
if(c > size(T) div 2){ lT = cK; }
|
|
819
|
+
|
|
820
|
+
int addList;
|
|
821
|
+
j = 1;
|
|
822
|
+
attrib(lT,"isSB",1);
|
|
823
|
+
while((j <= size(T))&&(c > 0))
|
|
824
|
+
{
|
|
825
|
+
cT = lead(T[j]);
|
|
826
|
+
attrib(cT,"isSB",1);
|
|
827
|
+
if((size(reduce(cT,lT,5)) != 0)||(size(reduce(lT,cT,5)) != 0))
|
|
828
|
+
{
|
|
829
|
+
T = delete(T,j);
|
|
830
|
+
if(j == 1)
|
|
831
|
+
{
|
|
832
|
+
L = L[2..size(L)];
|
|
833
|
+
if(addList == 1) { M = M[2..size(M)]; }
|
|
834
|
+
}
|
|
835
|
+
else
|
|
836
|
+
{
|
|
837
|
+
if(j == size(L))
|
|
838
|
+
{
|
|
839
|
+
L = L[1..size(L)-1];
|
|
840
|
+
if(addList == 1) { M = M[1..size(M)-1]; }
|
|
841
|
+
}
|
|
842
|
+
else
|
|
843
|
+
{
|
|
844
|
+
L = L[1..j-1],L[j+1..size(L)];
|
|
845
|
+
if(addList == 1) { M = M[1..j-1],M[j+1..size(M)]; }
|
|
846
|
+
}
|
|
847
|
+
}
|
|
848
|
+
j--;
|
|
849
|
+
}
|
|
850
|
+
j++;
|
|
851
|
+
}
|
|
852
|
+
|
|
853
|
+
for(j = 1; j <= size(L); j++)
|
|
854
|
+
{
|
|
855
|
+
L[j] = bigint(L[j]);
|
|
856
|
+
}
|
|
857
|
+
|
|
858
|
+
if(addList == 0) { return(list(T,L,lT)); }
|
|
859
|
+
if(addList == 1) { return(list(T,L,M,lT)); }
|
|
860
|
+
}
|
|
861
|
+
|
|
862
|
+
static proc deleteUnluckyPrimesM0(alias list modresults)
|
|
863
|
+
{
|
|
864
|
+
list T1, T2;
|
|
865
|
+
int i;
|
|
866
|
+
for (i = size(modresults); i > 0; i--) {
|
|
867
|
+
T1[i] = modresults[i][1];
|
|
868
|
+
T2[i] = modresults[i][2];
|
|
869
|
+
}
|
|
870
|
+
list indices1 = Modstd::deleteUnluckyPrimes_std(T1);
|
|
871
|
+
list indices2 = Modstd::deleteUnluckyPrimes_std(T2);
|
|
872
|
+
return(indices1+indices2);
|
|
873
|
+
}
|
|
874
|
+
|
|
875
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
876
|
+
static proc pTestSBM(module M0, module N0, ideal I, module M, module L, list P,
|
|
877
|
+
int bound)
|
|
878
|
+
{
|
|
879
|
+
int i,j,k,p;
|
|
880
|
+
def R0 = basering;
|
|
881
|
+
list r = ringlist(R0);
|
|
882
|
+
|
|
883
|
+
while(!j)
|
|
884
|
+
{
|
|
885
|
+
j = 1;
|
|
886
|
+
p = prime(random(1000000000,2134567879));
|
|
887
|
+
for(i = 1; i <= size(P); i++)
|
|
888
|
+
{
|
|
889
|
+
if(p == P[i]) { j = 0; break; }
|
|
890
|
+
}
|
|
891
|
+
|
|
892
|
+
}
|
|
893
|
+
r[1] = p;
|
|
894
|
+
def @R = ring(r);
|
|
895
|
+
setring @R;
|
|
896
|
+
ideal I = fetch(R0,I);
|
|
897
|
+
module M0 = fetch(R0,M0);
|
|
898
|
+
module N0 = fetch(R0,N0);
|
|
899
|
+
list W = vStd(M0,N0,I,bound);
|
|
900
|
+
module M = fetch(R0,M);
|
|
901
|
+
module L = fetch(R0,L);
|
|
902
|
+
attrib(M,"isSB",1);
|
|
903
|
+
attrib(L,"isSB",1);
|
|
904
|
+
j=size(reduce(W[1],M,5))+size(reduce(W[2],L,5));
|
|
905
|
+
setring R0;
|
|
906
|
+
return(!j);
|
|
907
|
+
}
|
|
908
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
909
|
+
static proc pTestSBM0(string command, alias list args, def result, int p)
|
|
910
|
+
{
|
|
911
|
+
def R0 = basering;
|
|
912
|
+
list r = ringlist(R0);
|
|
913
|
+
r[1] = p;
|
|
914
|
+
def @R = ring(r);
|
|
915
|
+
setring @R;
|
|
916
|
+
list args = fetch(R0, args);
|
|
917
|
+
list W = vStd(args[1..4]);
|
|
918
|
+
def result = fetch(R0, result);
|
|
919
|
+
attrib(result[1],"isSB",1);
|
|
920
|
+
attrib(result[2],"isSB",1);
|
|
921
|
+
int j=size(reduce(W[1],result[1],5))+size(reduce(W[2],result[2],5));
|
|
922
|
+
setring R0;
|
|
923
|
+
return(!j);
|
|
924
|
+
}
|
|
925
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
926
|
+
|
|
927
|
+
static proc pTestSBM0_size1(string command, alias list args, def result, int p)
|
|
928
|
+
{
|
|
929
|
+
// adjusted copy of pTestSBM0() for the case size(args[1]) <= 1
|
|
930
|
+
def R0 = basering;
|
|
931
|
+
list r = ringlist(R0);
|
|
932
|
+
r[1] = p;
|
|
933
|
+
def @R = ring(r);
|
|
934
|
+
setring @R;
|
|
935
|
+
list args = fetch(R0, args);
|
|
936
|
+
module L = vStd_size1(args[1..4]);
|
|
937
|
+
def result = fetch(R0, result);
|
|
938
|
+
attrib(result,"isSB",1);
|
|
939
|
+
int j = size(reduce(L, result,5));
|
|
940
|
+
setring R0;
|
|
941
|
+
|
|
942
|
+
return(!j);
|
|
943
|
+
}
|
|
944
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
945
|
+
static proc finalTestM(module M0, module N0, ideal I, module M, module L,
|
|
946
|
+
int bound)
|
|
947
|
+
{
|
|
948
|
+
attrib(M,"isSB",1);
|
|
949
|
+
int a=size(myReduceM(M0,M,bound));
|
|
950
|
+
int b=testSBM(M,bound);
|
|
951
|
+
int c=size(reduceV(M,myReduceM(N0,M,bound),L,bound));
|
|
952
|
+
return(!(a+b+c));
|
|
953
|
+
}
|
|
954
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
955
|
+
static proc testSBM(module M, int bound)
|
|
956
|
+
{
|
|
957
|
+
int i,j;
|
|
958
|
+
vector f;
|
|
959
|
+
for(i=1;i<size(M);i++)
|
|
960
|
+
{
|
|
961
|
+
for(j=i+1;j<=size(M);j++)
|
|
962
|
+
{
|
|
963
|
+
f=jet(spoly(M[i],M[j],1),bound);
|
|
964
|
+
f=myReduce(f,M,bound);
|
|
965
|
+
if(f!=0){return(1);}
|
|
966
|
+
}
|
|
967
|
+
}
|
|
968
|
+
return(0);
|
|
969
|
+
}
|
|
970
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
971
|
+
static proc finalTestM0(string command, alias list args, def result)
|
|
972
|
+
{
|
|
973
|
+
attrib(result[1], "isSB", 1);
|
|
974
|
+
if (size(myReduceM(args[1], result[1], args[4]))) {
|
|
975
|
+
return(0);
|
|
976
|
+
}
|
|
977
|
+
if(testSBM(result[1],args[4])){return(0);}
|
|
978
|
+
if (size(reduceV(result[1], myReduceM(args[2], result[1], args[4]),
|
|
979
|
+
result[2], args[4]))) {
|
|
980
|
+
return(0);
|
|
981
|
+
}
|
|
982
|
+
return(1);
|
|
983
|
+
}
|
|
984
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
985
|
+
static proc finalTestM0_size1(string command, list args, def result)
|
|
986
|
+
{
|
|
987
|
+
attrib(args[1], "isSB", 1);
|
|
988
|
+
if (size(reduceV(args[1], myReduceM(args[2], args[1], args[4]),
|
|
989
|
+
result, args[4]))) {
|
|
990
|
+
return(0);
|
|
991
|
+
}
|
|
992
|
+
return(1);
|
|
993
|
+
}
|
|
994
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
995
|
+
static proc normalMap(ideal I, int bound)
|
|
996
|
+
"USAGE: normalMap(I); I=f1,f2 in K[x,y]
|
|
997
|
+
RETURN: (0,0) if jet(I,1)=0
|
|
998
|
+
(x,h) A-equivalent to I modulo <x,y>^bound+1
|
|
999
|
+
if ord(h)=1 then h=y
|
|
1000
|
+
if ord(h)=2 then h=xy+y^m(I)+h.o.t.if m(I)>=3 or (x,y^2)
|
|
1001
|
+
if ord(h)=3 milnor(diff(h,y))=1 and m(I)>3 then h=xy2+y^m(I)+h.o.t.
|
|
1002
|
+
if ord(h)=4 and m(I)=4 then h=y^4+a*x^3y+b*x^2y^2+h.o.t.
|
|
1003
|
+
m(I)=vdim(std(I))
|
|
1004
|
+
NOTE: the procedure is designed for simple and unimodular maps
|
|
1005
|
+
"
|
|
1006
|
+
{
|
|
1007
|
+
I=jet(I,bound);
|
|
1008
|
+
//the trivial cases
|
|
1009
|
+
if(size(jet(I,1))==0){return(ideal(0,0));}
|
|
1010
|
+
if(vdim(std(jet(I,1)))==1){return(maxideal(1));}
|
|
1011
|
+
if(vdim(std(I))==2){I=var(1),var(2)^2;return(I);}
|
|
1012
|
+
|
|
1013
|
+
def R=basering;
|
|
1014
|
+
map phi;
|
|
1015
|
+
poly p;
|
|
1016
|
+
int i;
|
|
1017
|
+
|
|
1018
|
+
//transformation to (x,h)
|
|
1019
|
+
if(jet(I[1],1)==0){p=I[1];I[1]=I[2];I[2]=p;}
|
|
1020
|
+
I[1]=simplify(I[1],1);
|
|
1021
|
+
if(lead(I[1])==var(2)){phi=R,var(2),var(1);}
|
|
1022
|
+
else{phi=R,var(1)-I[1][2],var(2);}
|
|
1023
|
+
I=phi(I);
|
|
1024
|
+
while(I[1]!=var(1))
|
|
1025
|
+
{
|
|
1026
|
+
phi=R,2*var(1)-I[1],var(2);
|
|
1027
|
+
I=jet(phi(I),bound);
|
|
1028
|
+
}
|
|
1029
|
+
while((leadmonom(I[2])==var(1))||(leadmonom(I[2])==var(1)^2)||(leadmonom(I[2]
|
|
1030
|
+
)==var(1)^3)||(leadmonom(I[2])==var(1)^4))
|
|
1031
|
+
{
|
|
1032
|
+
I[2]=I[2]-lead(I[2]);
|
|
1033
|
+
}
|
|
1034
|
+
I[2]=simplify(I[2],1);
|
|
1035
|
+
if(deg(lead(I[2]))>=5){return(I);}
|
|
1036
|
+
|
|
1037
|
+
//special treatment of h
|
|
1038
|
+
//the case ord(h)=4
|
|
1039
|
+
if(deg(lead(I[2]))==4)
|
|
1040
|
+
{
|
|
1041
|
+
if(vdim(std(I))>4){return(I);}
|
|
1042
|
+
def S=changevar("var(2),var(1)",R);
|
|
1043
|
+
setring S;
|
|
1044
|
+
map psi=R,var(2),var(1);
|
|
1045
|
+
ideal I=psi(I);
|
|
1046
|
+
I[2]=simplify(I[2],1);
|
|
1047
|
+
if(leadmonom(I[2][2])==var(1)^3*var(2))
|
|
1048
|
+
{
|
|
1049
|
+
map sigma=S,var(1)-1/4*leadcoef(I[2][2])*var(2),var(2);
|
|
1050
|
+
I=sigma(I);
|
|
1051
|
+
setring R;
|
|
1052
|
+
map lambda=S,var(2),var(1);
|
|
1053
|
+
I=lambda(I);
|
|
1054
|
+
if(leadmonom(I[2])==var(1)^4){I[2]=I[2]-lead(I[2]);}
|
|
1055
|
+
return(I);
|
|
1056
|
+
}
|
|
1057
|
+
else
|
|
1058
|
+
{
|
|
1059
|
+
setring R;
|
|
1060
|
+
return(I);
|
|
1061
|
+
}
|
|
1062
|
+
}
|
|
1063
|
+
|
|
1064
|
+
//the case ord(h)=3
|
|
1065
|
+
if(deg(lead(I[2]))==3)
|
|
1066
|
+
{
|
|
1067
|
+
phi=R,var(1),var(2)-leadcoef(I[2])/(2*leadcoef(I[2][2]))*var(1);
|
|
1068
|
+
I=phi(I);
|
|
1069
|
+
}
|
|
1070
|
+
while((leadmonom(I[2])==var(1))||(leadmonom(I[2])==var(1)^2)||(leadmonom(I[2]
|
|
1071
|
+
)==var(1)^3)||(leadmonom(I[2])==var(1)^4))
|
|
1072
|
+
{
|
|
1073
|
+
I[2]=I[2]-lead(I[2]);
|
|
1074
|
+
}
|
|
1075
|
+
I[2]=simplify(I[2],1);
|
|
1076
|
+
if(leadmonom(I[2])==var(1)*var(2)^2)
|
|
1077
|
+
{
|
|
1078
|
+
while(i<bound)
|
|
1079
|
+
{
|
|
1080
|
+
i++;
|
|
1081
|
+
p=jet(I[2]/(var(1)*var(2))-var(2),i);
|
|
1082
|
+
phi=R,var(1),var(2)-1/2*p;
|
|
1083
|
+
I=jet(phi(I),bound);
|
|
1084
|
+
}
|
|
1085
|
+
}
|
|
1086
|
+
|
|
1087
|
+
//the case ord(h)=2
|
|
1088
|
+
if(leadmonom(I[2])==var(1)*var(2))
|
|
1089
|
+
{
|
|
1090
|
+
while(i<bound)
|
|
1091
|
+
{
|
|
1092
|
+
i++;
|
|
1093
|
+
p=jet(I[2]/var(1)-var(2),i);
|
|
1094
|
+
phi=R,var(1),var(2)-p;
|
|
1095
|
+
I=jet(phi(I),bound);
|
|
1096
|
+
}
|
|
1097
|
+
}
|
|
1098
|
+
|
|
1099
|
+
//all cases
|
|
1100
|
+
p=lead(I[2])+reduc(I[2]-lead(I[2]),I,bound);
|
|
1101
|
+
I[2]=p;
|
|
1102
|
+
if((leadmonom(I[2])==var(1)*var(2))||(leadmonom(I[2])==var(1)*var(2)^2))
|
|
1103
|
+
{
|
|
1104
|
+
number a=leadcoef(I[2][2]);
|
|
1105
|
+
I=subst(I,x,a*x);
|
|
1106
|
+
I=1/a*I;
|
|
1107
|
+
}
|
|
1108
|
+
return(I);
|
|
1109
|
+
}
|
|
1110
|
+
example
|
|
1111
|
+
{
|
|
1112
|
+
"EXAMPLE"; echo=2;
|
|
1113
|
+
ring R=0,(x,y),(c,ds);
|
|
1114
|
+
ideal I1=x,xy2+y6+y7+7y9;
|
|
1115
|
+
ideal I2=x,xy+y6+y8+77y9;
|
|
1116
|
+
ideal I3=x,3x4+2x3y+7x2y2+4xy3+11y4;
|
|
1117
|
+
map phi=R,x+7y+y2,2x+y+y3;
|
|
1118
|
+
ideal J=phi(I1);
|
|
1119
|
+
normalMap(J,10);
|
|
1120
|
+
J=phi(I2);
|
|
1121
|
+
normalMap(J,10);
|
|
1122
|
+
J=I3;
|
|
1123
|
+
normalMap(J,10);
|
|
1124
|
+
}
|
|
1125
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1126
|
+
proc classifyUnimodalMaps(ideal I)
|
|
1127
|
+
"USAGE: classifyUnimodalMaps(I); I an ideal with 2 generators in a polynomial
|
|
1128
|
+
ring with 2 variables and local ordering defining a map germ C^2 to C^2
|
|
1129
|
+
COMPUTE: The normal form of the germ in Riegers classification if it is
|
|
1130
|
+
simple
|
|
1131
|
+
RETURN: normal form of I, of type ideal
|
|
1132
|
+
NOTE: If I is not unimodal it returns (0,0)
|
|
1133
|
+
EXAMPLE: example classifyUnimodalMaps; shows an example"
|
|
1134
|
+
{
|
|
1135
|
+
if(size(jet(I,1))==0){return(ideal(0,0));}
|
|
1136
|
+
list L=coDimMap(I,1);
|
|
1137
|
+
int determinacy=L[1];
|
|
1138
|
+
int c=L[2];
|
|
1139
|
+
if(determinacy<0){return(ideal(0,0));}
|
|
1140
|
+
I=normalMap(I,determinacy);
|
|
1141
|
+
|
|
1142
|
+
poly g=I[2];
|
|
1143
|
+
int m =vdim(std(I));
|
|
1144
|
+
int mu=vdim(std(jacob(diff(g,var(2)))));
|
|
1145
|
+
int d=doubleFoldNumber(g);
|
|
1146
|
+
|
|
1147
|
+
if((mu==-1)||((m!=4)&&(m!=6))||(deg(lead(I[2]))>4)){return(ideal(0,0));}
|
|
1148
|
+
|
|
1149
|
+
if(m==6)
|
|
1150
|
+
{
|
|
1151
|
+
if((mu==0))
|
|
1152
|
+
{
|
|
1153
|
+
if(c==6)
|
|
1154
|
+
{
|
|
1155
|
+
g=jet(g,9);
|
|
1156
|
+
I[2]=modulus(g);
|
|
1157
|
+
return(I);
|
|
1158
|
+
}
|
|
1159
|
+
if(c==7){return(ideal(var(1),var(1)*var(2)+var(2)^6+var(2)^14));}
|
|
1160
|
+
if(c==8){return(ideal(var(1),var(1)*var(2)+var(2)^6));}
|
|
1161
|
+
return(ideal(0,0));
|
|
1162
|
+
}
|
|
1163
|
+
if((mu==1)&&(c==7))
|
|
1164
|
+
{
|
|
1165
|
+
g=jet(g,9);
|
|
1166
|
+
I[2]=modulus(g);
|
|
1167
|
+
return(I);
|
|
1168
|
+
}
|
|
1169
|
+
}
|
|
1170
|
+
if((mu==4))
|
|
1171
|
+
{
|
|
1172
|
+
if(d==3)
|
|
1173
|
+
{
|
|
1174
|
+
if(c==7)
|
|
1175
|
+
{
|
|
1176
|
+
I[2]=jet(g,4)+var(1)^3*var(2)^2;
|
|
1177
|
+
return(I);
|
|
1178
|
+
}
|
|
1179
|
+
if(c==8)
|
|
1180
|
+
{
|
|
1181
|
+
I[2]=jet(g,4)+var(1)^4*var(2)^2;
|
|
1182
|
+
return(I);
|
|
1183
|
+
}
|
|
1184
|
+
if(c==9)
|
|
1185
|
+
{
|
|
1186
|
+
I[2]=jet(g,4);
|
|
1187
|
+
return(I);
|
|
1188
|
+
}
|
|
1189
|
+
}
|
|
1190
|
+
if((c==d+3)&&(d>=4))
|
|
1191
|
+
{
|
|
1192
|
+
return(ideal(var(1),var(2)^4+var(1)^2*var(2)^2+var(1)^d*var(2)));
|
|
1193
|
+
}
|
|
1194
|
+
}
|
|
1195
|
+
if((mu==5)&&(c==7)&&(d==3))
|
|
1196
|
+
{
|
|
1197
|
+
return(ideal(var(1),var(2)^4+var(1)^3*var(2)-3/2*var(1)^2*var(2)^2+var(1)^3*var(2)^2));
|
|
1198
|
+
}
|
|
1199
|
+
if((mu==6)&&(c==8)&&(d==3))
|
|
1200
|
+
{
|
|
1201
|
+
return(ideal(var(1),var(2)^4+var(1)^3*var(2)-3/2*var(1)^2*var(2)^2+var(1)^4*var(2)^2));
|
|
1202
|
+
}
|
|
1203
|
+
if((mu==c-2)&&(c>=9)&&(d==3))
|
|
1204
|
+
{
|
|
1205
|
+
I=ideal(var(1),var(2)^4+var(1)^3*var(2)-3/2*var(1)^2*var(2)^2+var(1)^(c-3)*var(2));
|
|
1206
|
+
return(I);
|
|
1207
|
+
}
|
|
1208
|
+
if((mu==7)&&(c==d+4)&&(d>=5))
|
|
1209
|
+
{
|
|
1210
|
+
return(ideal(var(1),var(2)^4+var(1)^3*var(2)^2+var(1)^d*var(2)));
|
|
1211
|
+
}
|
|
1212
|
+
if((mu==2*d-2)&&(2*d<=c)&&(c<=3*d)&&((d==4)||(d==5)))
|
|
1213
|
+
{
|
|
1214
|
+
return(ideal(var(1),var(2)^4+var(1)^d*var(2)+var(1)^(c-d-1)*var(2)^2));
|
|
1215
|
+
}
|
|
1216
|
+
return(ideal(0,0));
|
|
1217
|
+
}
|
|
1218
|
+
example
|
|
1219
|
+
{
|
|
1220
|
+
"EXAMPLE"; echo=2;
|
|
1221
|
+
ring R=0,(x,y),(c,ds);
|
|
1222
|
+
poly f1=x;
|
|
1223
|
+
poly f2=xy+y6+y9;
|
|
1224
|
+
poly f11=f1+f2*f1;
|
|
1225
|
+
poly f22=f2+f1^2;
|
|
1226
|
+
map phi=basering,x+y,y+y2;
|
|
1227
|
+
f1=phi(f11);
|
|
1228
|
+
f2=phi(f22);
|
|
1229
|
+
ideal I=f1,f2;
|
|
1230
|
+
classifyUnimodalMaps(I);
|
|
1231
|
+
}
|
|
1232
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1233
|
+
static proc modulus(poly g)
|
|
1234
|
+
// g=xy+y6+h.o.t. or xy2+y6+h.o.t.
|
|
1235
|
+
{
|
|
1236
|
+
number a,b,c;
|
|
1237
|
+
matrix m=coef(g,var(2));
|
|
1238
|
+
if(m[1,1]==var(2)^9)
|
|
1239
|
+
{
|
|
1240
|
+
c=leadcoef(m[2,1]);
|
|
1241
|
+
if(m[1,2]==var(2)^8)
|
|
1242
|
+
{
|
|
1243
|
+
b=leadcoef(m[2,2]);
|
|
1244
|
+
if(m[1,3]==var(2)^7)
|
|
1245
|
+
{
|
|
1246
|
+
a=leadcoef(m[2,3]);
|
|
1247
|
+
}
|
|
1248
|
+
}
|
|
1249
|
+
else
|
|
1250
|
+
{
|
|
1251
|
+
if(m[1,2]==var(2)^7)
|
|
1252
|
+
{
|
|
1253
|
+
a=leadcoef(m[2,2]);
|
|
1254
|
+
}
|
|
1255
|
+
}
|
|
1256
|
+
}
|
|
1257
|
+
else
|
|
1258
|
+
{
|
|
1259
|
+
if(m[1,1]==var(2)^8)
|
|
1260
|
+
{
|
|
1261
|
+
b=leadcoef(m[2,1]);
|
|
1262
|
+
if(m[1,2]==var(2)^7)
|
|
1263
|
+
{
|
|
1264
|
+
a=leadcoef(m[2,2]);
|
|
1265
|
+
}
|
|
1266
|
+
}
|
|
1267
|
+
else
|
|
1268
|
+
{
|
|
1269
|
+
if(m[1,1]==var(2)^7)
|
|
1270
|
+
{
|
|
1271
|
+
a=leadcoef(m[2,1]);
|
|
1272
|
+
}
|
|
1273
|
+
}
|
|
1274
|
+
}
|
|
1275
|
+
if(leadmonom(g)==var(1)*var(2))
|
|
1276
|
+
{
|
|
1277
|
+
if(a!=0)
|
|
1278
|
+
{
|
|
1279
|
+
g=var(1)*var(2)+var(2)^6+(5*b-3*a^2)/(5*a^2)*var(2)^8+(25*c+14*a^3-35*a*b)/(25*a^3)*var(2)^9;
|
|
1280
|
+
}
|
|
1281
|
+
}
|
|
1282
|
+
if(leadmonom(g)==var(1)*var(2)^2)
|
|
1283
|
+
{
|
|
1284
|
+
if(a!=0)
|
|
1285
|
+
{
|
|
1286
|
+
g=var(1)*var(2)^2+var(2)^6+var(2)^7+(4*c*a-5*b)/(4*a^2)*var(2)^9;
|
|
1287
|
+
}
|
|
1288
|
+
}
|
|
1289
|
+
return(g);
|
|
1290
|
+
}
|
|
1291
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1292
|
+
static proc doubleFoldNumber(poly g)
|
|
1293
|
+
"USAGE: doubleFoldNumber(g) , g poly of 2 variables
|
|
1294
|
+
RETURN: the double fold number of (x,g(x,y))
|
|
1295
|
+
EXAMPLE: example doubleFoldNumber; shows an example"
|
|
1296
|
+
{
|
|
1297
|
+
if(nvars(basering)!=2){ERROR("designed for 2 variables");}
|
|
1298
|
+
def R=basering;
|
|
1299
|
+
ring S=0,(x,y,t),ds;
|
|
1300
|
+
map phi=R,x,y;
|
|
1301
|
+
poly g=phi(g);
|
|
1302
|
+
poly h=subst(g,y,y+t);
|
|
1303
|
+
poly f=diff(g,y);
|
|
1304
|
+
h=(h-g-t*f)/t2;
|
|
1305
|
+
ideal I=f,h,diff(h,t);
|
|
1306
|
+
int d=vdim(std(I)) div 2;
|
|
1307
|
+
setring R;
|
|
1308
|
+
return(d);
|
|
1309
|
+
}
|
|
1310
|
+
example
|
|
1311
|
+
{
|
|
1312
|
+
"EXAMPLE"; echo=2;
|
|
1313
|
+
ring R=0,(x,y),ds;
|
|
1314
|
+
poly g=xy+y5+y7;
|
|
1315
|
+
doubleFoldNumber(g);
|
|
1316
|
+
}
|
|
1317
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1318
|
+
/*
|
|
1319
|
+
============================== examples of Rieger ==============
|
|
1320
|
+
|
|
1321
|
+
ring R=0,(x,y),(c,ds);
|
|
1322
|
+
poly f1=x;
|
|
1323
|
+
|
|
1324
|
+
poly f2=xy+y3; //2
|
|
1325
|
+
poly f2=y3+x2y; //3
|
|
1326
|
+
poly f2=xy+y4; //3
|
|
1327
|
+
poly f2=xy+y5+y7; //4
|
|
1328
|
+
poly f2=xy+y5; //5
|
|
1329
|
+
poly f2=xy2+y4+y5; //4
|
|
1330
|
+
poly f2=xy2+y5+y6; //5
|
|
1331
|
+
poly f2=xy2+y5+y9; //6
|
|
1332
|
+
poly f2=xy2+y5; //7
|
|
1333
|
+
poly f2=x2y+y4+y5; //5
|
|
1334
|
+
poly f2=x2y+y4; //6
|
|
1335
|
+
|
|
1336
|
+
poly f11=f1+f2*f1;
|
|
1337
|
+
poly f22=f2+f1^2;
|
|
1338
|
+
map phi=basering,x+y,y+y2;
|
|
1339
|
+
f1=phi(f11);
|
|
1340
|
+
f2=phi(f22);
|
|
1341
|
+
ideal I=f1,f2;
|
|
1342
|
+
coDimMap(I,1);
|
|
1343
|
+
classifySimpleMaps(I);
|
|
1344
|
+
|
|
1345
|
+
==================== Examples of Gibson and Hobbs =============
|
|
1346
|
+
|
|
1347
|
+
ring R=0,t,(c,ds);
|
|
1348
|
+
poly f1=t4;
|
|
1349
|
+
poly f2=t7+t9;
|
|
1350
|
+
poly f3=t17;
|
|
1351
|
+
ideal I=f1,f2,f3;
|
|
1352
|
+
map phi=R,t+2t2+3t3+7t4;
|
|
1353
|
+
I=phi(I);
|
|
1354
|
+
coDimMap(I);
|
|
1355
|
+
|
|
1356
|
+
ring R=0,t,(c,ds);
|
|
1357
|
+
int k=12;
|
|
1358
|
+
poly f1=t4;
|
|
1359
|
+
poly f2=t6+t^(2*k-7);
|
|
1360
|
+
poly f3=t^(2*k+1);
|
|
1361
|
+
f1=f1+f2*f3;
|
|
1362
|
+
f2=f2+f3^2;
|
|
1363
|
+
f3=f3+f1*f2*f3;
|
|
1364
|
+
ideal I=f1,f2,f3;
|
|
1365
|
+
map phi=R,t+t2+2t3+5t4;
|
|
1366
|
+
I=phi(I);
|
|
1367
|
+
coDimMap(I);
|
|
1368
|
+
|
|
1369
|
+
ring R=0,t,(c,ds);
|
|
1370
|
+
int k=8;
|
|
1371
|
+
poly f1=t4;
|
|
1372
|
+
poly f2=t6+t^(2*k+1);
|
|
1373
|
+
f1=f1+f2*f1;
|
|
1374
|
+
f2=f2+f1^2;
|
|
1375
|
+
ideal I=f1,f2,0;
|
|
1376
|
+
map phi=R,t+t2+3t3+5t4;
|
|
1377
|
+
I=phi(I);
|
|
1378
|
+
coDimMap(I);
|
|
1379
|
+
|
|
1380
|
+
ring R=0,t,(c,ds);
|
|
1381
|
+
int k=8;
|
|
1382
|
+
poly f1=t2;
|
|
1383
|
+
poly f2=t^(2*k+1);
|
|
1384
|
+
f1=f1+f2*f1;
|
|
1385
|
+
f2=f2+f1^2;
|
|
1386
|
+
ideal I=f1,f2,0;
|
|
1387
|
+
map phi=R,t+t2+3t3+5t4;
|
|
1388
|
+
I=phi(I);
|
|
1389
|
+
coDimMap(I);
|
|
1390
|
+
|
|
1391
|
+
ring R=0,t,(c,ds);
|
|
1392
|
+
int k=8;
|
|
1393
|
+
int p=11;
|
|
1394
|
+
poly f1=t3;
|
|
1395
|
+
poly f2=t^(3*k+1)+t^(3*p+2);
|
|
1396
|
+
f1=f1+f2*f1;
|
|
1397
|
+
f2=f2+f1^2;
|
|
1398
|
+
ideal I=f1,f2,0;
|
|
1399
|
+
map phi=R,t+t2+3t3+5t4;
|
|
1400
|
+
I=phi(I);
|
|
1401
|
+
coDimMap(I);
|
|
1402
|
+
|
|
1403
|
+
============================ more examples ======================
|
|
1404
|
+
|
|
1405
|
+
ring R=0,t,(c,ds);
|
|
1406
|
+
poly f1=t8;
|
|
1407
|
+
poly f2=t10+t13;
|
|
1408
|
+
poly f3=t12+2t15;
|
|
1409
|
+
f1=f1+231*f2*f1+311*f1*f3+71*f1^2+611*f1*f2*f3;
|
|
1410
|
+
f2=f2+911*f1^2+511*f2*f3+f1^2*f2^2;
|
|
1411
|
+
f3=f3+731*f1*f2*f3+1171*f3^2+f2^3;
|
|
1412
|
+
ideal I=f1,f2,f3;
|
|
1413
|
+
map phi=R,t+t2+3t3+5t4+7t6;
|
|
1414
|
+
I=phi(I);
|
|
1415
|
+
coDimMap(I);
|
|
1416
|
+
|
|
1417
|
+
ring R=0,t,(c,ds);
|
|
1418
|
+
poly f1=t12;
|
|
1419
|
+
poly f2=t20+t30+t35;
|
|
1420
|
+
f1=f1+231*f2*f1+71*f1^2;
|
|
1421
|
+
f2=f2+911*f1^2+f1^2*f2^2;
|
|
1422
|
+
ideal I=f1,f2;
|
|
1423
|
+
map phi=R,t+t2+3t3+5t4+7t6;
|
|
1424
|
+
I=phi(I);
|
|
1425
|
+
coDimMap(I);
|
|
1426
|
+
|
|
1427
|
+
ring R=0,t,(c,ds);
|
|
1428
|
+
poly f1=t16;
|
|
1429
|
+
poly f2=t24+t28+t30+t35;
|
|
1430
|
+
f1=f1+231*f2*f1+71*f1^2;
|
|
1431
|
+
f2=f2+911*f1^2+f1^2*f2^2;
|
|
1432
|
+
ideal I=f1,f2;
|
|
1433
|
+
map phi=R,t+t2+3t3+5t4+7t6;
|
|
1434
|
+
I=phi(I);
|
|
1435
|
+
coDimMap(I);
|
|
1436
|
+
|
|
1437
|
+
ring R=0,t,(c,ds);
|
|
1438
|
+
int k=7;
|
|
1439
|
+
poly f1=t^(8*k);
|
|
1440
|
+
poly f2=t^(10*k)+t^(13*k);
|
|
1441
|
+
poly f3=t^(12*k)+2t^(15*k);
|
|
1442
|
+
poly f4=t101;
|
|
1443
|
+
f1=f1+231*f2*f1+311*f1*f3+71*f1^2+611*f1*f2*f3;
|
|
1444
|
+
f2=f2+911*f1^2+511*f2*f3+f1^2*f2^2;
|
|
1445
|
+
f3=f3+731*f1*f2*f3+1171*f3^2+f2^3;
|
|
1446
|
+
ideal I=f1,f2,f3,f4;
|
|
1447
|
+
map phi=R,t+22t2+323t3+555t4+777t6;
|
|
1448
|
+
I=phi(I);
|
|
1449
|
+
module M=jacob(I);
|
|
1450
|
+
module N=freemodule(ncols(I));
|
|
1451
|
+
list Re=modVStd(M,N,I,250);
|
|
1452
|
+
Re=modVStd0(M,N,I,250);
|
|
1453
|
+
|
|
1454
|
+
ring R=0,(x,y),(c,ds);
|
|
1455
|
+
ideal I=x,xy2+y5+y9;
|
|
1456
|
+
map phi=R,x+xy4,y+x2+y11;
|
|
1457
|
+
I=phi(I);
|
|
1458
|
+
module M=maxideal(1)*jacob(I);
|
|
1459
|
+
module N=I*freemodule(2);
|
|
1460
|
+
list Re=modVStd(M,N,I,15);
|
|
1461
|
+
|
|
1462
|
+
ring R=0,(x,y),(c,ds);
|
|
1463
|
+
poly f1=x;
|
|
1464
|
+
poly f2=xy+y5+y7;
|
|
1465
|
+
poly f11=f1+f2*f1;
|
|
1466
|
+
poly f22=f2+f1^2;
|
|
1467
|
+
map phi=basering,x+y,y+y2;
|
|
1468
|
+
f1=phi(f11);
|
|
1469
|
+
f2=phi(f22);
|
|
1470
|
+
ideal I=f1,f2;
|
|
1471
|
+
map si=R,x+xy3+y11,y+x3+y14+xy17;
|
|
1472
|
+
I=si(I);
|
|
1473
|
+
module M=maxideal(1)*jacob(I);
|
|
1474
|
+
module N=I*freemodule(2);
|
|
1475
|
+
list Re=modVStd(M,N,I,15);
|
|
1476
|
+
|
|
1477
|
+
ring R=0,(x,y),(c,ds);
|
|
1478
|
+
ideal I=x,x2y+y4;
|
|
1479
|
+
map phi=R,x+xy4,y+x2+y11;
|
|
1480
|
+
I=phi(I);
|
|
1481
|
+
module M=maxideal(1)*jacob(I);
|
|
1482
|
+
module N=I*freemodule(2);
|
|
1483
|
+
list Re=modVStd(M,N,I,15);
|
|
1484
|
+
|
|
1485
|
+
ring R=0,t,(c,ds);
|
|
1486
|
+
int k=5;
|
|
1487
|
+
poly f1=t^(16*k);
|
|
1488
|
+
poly f2=t^(24*k)+t^(28*k)+t^(30*k)+t^(35*k);
|
|
1489
|
+
poly f3=t181;
|
|
1490
|
+
f1=f1+231*f2*f1+71*f1^2;
|
|
1491
|
+
f2=f2+911*f1^2+f1^2*f2^2;
|
|
1492
|
+
f3=f3+f1*f2;
|
|
1493
|
+
ideal I=f1,f2,f3;
|
|
1494
|
+
map phi=R,t+55t2+366t3+577t4+788t6;
|
|
1495
|
+
I=phi(I);
|
|
1496
|
+
module M=jacob(I);
|
|
1497
|
+
module N=freemodule(ncols(I));
|
|
1498
|
+
list Re=modVStd(M,N,I,300);
|
|
1499
|
+
|
|
1500
|
+
ring R=0,t,(c,ds);
|
|
1501
|
+
int k=7;
|
|
1502
|
+
poly f1=t^(12*k);
|
|
1503
|
+
poly f2=t^(20*k)+t^(30*k)+t^(35*k);
|
|
1504
|
+
poly f3=t139;
|
|
1505
|
+
f1=f1+231*f2*f1+715*f1^2;
|
|
1506
|
+
f2=f2+911*f1^2+4567*f1^2*f2^2;
|
|
1507
|
+
f3=f3+333*f1*f2;
|
|
1508
|
+
ideal I=f1,f2;
|
|
1509
|
+
map phi=R,t+22t2+333t3+544t4+755t6+567t7;
|
|
1510
|
+
I=phi(I);
|
|
1511
|
+
module M=jacob(I);
|
|
1512
|
+
module N=freemodule(ncols(I));
|
|
1513
|
+
list Re=modVStd(M,N,I,350);
|
|
1514
|
+
*/
|
|
1515
|
+
|