passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1353 @@
|
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version sagbi.lib 4.3.1.2 Nov_2022 "; // $Id: 58e64469768d63bfceef18cf9096487a5a741370 $
|
|
3
|
+
category="Commutative Algebra";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: sagbi.lib Compute SAGBI basis (subalgebra bases analogous to Groebner bases for ideals) of a subalgebra
|
|
6
|
+
AUTHORS: Jan Hackfeld, Jan.Hackfeld@rwth-aachen.de
|
|
7
|
+
Gerhard Pfister, pfister@mathematik.uni-kl.de
|
|
8
|
+
Viktor Levandovskyy, levandov@math.rwth-aachen.de
|
|
9
|
+
|
|
10
|
+
OVERVIEW:
|
|
11
|
+
SAGBI stands for 'subalgebra bases analogous to Groebner bases for ideals'.
|
|
12
|
+
SAGBI bases provide important tools for working with finitely presented
|
|
13
|
+
subalgebras of a polynomial ring. Note, that in contrast to Groebner
|
|
14
|
+
bases, SAGBI bases may be infinite.
|
|
15
|
+
|
|
16
|
+
REFERENCES:
|
|
17
|
+
Ana Bravo: Some Facts About Canonical Subalgebra Bases,
|
|
18
|
+
MSRI Publications 51, p. 247-254
|
|
19
|
+
|
|
20
|
+
PROCEDURES:
|
|
21
|
+
sagbiSPoly(A [,r,m]); computes SAGBI S-polynomials of A
|
|
22
|
+
sagbiReduce(I,A [,t,mt]); performs subalgebra reduction of I by A
|
|
23
|
+
sagbi(A [,m,t]); computes SAGBI basis for A
|
|
24
|
+
sagbiPart(A,k[,m]); computes partial SAGBI basis for A
|
|
25
|
+
algebraicDependence(I,it); performs iterations of SAGBI for algebraic dependencies of I
|
|
26
|
+
|
|
27
|
+
SEE ALSO: algebra_lib
|
|
28
|
+
";
|
|
29
|
+
|
|
30
|
+
LIB "elim.lib";
|
|
31
|
+
LIB "toric.lib";
|
|
32
|
+
LIB "algebra.lib";
|
|
33
|
+
LIB "ring.lib";
|
|
34
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
35
|
+
|
|
36
|
+
static proc assumeQring()
|
|
37
|
+
{
|
|
38
|
+
if (ideal(basering) != 0)
|
|
39
|
+
{
|
|
40
|
+
ERROR("This function has not yet been implemented over qrings.");
|
|
41
|
+
}
|
|
42
|
+
if(!hasGlobalOrdering(basering))
|
|
43
|
+
{
|
|
44
|
+
ERROR("global ordering required");
|
|
45
|
+
}
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
static proc uniqueVariableName (string variableName)
|
|
50
|
+
{
|
|
51
|
+
//Adds character "@" at the beginning of variableName until this name ist unique
|
|
52
|
+
//(not contained in the names of the ring variables or description of the coefficient field)
|
|
53
|
+
string ringVars = charstr(basering) + "," + varstr(basering);
|
|
54
|
+
while (find(ringVars,variableName) <> 0)
|
|
55
|
+
{
|
|
56
|
+
variableName="@"+variableName;
|
|
57
|
+
}
|
|
58
|
+
return(variableName);
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
static proc extendRing(def r, ideal leadTermsAlgebra, int method) {
|
|
62
|
+
/* Extends ring r with additional variables. If k=ncols(leadTermsAlgebra) and
|
|
63
|
+
* r contains already m additional variables @y, the procedure adds k-m variables
|
|
64
|
+
* @y(m+1)...@y(k) to the ring.
|
|
65
|
+
* The monomial ordering of the extended ring depends on method.
|
|
66
|
+
* Important: When calling this function, the basering (where algebra is defined) has to be active
|
|
67
|
+
*/
|
|
68
|
+
def br=basering;
|
|
69
|
+
int i;
|
|
70
|
+
ideal varsBasering=maxideal(1);
|
|
71
|
+
int numTotalAdditionalVars=ncols(leadTermsAlgebra);
|
|
72
|
+
string variableName=uniqueVariableName("@y");
|
|
73
|
+
//get a variable name different from existing variables
|
|
74
|
+
|
|
75
|
+
//-------- extend current baserring r with new variables @y,
|
|
76
|
+
// one for each new element in ideal algebra -------------
|
|
77
|
+
setring r;
|
|
78
|
+
list l = ring_list(r);
|
|
79
|
+
for (i=nvars(r)-nvars(br)+1; i<=numTotalAdditionalVars;i++)
|
|
80
|
+
{
|
|
81
|
+
l[2][i+nvars(br)]=string(variableName,"(",i,")");
|
|
82
|
+
}
|
|
83
|
+
if (method>=0 && method<=1)
|
|
84
|
+
{
|
|
85
|
+
if (nvars(r)==nvars(br))
|
|
86
|
+
{ //first run of spolynomialGB in sagbi construction algorithms
|
|
87
|
+
l[3][size(l[3])+1]=l[3][size(l[3])]; //save module ordering
|
|
88
|
+
l[3][size(l[3])-1]=list("dp",intvec(1:numTotalAdditionalVars));
|
|
89
|
+
}
|
|
90
|
+
else
|
|
91
|
+
{ //overwrite existing order for @y(i) to only get one block for the @y
|
|
92
|
+
l[3][size(l[3])-1]=list("dp",intvec(1:numTotalAdditionalVars));
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
// VL : todo noncomm case: correctly use l[5] and l[6]
|
|
96
|
+
// that is update matrices
|
|
97
|
+
// at the moment this is troublesome, so use nc_algebra call
|
|
98
|
+
// see how it done in algebraicDependence proc // VL
|
|
99
|
+
def rNew=ring(l);
|
|
100
|
+
setring br;
|
|
101
|
+
return(rNew);
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
static proc stdKernPhi(ideal kernNew, ideal kernOld, ideal leadTermsAlgebra,int method)
|
|
106
|
+
{
|
|
107
|
+
/* Computes Groebner basis of kernNew+kernOld, where kernOld already is a GB
|
|
108
|
+
* and kernNew contains elements of the form @y(i)-leadTermsAlgebra[i] added to it.
|
|
109
|
+
* The techniques chosen is specified by the integer method
|
|
110
|
+
*/
|
|
111
|
+
ideal kern;
|
|
112
|
+
attrib(kernOld,"isSB",1);
|
|
113
|
+
if (method==0)
|
|
114
|
+
{
|
|
115
|
+
kernNew=reduce(kernNew,kernOld);
|
|
116
|
+
kern=kernOld+kernNew;
|
|
117
|
+
kern=std(kern);
|
|
118
|
+
//kern=std(kernOld,kernNew); //Found bug using this method.
|
|
119
|
+
// TODO Change if bug is removed
|
|
120
|
+
//this call of std return Groebner Basis of ideal kernNew+kernOld
|
|
121
|
+
// given that kernOld is a Groebner basis
|
|
122
|
+
}
|
|
123
|
+
if (method==1)
|
|
124
|
+
{
|
|
125
|
+
kernNew=reduce(kernNew,kernOld);
|
|
126
|
+
kern=slimgb(kernNew+kernOld);
|
|
127
|
+
}
|
|
128
|
+
return(kern);
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
static proc spolynomialsGB(ideal algebra,def r,int method)
|
|
133
|
+
{
|
|
134
|
+
/* This procedure does the actual S-polynomial calculation using Groebner basis methods and is
|
|
135
|
+
* called by the procedures sagbiSPoly,sagbi and sagbiPart. As this procedure is called
|
|
136
|
+
* at each step of the SAGBI construction algorithm, we can reuse the information already calculated
|
|
137
|
+
* which is contained in the ring r. This is done in the following order
|
|
138
|
+
* 1. If r already contain m additional variables and m'=number of elements in algebra, extend r with variables @y(m+1),...,@y(m')
|
|
139
|
+
* 2. Transfer all objects to this ring, kernOld=kern is the Groebnerbasis already computed
|
|
140
|
+
* 3. Define ideal kernNew containing elements of the form leadTermsAlgebra(m+1)-@y(m+1),...,leadTermsAlgebra(m')-@y(m')
|
|
141
|
+
* 4. Compute Groebnerbasis of kernOld+kernNew
|
|
142
|
+
* 5. Compute the new algebraic relations
|
|
143
|
+
*/
|
|
144
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
145
|
+
dbprint(ppl,"//Spoly-1- initialisation and precomputation");
|
|
146
|
+
def br=basering;
|
|
147
|
+
ideal varsBasering=maxideal(1);
|
|
148
|
+
ideal leadTermsAlgebra=lead(algebra);
|
|
149
|
+
//save leading terms as ordering in ring extension
|
|
150
|
+
//may not be compatible with ordering in basering
|
|
151
|
+
int numGenerators=ncols(algebra);
|
|
152
|
+
|
|
153
|
+
def rNew=extendRing(r,leadTermsAlgebra,method);
|
|
154
|
+
// important: br has to be active here
|
|
155
|
+
setring r;
|
|
156
|
+
if (!defined(kern))
|
|
157
|
+
//only true for first run of spolynomialGB in sagbi construction algorithms
|
|
158
|
+
{
|
|
159
|
+
ideal kern=0;
|
|
160
|
+
ideal algebraicRelations=0;
|
|
161
|
+
}
|
|
162
|
+
setring rNew;
|
|
163
|
+
//-------------------------- transfer object to new ring rNew ----------------------
|
|
164
|
+
ideal varsBasering=fetch(br,varsBasering);
|
|
165
|
+
ideal kernOld,algebraicRelationsOld;
|
|
166
|
+
kernOld=fetch(r,kern); //kern is Groebner basis of the kernel of the map Phi:r->K[x_1,...,x_n], x(i)->x(i), @y(i)->leadTermsAlgebra(i)
|
|
167
|
+
algebraicRelationsOld=fetch(r,algebraicRelations);
|
|
168
|
+
ideal leadTermsAlgebra=fetch(br,leadTermsAlgebra);
|
|
169
|
+
ideal listOfVariables=maxideal(1);
|
|
170
|
+
//---------define kernNew containing elements to be added to the ideal kern --------
|
|
171
|
+
ideal kernNew;
|
|
172
|
+
for (int i=nvars(r)-nvars(br)+1; i<=numGenerators; i++)
|
|
173
|
+
{
|
|
174
|
+
kernNew[i-nvars(r)+nvars(br)]=leadTermsAlgebra[i]-listOfVariables[i+nvars(br)];
|
|
175
|
+
}
|
|
176
|
+
//--------------- calculate kernel of Phi depending on method chosen ---------------
|
|
177
|
+
dbprint(ppl,"//Spoly-2- Groebner basis computation");
|
|
178
|
+
attrib(kernOld,"isSB",1);
|
|
179
|
+
ideal kern=stdKernPhi(kernNew,kernOld,leadTermsAlgebra,method);
|
|
180
|
+
dbprint(ppl-2,"//Spoly-2-1- ideal kern",kern);
|
|
181
|
+
//-------------------------- calculate algebraic relations -----------------------
|
|
182
|
+
dbprint(ppl,"//Spoly-3- computing new algebraic relations");
|
|
183
|
+
ideal algebraicRelations=nselect(kern,1..nvars(br));
|
|
184
|
+
attrib(algebraicRelationsOld,"isSB",1);
|
|
185
|
+
ideal algebraicRelationsNew=reduce(algebraicRelations,algebraicRelationsOld);
|
|
186
|
+
/* canonicalizing: */
|
|
187
|
+
algebraicRelationsNew=canonicalform(algebraicRelationsNew);
|
|
188
|
+
dbprint(ppl-2,"//Spoly-3-1- ideal of new algebraic relations",algebraicRelationsNew);
|
|
189
|
+
/* algebraicRelationsOld is a groebner basis by construction (as variable
|
|
190
|
+
* ordering is
|
|
191
|
+
* block ordering we have an elimination ordering for the varsBasering)
|
|
192
|
+
* Therefore, to only get the new algebraic relations, calculate
|
|
193
|
+
* <algebraicRelations>\<algebraicRelationsOld> using groebner reduction
|
|
194
|
+
*/
|
|
195
|
+
kill kernOld,kernNew,algebraicRelationsOld,listOfVariables;
|
|
196
|
+
export algebraicRelationsNew,algebraicRelations,kern;
|
|
197
|
+
setring br;
|
|
198
|
+
return(rNew);
|
|
199
|
+
}
|
|
200
|
+
|
|
201
|
+
static proc spolynomialsToric(ideal algebra) {
|
|
202
|
+
/* This procedure does the actual S-polynomial calculation using toric.lib for
|
|
203
|
+
* computation of a Groebner basis for the toric ideal kern(phi), where
|
|
204
|
+
* phi:K[y_1,...,y_m]->K[x_1,...,x_n], y_i->leadmonom(algebra[i])
|
|
205
|
+
* By suitable substitutions we obtain the kernel of the map
|
|
206
|
+
* K[y_1,...,y_m]->K[x_1,...,x_n], x(i)->x(i), @y(i)->leadterm(algebra[i])
|
|
207
|
+
*/
|
|
208
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
209
|
+
dbprint(ppl,"//Spoly-1- initialisation and precomputation");
|
|
210
|
+
def br=basering;
|
|
211
|
+
int m=ncols(algebra);
|
|
212
|
+
int n=nvars(basering);
|
|
213
|
+
intvec tempVec;
|
|
214
|
+
int i,j;
|
|
215
|
+
ideal leadCoefficients;
|
|
216
|
+
for (i=1;i<=m; i++)
|
|
217
|
+
{
|
|
218
|
+
leadCoefficients[i]=leadcoef(algebra[i]);
|
|
219
|
+
}
|
|
220
|
+
dbprint(ppl-2,"//Spoly-1-1- Vector of leading coefficients",leadCoefficients);
|
|
221
|
+
int k=1;
|
|
222
|
+
for (i=1;i<=n;i++)
|
|
223
|
+
{
|
|
224
|
+
for (j=1; j<=m; j++)
|
|
225
|
+
{
|
|
226
|
+
tempVec[k]=leadexp(algebra[j])[i];
|
|
227
|
+
k++;
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
//The columns of the matrix A are now the exponent vectors
|
|
231
|
+
//of the leadings monomials in algebra.
|
|
232
|
+
intmat A[n][m]=intmat(tempVec,n,m);
|
|
233
|
+
dbprint(ppl-2,"//Spoly-1-2- Matrix A",A);
|
|
234
|
+
//Create the preimage ring K[@y(1),...,@y(m)], where m=ncols(algebra).
|
|
235
|
+
string variableName=uniqueVariableName("@y");
|
|
236
|
+
list l = ring_list(basering);
|
|
237
|
+
for (i=1; i<=m;i++)
|
|
238
|
+
{
|
|
239
|
+
l[2][i]=string(variableName,"(",i,")");
|
|
240
|
+
}
|
|
241
|
+
l[3][2]=l[3][size(l[3])];
|
|
242
|
+
l[3][1]=list("dp",intvec(1:m));
|
|
243
|
+
def rNew=ring(l);
|
|
244
|
+
setring rNew;
|
|
245
|
+
//Use toric_ideal to compute the kernel
|
|
246
|
+
dbprint(ppl,"//Spoly-2- call of toric_ideal");
|
|
247
|
+
ideal algebraicRelations=toric_ideal(A,"ect");
|
|
248
|
+
//Suitable substitution
|
|
249
|
+
dbprint(ppl,"//Spoly-3- substitutions");
|
|
250
|
+
ideal leadCoefficients=fetch(br,leadCoefficients);
|
|
251
|
+
for (i=1; i<=m; i++)
|
|
252
|
+
{
|
|
253
|
+
if (leadCoefficients[i]!=0)
|
|
254
|
+
{
|
|
255
|
+
algebraicRelations=subst(algebraicRelations,var(i),1/leadCoefficients[i]*var(i));
|
|
256
|
+
}
|
|
257
|
+
}
|
|
258
|
+
dbprint(ppl-2,"//Spoly-3-1- algebraic relations",algebraicRelations);
|
|
259
|
+
export algebraicRelations;
|
|
260
|
+
return(rNew);
|
|
261
|
+
}
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
static proc reductionGB(ideal F, ideal algebra,def r, int tailreduction,int method,int parRed)
|
|
265
|
+
{
|
|
266
|
+
/* This procedure does the actual SAGBI/subalgebra reduction using GB methods and is
|
|
267
|
+
* called by the procedures sagbiReduce,sagbi and sagbiPart
|
|
268
|
+
* If r already is an extension of the basering
|
|
269
|
+
* and contains the ideal kern needed for the subalgebra reduction,
|
|
270
|
+
* the reduction can be started directly, at each reduction step using the fact that
|
|
271
|
+
* p=reduce(leadF,kern) in K[@y(1),...,@y(m)] <=> leadF in K[lead(algebra)]
|
|
272
|
+
* Otherwise some precomputation has to be done, outlined below.
|
|
273
|
+
* When using sagbiReduce,sagbi and sagbiPart the integer parRed will always be zero. Only the procedure
|
|
274
|
+
* algebraicDependence causes this procedure to be called with parRed<>0. The only difference when parRed<>0
|
|
275
|
+
* is that the reduction algorithms returns the non-zero constants it attains (instead of just returning zero as the
|
|
276
|
+
* correct remainder), as they will be expressions in parameters for an algebraic dependence.
|
|
277
|
+
*/
|
|
278
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
279
|
+
dbprint(ppl,"//Red-1- initialisation and precomputation");
|
|
280
|
+
def br=basering;
|
|
281
|
+
int numVarsBasering=nvars(br);
|
|
282
|
+
ideal varsBasering=maxideal(1);
|
|
283
|
+
int i;
|
|
284
|
+
|
|
285
|
+
if (numVarsBasering==nvars(r))
|
|
286
|
+
{
|
|
287
|
+
dbprint(ppl-1,"//Red-1-1- Groebner basis computation");
|
|
288
|
+
/* Case that ring r is the same ring as the basering. Using proc extendRing,
|
|
289
|
+
* stdKernPhi
|
|
290
|
+
* one construct the extension of the current baserring with new variables @y, one for each element
|
|
291
|
+
* in ideal algebra and calculates the kernel of Phi, where
|
|
292
|
+
* Phi: r---->br, x_i-->x_i, y_i-->f_i,
|
|
293
|
+
* algebra={f_1,...f_m}, br=K[x1,...,x_n] und r=K[x1,...x_n,@y1,...@y_m]
|
|
294
|
+
* This is similarly dones
|
|
295
|
+
* (however step by step for each run of the SAGBI construction algorithm)
|
|
296
|
+
* in the procedure spolynomialsGB
|
|
297
|
+
*/
|
|
298
|
+
ideal leadTermsAlgebra=lead(algebra);
|
|
299
|
+
kill r;
|
|
300
|
+
def r=extendRing(br,leadTermsAlgebra,method);
|
|
301
|
+
setring r;
|
|
302
|
+
ideal listOfVariables=maxideal(1);
|
|
303
|
+
ideal leadTermsAlgebra=fetch(br,leadTermsAlgebra);
|
|
304
|
+
ideal kern;
|
|
305
|
+
for (i=1; i<=ncols(leadTermsAlgebra); i++)
|
|
306
|
+
{
|
|
307
|
+
kern[i]=leadTermsAlgebra[i]-listOfVariables[numVarsBasering+i];
|
|
308
|
+
}
|
|
309
|
+
kern=stdKernPhi(kern,0,leadTermsAlgebra,method);
|
|
310
|
+
dbprint(ppl-2,"//Red-1-1-1- Ideal kern",kern);
|
|
311
|
+
}
|
|
312
|
+
setring r;
|
|
313
|
+
poly p,leadF;
|
|
314
|
+
ideal varsBasering=fetch(br,varsBasering);
|
|
315
|
+
setring br;
|
|
316
|
+
map phi=r,varsBasering,algebra;
|
|
317
|
+
poly p,normalform,leadF;
|
|
318
|
+
intvec tempExp;
|
|
319
|
+
//-------------algebraic reduction for each polynomial F[i] ------------------------
|
|
320
|
+
dbprint(ppl,"//Red-2- reduction, polynomial by polynomial");
|
|
321
|
+
for (i=1; i<=ncols(F);i++)
|
|
322
|
+
{
|
|
323
|
+
dbprint(ppl-1,"//Red-2-"+string(i)+"- starting with new polynomial");
|
|
324
|
+
dbprint(ppl-2,"//Red-2-"+string(i)+"-1- Polynomial before reduction",F[i]);
|
|
325
|
+
normalform=0;
|
|
326
|
+
while (F[i]!=0)
|
|
327
|
+
{
|
|
328
|
+
leadF=lead(F[i]);
|
|
329
|
+
if(leadmonom(leadF)==1)
|
|
330
|
+
{
|
|
331
|
+
//K is always contained in the subalgebra,
|
|
332
|
+
//thus the remainder is zero in this case
|
|
333
|
+
if (parRed)
|
|
334
|
+
{
|
|
335
|
+
//If parRed<>0 save non-zero constants the reduction algorithms attains.
|
|
336
|
+
break;
|
|
337
|
+
}
|
|
338
|
+
else
|
|
339
|
+
{
|
|
340
|
+
F[i]=0;
|
|
341
|
+
break;
|
|
342
|
+
}
|
|
343
|
+
}
|
|
344
|
+
//note: as the ordering in br and r might not be compatible
|
|
345
|
+
//it can be that lead(F[i]) in r is
|
|
346
|
+
//different from lead(F[i]) in br.
|
|
347
|
+
//To take the "correct" leading term therefore take lead(F[i])
|
|
348
|
+
//in br and transfer it to the extension r
|
|
349
|
+
setring r;
|
|
350
|
+
leadF=fetch(br,leadF);
|
|
351
|
+
p=reduce(leadF,kern);
|
|
352
|
+
if (leadmonom(p)<varsBasering[numVarsBasering])
|
|
353
|
+
{
|
|
354
|
+
//as chosen ordering is a block ordering,
|
|
355
|
+
//lm(p) in K[y_1...y_m] is equivalent to lm(p)<x_n
|
|
356
|
+
//Needs to be changed, if no block ordering is used!
|
|
357
|
+
setring br;
|
|
358
|
+
F[i]=F[i]-phi(p);
|
|
359
|
+
}
|
|
360
|
+
else
|
|
361
|
+
{
|
|
362
|
+
if (tailreduction)
|
|
363
|
+
{
|
|
364
|
+
setring br;
|
|
365
|
+
normalform=normalform+lead(F[i]);
|
|
366
|
+
F[i]=F[i]-lead(F[i]);
|
|
367
|
+
}
|
|
368
|
+
else
|
|
369
|
+
{
|
|
370
|
+
setring br;
|
|
371
|
+
break;
|
|
372
|
+
}
|
|
373
|
+
}
|
|
374
|
+
}
|
|
375
|
+
if (tailreduction)
|
|
376
|
+
{
|
|
377
|
+
F[i] = normalform;
|
|
378
|
+
}
|
|
379
|
+
dbprint(ppl-2,"//Red-2-"+string(i)+"-2- Polynomial after reduction",F[i]);
|
|
380
|
+
}
|
|
381
|
+
return(F);
|
|
382
|
+
}
|
|
383
|
+
|
|
384
|
+
static proc reduceByMonomials(ideal algebra)
|
|
385
|
+
/*This procedures uses the sagbiReduce procedure to reduce all polynomials in algebra,
|
|
386
|
+
* which are not monomials, by the subset of all monomials.
|
|
387
|
+
*/
|
|
388
|
+
{
|
|
389
|
+
ideal monomials;
|
|
390
|
+
int i;
|
|
391
|
+
for (i=1; i<=ncols(algebra);i++)
|
|
392
|
+
{
|
|
393
|
+
if(size(algebra[i])==1)
|
|
394
|
+
{
|
|
395
|
+
monomials[i]=algebra[i];
|
|
396
|
+
algebra[i]=0;
|
|
397
|
+
}
|
|
398
|
+
else
|
|
399
|
+
{
|
|
400
|
+
monomials[i]=0;
|
|
401
|
+
}
|
|
402
|
+
}
|
|
403
|
+
//Monomials now contains the subset of all monomials in algebra,
|
|
404
|
+
//algebra contains the non-monomials.
|
|
405
|
+
if(size(monomials)>0)
|
|
406
|
+
{
|
|
407
|
+
algebra=sagbiReduce(algebra,monomials,1);
|
|
408
|
+
for (i=1; i<=ncols(algebra);i++)
|
|
409
|
+
{
|
|
410
|
+
if(size(monomials[i])==1)
|
|
411
|
+
{
|
|
412
|
+
//Put back monomials into algebra.
|
|
413
|
+
algebra[i]=monomials[i];
|
|
414
|
+
}
|
|
415
|
+
}
|
|
416
|
+
}
|
|
417
|
+
return(algebra);
|
|
418
|
+
}
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
static proc sagbiConstruction(ideal algebra, int iterations, int tailreduction, int method,int parRed)
|
|
422
|
+
/* This procedure is the SAGBI construction algorithm and does the actual computation
|
|
423
|
+
* both for the procedure sagbi and sagbiPart.
|
|
424
|
+
* - If the sagbi procedure calls this procedure, iterations==-1
|
|
425
|
+
* and this procedure only stops
|
|
426
|
+
* if all S-Polynomials reduce to zero
|
|
427
|
+
* (criterion for termination of SAGBI construction algorithm).
|
|
428
|
+
* - If the sagbiPart procedure calls this procedure, iterations>=0
|
|
429
|
+
* and iterations specifies the
|
|
430
|
+
* number of iterations. A degree boundary is not used here.
|
|
431
|
+
* When this method is called via the procedures sagbi and sagbiPart the integer parRed
|
|
432
|
+
* will always be zero. Only the procedure algebraicDependence calls this procedure with
|
|
433
|
+
* parRed<>0. The only difference when parRed<>0 is that the reduction algorithms returns
|
|
434
|
+
* the non-zero constants it attains (instead of just returning zero as the correct
|
|
435
|
+
* remainder), as they will be expressions in parameters for an algebraic dependence.
|
|
436
|
+
* These constants are saved in the ideal reducedParameters.
|
|
437
|
+
*/
|
|
438
|
+
{
|
|
439
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
440
|
+
dbprint(ppl,"// -0- initialisation and precomputation");
|
|
441
|
+
def br=basering;
|
|
442
|
+
int i=1;
|
|
443
|
+
|
|
444
|
+
ideal reducedParameters;
|
|
445
|
+
int numReducedParameters=1; //number of elements plus one in reducedParameters
|
|
446
|
+
int j;
|
|
447
|
+
if (parRed==0) //if parRed<>0 the algebra does not contain monomials and normalisation should be avoided
|
|
448
|
+
{
|
|
449
|
+
algebra=reduceByMonomials(algebra);
|
|
450
|
+
algebra=simplify(simplify(algebra,3),4);
|
|
451
|
+
}
|
|
452
|
+
// canonicalizing the gen's:
|
|
453
|
+
algebra = canonicalform(algebra);
|
|
454
|
+
ideal P=1;
|
|
455
|
+
//note: P is initialized this way, so that the while loop is entered.
|
|
456
|
+
//P gets overridden there, anyhow.
|
|
457
|
+
ideal varsBasering=maxideal(1);
|
|
458
|
+
map phi;
|
|
459
|
+
ideal spolynomialsNew;
|
|
460
|
+
def r=br;
|
|
461
|
+
while (size(P)>0)
|
|
462
|
+
{
|
|
463
|
+
dbprint(ppl,"// -"+string(i)+"- interaction of SAGBI construction algorithm");
|
|
464
|
+
dbprint(ppl-1,"// -"+string(i)+"-1- Computing algebraic relations");
|
|
465
|
+
def rNew=spolynomialsGB(algebra,r,method); /* canonicalizing inside! */
|
|
466
|
+
kill r;
|
|
467
|
+
def r=rNew;
|
|
468
|
+
kill rNew;
|
|
469
|
+
phi=r,varsBasering,algebra;
|
|
470
|
+
dbprint(ppl-1,"// -"+string(i)+"-2- Substituting into algebraic relations");
|
|
471
|
+
spolynomialsNew=simplify(phi(algebraicRelationsNew),6);
|
|
472
|
+
//By construction spolynomialsNew only contains the spolynomials,
|
|
473
|
+
//that have not already
|
|
474
|
+
//been calculated in the steps before.
|
|
475
|
+
dbprint(ppl-1,"// -"+string(i)+"-3- SAGBI reduction");
|
|
476
|
+
dbprint(ppl-2,"// -"+string(i)+"-3-1- new S-polynomials before reduction",spolynomialsNew);
|
|
477
|
+
P=reductionGB(spolynomialsNew,algebra,r,tailreduction,method,parRed);
|
|
478
|
+
if (parRed)
|
|
479
|
+
{
|
|
480
|
+
for(j=1; j<=ncols(P); j++)
|
|
481
|
+
{
|
|
482
|
+
if (leadmonom(P[j])==1)
|
|
483
|
+
{
|
|
484
|
+
reducedParameters[numReducedParameters]=P[j];
|
|
485
|
+
P[j]=0;
|
|
486
|
+
numReducedParameters++;
|
|
487
|
+
}
|
|
488
|
+
}
|
|
489
|
+
}
|
|
490
|
+
if (parRed==0)
|
|
491
|
+
{
|
|
492
|
+
P=reduceByMonomials(P);
|
|
493
|
+
//Reducing with monomials is cheap and can only result in less terms
|
|
494
|
+
P=simplify(simplify(P,3),4);
|
|
495
|
+
//Avoid that zeros are added to the bases or one element in P more than once
|
|
496
|
+
}
|
|
497
|
+
else
|
|
498
|
+
{
|
|
499
|
+
P=simplify(P,6);
|
|
500
|
+
}
|
|
501
|
+
/* canonicalize ! */
|
|
502
|
+
P = canonicalform(P);
|
|
503
|
+
dbprint(ppl-2,"// -"+string(i)+"-3-1- new S-polynomials after reduction",P);
|
|
504
|
+
algebra=algebra,P;
|
|
505
|
+
//Note that elements and order of elements must in algebra must not be changed,
|
|
506
|
+
//otherwise the already calculated
|
|
507
|
+
//ideal in r will give wrong results. Thus it is important to use a komma here.
|
|
508
|
+
i=i+1;
|
|
509
|
+
if (iterations!=-1 && i>iterations) //When iterations==-1 the number of iterations is unlimited
|
|
510
|
+
{
|
|
511
|
+
break;
|
|
512
|
+
}
|
|
513
|
+
}
|
|
514
|
+
if (iterations!=-1)
|
|
515
|
+
{ //case that sagbiPart called this procedure
|
|
516
|
+
if (size(P)==0)
|
|
517
|
+
{
|
|
518
|
+
dbprint(4-voice,
|
|
519
|
+
"//SAGBI construction algorithm terminated after "+string(i-1)
|
|
520
|
+
+" iterations, as all SAGBI S-polynomials reduced to 0.
|
|
521
|
+
//Returned generators therefore are a SAGBI basis.");
|
|
522
|
+
}
|
|
523
|
+
else
|
|
524
|
+
{
|
|
525
|
+
dbprint(4-voice,
|
|
526
|
+
"//SAGBI construction algorithm stopped as it reached the limit of "
|
|
527
|
+
+string(iterations)+" iterations.
|
|
528
|
+
//In general the returned generators are no SAGBI basis for the given algebra.");
|
|
529
|
+
}
|
|
530
|
+
}
|
|
531
|
+
kill r;
|
|
532
|
+
if (parRed)
|
|
533
|
+
{
|
|
534
|
+
algebra=algebra,reducedParameters;
|
|
535
|
+
}
|
|
536
|
+
algebra = simplify(algebra,6);
|
|
537
|
+
algebra = canonicalform(algebra);
|
|
538
|
+
return(algebra);
|
|
539
|
+
}
|
|
540
|
+
|
|
541
|
+
|
|
542
|
+
proc sagbiSPoly(ideal algebra,list #)
|
|
543
|
+
"USAGE: sagbiSPoly(A[, returnRing, meth]); A is an ideal, returnRing and meth are integers.
|
|
544
|
+
RETURN: ideal or ring
|
|
545
|
+
ASSUME: basering is not a qring
|
|
546
|
+
PURPOSE: Returns SAGBI S-polynomials of the leading terms of a given ideal A if returnRing=0.
|
|
547
|
+
@* Otherwise returns a new ring containing the ideals algebraicRelations
|
|
548
|
+
@* and spolynomials, where these objects are explained by their name.
|
|
549
|
+
@* See the example on how to access these objects.
|
|
550
|
+
@* The other optional argument meth determines which method is
|
|
551
|
+
@* used for computing the algebraic relations.
|
|
552
|
+
@* - If meth=0 (default), the procedure std is used.
|
|
553
|
+
@* - If meth=1, the procedure slimgb is used.
|
|
554
|
+
@* - If meth=2, the procedure uses toric_ideal.
|
|
555
|
+
EXAMPLE: example sagbiSPoly; shows an example"
|
|
556
|
+
{
|
|
557
|
+
assumeQring();
|
|
558
|
+
int returnRing;
|
|
559
|
+
int method=0;
|
|
560
|
+
def br=basering;
|
|
561
|
+
ideal spolynomials;
|
|
562
|
+
if (size(#)>=1)
|
|
563
|
+
{
|
|
564
|
+
if (typeof(#[1])=="int")
|
|
565
|
+
{
|
|
566
|
+
returnRing=#[1];
|
|
567
|
+
}
|
|
568
|
+
else
|
|
569
|
+
{
|
|
570
|
+
ERROR("Type of first optional argument needs to be int.");
|
|
571
|
+
}
|
|
572
|
+
}
|
|
573
|
+
if (size(#)==2)
|
|
574
|
+
{
|
|
575
|
+
if (typeof(#[2])=="int")
|
|
576
|
+
{
|
|
577
|
+
if (#[2]<0 || #[2]>2)
|
|
578
|
+
{
|
|
579
|
+
ERROR("Type of second optional argument needs to be 0,1 or 2.");
|
|
580
|
+
}
|
|
581
|
+
else
|
|
582
|
+
{
|
|
583
|
+
method=#[2];
|
|
584
|
+
}
|
|
585
|
+
}
|
|
586
|
+
else
|
|
587
|
+
{
|
|
588
|
+
ERROR("Type of second optional argument needs to be int.");
|
|
589
|
+
}
|
|
590
|
+
}
|
|
591
|
+
if (method>=0 and method<=1)
|
|
592
|
+
{
|
|
593
|
+
ideal varsBasering=maxideal(1);
|
|
594
|
+
def rNew=spolynomialsGB(algebra,br,method);
|
|
595
|
+
map phi=rNew,varsBasering,algebra;
|
|
596
|
+
spolynomials=simplify(phi(algebraicRelationsNew),7);
|
|
597
|
+
}
|
|
598
|
+
if(method==2)
|
|
599
|
+
{
|
|
600
|
+
def r2=spolynomialsToric(algebra);
|
|
601
|
+
map phi=r2,algebra;
|
|
602
|
+
spolynomials=simplify(phi(algebraicRelations),7);
|
|
603
|
+
def rNew=extendRing(br,lead(algebra),0);
|
|
604
|
+
setring rNew;
|
|
605
|
+
ideal algebraicRelations=imap(r2,algebraicRelations);
|
|
606
|
+
export algebraicRelations;
|
|
607
|
+
setring br;
|
|
608
|
+
}
|
|
609
|
+
|
|
610
|
+
if (returnRing==0)
|
|
611
|
+
{
|
|
612
|
+
return(spolynomials);
|
|
613
|
+
}
|
|
614
|
+
else
|
|
615
|
+
{
|
|
616
|
+
setring rNew;
|
|
617
|
+
ideal spolynomials=fetch(br,spolynomials);
|
|
618
|
+
export spolynomials;
|
|
619
|
+
setring br;
|
|
620
|
+
return(rNew);
|
|
621
|
+
}
|
|
622
|
+
}
|
|
623
|
+
example
|
|
624
|
+
{ "EXAMPLE:"; echo = 2;
|
|
625
|
+
ring r= 0,(x,y),dp;
|
|
626
|
+
ideal A=x*y+x,x*y^2,y^2+y,x^2+x;
|
|
627
|
+
//------------------ Compute the SAGBI S-polynomials only
|
|
628
|
+
sagbiSPoly(A);
|
|
629
|
+
//------------------ Extended ring is to be returned, which contains
|
|
630
|
+
// the ideal of algebraic relations and the ideal of the S-polynomials
|
|
631
|
+
def rNew=sagbiSPoly(A,1); setring rNew;
|
|
632
|
+
spolynomials;
|
|
633
|
+
algebraicRelations;
|
|
634
|
+
//----------------- Now we verify that the substitution of A[i] into @y(i)
|
|
635
|
+
// results in the spolynomials listed above
|
|
636
|
+
ideal A=fetch(r,A);
|
|
637
|
+
map phi=rNew,x,y,A;
|
|
638
|
+
ideal spolynomials2=simplify(phi(algebraicRelations),1);
|
|
639
|
+
spolynomials2;
|
|
640
|
+
}
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
proc sagbiReduce(def idealORpoly, ideal algebra, list #)
|
|
644
|
+
"USAGE: sagbiReduce(I, A[, tr, mt]); I, A ideals, tr, mt optional integers
|
|
645
|
+
RETURN: ideal of remainders of I after SAGBI reduction by A
|
|
646
|
+
ASSUME: basering is not a qring
|
|
647
|
+
PURPOSE:
|
|
648
|
+
@format
|
|
649
|
+
The optional argument tr=tailred determines whether tail reduction will be performed.
|
|
650
|
+
- If (tailred=0), no tail reduction is done.
|
|
651
|
+
- If (tailred<>0), tail reduction is done.
|
|
652
|
+
The other optional argument meth determines which method is
|
|
653
|
+
used for Groebner basis computations.
|
|
654
|
+
- If mt=0 (default), the procedure std is used.
|
|
655
|
+
- If mt=1, the procedure slimgb is used.
|
|
656
|
+
@end format
|
|
657
|
+
EXAMPLE: example sagbiReduce; shows an example"
|
|
658
|
+
{
|
|
659
|
+
assumeQring();
|
|
660
|
+
int tailreduction=0; //Default
|
|
661
|
+
int method=0; //Default
|
|
662
|
+
ideal I;
|
|
663
|
+
if(typeof(idealORpoly)=="ideal")
|
|
664
|
+
{
|
|
665
|
+
I=idealORpoly;
|
|
666
|
+
}
|
|
667
|
+
else
|
|
668
|
+
{
|
|
669
|
+
if(typeof(idealORpoly)=="poly")
|
|
670
|
+
{
|
|
671
|
+
I[1]=idealORpoly;
|
|
672
|
+
}
|
|
673
|
+
else
|
|
674
|
+
{
|
|
675
|
+
ERROR("Type of first argument needs to be an ideal or polynomial.");
|
|
676
|
+
}
|
|
677
|
+
}
|
|
678
|
+
if (size(#)>=1)
|
|
679
|
+
{
|
|
680
|
+
if (typeof(#[1])=="int")
|
|
681
|
+
{
|
|
682
|
+
tailreduction=#[1];
|
|
683
|
+
}
|
|
684
|
+
else
|
|
685
|
+
{
|
|
686
|
+
ERROR("Type of optional argument needs to be int.");
|
|
687
|
+
}
|
|
688
|
+
}
|
|
689
|
+
if (size(#)>=2 )
|
|
690
|
+
{
|
|
691
|
+
if (typeof(#[2])=="int")
|
|
692
|
+
{
|
|
693
|
+
if (#[2]<0 || #[2]>1)
|
|
694
|
+
{
|
|
695
|
+
ERROR("Type of second optional argument needs to be 0 or 1.");
|
|
696
|
+
}
|
|
697
|
+
else
|
|
698
|
+
{
|
|
699
|
+
method=#[2];
|
|
700
|
+
}
|
|
701
|
+
}
|
|
702
|
+
else
|
|
703
|
+
{
|
|
704
|
+
ERROR("Type of optional arguments needs to be int.");
|
|
705
|
+
}
|
|
706
|
+
}
|
|
707
|
+
|
|
708
|
+
def r=basering;
|
|
709
|
+
I=simplify(reductionGB(I,algebra,r,tailreduction,method,0),1);
|
|
710
|
+
|
|
711
|
+
if(typeof(idealORpoly)=="ideal")
|
|
712
|
+
{
|
|
713
|
+
return(I);
|
|
714
|
+
}
|
|
715
|
+
else
|
|
716
|
+
{
|
|
717
|
+
if(typeof(idealORpoly)=="poly")
|
|
718
|
+
{
|
|
719
|
+
return(I[1]);
|
|
720
|
+
}
|
|
721
|
+
}
|
|
722
|
+
}
|
|
723
|
+
example
|
|
724
|
+
{ "EXAMPLE:"; echo = 2;
|
|
725
|
+
ring r=0,(x,y,z),dp;
|
|
726
|
+
ideal A=x2,2*x2y+y,x3y2;
|
|
727
|
+
poly p1=x^5+x2y+y;
|
|
728
|
+
poly p2=x^16+x^12*y^5+6*x^8*y^4+x^6+y^4+3;
|
|
729
|
+
ideal P=p1,p2;
|
|
730
|
+
//---------------------------------------------
|
|
731
|
+
//SAGBI reduction of polynomial p1 by algebra A.
|
|
732
|
+
//Default call, that is, no tail-reduction is done.
|
|
733
|
+
sagbiReduce(p1,A);
|
|
734
|
+
//---------------------------------------------
|
|
735
|
+
//SAGBI reduction of set of polynomials P by algebra A,
|
|
736
|
+
//now tail-reduction is done.
|
|
737
|
+
sagbiReduce(P,A,1);
|
|
738
|
+
}
|
|
739
|
+
|
|
740
|
+
proc sagbi(ideal algebra, list #)
|
|
741
|
+
"USAGE: sagbi(A[, tr, mt]); A ideal, tr, mt optional integers
|
|
742
|
+
RETURN: ideal, a SAGBI basis for A
|
|
743
|
+
ASSUME: basering is not a qring
|
|
744
|
+
PURPOSE: Computes a SAGBI basis for the subalgebra given by the generators in A.
|
|
745
|
+
@format
|
|
746
|
+
The optional argument tr=tailred determines whether tail reduction will be performed.
|
|
747
|
+
- If (tailred=0), no tail reduction is performed,
|
|
748
|
+
- If (tailred<>0), tail reduction is performed.
|
|
749
|
+
The other optional argument meth determines which method is
|
|
750
|
+
used for Groebner basis computations.
|
|
751
|
+
- If mt=0 (default), the procedure std is used.
|
|
752
|
+
- If mt=1, the procedure slimgb is used.
|
|
753
|
+
@end format
|
|
754
|
+
EXAMPLE: example sagbi; shows an example"
|
|
755
|
+
{
|
|
756
|
+
assumeQring();
|
|
757
|
+
int tailreduction=0; //default value
|
|
758
|
+
int method=0; //default value
|
|
759
|
+
if (size(#)>=1)
|
|
760
|
+
{
|
|
761
|
+
if (typeof(#[1])=="int")
|
|
762
|
+
{
|
|
763
|
+
tailreduction=#[1];
|
|
764
|
+
}
|
|
765
|
+
else
|
|
766
|
+
{
|
|
767
|
+
ERROR("Type of optional argument needs to be int.");
|
|
768
|
+
}
|
|
769
|
+
}
|
|
770
|
+
if (size(#)>=2 )
|
|
771
|
+
{
|
|
772
|
+
if (typeof(#[2])=="int")
|
|
773
|
+
{
|
|
774
|
+
if (#[2]<0 || #[2]>1)
|
|
775
|
+
{
|
|
776
|
+
ERROR("Type of second optional argument needs to be 0 or 1.");
|
|
777
|
+
}
|
|
778
|
+
else
|
|
779
|
+
{
|
|
780
|
+
method=#[2];
|
|
781
|
+
}
|
|
782
|
+
}
|
|
783
|
+
else
|
|
784
|
+
{
|
|
785
|
+
ERROR("Type of optional arguments needs to be int.");
|
|
786
|
+
}
|
|
787
|
+
}
|
|
788
|
+
ideal a;
|
|
789
|
+
a=sagbiConstruction(algebra,-1,tailreduction,method,0);
|
|
790
|
+
a=simplify(a,7);
|
|
791
|
+
// a=interreduced(a);
|
|
792
|
+
return(a);
|
|
793
|
+
}
|
|
794
|
+
example
|
|
795
|
+
{ "EXAMPLE:"; echo = 2;
|
|
796
|
+
ring r= 0,(x,y,z),dp;
|
|
797
|
+
ideal A=x2,y2,xy+y;
|
|
798
|
+
//Default call, no tail-reduction is done.
|
|
799
|
+
sagbi(A);
|
|
800
|
+
//---------------------------------------------
|
|
801
|
+
//Call with tail-reduction and method specified.
|
|
802
|
+
sagbi(A,1,0);
|
|
803
|
+
}
|
|
804
|
+
|
|
805
|
+
proc sagbiPart(ideal algebra, int iterations, list #)
|
|
806
|
+
"USAGE: sagbiPart(A, k,[tr, mt]); A is an ideal, k, tr and mt are integers
|
|
807
|
+
RETURN: ideal
|
|
808
|
+
ASSUME: basering is not a qring
|
|
809
|
+
PURPOSE: Performs k iterations of the SAGBI construction algorithm for the subalgebra given by the generators given by A.
|
|
810
|
+
@format
|
|
811
|
+
The optional argument tr=tailred determines if tail reduction will be performed.
|
|
812
|
+
- If (tailred=0), no tail reduction is performed,
|
|
813
|
+
- If (tailred<>0), tail reduction is performed.
|
|
814
|
+
The other optional argument meth determines which method is
|
|
815
|
+
used for Groebner basis computations.
|
|
816
|
+
- If mt=0 (default), the procedure std is used.
|
|
817
|
+
- If mt=1, the procedure slimgb is used.
|
|
818
|
+
@end format
|
|
819
|
+
EXAMPLE: example sagbiPart; shows an example"
|
|
820
|
+
{
|
|
821
|
+
assumeQring();
|
|
822
|
+
int tailreduction=0; //default value
|
|
823
|
+
int method=0; //default value
|
|
824
|
+
if (size(#)>=1)
|
|
825
|
+
{
|
|
826
|
+
if (typeof(#[1])=="int")
|
|
827
|
+
{
|
|
828
|
+
tailreduction=#[1];
|
|
829
|
+
}
|
|
830
|
+
else
|
|
831
|
+
{
|
|
832
|
+
ERROR("Type of optional argument needs to be int.");
|
|
833
|
+
}
|
|
834
|
+
}
|
|
835
|
+
if (size(#)>=2 )
|
|
836
|
+
{
|
|
837
|
+
if (typeof(#[2])=="int")
|
|
838
|
+
{
|
|
839
|
+
if (#[2]<0 || #[2]>3)
|
|
840
|
+
{
|
|
841
|
+
ERROR("Type of second optional argument needs to be 0 or 1.");
|
|
842
|
+
}
|
|
843
|
+
else
|
|
844
|
+
{
|
|
845
|
+
method=#[2];
|
|
846
|
+
}
|
|
847
|
+
}
|
|
848
|
+
else
|
|
849
|
+
{
|
|
850
|
+
ERROR("Type of optional arguments needs to be int.");
|
|
851
|
+
}
|
|
852
|
+
}
|
|
853
|
+
if (iterations<0)
|
|
854
|
+
{
|
|
855
|
+
ERROR("Number of iterations needs to be non-negative.");
|
|
856
|
+
}
|
|
857
|
+
ideal a;
|
|
858
|
+
a=sagbiConstruction(algebra,iterations,tailreduction,method,0);
|
|
859
|
+
a=simplify(a,6);
|
|
860
|
+
// a=interreduced(a);
|
|
861
|
+
return(a);
|
|
862
|
+
}
|
|
863
|
+
example
|
|
864
|
+
{ "EXAMPLE:"; echo = 2;
|
|
865
|
+
ring r= 0,(x,y,z),dp;
|
|
866
|
+
//The following algebra does not have a finite SAGBI basis.
|
|
867
|
+
ideal A=x,xy-y2,xy2;
|
|
868
|
+
//---------------------------------------------------
|
|
869
|
+
//Call with two iterations, no tail-reduction is done.
|
|
870
|
+
sagbiPart(A,2);
|
|
871
|
+
//---------------------------------------------------
|
|
872
|
+
//Call with three iterations, tail-reduction and method 0.
|
|
873
|
+
sagbiPart(A,3,1,0);
|
|
874
|
+
}
|
|
875
|
+
|
|
876
|
+
|
|
877
|
+
proc algebraicDependence(ideal I,int iterations)
|
|
878
|
+
"USAGE: algebraicDependence(I,it); I an an ideal, it is an integer
|
|
879
|
+
RETURN: ring
|
|
880
|
+
ASSUME: basering is not a qring
|
|
881
|
+
PURPOSE: Returns a ring containing the ideal @code{algDep}, which contains possibly
|
|
882
|
+
@* some algebraic dependencies of the elements of I obtained through @code{it}
|
|
883
|
+
@* iterations of the SAGBI construction algorithms. See the example on how
|
|
884
|
+
@* to access these objects.
|
|
885
|
+
EXAMPLE: example algebraicDependence; shows an example"
|
|
886
|
+
{
|
|
887
|
+
assumeQring();
|
|
888
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
889
|
+
dbprint(ppl,"//AlgDep-1- initialisation and precomputation");
|
|
890
|
+
def br=basering;
|
|
891
|
+
int i;
|
|
892
|
+
I=simplify(I,2); //avoid that I contains zeros
|
|
893
|
+
|
|
894
|
+
//Create two polynomial rings, which both are extensions of the current basering.
|
|
895
|
+
//The first ring will contain the additional parameters @c(1),...,@c(m), the second one
|
|
896
|
+
//will contain the additional variables @c(1),...,@c(m), where m=ncols(I).
|
|
897
|
+
string parameterName=uniqueVariableName("@c");
|
|
898
|
+
list l = ringlist(basering);
|
|
899
|
+
list parList;
|
|
900
|
+
for (i=1; i<=ncols(I);i++)
|
|
901
|
+
{
|
|
902
|
+
parList[i]=string(parameterName,"(",i,")");
|
|
903
|
+
}
|
|
904
|
+
l[1]=list(l[1],parList,list(list("dp",1:ncols(I)))); //add @c(i) to the ring as parameters
|
|
905
|
+
ideal temp=0;
|
|
906
|
+
l[1][4]=temp;
|
|
907
|
+
// addition VL: noncomm case
|
|
908
|
+
int isNCcase = 0; // default for comm
|
|
909
|
+
// if (size(l)>4)
|
|
910
|
+
// {
|
|
911
|
+
// // that is we're in the noncomm algebra
|
|
912
|
+
// isNCcase = 1; // noncomm
|
|
913
|
+
// matrix @C@ = l[5];
|
|
914
|
+
// matrix @D@ = l[6];
|
|
915
|
+
// l = l[1],l[2],l[3],l[4];
|
|
916
|
+
// }
|
|
917
|
+
def parameterRing=ring(l);
|
|
918
|
+
|
|
919
|
+
string extendVarName=uniqueVariableName("@c");
|
|
920
|
+
list l2 = ring_list(basering);
|
|
921
|
+
for (i=1; i<=ncols(I);i++)
|
|
922
|
+
{
|
|
923
|
+
l2[2][i+nvars(br)]=string(extendVarName,"(",i,")"); //add @c(i) to the rings as variables
|
|
924
|
+
}
|
|
925
|
+
l2[3][size(l2[3])+1]=l2[3][size(l2[3])];
|
|
926
|
+
l2[3][size(l2[3])-1]=list("dp",intvec(1:ncols(I)));
|
|
927
|
+
// if (isNCcase)
|
|
928
|
+
// {
|
|
929
|
+
// // that is we're in the noncomm algebra
|
|
930
|
+
// matrix @C@2 = l2[5];
|
|
931
|
+
// matrix @D@2 = l2[6];
|
|
932
|
+
// l2 = l2[1],l2[2],l2[3],l2[4];
|
|
933
|
+
// }
|
|
934
|
+
|
|
935
|
+
def extendVarRing=ring(l2);
|
|
936
|
+
setring extendVarRing;
|
|
937
|
+
// VL : this requires extended matrices
|
|
938
|
+
// let's forget it for the moment
|
|
939
|
+
// since this holds only for showing the answer
|
|
940
|
+
// if (isNCcase)
|
|
941
|
+
// {
|
|
942
|
+
// matrix C2=imap(br,@C@2);
|
|
943
|
+
// matrix D2=imap(br,@D@2);
|
|
944
|
+
// def er2 = nc_algebra(C2,D2);
|
|
945
|
+
// setring er2;
|
|
946
|
+
// def extendVarRing=er2;
|
|
947
|
+
// }
|
|
948
|
+
|
|
949
|
+
setring parameterRing;
|
|
950
|
+
|
|
951
|
+
// if (isNCcase)
|
|
952
|
+
// {
|
|
953
|
+
// matrix C=imap(br,@C@);
|
|
954
|
+
// matrix D=imap(br,@D@);
|
|
955
|
+
// def pr = nc_algebra(C,D);
|
|
956
|
+
// setring pr;
|
|
957
|
+
// def parameterRing=pr;
|
|
958
|
+
// }
|
|
959
|
+
|
|
960
|
+
//Compute a partial SAGBI basis of the algebra generated by I[1]-@c(1),...,I[m]-@c(m),
|
|
961
|
+
//where the @c(n) are parameters
|
|
962
|
+
ideal I=fetch(br,I);
|
|
963
|
+
ideal algebra;
|
|
964
|
+
for (i=1; i<=ncols(I);i++)
|
|
965
|
+
{
|
|
966
|
+
algebra[i]=I[i]-par(i);
|
|
967
|
+
}
|
|
968
|
+
dbprint(ppl,"//AlgDep-2- call of SAGBI construction algorithm");
|
|
969
|
+
algebra=sagbiConstruction(algebra, iterations,0,0,1);
|
|
970
|
+
dbprint(ppl,"//AlgDep-3- postprocessing of results");
|
|
971
|
+
int j=1;
|
|
972
|
+
//If K[x_1,...,x_n] was the basering, then algebra is in K(@c(1),...,@c(m))[x_1,...x_n]. We intersect
|
|
973
|
+
//elements in algebra with K(@c(1),..,@c(n)) to get algDep. Note that @c(i) can only appear in the numerator,
|
|
974
|
+
//as the SAGBI construction algorithms just multiplies and subtracts polynomials. So actually we have
|
|
975
|
+
//algDep=algebra intersect K[@c(1),...,@c(m)]
|
|
976
|
+
ideal algDep;
|
|
977
|
+
for (i=1; i<= ncols(algebra); i++)
|
|
978
|
+
{
|
|
979
|
+
if (leadmonom(algebra[i])==1) //leadmonom(algebra[i])==1 iff algebra[i] in K[@c(1),...,@c(m)]
|
|
980
|
+
{
|
|
981
|
+
algDep[j]=algebra[i];
|
|
982
|
+
j++;
|
|
983
|
+
}
|
|
984
|
+
}
|
|
985
|
+
//Transfer algebraic dependencies to ring where @c(i) are not parameters, but now variables.
|
|
986
|
+
setring extendVarRing;
|
|
987
|
+
ideal algDep=imap(parameterRing,algDep);
|
|
988
|
+
ideal algebra=imap(parameterRing,algebra);
|
|
989
|
+
//Now get rid of constants in K that may have been added to algDep.
|
|
990
|
+
for (i=1; i<=ncols(algDep); i++)
|
|
991
|
+
{
|
|
992
|
+
if(leadmonom(algDep[i])==1)
|
|
993
|
+
{
|
|
994
|
+
algDep[i]=0;
|
|
995
|
+
}
|
|
996
|
+
}
|
|
997
|
+
algDep=simplify(algDep,2);
|
|
998
|
+
export algDep,algebra;
|
|
999
|
+
setring br;
|
|
1000
|
+
return(extendVarRing);
|
|
1001
|
+
}
|
|
1002
|
+
example
|
|
1003
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1004
|
+
ring r= 0,(x,y),dp;
|
|
1005
|
+
//The following algebra does not have a finite SAGBI basis.
|
|
1006
|
+
ideal I=x^2, xy-y2, xy2;
|
|
1007
|
+
//---------------------------------------------------
|
|
1008
|
+
//Call with two iterations
|
|
1009
|
+
def DI = algebraicDependence(I,2);
|
|
1010
|
+
setring DI; algDep;
|
|
1011
|
+
// we see that no dependency has been seen so far
|
|
1012
|
+
//---------------------------------------------------
|
|
1013
|
+
//Call with two iterations
|
|
1014
|
+
setring r; kill DI;
|
|
1015
|
+
def DI = algebraicDependence(I,3);
|
|
1016
|
+
setring DI; algDep;
|
|
1017
|
+
map F = DI,x,y,x^2, xy-y2, xy2;
|
|
1018
|
+
F(algDep); // we see that it is a dependence indeed
|
|
1019
|
+
}
|
|
1020
|
+
|
|
1021
|
+
static proc interreduced(ideal I)
|
|
1022
|
+
{
|
|
1023
|
+
/* performs subalgebra interreduction of a set of subalgebra generators */
|
|
1024
|
+
int ppl = printlevel-voice+3; //variable for additional printlevel-dependend information
|
|
1025
|
+
dbprint(ppl,"//Interred-1- starting interreduction");
|
|
1026
|
+
ideal J,B;
|
|
1027
|
+
int i,j,k;
|
|
1028
|
+
poly f;
|
|
1029
|
+
for(k=1;k<=ncols(I);k++)
|
|
1030
|
+
{
|
|
1031
|
+
dbprint(ppl-1,"//Interred-1-"+string(k)+"- reducing next poly");
|
|
1032
|
+
f=I[k];
|
|
1033
|
+
I[k]=0;
|
|
1034
|
+
f=sagbiReduce(f,I,1);
|
|
1035
|
+
I[k]=f;
|
|
1036
|
+
}
|
|
1037
|
+
I=simplify(I,2);
|
|
1038
|
+
dbprint(ppl,"//Interred-2- interreduction completed");
|
|
1039
|
+
return(I);
|
|
1040
|
+
}
|
|
1041
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1042
|
+
|
|
1043
|
+
proc sagbiReduction(poly p,ideal dom,list #)
|
|
1044
|
+
"USAGE: sagbiReduction(p,dom[,n]); p poly , dom ideal
|
|
1045
|
+
RETURN: polynomial, after one step of subalgebra reduction
|
|
1046
|
+
PURPOSE:
|
|
1047
|
+
@format
|
|
1048
|
+
Three algorithm variants are used to perform subalgebra reduction.
|
|
1049
|
+
The positive integer n determines which variant should be used.
|
|
1050
|
+
n may take the values 0 (default), 1 or 2.
|
|
1051
|
+
@end format
|
|
1052
|
+
NOTE: works over both polynomial rings and their quotients
|
|
1053
|
+
EXAMPLE: example sagbiReduction; shows an example"
|
|
1054
|
+
{
|
|
1055
|
+
def bsr=basering;
|
|
1056
|
+
ideal B=ideal(bsr);//When the basering is quotient ring this type casting
|
|
1057
|
+
// gives the quotient ideal.
|
|
1058
|
+
int b=size(B);
|
|
1059
|
+
int n=nvars(bsr);
|
|
1060
|
+
|
|
1061
|
+
//In quotient rings, SINGULAR, usually does not reduce polynomials w.r.t the
|
|
1062
|
+
//quotient ideal,therefore we should first reduce,
|
|
1063
|
+
//when it is necessary for computations,
|
|
1064
|
+
// to have a uniquely determined representant for each equivalent
|
|
1065
|
+
//class,which is the case of this algorithm.
|
|
1066
|
+
|
|
1067
|
+
if(b !=0) //means that the basering is a quotient ring
|
|
1068
|
+
{
|
|
1069
|
+
p=reduce(p,std(0));
|
|
1070
|
+
dom=reduce(dom,std(0));
|
|
1071
|
+
}
|
|
1072
|
+
|
|
1073
|
+
int i,choose;
|
|
1074
|
+
int z=ncols(dom);
|
|
1075
|
+
|
|
1076
|
+
if((size(#)>0) && (typeof(#[1])=="int"))
|
|
1077
|
+
{
|
|
1078
|
+
choose = #[1];
|
|
1079
|
+
}
|
|
1080
|
+
if (size(#)>1)
|
|
1081
|
+
{
|
|
1082
|
+
choose =#[2];
|
|
1083
|
+
}
|
|
1084
|
+
|
|
1085
|
+
//=======================first algorithm(default)=========================
|
|
1086
|
+
if ( choose == 0 )
|
|
1087
|
+
{
|
|
1088
|
+
list L = algebra_containment(lead(p),lead(dom),1);
|
|
1089
|
+
if( L[1]==1 )
|
|
1090
|
+
{
|
|
1091
|
+
// the ring L[2] = char(bsr),(x(1..nvars(bsr)),y(1..z)),(dp(n),dp(m)),
|
|
1092
|
+
// contains poly check s.t. LT(p) is of the form check(LT(f1),...,LT(fr))
|
|
1093
|
+
def s1 = L[2];
|
|
1094
|
+
map psi = s1,maxideal(1),dom;
|
|
1095
|
+
poly re = p - psi(check);
|
|
1096
|
+
// divide by the maximal power of #[1]
|
|
1097
|
+
if ( (size(#)>0) && (typeof(#[1])=="poly") )
|
|
1098
|
+
{
|
|
1099
|
+
while ((re!=0) && (re!=#[1]) &&(subst(re,#[1],0)==0))
|
|
1100
|
+
{
|
|
1101
|
+
re=re/#[1];
|
|
1102
|
+
}
|
|
1103
|
+
}
|
|
1104
|
+
return(re);
|
|
1105
|
+
}
|
|
1106
|
+
return(p);
|
|
1107
|
+
}
|
|
1108
|
+
//======================2end variant of algorithm=========================
|
|
1109
|
+
//It uses two different commands for elimaination.
|
|
1110
|
+
//if(choose==1):"elimainate"command.
|
|
1111
|
+
//if (choose==2):"nselect" command.
|
|
1112
|
+
else
|
|
1113
|
+
{
|
|
1114
|
+
poly v=product(maxideal(1));
|
|
1115
|
+
|
|
1116
|
+
//------------- change the basering bsr to bsr[@(0),...,@(z)] ----------
|
|
1117
|
+
def s=addNvarsTo(basering,z+1,,"@",0); setring s;
|
|
1118
|
+
|
|
1119
|
+
//constructs the leading ideal of dom=(p-@(0),dom[1]-@(1),...,dom[z]-@(z))
|
|
1120
|
+
ideal dom=imap(bsr,dom);
|
|
1121
|
+
for (i=1;i<=z;i++)
|
|
1122
|
+
{
|
|
1123
|
+
dom[i]=lead(dom[i])-var(nvars(bsr)+i+1);
|
|
1124
|
+
}
|
|
1125
|
+
dom=lead(imap(bsr,p))-@(0),dom;
|
|
1126
|
+
|
|
1127
|
+
//---------- eliminate the variables of the basering bsr --------------
|
|
1128
|
+
//i.e. computes dom intersected with K[@(0),...,@(z)].
|
|
1129
|
+
|
|
1130
|
+
if(choose==1)
|
|
1131
|
+
{
|
|
1132
|
+
ideal kern=eliminate(dom,imap(bsr,v));//eliminate does not need a
|
|
1133
|
+
//standard basis as input.
|
|
1134
|
+
}
|
|
1135
|
+
if(choose==2)
|
|
1136
|
+
{
|
|
1137
|
+
ideal kern= nselect(groebner(dom),1..n);//"nselect" is combinatorial command
|
|
1138
|
+
//which uses the internal command
|
|
1139
|
+
// "simplify"
|
|
1140
|
+
}
|
|
1141
|
+
|
|
1142
|
+
//--------- test whether @(0)-h(@(1),...,@(z)) is in ker ---------------
|
|
1143
|
+
// for some poly h and divide by maximal power of q=#[1]
|
|
1144
|
+
poly h;
|
|
1145
|
+
z=size(kern);
|
|
1146
|
+
for (i=1;i<=z;i++)
|
|
1147
|
+
{
|
|
1148
|
+
h=kern[i]/@(0);
|
|
1149
|
+
if (deg(h)==0)
|
|
1150
|
+
{
|
|
1151
|
+
h=(1/h)*kern[i];
|
|
1152
|
+
// define the map psi : s ---> bsr defined by @(i) ---> p,dom[i]
|
|
1153
|
+
setring bsr;
|
|
1154
|
+
map psi=s,maxideal(1),p,dom;
|
|
1155
|
+
poly re=psi(h);
|
|
1156
|
+
// divide by the maximal power of #[1]
|
|
1157
|
+
if ((size(#)>0) && (typeof(#[1])== "poly") )
|
|
1158
|
+
{
|
|
1159
|
+
while ((re!=0) && (re!=#[1]) &&(subst(re,#[1],0)==0))
|
|
1160
|
+
{
|
|
1161
|
+
re=re/#[1];
|
|
1162
|
+
}
|
|
1163
|
+
}
|
|
1164
|
+
return(re);
|
|
1165
|
+
}
|
|
1166
|
+
}
|
|
1167
|
+
setring bsr;
|
|
1168
|
+
return(p);
|
|
1169
|
+
}
|
|
1170
|
+
}
|
|
1171
|
+
example
|
|
1172
|
+
{"EXAMPLE:"; echo = 2;
|
|
1173
|
+
ring r= 0,(x,y),dp;
|
|
1174
|
+
ideal dom =x2,y2,xy-y;
|
|
1175
|
+
poly p=x4+x3y+xy2-y2;
|
|
1176
|
+
sagbiReduction(p,dom);
|
|
1177
|
+
sagbiReduction(p,dom,2);
|
|
1178
|
+
// now let us see the action over quotient ring
|
|
1179
|
+
ideal I = xy;
|
|
1180
|
+
qring Q = std(I);
|
|
1181
|
+
ideal dom = imap(r,dom); poly p = imap(r,p);
|
|
1182
|
+
sagbiReduction(p,dom,1);
|
|
1183
|
+
}
|
|
1184
|
+
|
|
1185
|
+
proc sagbiNF(id,ideal dom,int k,list#)
|
|
1186
|
+
"USAGE: sagbiNF(id,dom,k[,n]); id either poly or ideal,dom ideal, k and n positive integers.
|
|
1187
|
+
RETURN: same as type of id; ideal or polynomial.
|
|
1188
|
+
PURPOSE:
|
|
1189
|
+
@format
|
|
1190
|
+
The integer k determines what kind of s-reduction is performed:
|
|
1191
|
+
- if (k=0) no tail s-reduction is performed.
|
|
1192
|
+
- if (k=1) tail s-reduction is performed.
|
|
1193
|
+
Three Algorithm variants are used to perform subalgebra reduction.
|
|
1194
|
+
The positive integer n determines which variant should be used.
|
|
1195
|
+
n may take the values (0 or default),1 or 2.
|
|
1196
|
+
@end format
|
|
1197
|
+
NOTE: sagbiNF works over both rings and quotient rings
|
|
1198
|
+
EXAMPLE: example sagbiNF; show example "
|
|
1199
|
+
{
|
|
1200
|
+
ideal rs;
|
|
1201
|
+
if (ideal(basering) == 0)
|
|
1202
|
+
{
|
|
1203
|
+
rs = sagbiReduce(id,dom,k) ;
|
|
1204
|
+
}
|
|
1205
|
+
else
|
|
1206
|
+
{
|
|
1207
|
+
rs = sagbiReduction(id,dom,k) ;
|
|
1208
|
+
}
|
|
1209
|
+
if (typeof(id)=="poly") { return (rs[1]); }
|
|
1210
|
+
return(rs);
|
|
1211
|
+
}
|
|
1212
|
+
example
|
|
1213
|
+
{"EXAMPLE:"; echo = 2;
|
|
1214
|
+
ring r=0,(x,y),dp;
|
|
1215
|
+
poly p=x4+x2y+y;
|
|
1216
|
+
ideal dom =x2,x2y+y,x3y2;
|
|
1217
|
+
sagbiNF(p,dom,1);
|
|
1218
|
+
ideal I= x2-xy;
|
|
1219
|
+
qring Q=std(I); // we go to the quotient ring
|
|
1220
|
+
poly p=imap(r,p);
|
|
1221
|
+
NF(p,std(0)); // the representative of p has changed
|
|
1222
|
+
ideal dom = imap(r,dom);
|
|
1223
|
+
print(matrix(NF(dom,std(0)))); // dom has changed as well
|
|
1224
|
+
sagbiNF(p,dom,0); // no tail reduction
|
|
1225
|
+
sagbiNF(p,dom,1);// tail subalgebra reduction is performed
|
|
1226
|
+
}
|
|
1227
|
+
|
|
1228
|
+
static proc canonicalform(ideal I)
|
|
1229
|
+
{
|
|
1230
|
+
/* placeholder for the canonical form of a set of gen's */
|
|
1231
|
+
/* for the time being we agree on content(p)=1; that is coeffs with no fractions */
|
|
1232
|
+
int i; ideal J=I;
|
|
1233
|
+
for(i=ncols(I); i>=1; i--)
|
|
1234
|
+
{
|
|
1235
|
+
J[i] = canonicalform_poly(I[i]);
|
|
1236
|
+
}
|
|
1237
|
+
return(J);
|
|
1238
|
+
}
|
|
1239
|
+
|
|
1240
|
+
static proc canonicalform_poly(poly p)
|
|
1241
|
+
{
|
|
1242
|
+
/* placeholder for the canonical form of a poly */
|
|
1243
|
+
/* for the time being we agree on content(p)=1; that is coeffs with no fractions */
|
|
1244
|
+
number n = content(p);
|
|
1245
|
+
return( p/content(p) );
|
|
1246
|
+
}
|
|
1247
|
+
|
|
1248
|
+
/*
|
|
1249
|
+
ring r= 0,(x,y),dp;
|
|
1250
|
+
//The following algebra does not have a finite SAGBI basis.
|
|
1251
|
+
ideal J=x^2, xy-y2, xy2, x^2*(x*y-y^2)^2 - (x*y^2)^2*x^4 + 11;
|
|
1252
|
+
//---------------------------------------------------
|
|
1253
|
+
//Call with two iterations
|
|
1254
|
+
def DI = algebraicDependence(J,2);
|
|
1255
|
+
setring DI; algDep;
|
|
1256
|
+
*/
|
|
1257
|
+
|
|
1258
|
+
proc minimalGenerators(ideal a, list #)
|
|
1259
|
+
"USAGE: minimalGenerators(id[,w]); id ideal, w: weight vector.
|
|
1260
|
+
RETURN: ideal (list of minimal generators of the subalgebra a)
|
|
1261
|
+
EXAMPLE: example minimalGenerators; shows an example"
|
|
1262
|
+
{
|
|
1263
|
+
if(!homog(a))
|
|
1264
|
+
{
|
|
1265
|
+
ERROR("generators must be homogeneous");
|
|
1266
|
+
}
|
|
1267
|
+
ring br=basering;
|
|
1268
|
+
intvec w;
|
|
1269
|
+
if (size(#)==0) { w=1:nvars(basering); }
|
|
1270
|
+
else { w=#[1]; }
|
|
1271
|
+
int elems=size(a);
|
|
1272
|
+
int j; ideal ad; poly p; ideal sb; ideal mingen; ideal h;
|
|
1273
|
+
for (int d=0;elems>0;d++)
|
|
1274
|
+
{
|
|
1275
|
+
ad=jet(jet(a,d,w),-d,-w); // degree d part of a
|
|
1276
|
+
if (size(ad)>0)
|
|
1277
|
+
{
|
|
1278
|
+
"sagbi for deg ",d-1;sb;
|
|
1279
|
+
"testing deg ",d;
|
|
1280
|
+
"ad=",ad;
|
|
1281
|
+
for(j=1;j<=ncols(ad);j++) // 2.1
|
|
1282
|
+
{
|
|
1283
|
+
if (ad[j]!=0)
|
|
1284
|
+
{
|
|
1285
|
+
p=sagbiReduce(ad[j],sb);
|
|
1286
|
+
"reduced:",p;
|
|
1287
|
+
if(p==0) { a[j]=0; "a[",j,"] not needed"; }
|
|
1288
|
+
else
|
|
1289
|
+
{"min gen",j," = ",p;
|
|
1290
|
+
sb=sb,p;
|
|
1291
|
+
mingen=mingen,p;
|
|
1292
|
+
}
|
|
1293
|
+
elems--;
|
|
1294
|
+
}
|
|
1295
|
+
}
|
|
1296
|
+
}
|
|
1297
|
+
h=relations_apply(sb,a); // 2.3
|
|
1298
|
+
h=jet(jet(h,d+1,w),-d-1,w); // deg d+1 part
|
|
1299
|
+
"rel. in deg ",d+1," =",h;
|
|
1300
|
+
for(j=1;j<=ncols(h);j++) // 2.4
|
|
1301
|
+
{
|
|
1302
|
+
h[j]=sagbiReduce(h[j],sb);
|
|
1303
|
+
}
|
|
1304
|
+
sb=sb,h; // 2.5
|
|
1305
|
+
sb=simplify(sb,2); // 2.6
|
|
1306
|
+
}
|
|
1307
|
+
"sb=",sb;
|
|
1308
|
+
return(simplify(a,2));
|
|
1309
|
+
}
|
|
1310
|
+
example
|
|
1311
|
+
{
|
|
1312
|
+
"EXAMPLE:";echo=2;
|
|
1313
|
+
ring r= 0,(a0,a1,a2),dp;
|
|
1314
|
+
ideal A=a0,a1*a2-a0*a1+a0*a2,a1^2-a2^2+a0*a1,a1^3-a0*a2^2;
|
|
1315
|
+
A=A,A[1]*A[4]+A[2]*A[3];
|
|
1316
|
+
minimalGenerators(A);
|
|
1317
|
+
}
|
|
1318
|
+
|
|
1319
|
+
proc relations_apply(ideal s, ideal a)
|
|
1320
|
+
{
|
|
1321
|
+
ideal ls=lead(s);
|
|
1322
|
+
// new vars, #=ncols(s)
|
|
1323
|
+
ring savering=basering;
|
|
1324
|
+
ring d1=0,(y(1..ncols(a))),dp;
|
|
1325
|
+
def e1=d1+savering;
|
|
1326
|
+
setring e1;
|
|
1327
|
+
ideal ls=imap(savering,ls);
|
|
1328
|
+
poly m=1;
|
|
1329
|
+
for(int i=1;i<=nvars(savering);i++)
|
|
1330
|
+
{ m=m*var(i+nvars(d1)); }
|
|
1331
|
+
for(i=1;i<=ncols(ls);i++)
|
|
1332
|
+
{
|
|
1333
|
+
if (ls[i]!=0)
|
|
1334
|
+
{
|
|
1335
|
+
ls[i]=ls[i]-y(i);
|
|
1336
|
+
}
|
|
1337
|
+
}
|
|
1338
|
+
ls=eliminate(ls,m); // eliminate original vars from ls
|
|
1339
|
+
"orig rel:",ls;
|
|
1340
|
+
// apply the relations
|
|
1341
|
+
setring savering;
|
|
1342
|
+
// image of map;
|
|
1343
|
+
ideal im;
|
|
1344
|
+
im[nvars(savering)]=0;
|
|
1345
|
+
im=im,a;
|
|
1346
|
+
// map:
|
|
1347
|
+
map f=e1,im;
|
|
1348
|
+
// apply relations
|
|
1349
|
+
ideal rel=f(ls);
|
|
1350
|
+
"Relations:",rel;
|
|
1351
|
+
return(rel);
|
|
1352
|
+
}
|
|
1353
|
+
|