passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,2645 @@
|
|
|
1
|
+
/////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version dmodloc.lib 4.1.2.0 Feb_2019 "; // $Id: 5408af8b93d275f519cc9b7bf4caad8075f275a5 $
|
|
3
|
+
category="Noncommutative";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: dmodloc.lib Localization of algebraic D-modules and applications
|
|
6
|
+
AUTHOR: Daniel Andres, daniel.andres@math.rwth-aachen.de
|
|
7
|
+
|
|
8
|
+
Support: DFG Graduiertenkolleg 1632 `Experimentelle und konstruktive Algebra'
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
OVERVIEW:
|
|
12
|
+
Let I be a left ideal in the n-th polynomial Weyl algebra D=K[x]<d> and
|
|
13
|
+
let f be a polynomial in K[x].
|
|
14
|
+
|
|
15
|
+
If D/I is a holonomic module over D, it is known that the localization of D/I
|
|
16
|
+
at f is also holonomic. The procedure @code{Dlocalization} computes an ideal
|
|
17
|
+
J in D such that this localization is isomorphic to D/J as D-modules.
|
|
18
|
+
|
|
19
|
+
If one regards I as an ideal in the rational Weyl algebra as above, K(x)<d>*I,
|
|
20
|
+
and intersects with K[x]<d>, the result is called the Weyl closure of I.
|
|
21
|
+
The procedures @code{WeylClosure} (if I has finite holonomic rank) and
|
|
22
|
+
@code{WeylClosure1} (if I is in the first Weyl algebra) can be used for
|
|
23
|
+
computations.
|
|
24
|
+
|
|
25
|
+
As an application of the Weyl closure, the procedure @code{annRatSyz} computes
|
|
26
|
+
a holonomic part of the annihilator of a rational function by computing certain
|
|
27
|
+
syzygies. The full annihilator can be obtained by taking the Weyl closure of
|
|
28
|
+
the result.
|
|
29
|
+
|
|
30
|
+
If one regards the left ideal I as system of linear PDEs, one can find its
|
|
31
|
+
polynomial solutions with @code{polSol} (if I is holonomic) or
|
|
32
|
+
@code{polSolFiniteRank} (if I is of finite holonomic rank). Rational solutions
|
|
33
|
+
can be obtained with @code{ratSol}.
|
|
34
|
+
|
|
35
|
+
The procedure @code{bfctBound} computes a possible multiple of the b-function
|
|
36
|
+
for f^s*u at a generic root of f. Here, u stands for [1] in D/I.
|
|
37
|
+
|
|
38
|
+
This library also offers the procedures @code{holonomicRank} and
|
|
39
|
+
@code{DsingularLocus} to compute the holonomic rank and the singular locus
|
|
40
|
+
of the D-module D/I.
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
REFERENCES:
|
|
44
|
+
(OT) T. Oaku, N. Takayama: `Algorithms for D-modules',
|
|
45
|
+
Journal of Pure and Applied Algebra, 1998.
|
|
46
|
+
@* (OTT) T. Oaku, N. Takayama, H. Tsai: `Polynomial and rational solutions
|
|
47
|
+
of holonomic systems', Journal of Pure and Applied Algebra, 2001.
|
|
48
|
+
@* (OTW) T. Oaku, N. Takayama, U. Walther: `A Localization Algorithm for
|
|
49
|
+
D-modules', Journal of Symbolic Computation, 2000.
|
|
50
|
+
@* (Tsa) H. Tsai: `Algorithms for algebraic analysis', PhD thesis, 2000.
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
PROCEDURES:
|
|
54
|
+
Dlocalization(I,f[,k,e]); computes the localization of a D-module
|
|
55
|
+
WeylClosure(I); computes the Weyl closure of an ideal in the Weyl algebra
|
|
56
|
+
WeylClosure1(L); computes the Weyl closure of operator in first Weyl algebra
|
|
57
|
+
holonomicRank(I); computes the holonomic rank of I
|
|
58
|
+
DsingularLocus(I); computes the singular locus of a D-module
|
|
59
|
+
polSol(I[,w,m]); computes basis of polynomial solutions to the given system
|
|
60
|
+
polSolFiniteRank(I[,w]); computes basis of polynomial solutions to given system
|
|
61
|
+
ratSol(I); computes basis of rational solutions to the given system
|
|
62
|
+
bfctBound(I,f[,primdec]); computes multiple of b-function for f^s*u
|
|
63
|
+
annRatSyz(f,g[,db,eng]); computes part of annihilator of rational function g/f
|
|
64
|
+
|
|
65
|
+
dmodGeneralAssumptionCheck(); check general assumptions
|
|
66
|
+
extendWeyl(S); extends basering (Weyl algebra) by given vars
|
|
67
|
+
polyVars(f,v); checks whether f contains only variables indexed by v
|
|
68
|
+
monomialInIdeal(I); computes all monomials appearing in generators of ideal
|
|
69
|
+
vars2pars(v); converts variables specified by v into parameters
|
|
70
|
+
minIntRoot2(L); finds minimal integer root in a list of roots
|
|
71
|
+
maxIntRoot(L); finds maximal integer root in a list of roots
|
|
72
|
+
dmodAction(id,f[,v]); computes the natural action of a D-module on K[x]
|
|
73
|
+
dmodActionRat(id,w); computes the natural action of a D-module on K(x)
|
|
74
|
+
simplifyRat(v); simplifies rational function
|
|
75
|
+
addRat(v,w); adds rational functions
|
|
76
|
+
multRat(v,w); multiplies rational functions
|
|
77
|
+
diffRat(v,j); derives rational function
|
|
78
|
+
commRing(); deletes non-commutative relations from ring
|
|
79
|
+
rightNFWeyl(id,k); computes right NF wrt right ideal (var(k)) in Weyl algebra
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
KEYWORDS: D-module; holonomic rank; singular locus of D-module;
|
|
83
|
+
D-localization; localization of D-module; characteristic variety;
|
|
84
|
+
Weyl closure; polynomial solutions; rational solutions;
|
|
85
|
+
annihilator of rational function
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
SEE ALSO: bfun_lib, dmod_lib, dmodapp_lib, dmodvar_lib, gmssing_lib
|
|
89
|
+
";
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
/*
|
|
93
|
+
CHANGELOG:
|
|
94
|
+
12.11.12: bugfixes, updated docu
|
|
95
|
+
17.12.12: updated docu, removed redundant procedure killTerms
|
|
96
|
+
*/
|
|
97
|
+
|
|
98
|
+
LIB "bfun.lib"; // for pIntersect etc
|
|
99
|
+
LIB "dmodapp.lib"; // for GBWeight, charVariety etc
|
|
100
|
+
LIB "nctools.lib"; // for Weyl, isWeyl etc
|
|
101
|
+
|
|
102
|
+
// testing for consistency of the library /////////////////////////////////////
|
|
103
|
+
|
|
104
|
+
static proc testdmodloc()
|
|
105
|
+
{
|
|
106
|
+
example dmodGeneralAssumptionCheck;
|
|
107
|
+
example safeVarName;
|
|
108
|
+
example extendWeyl;
|
|
109
|
+
example polyVars;
|
|
110
|
+
example monomialInIdeal;
|
|
111
|
+
example vars2pars;
|
|
112
|
+
example minIntRoot2;
|
|
113
|
+
example maxIntRoot;
|
|
114
|
+
example dmodAction;
|
|
115
|
+
example dmodActionRat;
|
|
116
|
+
example simplifyRat;
|
|
117
|
+
example addRat;
|
|
118
|
+
example multRat;
|
|
119
|
+
example diffRat;
|
|
120
|
+
example commRing;
|
|
121
|
+
example holonomicRank;
|
|
122
|
+
example DsingularLocus;
|
|
123
|
+
example rightNFWeyl;
|
|
124
|
+
example Dlocalization;
|
|
125
|
+
example WeylClosure1;
|
|
126
|
+
example WeylClosure;
|
|
127
|
+
example polSol;
|
|
128
|
+
example polSolFiniteRank;
|
|
129
|
+
example ratSol;
|
|
130
|
+
example bfctBound;
|
|
131
|
+
example annRatSyz;
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
// tools //////////////////////////////////////////////////////////////////////
|
|
136
|
+
|
|
137
|
+
proc dmodGeneralAssumptionCheck ()
|
|
138
|
+
"
|
|
139
|
+
USAGE: dmodGeneralAssumptionCheck();
|
|
140
|
+
RETURN: nothing, but checks general assumptions on the basering
|
|
141
|
+
NOTE: This procedure checks the following conditions on the basering R
|
|
142
|
+
and prints an error message if any of them is violated:
|
|
143
|
+
@* - R is the n-th Weyl algebra over a field of characteristic 0,
|
|
144
|
+
@* - R is not a qring,
|
|
145
|
+
@* - for all 1<=i<=n the identity var(i+n)*var(i)=var(i)*var(i+1)+1
|
|
146
|
+
holds, i.e. the sequence of variables is given by
|
|
147
|
+
x(1),...,x(n),D(1),...,D(n), where D(i) is the differential
|
|
148
|
+
operator belonging to x(i).
|
|
149
|
+
EXAMPLE: example dmodGeneralAssumptionCheck; shows examples
|
|
150
|
+
"
|
|
151
|
+
{
|
|
152
|
+
// char K <> 0, qring
|
|
153
|
+
if ( (size(ideal(basering)) >0) || (char(basering) >0) )
|
|
154
|
+
{
|
|
155
|
+
ERROR("Basering is inappropriate: characteristic>0 or qring present");
|
|
156
|
+
}
|
|
157
|
+
// no Weyl algebra
|
|
158
|
+
if (isWeyl() == 0)
|
|
159
|
+
{
|
|
160
|
+
ERROR("Basering is not a Weyl algebra");
|
|
161
|
+
}
|
|
162
|
+
// wrong sequence of vars
|
|
163
|
+
int i,n;
|
|
164
|
+
n = nvars(basering) div 2;
|
|
165
|
+
for (i=1; i<=n; i++)
|
|
166
|
+
{
|
|
167
|
+
if (bracket(var(i+n),var(i))<>1)
|
|
168
|
+
{
|
|
169
|
+
ERROR(string(var(i+n))+" is not a differential operator for " +string(var(i)));
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
return();
|
|
173
|
+
}
|
|
174
|
+
example
|
|
175
|
+
{
|
|
176
|
+
"EXAMPLE"; echo=2;
|
|
177
|
+
ring r = 0,(x,D),dp;
|
|
178
|
+
dmodGeneralAssumptionCheck(); // prints error message
|
|
179
|
+
def W = Weyl();
|
|
180
|
+
setring W;
|
|
181
|
+
dmodGeneralAssumptionCheck(); // returns nothing
|
|
182
|
+
}
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
static proc safeVarName (string s)
|
|
186
|
+
"
|
|
187
|
+
USAGE: safeVarName(s); s string
|
|
188
|
+
RETURN: string, returns s if s is not the name of a par/var of basering
|
|
189
|
+
and `@' + s otherwise
|
|
190
|
+
EXAMPLE: example safeVarName; shows examples
|
|
191
|
+
"
|
|
192
|
+
{
|
|
193
|
+
string S = "," + charstr(basering) + "," + varstr(basering) + ",";
|
|
194
|
+
s = "," + s + ",";
|
|
195
|
+
while (find(S,s) <> 0)
|
|
196
|
+
{
|
|
197
|
+
s[1] = "@";
|
|
198
|
+
s = "," + s;
|
|
199
|
+
}
|
|
200
|
+
s = s[2..size(s)-1];
|
|
201
|
+
return(s);
|
|
202
|
+
}
|
|
203
|
+
example
|
|
204
|
+
{
|
|
205
|
+
"EXAMPLE:"; echo = 2;
|
|
206
|
+
ring r = (0,a),(w,@w,x,y),dp;
|
|
207
|
+
safeVarName("a");
|
|
208
|
+
safeVarName("x");
|
|
209
|
+
safeVarName("z");
|
|
210
|
+
safeVarName("w");
|
|
211
|
+
}
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
proc extendWeyl (def newVars)
|
|
215
|
+
"
|
|
216
|
+
USAGE: extendWeyl(S); S string or list of strings
|
|
217
|
+
ASSUME: The basering is the n-th Weyl algebra over a field of
|
|
218
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
219
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
220
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
|
|
221
|
+
is the differential operator belonging to x(i).
|
|
222
|
+
RETURN: ring, Weyl algebra extended by vars given by S
|
|
223
|
+
EXAMPLE: example extendWeyl; shows examples
|
|
224
|
+
"
|
|
225
|
+
{
|
|
226
|
+
dmodGeneralAssumptionCheck();
|
|
227
|
+
int i,s;
|
|
228
|
+
string inpt = typeof(newVars);
|
|
229
|
+
list L;
|
|
230
|
+
if (inpt=="string")
|
|
231
|
+
{
|
|
232
|
+
s = 1;
|
|
233
|
+
L = newVars;
|
|
234
|
+
}
|
|
235
|
+
else
|
|
236
|
+
{
|
|
237
|
+
if (inpt=="list")
|
|
238
|
+
{
|
|
239
|
+
s = size(newVars);
|
|
240
|
+
if (s<1)
|
|
241
|
+
{
|
|
242
|
+
ERROR("No new variables specified.");
|
|
243
|
+
}
|
|
244
|
+
for (i=1; i<=s; i++)
|
|
245
|
+
{
|
|
246
|
+
if (typeof(newVars[i]) <> "string")
|
|
247
|
+
{
|
|
248
|
+
ERROR("Entries of input list must be of type string.");
|
|
249
|
+
}
|
|
250
|
+
}
|
|
251
|
+
L = newVars;
|
|
252
|
+
}
|
|
253
|
+
else
|
|
254
|
+
{
|
|
255
|
+
ERROR("Expected string or list of strings as input.");
|
|
256
|
+
}
|
|
257
|
+
}
|
|
258
|
+
def save = basering;
|
|
259
|
+
int n = nvars(save) div 2;
|
|
260
|
+
list RL = ringlist(save);
|
|
261
|
+
RL = RL[1..4];
|
|
262
|
+
list Ltemp = L;
|
|
263
|
+
for (i=s; i>0; i--)
|
|
264
|
+
{
|
|
265
|
+
Ltemp[n+s+i] = "D" + newVars[i];
|
|
266
|
+
}
|
|
267
|
+
for (i=n; i>0; i--)
|
|
268
|
+
{
|
|
269
|
+
Ltemp[s+i] = RL[2][i];
|
|
270
|
+
Ltemp[n+2*s+i] = RL[2][n+i];
|
|
271
|
+
}
|
|
272
|
+
RL[2] = Ltemp;
|
|
273
|
+
Ltemp = list();
|
|
274
|
+
Ltemp[1] = list("dp",intvec(1:(2*n+2*s)));
|
|
275
|
+
Ltemp[2] = list("C",intvec(0));
|
|
276
|
+
RL[3] = Ltemp;
|
|
277
|
+
kill Ltemp;
|
|
278
|
+
def @Dv = ring(RL);
|
|
279
|
+
setring @Dv;
|
|
280
|
+
def Dv = Weyl();
|
|
281
|
+
setring save;
|
|
282
|
+
return(Dv);
|
|
283
|
+
}
|
|
284
|
+
example
|
|
285
|
+
{
|
|
286
|
+
"EXAMPLE:"; echo = 2;
|
|
287
|
+
ring @D2 = 0,(x,y,Dx,Dy),dp;
|
|
288
|
+
def D2 = Weyl();
|
|
289
|
+
setring D2;
|
|
290
|
+
def D3 = extendWeyl("t");
|
|
291
|
+
setring D3; D3;
|
|
292
|
+
list L = "u","v";
|
|
293
|
+
def D5 = extendWeyl(L);
|
|
294
|
+
setring D5;
|
|
295
|
+
D5;
|
|
296
|
+
}
|
|
297
|
+
|
|
298
|
+
|
|
299
|
+
proc polyVars (poly f, intvec v)
|
|
300
|
+
"
|
|
301
|
+
USAGE: polyVars(f,v); f poly, v intvec
|
|
302
|
+
RETURN: int, 1 if f contains only variables indexed by v, 0 otherwise
|
|
303
|
+
EXAMPLE: example polyVars; shows examples
|
|
304
|
+
"
|
|
305
|
+
{
|
|
306
|
+
ideal varsf = variables(f); // vars contained in f
|
|
307
|
+
ideal V;
|
|
308
|
+
int i;
|
|
309
|
+
int n = nvars(basering);
|
|
310
|
+
for (i=1; i<=size(v); i++)
|
|
311
|
+
{
|
|
312
|
+
if ( (v[i]<0) || (v[i]>n) )
|
|
313
|
+
{
|
|
314
|
+
ERROR("var(" + string(v[i]) + ") out of range");
|
|
315
|
+
}
|
|
316
|
+
V[i] = var(v[i]);
|
|
317
|
+
}
|
|
318
|
+
attrib(V,"isSB",1);
|
|
319
|
+
ideal N = NF(varsf,V);
|
|
320
|
+
N = simplify(N,2);
|
|
321
|
+
if (N[1]==0)
|
|
322
|
+
{
|
|
323
|
+
return(1);
|
|
324
|
+
}
|
|
325
|
+
else
|
|
326
|
+
{
|
|
327
|
+
return(0);
|
|
328
|
+
}
|
|
329
|
+
}
|
|
330
|
+
example
|
|
331
|
+
{
|
|
332
|
+
"EXAMPLE:"; echo = 2;
|
|
333
|
+
ring r = 0,(x,y,z),dp;
|
|
334
|
+
poly f = y^2+zy;
|
|
335
|
+
intvec v = 1,2;
|
|
336
|
+
polyVars(f,v); // does f depend only on x,y?
|
|
337
|
+
v = 2,3;
|
|
338
|
+
polyVars(f,v); // does f depend only on y,z?
|
|
339
|
+
}
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
proc monomialInIdeal (ideal I)
|
|
343
|
+
"
|
|
344
|
+
USAGE: monomialInIdeal(I); I ideal
|
|
345
|
+
RETURN: ideal consisting of all monomials appearing in generators of ideal
|
|
346
|
+
EXAMLPE: example monomialInIdeal; shows examples
|
|
347
|
+
"
|
|
348
|
+
{
|
|
349
|
+
// returns ideal consisting of all monomials appearing in generators of ideal
|
|
350
|
+
I = simplify(I,2+8);
|
|
351
|
+
int i;
|
|
352
|
+
poly p;
|
|
353
|
+
ideal M;
|
|
354
|
+
for (i=1; i<=size(I); i++)
|
|
355
|
+
{
|
|
356
|
+
p = I[i];
|
|
357
|
+
while (p<>0)
|
|
358
|
+
{
|
|
359
|
+
M[size(M)+1] = leadmonom(p);
|
|
360
|
+
p = p - lead(p);
|
|
361
|
+
}
|
|
362
|
+
}
|
|
363
|
+
M = simplify(M,4+2);
|
|
364
|
+
return(M);
|
|
365
|
+
}
|
|
366
|
+
example
|
|
367
|
+
{
|
|
368
|
+
"EXAMPLE"; echo=2;
|
|
369
|
+
ring r = 0,(x,y),dp;
|
|
370
|
+
ideal I = x2+5x3y7, x-x2-6xy;
|
|
371
|
+
monomialInIdeal(I);
|
|
372
|
+
}
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
proc vars2pars (intvec v)
|
|
376
|
+
"
|
|
377
|
+
USAGE: vars2pars(v); v intvec
|
|
378
|
+
ASSUME: The basering is commutative.
|
|
379
|
+
RETURN: ring with variables specified by v converted into parameters
|
|
380
|
+
EXAMPLE: example vars2pars; shows examples
|
|
381
|
+
"
|
|
382
|
+
{
|
|
383
|
+
if (isCommutative() == 0)
|
|
384
|
+
{
|
|
385
|
+
ERROR("The basering must be commutative.");
|
|
386
|
+
}
|
|
387
|
+
v = sortIntvec(v)[1];
|
|
388
|
+
int sv = size(v);
|
|
389
|
+
if ( (v[1]<1) || (v[sv]<1) )
|
|
390
|
+
{
|
|
391
|
+
ERROR("Expected entries of intvec in the range 1.."+string(n));
|
|
392
|
+
}
|
|
393
|
+
def save = basering;
|
|
394
|
+
int i,j,n;
|
|
395
|
+
n = nvars(save);
|
|
396
|
+
list RL = ringlist(save);
|
|
397
|
+
list Lp,Lv,L1;
|
|
398
|
+
if (typeof(RL[1]) == "list")
|
|
399
|
+
{
|
|
400
|
+
L1 = RL[1];
|
|
401
|
+
Lp = L1[2];
|
|
402
|
+
}
|
|
403
|
+
else
|
|
404
|
+
{
|
|
405
|
+
L1[1] = RL[1];
|
|
406
|
+
L1[4] = ideal(0);
|
|
407
|
+
}
|
|
408
|
+
j = sv;
|
|
409
|
+
for (i=1; i<=n; i++)
|
|
410
|
+
{
|
|
411
|
+
if (j>0)
|
|
412
|
+
{
|
|
413
|
+
if (v[j]==i)
|
|
414
|
+
{
|
|
415
|
+
Lp[size(Lp)+1] = string(var(i));
|
|
416
|
+
j--;
|
|
417
|
+
}
|
|
418
|
+
else
|
|
419
|
+
{
|
|
420
|
+
Lv[size(Lv)+1] = string(var(i));
|
|
421
|
+
}
|
|
422
|
+
}
|
|
423
|
+
else
|
|
424
|
+
{
|
|
425
|
+
Lv[size(Lv)+1] = string(var(i));
|
|
426
|
+
}
|
|
427
|
+
}
|
|
428
|
+
RL[2] = Lv;
|
|
429
|
+
L1[2] = Lp;
|
|
430
|
+
L1[3] = list(list("lp",intvec(1:size(Lp))));
|
|
431
|
+
RL[1] = L1;
|
|
432
|
+
L1 = list();
|
|
433
|
+
L1[1] = list("dp",intvec(1:sv));
|
|
434
|
+
L1[2] = list("C",intvec(0));
|
|
435
|
+
RL[3] = L1;
|
|
436
|
+
// RL;
|
|
437
|
+
def R = ring(RL);
|
|
438
|
+
return(R);
|
|
439
|
+
}
|
|
440
|
+
example
|
|
441
|
+
{
|
|
442
|
+
"EXAMPLE:"; echo = 2;
|
|
443
|
+
ring r = 0,(x,y,z,a,b,c),dp;
|
|
444
|
+
intvec v = 4,5,6;
|
|
445
|
+
def R = vars2pars(v);
|
|
446
|
+
setring R;
|
|
447
|
+
R;
|
|
448
|
+
v = 1,2;
|
|
449
|
+
def RR = vars2pars(v);
|
|
450
|
+
setring RR;
|
|
451
|
+
RR;
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
|
|
455
|
+
static proc minMaxIntRoot (list L, string minmax)
|
|
456
|
+
{
|
|
457
|
+
int win;
|
|
458
|
+
if (size(L)>1)
|
|
459
|
+
{
|
|
460
|
+
if ( (typeof(L[1])<>"ideal") || (typeof(L[2])<>"intvec") )
|
|
461
|
+
{
|
|
462
|
+
win = 1;
|
|
463
|
+
}
|
|
464
|
+
}
|
|
465
|
+
else
|
|
466
|
+
{
|
|
467
|
+
win = 1;
|
|
468
|
+
}
|
|
469
|
+
if (win)
|
|
470
|
+
{
|
|
471
|
+
ERROR("Expected list in the format of bFactor");
|
|
472
|
+
}
|
|
473
|
+
if (size(L)>2)
|
|
474
|
+
{
|
|
475
|
+
if ( (L[3]=="1") || (L[3]=="0") )
|
|
476
|
+
{
|
|
477
|
+
print("// Warning: Constant poly. Returning 0.");
|
|
478
|
+
return(int(0));
|
|
479
|
+
}
|
|
480
|
+
}
|
|
481
|
+
ideal I = L[1];
|
|
482
|
+
int i,k,b;
|
|
483
|
+
if (minmax=="min")
|
|
484
|
+
{
|
|
485
|
+
i = ncols(I);
|
|
486
|
+
k = -1;
|
|
487
|
+
b = 0;
|
|
488
|
+
}
|
|
489
|
+
else // minmax=="max"
|
|
490
|
+
{
|
|
491
|
+
i = 1;
|
|
492
|
+
k = 1;
|
|
493
|
+
b = ncols(I);
|
|
494
|
+
}
|
|
495
|
+
for (; k*i<k*b; i=i+k)
|
|
496
|
+
{
|
|
497
|
+
if (isInt(leadcoef(I[i])))
|
|
498
|
+
{
|
|
499
|
+
return(int(leadcoef(I[i])));
|
|
500
|
+
}
|
|
501
|
+
}
|
|
502
|
+
print("// Warning: No integer root found. Returning 0.");
|
|
503
|
+
return(int(0));
|
|
504
|
+
}
|
|
505
|
+
|
|
506
|
+
|
|
507
|
+
//TODO rename? minIntRoot is name of proc in dmod.lib
|
|
508
|
+
proc minIntRoot2 (list L)
|
|
509
|
+
"
|
|
510
|
+
USAGE: minIntRoot2(L); L list
|
|
511
|
+
ASSUME: L is the output of bFactor.
|
|
512
|
+
RETURN: int, the minimal integer root in a list of roots
|
|
513
|
+
SEE ALSO: minIntRoot, maxIntRoot, bFactor
|
|
514
|
+
EXAMPLE: example minIntRoot2; shows examples
|
|
515
|
+
"
|
|
516
|
+
{
|
|
517
|
+
return(minMaxIntRoot(L,"min"));
|
|
518
|
+
}
|
|
519
|
+
example
|
|
520
|
+
{
|
|
521
|
+
"EXAMPLE"; echo=2;
|
|
522
|
+
ring r = 0,x,dp;
|
|
523
|
+
poly f = x*(x+1)*(x-2)*(x-5/2)*(x+5/2);
|
|
524
|
+
list L = bFactor(f);
|
|
525
|
+
minIntRoot2(L);
|
|
526
|
+
}
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
proc maxIntRoot (list L)
|
|
530
|
+
"
|
|
531
|
+
USAGE: maxIntRoot(L); L list
|
|
532
|
+
ASSUME: L is the output of bFactor.
|
|
533
|
+
RETURN: int, the maximal integer root in a list of roots
|
|
534
|
+
SEE ALSO: minIntRoot2, bFactor
|
|
535
|
+
EXAMPLE: example maxIntRoot; shows examples
|
|
536
|
+
"
|
|
537
|
+
{
|
|
538
|
+
return(minMaxIntRoot(L,"max"));
|
|
539
|
+
}
|
|
540
|
+
example
|
|
541
|
+
{
|
|
542
|
+
"EXAMPLE"; echo=2;
|
|
543
|
+
ring r = 0,x,dp;
|
|
544
|
+
poly f = x*(x+1)*(x-2)*(x-5/2)*(x+5/2);
|
|
545
|
+
list L = bFactor(f);
|
|
546
|
+
maxIntRoot(L);
|
|
547
|
+
}
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
proc dmodAction (def id, poly f, list #)
|
|
551
|
+
"
|
|
552
|
+
USAGE: dmodAction(id,f[,v]); id ideal or poly, f poly, v optional intvec
|
|
553
|
+
ASSUME: If v is not given, the basering is the n-th Weyl algebra W over a
|
|
554
|
+
field of characteristic 0 and for all 1<=i<=n the identity
|
|
555
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
556
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
557
|
+
differential operator belonging to x(i).
|
|
558
|
+
Otherwise, v is assumed to specify positions of variables, which form
|
|
559
|
+
a Weyl algebra as a subalgebra of the basering:
|
|
560
|
+
If size(v) equals 2*n, then bracket(var(v[i]),var(v[j])) must equal
|
|
561
|
+
1 if and only if j equals i+n, and 0 otherwise, for all 1<=i,j<=n.
|
|
562
|
+
@* Further, assume that f does not contain any D(i).
|
|
563
|
+
RETURN: same type as id, the result of the natural D-module action of id on f
|
|
564
|
+
NOTE: The assumptions made are not checked.
|
|
565
|
+
EXAMPLE: example dmodAction; shows examples
|
|
566
|
+
"
|
|
567
|
+
{
|
|
568
|
+
string inp1 = typeof(id);
|
|
569
|
+
if ((inp1<>"poly") && (inp1<>"ideal"))
|
|
570
|
+
{
|
|
571
|
+
ERROR("Expected first argument to be poly or ideal but received "+inp1);
|
|
572
|
+
}
|
|
573
|
+
intvec posXD = 1..nvars(basering);
|
|
574
|
+
if (size(#)>0)
|
|
575
|
+
{
|
|
576
|
+
if (typeof(#[1])=="intvec")
|
|
577
|
+
{
|
|
578
|
+
posXD = #[1];
|
|
579
|
+
}
|
|
580
|
+
}
|
|
581
|
+
if ((size(posXD) mod 2)<>0)
|
|
582
|
+
{
|
|
583
|
+
ERROR("Even number of variables expected.")
|
|
584
|
+
}
|
|
585
|
+
int n = (size(posXD)) div 2;
|
|
586
|
+
int i,j,k,l;
|
|
587
|
+
ideal resI = id;
|
|
588
|
+
int sid = ncols(resI);
|
|
589
|
+
intvec v;
|
|
590
|
+
poly P,h;
|
|
591
|
+
for (l=1; l<=sid; l++)
|
|
592
|
+
{
|
|
593
|
+
P = resI[l];
|
|
594
|
+
resI[l] = 0;
|
|
595
|
+
for (i=1; i<=size(P); i++)
|
|
596
|
+
{
|
|
597
|
+
v = leadexp(P[i]);
|
|
598
|
+
h = f;
|
|
599
|
+
for (j=1; j<=n; j++)
|
|
600
|
+
{
|
|
601
|
+
for (k=1; k<=v[posXD[j+n]]; k++) // action of Dx
|
|
602
|
+
{
|
|
603
|
+
h = diff(h,var(posXD[j]));
|
|
604
|
+
}
|
|
605
|
+
h = h*var(posXD[j])^v[posXD[j]]; // action of x
|
|
606
|
+
}
|
|
607
|
+
h = leadcoef(P[i])*h;
|
|
608
|
+
resI[l] = resI[l] + h;
|
|
609
|
+
}
|
|
610
|
+
}
|
|
611
|
+
if (inp1 == "ideal")
|
|
612
|
+
{
|
|
613
|
+
return(resI);
|
|
614
|
+
}
|
|
615
|
+
else
|
|
616
|
+
{
|
|
617
|
+
return(resI[1]);
|
|
618
|
+
}
|
|
619
|
+
}
|
|
620
|
+
example
|
|
621
|
+
{
|
|
622
|
+
ring r = 0,(x,y,z),dp;
|
|
623
|
+
poly f = x^2*z - y^3;
|
|
624
|
+
def A = annPoly(f);
|
|
625
|
+
setring A;
|
|
626
|
+
poly f = imap(r,f);
|
|
627
|
+
dmodAction(LD,f);
|
|
628
|
+
poly P = y*Dy+3*z*Dz-3;
|
|
629
|
+
dmodAction(P,f);
|
|
630
|
+
dmodAction(P[1],f);
|
|
631
|
+
}
|
|
632
|
+
|
|
633
|
+
|
|
634
|
+
static proc checkRatInput (vector I)
|
|
635
|
+
{
|
|
636
|
+
// check for valid input
|
|
637
|
+
int wrginpt;
|
|
638
|
+
if (nrows(I)<>2)
|
|
639
|
+
{
|
|
640
|
+
wrginpt = 1;
|
|
641
|
+
}
|
|
642
|
+
else
|
|
643
|
+
{
|
|
644
|
+
if (I[2] == 0)
|
|
645
|
+
{
|
|
646
|
+
wrginpt = 1;
|
|
647
|
+
}
|
|
648
|
+
}
|
|
649
|
+
if (wrginpt)
|
|
650
|
+
{
|
|
651
|
+
ERROR("Vector must consist of exactly two components, second one not 0");
|
|
652
|
+
}
|
|
653
|
+
return();
|
|
654
|
+
}
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
proc dmodActionRat(def id, vector w)
|
|
658
|
+
"
|
|
659
|
+
USAGE: dmodActionRat(id,w); id ideal or poly, f vector
|
|
660
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
661
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
662
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
663
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
664
|
+
differential operator belonging to x(i).
|
|
665
|
+
@* Further, assume that w has exactly two components, second one not 0,
|
|
666
|
+
and that w does not contain any D(i).
|
|
667
|
+
RETURN: same type as id, the result of the natural D-module action of id on
|
|
668
|
+
the rational function w[1]/w[2]
|
|
669
|
+
EXAMPLE: example dmodActionRat; shows examples
|
|
670
|
+
"
|
|
671
|
+
{
|
|
672
|
+
string inp1 = typeof(id);
|
|
673
|
+
if ( (inp1<>"poly") && (inp1<>"ideal") )
|
|
674
|
+
{
|
|
675
|
+
ERROR("Expected first argument to be poly or ideal but received " + inp1);
|
|
676
|
+
}
|
|
677
|
+
checkRatInput(w);
|
|
678
|
+
poly f = w[1];
|
|
679
|
+
finKx(f);
|
|
680
|
+
f = w[2];
|
|
681
|
+
finKx(f);
|
|
682
|
+
def save = basering;
|
|
683
|
+
def r = commRing();
|
|
684
|
+
setring r;
|
|
685
|
+
ideal I = imap(save,id);
|
|
686
|
+
vector w = imap(save,w);
|
|
687
|
+
int i,j,k,l;
|
|
688
|
+
int n = nvars(basering) div 2;
|
|
689
|
+
int sid = ncols(I);
|
|
690
|
+
intvec v;
|
|
691
|
+
poly P;
|
|
692
|
+
vector h,resT;
|
|
693
|
+
module resL;
|
|
694
|
+
for (l=1; l<=sid; l++)
|
|
695
|
+
{
|
|
696
|
+
P = I[l];
|
|
697
|
+
resT = [0,1];
|
|
698
|
+
for (i=1; i<=size(P); i++)
|
|
699
|
+
{
|
|
700
|
+
v = leadexp(P[i]);
|
|
701
|
+
h = w;
|
|
702
|
+
for (j=1; j<=n; j++)
|
|
703
|
+
{
|
|
704
|
+
for (k=1; k<=v[j+n]; k++) // action of Dx
|
|
705
|
+
{
|
|
706
|
+
h = diffRat(h,j);
|
|
707
|
+
}
|
|
708
|
+
h = h + h[1]*(var(j)^v[j]-1)*gen(1); // action of x
|
|
709
|
+
}
|
|
710
|
+
h = h + (leadcoef(P[i])-1)*h[1]*gen(1);
|
|
711
|
+
resT = addRat(resT,h);
|
|
712
|
+
}
|
|
713
|
+
resL[l] = resT;
|
|
714
|
+
}
|
|
715
|
+
setring save;
|
|
716
|
+
module resL = imap(r,resL);
|
|
717
|
+
return(resL);
|
|
718
|
+
}
|
|
719
|
+
example
|
|
720
|
+
{
|
|
721
|
+
"EXAMPLE:"; echo = 2;
|
|
722
|
+
ring r = 0,(x,y),dp;
|
|
723
|
+
poly f = 2*x; poly g = y;
|
|
724
|
+
def A = annRat(f,g); setring A;
|
|
725
|
+
poly f = imap(r,f); poly g = imap(r,g);
|
|
726
|
+
vector v = [f,g]; // represents f/g
|
|
727
|
+
// x and y act by multiplication
|
|
728
|
+
dmodActionRat(x,v);
|
|
729
|
+
dmodActionRat(y,v);
|
|
730
|
+
// Dx and Dy act by partial derivation
|
|
731
|
+
dmodActionRat(Dx,v);
|
|
732
|
+
dmodActionRat(Dy,v);
|
|
733
|
+
dmodActionRat(x*Dx+y*Dy,v);
|
|
734
|
+
setring r;
|
|
735
|
+
f = 2*x*y; g = x^2 - y^3;
|
|
736
|
+
def B = annRat(f,g); setring B;
|
|
737
|
+
poly f = imap(r,f); poly g = imap(r,g);
|
|
738
|
+
vector v = [f,g];
|
|
739
|
+
dmodActionRat(LD,v); // hence LD is indeed the annihilator of f/g
|
|
740
|
+
}
|
|
741
|
+
|
|
742
|
+
|
|
743
|
+
static proc arithmeticRat (vector I, vector J, string op, list #)
|
|
744
|
+
{
|
|
745
|
+
// op = "+": return I+J
|
|
746
|
+
// op = "*": return I*J
|
|
747
|
+
// op = "s": return simplified I
|
|
748
|
+
// op = "d": return diff(I,var(#[1]))
|
|
749
|
+
int isComm = isCommutative();
|
|
750
|
+
if (!isComm)
|
|
751
|
+
{
|
|
752
|
+
def save = basering;
|
|
753
|
+
def r = commRing();
|
|
754
|
+
setring r;
|
|
755
|
+
ideal m = maxideal(1);
|
|
756
|
+
map f = save,m;
|
|
757
|
+
vector I = f(I);
|
|
758
|
+
vector J = f(J);
|
|
759
|
+
}
|
|
760
|
+
vector K;
|
|
761
|
+
poly p;
|
|
762
|
+
if (op == "s")
|
|
763
|
+
{
|
|
764
|
+
p = gcd(I[1],I[2]);
|
|
765
|
+
K = (I[1]/p)*gen(1) + (I[2]/p)*gen(2);
|
|
766
|
+
}
|
|
767
|
+
else
|
|
768
|
+
{
|
|
769
|
+
if (op == "+")
|
|
770
|
+
{
|
|
771
|
+
I = arithmeticRat(I,vector(0),"s");
|
|
772
|
+
J = arithmeticRat(J,vector(0),"s");
|
|
773
|
+
p = lcm(I[2],J[2]);
|
|
774
|
+
K = (I[1]*p/I[2] + J[1]*p/J[2])*gen(1) + p*gen(2);
|
|
775
|
+
}
|
|
776
|
+
else
|
|
777
|
+
{
|
|
778
|
+
if (op == "*")
|
|
779
|
+
{
|
|
780
|
+
K = (I[1]*J[1])*gen(1) + (I[2]*J[2])*gen(2);
|
|
781
|
+
}
|
|
782
|
+
else
|
|
783
|
+
{
|
|
784
|
+
if (op == "d")
|
|
785
|
+
{
|
|
786
|
+
int j = #[1];
|
|
787
|
+
K = (diff(I[1],var(j))*I[2] - I[1]*diff(I[2],var(j)))*gen(1)+ (I[2]^2)*gen(2);
|
|
788
|
+
}
|
|
789
|
+
}
|
|
790
|
+
}
|
|
791
|
+
K = arithmeticRat(K,vector(0),"s");
|
|
792
|
+
}
|
|
793
|
+
if (!isComm)
|
|
794
|
+
{
|
|
795
|
+
setring save;
|
|
796
|
+
vector K = imap(r,K);
|
|
797
|
+
}
|
|
798
|
+
return(K);
|
|
799
|
+
}
|
|
800
|
+
|
|
801
|
+
|
|
802
|
+
proc simplifyRat (vector J)
|
|
803
|
+
"
|
|
804
|
+
USAGE: simplifyRat(v); v vector
|
|
805
|
+
ASSUME: Assume that v has exactly two components, second one not 0.
|
|
806
|
+
RETURN: vector, representing simplified rational function v[1]/v[2]
|
|
807
|
+
NOTE: Possibly present non-commutative relations of the basering are
|
|
808
|
+
ignored.
|
|
809
|
+
EXAMPLE: example simplifyRat; shows examples
|
|
810
|
+
"
|
|
811
|
+
{
|
|
812
|
+
checkRatInput(J);
|
|
813
|
+
return(arithmeticRat(J,vector(0),"s"));
|
|
814
|
+
}
|
|
815
|
+
example
|
|
816
|
+
{
|
|
817
|
+
"EXAMPLE:"; echo = 2;
|
|
818
|
+
ring r = 0,(x,y),dp;
|
|
819
|
+
vector v = [x2-1,x+1];
|
|
820
|
+
simplifyRat(v);
|
|
821
|
+
simplifyRat(v) - [x-1,1];
|
|
822
|
+
}
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
proc addRat (vector I, vector J)
|
|
826
|
+
"
|
|
827
|
+
USAGE: addRat(v,w); v,w vectors
|
|
828
|
+
ASSUME: Assume that v,w have exactly two components, second ones not 0.
|
|
829
|
+
RETURN: vector, representing rational function (v[1]/v[2])+(w[1]/w[2])
|
|
830
|
+
NOTE: Possibly present non-commutative relations of the basering are
|
|
831
|
+
ignored.
|
|
832
|
+
EXAMPLE: example addRat; shows examples
|
|
833
|
+
"
|
|
834
|
+
{
|
|
835
|
+
checkRatInput(I);
|
|
836
|
+
checkRatInput(J);
|
|
837
|
+
return(arithmeticRat(I,J,"+"));
|
|
838
|
+
}
|
|
839
|
+
example
|
|
840
|
+
{
|
|
841
|
+
"EXAMPLE:"; echo = 2;
|
|
842
|
+
ring r = 0,(x,y),dp;
|
|
843
|
+
vector v = [x,y];
|
|
844
|
+
vector w = [y,x];
|
|
845
|
+
addRat(v,w);
|
|
846
|
+
addRat(v,w) - [x2+y2,xy];
|
|
847
|
+
}
|
|
848
|
+
|
|
849
|
+
|
|
850
|
+
proc multRat (vector I, vector J)
|
|
851
|
+
"
|
|
852
|
+
USAGE: multRat(v,w); v,w vectors
|
|
853
|
+
ASSUME: Assume that v,w have exactly two components, second ones not 0.
|
|
854
|
+
RETURN: vector, representing rational function (v[1]/v[2])*(w[1]/w[2])
|
|
855
|
+
NOTE: Possibly present non-commutative relations of the basering are
|
|
856
|
+
ignored.
|
|
857
|
+
EXAMPLE: example multRat; shows examples
|
|
858
|
+
"
|
|
859
|
+
{
|
|
860
|
+
checkRatInput(I);
|
|
861
|
+
checkRatInput(J);
|
|
862
|
+
return(arithmeticRat(I,J,"*"));
|
|
863
|
+
}
|
|
864
|
+
example
|
|
865
|
+
{
|
|
866
|
+
"EXAMPLE:"; echo = 2;
|
|
867
|
+
ring r = 0,(x,y),dp;
|
|
868
|
+
vector v = [x,y];
|
|
869
|
+
vector w = [y,x];
|
|
870
|
+
multRat(v,w);
|
|
871
|
+
multRat(v,w) - [1,1];
|
|
872
|
+
}
|
|
873
|
+
|
|
874
|
+
|
|
875
|
+
proc diffRat (vector I, int j)
|
|
876
|
+
"
|
|
877
|
+
USAGE: diffRat(v,j); v vector, j int
|
|
878
|
+
ASSUME: Assume that v has exactly two components, second one not 0.
|
|
879
|
+
RETURN: vector, representing rational function derivative of rational
|
|
880
|
+
function (v[1]/v[2]) w.r.t. var(j)
|
|
881
|
+
NOTE: Possibly present non-commutative relations of the basering are
|
|
882
|
+
ignored.
|
|
883
|
+
EXAMPLE: example diffRat; shows examples
|
|
884
|
+
"
|
|
885
|
+
{
|
|
886
|
+
checkRatInput(I);
|
|
887
|
+
if ( (j<1) || (j>nvars(basering)) )
|
|
888
|
+
{
|
|
889
|
+
ERROR("Second argument must be in the range 1.."+string(nvars(basering)));
|
|
890
|
+
}
|
|
891
|
+
return(arithmeticRat(I,vector(0),"d",j));
|
|
892
|
+
}
|
|
893
|
+
example
|
|
894
|
+
{
|
|
895
|
+
"EXAMPLE:"; echo = 2;
|
|
896
|
+
ring r = 0,(x,y),dp;
|
|
897
|
+
vector v = [x,y];
|
|
898
|
+
diffRat(v,1);
|
|
899
|
+
diffRat(v,1) - [1,y];
|
|
900
|
+
diffRat(v,2);
|
|
901
|
+
diffRat(v,2) - [-x,y2];
|
|
902
|
+
}
|
|
903
|
+
|
|
904
|
+
|
|
905
|
+
proc commRing ()
|
|
906
|
+
"
|
|
907
|
+
USAGE: commRing();
|
|
908
|
+
RETURN: ring, basering without non-commutative relations
|
|
909
|
+
EXAMPLE: example commRing; shows examples
|
|
910
|
+
"
|
|
911
|
+
{
|
|
912
|
+
list RL = ringlist(basering);
|
|
913
|
+
if (size(RL)<=4)
|
|
914
|
+
{
|
|
915
|
+
return(basering);
|
|
916
|
+
}
|
|
917
|
+
RL = RL[1..4];
|
|
918
|
+
def r = ring(RL);
|
|
919
|
+
return(r);
|
|
920
|
+
}
|
|
921
|
+
example
|
|
922
|
+
{
|
|
923
|
+
"EXAMPLE:"; echo = 2;
|
|
924
|
+
def W = makeWeyl(3);
|
|
925
|
+
setring W; W;
|
|
926
|
+
def W2 = commRing();
|
|
927
|
+
setring W2; W2;
|
|
928
|
+
ring r = 0,(x,y),dp;
|
|
929
|
+
def r2 = commRing(); // same as r
|
|
930
|
+
setring r2; r2;
|
|
931
|
+
}
|
|
932
|
+
|
|
933
|
+
|
|
934
|
+
// TODO remove this proc once chern.lib is ready
|
|
935
|
+
static proc orderedPartition(int n, list #)
|
|
936
|
+
"
|
|
937
|
+
USAGE: orderedPartition(n,a); n,a positive ints
|
|
938
|
+
orderedPartition(n,w); n positive int, w positive intvec
|
|
939
|
+
RETURN: list of intvecs
|
|
940
|
+
PURPOSE: Computes all partitions of n of length a, if the second
|
|
941
|
+
argument is an int, or computes all weighted partitions
|
|
942
|
+
w.r.t. w of n of length size(w) if the second argument
|
|
943
|
+
is an intvec.
|
|
944
|
+
In both cases, zero parts are included.
|
|
945
|
+
EXAMPLE: example orderedPartition; shows an example
|
|
946
|
+
"
|
|
947
|
+
{
|
|
948
|
+
int a,wrongInpt,intInpt;
|
|
949
|
+
intvec w = 1;
|
|
950
|
+
if (size(#)>0)
|
|
951
|
+
{
|
|
952
|
+
if (typeof(#[1]) == "int")
|
|
953
|
+
{
|
|
954
|
+
a = #[1];
|
|
955
|
+
intInpt = 1;
|
|
956
|
+
}
|
|
957
|
+
else
|
|
958
|
+
{
|
|
959
|
+
if (typeof(#[1]) == "intvec")
|
|
960
|
+
{
|
|
961
|
+
w = #[1];
|
|
962
|
+
a = size(w);
|
|
963
|
+
}
|
|
964
|
+
else
|
|
965
|
+
{
|
|
966
|
+
wrongInpt = 1;
|
|
967
|
+
}
|
|
968
|
+
}
|
|
969
|
+
}
|
|
970
|
+
else
|
|
971
|
+
{
|
|
972
|
+
wrongInpt = 1;
|
|
973
|
+
}
|
|
974
|
+
if (wrongInpt)
|
|
975
|
+
{
|
|
976
|
+
ERROR("Expected second argument of type int or intvec.");
|
|
977
|
+
}
|
|
978
|
+
kill wrongInpt;
|
|
979
|
+
if (n==0 && a>0)
|
|
980
|
+
{
|
|
981
|
+
return(list(0:a));
|
|
982
|
+
}
|
|
983
|
+
if (n<=0 || a<=0 || allPositive(w)==0)
|
|
984
|
+
{
|
|
985
|
+
ERROR("Positive arguments expected.");
|
|
986
|
+
}
|
|
987
|
+
int baseringdef;
|
|
988
|
+
if (defined(basering)) // if a basering is defined, it should be saved for later use
|
|
989
|
+
{
|
|
990
|
+
def save = basering;
|
|
991
|
+
baseringdef = 1;
|
|
992
|
+
}
|
|
993
|
+
ring r = 0,(x(1..a)),dp; // all variables for partition of length a
|
|
994
|
+
ideal M;
|
|
995
|
+
if (intInpt)
|
|
996
|
+
{
|
|
997
|
+
M = maxideal(n); // all monomials of total degree n
|
|
998
|
+
}
|
|
999
|
+
else
|
|
1000
|
+
{
|
|
1001
|
+
M = weightKB(ideal(0),n,w); // all monomials of total weighted degree n
|
|
1002
|
+
}
|
|
1003
|
+
list L;
|
|
1004
|
+
int i;
|
|
1005
|
+
for (i = 1; i <= ncols(M); i++) {L = insert(L,leadexp(M[i]));}
|
|
1006
|
+
// the leadexp corresponds to a partition
|
|
1007
|
+
if (baseringdef) // sets the old ring as basering again
|
|
1008
|
+
{
|
|
1009
|
+
setring save;
|
|
1010
|
+
}
|
|
1011
|
+
return(L); //returns the list of partitions
|
|
1012
|
+
}
|
|
1013
|
+
example
|
|
1014
|
+
{
|
|
1015
|
+
"EXAMPLE"; echo = 2;
|
|
1016
|
+
orderedPartition(4,2);
|
|
1017
|
+
orderedPartition(5,3);
|
|
1018
|
+
orderedPartition(2,4);
|
|
1019
|
+
orderedPartition(8,intvec(2,3));
|
|
1020
|
+
orderedPartition(7,intvec(2,2)); // no such partition
|
|
1021
|
+
}
|
|
1022
|
+
|
|
1023
|
+
|
|
1024
|
+
// applications of characteristic variety /////////////////////////////////////
|
|
1025
|
+
|
|
1026
|
+
proc holonomicRank (ideal I, list #)
|
|
1027
|
+
"
|
|
1028
|
+
USAGE: holonomicRank(I[,e]); I ideal, e optional int
|
|
1029
|
+
ASSUME: The basering is the n-th Weyl algebra over a field of
|
|
1030
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1031
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1032
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
|
|
1033
|
+
is the differential operator belonging to x(i).
|
|
1034
|
+
RETURN: int, the holonomic rank of I
|
|
1035
|
+
REMARKS: The holonomic rank of I is defined to be the K(x(1..n))-dimension of
|
|
1036
|
+
the module W/WI, where W is the rational Weyl algebra
|
|
1037
|
+
K(x(1..n))<D(1..n)>.
|
|
1038
|
+
If this dimension is infinite, -1 is returned.
|
|
1039
|
+
NOTE: If e<>0, @code{std} is used for Groebner basis computations,
|
|
1040
|
+
otherwise (and by default) @code{slimgb} is used.
|
|
1041
|
+
@* If printlevel=1, progress debug messages will be printed,
|
|
1042
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1043
|
+
EXAMPLE: example holonomicRank; shows examples
|
|
1044
|
+
"
|
|
1045
|
+
{
|
|
1046
|
+
// assumption check is done by charVariety
|
|
1047
|
+
int ppl = printlevel - voice + 2;
|
|
1048
|
+
int eng;
|
|
1049
|
+
if (size(#)>0)
|
|
1050
|
+
{
|
|
1051
|
+
if(typeof(#[1])=="int")
|
|
1052
|
+
{
|
|
1053
|
+
eng = #[1];
|
|
1054
|
+
}
|
|
1055
|
+
}
|
|
1056
|
+
def save = basering;
|
|
1057
|
+
dbprint(ppl ,"// Computing characteristic variety...");
|
|
1058
|
+
def grD = charVariety(I);
|
|
1059
|
+
setring grD; // commutative ring
|
|
1060
|
+
dbprint(ppl ,"// ...done.");
|
|
1061
|
+
dbprint(ppl-1,"// " + string(charVar));
|
|
1062
|
+
int n = nvars(save) div 2;
|
|
1063
|
+
intvec v = 1..n;
|
|
1064
|
+
def R = vars2pars(v);
|
|
1065
|
+
setring R;
|
|
1066
|
+
ideal J = imap(grD,charVar);
|
|
1067
|
+
dbprint(ppl ,"// Starting GB computation...");
|
|
1068
|
+
J = engine(J,0); // use slimgb
|
|
1069
|
+
dbprint(ppl ,"// ...done.");
|
|
1070
|
+
dbprint(ppl-1,"// " + string(J));
|
|
1071
|
+
int d = vdim(J);
|
|
1072
|
+
setring save;
|
|
1073
|
+
return(d);
|
|
1074
|
+
}
|
|
1075
|
+
example
|
|
1076
|
+
{
|
|
1077
|
+
"EXAMPLE:"; echo = 2;
|
|
1078
|
+
// (OTW), Example 8
|
|
1079
|
+
ring r3 = 0,(x,y,z,Dx,Dy,Dz),dp;
|
|
1080
|
+
def D3 = Weyl();
|
|
1081
|
+
setring D3;
|
|
1082
|
+
poly f = x^3-y^2*z^2;
|
|
1083
|
+
ideal I = f^2*Dx+3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
|
|
1084
|
+
// I annihilates exp(1/f)
|
|
1085
|
+
holonomicRank(I);
|
|
1086
|
+
}
|
|
1087
|
+
|
|
1088
|
+
|
|
1089
|
+
proc DsingularLocus (ideal I)
|
|
1090
|
+
"
|
|
1091
|
+
USAGE: DsingularLocus(I); I ideal
|
|
1092
|
+
ASSUME: The basering is the n-th Weyl algebra over a field of
|
|
1093
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1094
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1095
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
|
|
1096
|
+
is the differential operator belonging to x(i).
|
|
1097
|
+
RETURN: ideal, describing the singular locus of the D-module D/I
|
|
1098
|
+
NOTE: If printlevel>=1, progress debug messages will be printed,
|
|
1099
|
+
if printlevel>=2, all the debug messages will be printed
|
|
1100
|
+
EXAMPLE: example DsingularLocus; shows examples
|
|
1101
|
+
"
|
|
1102
|
+
{
|
|
1103
|
+
// assumption check is done by charVariety
|
|
1104
|
+
int ppl = printlevel - voice + 2;
|
|
1105
|
+
def save = basering;
|
|
1106
|
+
dbprint(ppl ,"// Computing characteristic variety...");
|
|
1107
|
+
def grD = charVariety(I);
|
|
1108
|
+
setring grD;
|
|
1109
|
+
dbprint(ppl ,"// ...done");
|
|
1110
|
+
dbprint(ppl-1,"// " + string(charVar));
|
|
1111
|
+
poly pDD = 1;
|
|
1112
|
+
ideal IDD;
|
|
1113
|
+
int i;
|
|
1114
|
+
int n = nvars(basering) div 2;
|
|
1115
|
+
for (i=1; i<=n; i++)
|
|
1116
|
+
{
|
|
1117
|
+
pDD = pDD*var(i+n);
|
|
1118
|
+
IDD[i] = var(i+n);
|
|
1119
|
+
}
|
|
1120
|
+
dbprint(ppl ,"// Computing saturation...");
|
|
1121
|
+
ideal S = sat(charVar,IDD);
|
|
1122
|
+
dbprint(ppl ,"// ...done");
|
|
1123
|
+
dbprint(ppl-1,"// " + string(S));
|
|
1124
|
+
dbprint(ppl ,"// Computing elimination...");
|
|
1125
|
+
S = eliminate(S,pDD);
|
|
1126
|
+
dbprint(ppl ,"// ...done");
|
|
1127
|
+
dbprint(ppl-1,"// " + string(S));
|
|
1128
|
+
dbprint(ppl ,"// Computing radical...");
|
|
1129
|
+
S = radical(S);
|
|
1130
|
+
dbprint(ppl ,"// ...done");
|
|
1131
|
+
dbprint(ppl-1,"// " + string(S));
|
|
1132
|
+
setring save;
|
|
1133
|
+
ideal S = imap(grD,S);
|
|
1134
|
+
return(S);
|
|
1135
|
+
}
|
|
1136
|
+
example
|
|
1137
|
+
{
|
|
1138
|
+
"EXAMPLE:"; echo = 2;
|
|
1139
|
+
// (OTW), Example 8
|
|
1140
|
+
ring @D3 = 0,(x,y,z,Dx,Dy,Dz),dp;
|
|
1141
|
+
def D3 = Weyl();
|
|
1142
|
+
setring D3;
|
|
1143
|
+
poly f = x^3-y^2*z^2;
|
|
1144
|
+
ideal I = f^2*Dx + 3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
|
|
1145
|
+
// I annihilates exp(1/f)
|
|
1146
|
+
DsingularLocus(I);
|
|
1147
|
+
}
|
|
1148
|
+
|
|
1149
|
+
|
|
1150
|
+
// localization ///////////////////////////////////////////////////////////////
|
|
1151
|
+
|
|
1152
|
+
static proc finKx(poly f)
|
|
1153
|
+
{
|
|
1154
|
+
int n = nvars(basering) div 2;
|
|
1155
|
+
intvec iv = 1..n;
|
|
1156
|
+
if (polyVars(f,iv) == 0)
|
|
1157
|
+
{
|
|
1158
|
+
ERROR("Given poly may not contain differential operators.");
|
|
1159
|
+
}
|
|
1160
|
+
return();
|
|
1161
|
+
}
|
|
1162
|
+
|
|
1163
|
+
|
|
1164
|
+
proc rightNFWeyl (def id, int k)
|
|
1165
|
+
"
|
|
1166
|
+
USAGE: rightNFWeyl(id,k); id ideal or poly, k int
|
|
1167
|
+
ASSUME: The basering is the n-th Weyl algebra over a field of
|
|
1168
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1169
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1170
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
|
|
1171
|
+
is the differential operator belonging to x(i).
|
|
1172
|
+
RETURN: same type as id, the right normal form of id with respect to the
|
|
1173
|
+
principal right ideal generated by the k-th variable
|
|
1174
|
+
NOTE: No Groebner basis computation is used.
|
|
1175
|
+
EXAMPLE: example rightNFWeyl; shows examples.
|
|
1176
|
+
"
|
|
1177
|
+
{
|
|
1178
|
+
dmodGeneralAssumptionCheck();
|
|
1179
|
+
string inpt = typeof(id);
|
|
1180
|
+
if (inpt=="ideal" || inpt=="poly")
|
|
1181
|
+
{
|
|
1182
|
+
ideal I = id;
|
|
1183
|
+
}
|
|
1184
|
+
else
|
|
1185
|
+
{
|
|
1186
|
+
ERROR("Expected first input to be of type ideal or poly.");
|
|
1187
|
+
}
|
|
1188
|
+
def save = basering;
|
|
1189
|
+
int n = nvars(save) div 2;
|
|
1190
|
+
if (0>k || k>2*n)
|
|
1191
|
+
{
|
|
1192
|
+
ERROR("Expected second input to be in the range 1.."+string(2*n)+".");
|
|
1193
|
+
}
|
|
1194
|
+
int i,j;
|
|
1195
|
+
if (k>n) // var(k) = Dx(k-n)
|
|
1196
|
+
{
|
|
1197
|
+
// switch var(k),var(k-n)
|
|
1198
|
+
list RL = ringlist(save);
|
|
1199
|
+
matrix rel = RL[6];
|
|
1200
|
+
rel[k-n,k] = -1;
|
|
1201
|
+
RL = RL[1..4];
|
|
1202
|
+
list L = RL[2];
|
|
1203
|
+
string str = L[k-n];
|
|
1204
|
+
L[k-n] = L[k];
|
|
1205
|
+
L[k] = str;
|
|
1206
|
+
RL[2] = L;
|
|
1207
|
+
def @W = ring(RL);
|
|
1208
|
+
kill L,RL,str;
|
|
1209
|
+
ideal @mm = maxideal(1);
|
|
1210
|
+
setring @W;
|
|
1211
|
+
matrix rel = imap(save,rel);
|
|
1212
|
+
def W = nc_algebra(1,rel);
|
|
1213
|
+
setring W;
|
|
1214
|
+
ideal @mm = imap(save,@mm);
|
|
1215
|
+
map mm = save,@mm;
|
|
1216
|
+
ideal I = mm(I);
|
|
1217
|
+
i = k-n;
|
|
1218
|
+
}
|
|
1219
|
+
else // var(k) = x(k)
|
|
1220
|
+
{
|
|
1221
|
+
def W = save;
|
|
1222
|
+
i = k;
|
|
1223
|
+
}
|
|
1224
|
+
for (j=1; j<=ncols(I); j++)
|
|
1225
|
+
{
|
|
1226
|
+
I[j] = subst(I[j],var(i),0);
|
|
1227
|
+
}
|
|
1228
|
+
setring save;
|
|
1229
|
+
I = imap(W,I);
|
|
1230
|
+
if (inpt=="poly")
|
|
1231
|
+
{
|
|
1232
|
+
return(I[1]);
|
|
1233
|
+
}
|
|
1234
|
+
else
|
|
1235
|
+
{
|
|
1236
|
+
return(I);
|
|
1237
|
+
}
|
|
1238
|
+
}
|
|
1239
|
+
example
|
|
1240
|
+
{
|
|
1241
|
+
"EXAMPLE:"; echo = 2;
|
|
1242
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
1243
|
+
def W = Weyl();
|
|
1244
|
+
setring W;
|
|
1245
|
+
ideal I = x^3*Dx^3, y^2*Dy^2, x*Dy, y*Dx;
|
|
1246
|
+
rightNFWeyl(I,1); // right NF wrt principal right ideal x*W
|
|
1247
|
+
rightNFWeyl(I,3); // right NF wrt principal right ideal Dx*W
|
|
1248
|
+
rightNFWeyl(I,2); // right NF wrt principal right ideal y*W
|
|
1249
|
+
rightNFWeyl(I,4); // right NF wrt principal right ideal Dy*W
|
|
1250
|
+
poly p = x*Dx+1;
|
|
1251
|
+
rightNFWeyl(p,1); // right NF wrt principal right ideal x*W
|
|
1252
|
+
}
|
|
1253
|
+
|
|
1254
|
+
|
|
1255
|
+
// TODO check OTW for assumptions on holonomicity
|
|
1256
|
+
proc Dlocalization (ideal J, poly f, list #)
|
|
1257
|
+
"
|
|
1258
|
+
USAGE: Dlocalization(I,f[,k,e]); I ideal, f poly, k,e optional ints
|
|
1259
|
+
ASSUME: The basering is the n-th Weyl algebra over a field of
|
|
1260
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1261
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1262
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
|
|
1263
|
+
is the differential operator belonging to x(i).
|
|
1264
|
+
@* Further, assume that f does not contain any D(i) and that I is
|
|
1265
|
+
holonomic on K^n\V(f).
|
|
1266
|
+
RETURN: ideal or list, computes an ideal J such that D/J is isomorphic
|
|
1267
|
+
to D/I localized at f as D-modules.
|
|
1268
|
+
If k<>0, a list consisting of J and an integer m is returned,
|
|
1269
|
+
such that f^m represents the natural map from D/I to D/J.
|
|
1270
|
+
Otherwise (and by default), only the ideal J is returned.
|
|
1271
|
+
REMARKS: It is known that a localization at f of a holonomic D-module is
|
|
1272
|
+
again a holonomic D-module.
|
|
1273
|
+
@* Reference: (OTW)
|
|
1274
|
+
NOTE: If e<>0, @code{std} is used for Groebner basis computations,
|
|
1275
|
+
otherwise (and by default) @code{slimgb} is used.
|
|
1276
|
+
@* If printlevel=1, progress debug messages will be printed,
|
|
1277
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1278
|
+
SEE ALSO: DLoc, SDLoc, DLoc0
|
|
1279
|
+
EXAMPLE: example Dlocalization; shows examples
|
|
1280
|
+
"
|
|
1281
|
+
{
|
|
1282
|
+
dmodGeneralAssumptionCheck();
|
|
1283
|
+
finKx(f);
|
|
1284
|
+
int ppl = printlevel - voice + 2;
|
|
1285
|
+
int outList,eng;
|
|
1286
|
+
if (size(#)>0)
|
|
1287
|
+
{
|
|
1288
|
+
if (typeof(#[1])=="int" || typeof(#[1])=="number")
|
|
1289
|
+
{
|
|
1290
|
+
outList = int(#[1]);
|
|
1291
|
+
}
|
|
1292
|
+
if (size(#)>1)
|
|
1293
|
+
{
|
|
1294
|
+
if (typeof(#[2])=="int" || typeof(#[2])=="number")
|
|
1295
|
+
{
|
|
1296
|
+
eng = int(#[2]);
|
|
1297
|
+
}
|
|
1298
|
+
}
|
|
1299
|
+
}
|
|
1300
|
+
int i,j;
|
|
1301
|
+
def save = basering;
|
|
1302
|
+
int n = nvars(save) div 2;
|
|
1303
|
+
def Dv = extendWeyl(safeVarName("v"));
|
|
1304
|
+
setring Dv;
|
|
1305
|
+
poly f = imap(save,f);
|
|
1306
|
+
ideal phiI;
|
|
1307
|
+
for (i=n; i>0; i--)
|
|
1308
|
+
{
|
|
1309
|
+
phiI[i+n] = var(i+n+2)-var(1)^2*bracket(var(i+n+2),f)*var(n+2);
|
|
1310
|
+
phiI[i] = var(i+1);
|
|
1311
|
+
}
|
|
1312
|
+
map phi = save,phiI;
|
|
1313
|
+
ideal J = phi(J);
|
|
1314
|
+
J = J, 1-f*var(1);
|
|
1315
|
+
// TODO original J has to be holonomic only on K^n\V(f), not on all of K^n
|
|
1316
|
+
// does is suffice to show that new J is holonomic on Dv??
|
|
1317
|
+
if (isHolonomic(J) == 0)
|
|
1318
|
+
{
|
|
1319
|
+
ERROR("Module is not holonomic.");
|
|
1320
|
+
}
|
|
1321
|
+
intvec w = 1; w[n+1]=0;
|
|
1322
|
+
ideal G = GBWeight(J,w,-w,eng);
|
|
1323
|
+
dbprint(ppl ,"// found GB wrt weight " +string(-w));
|
|
1324
|
+
dbprint(ppl-1,"// " + string(G));
|
|
1325
|
+
intvec ww = w,-w;
|
|
1326
|
+
ideal inG = inForm(G,ww);
|
|
1327
|
+
inG = engine(inG,eng);
|
|
1328
|
+
poly s = var(1)*var(n+2); // s=v*Dv
|
|
1329
|
+
vector intersecvec = pIntersect(s,inG);
|
|
1330
|
+
s = vec2poly(intersecvec);
|
|
1331
|
+
s = subst(s,var(1),-var(1)-1);
|
|
1332
|
+
list L = bFactor(s);
|
|
1333
|
+
dbprint(ppl ,"// found b-function");
|
|
1334
|
+
dbprint(ppl-1,"// roots: "+string(L[1]));
|
|
1335
|
+
dbprint(ppl-1,"// multiplicities: "+string(L[2]));
|
|
1336
|
+
kill inG,intersecvec,s;
|
|
1337
|
+
// TODO: use maxIntRoot
|
|
1338
|
+
L = intRoots(L); // integral roots of b-function
|
|
1339
|
+
if (L[2]==0:size(L[2])) // no integral roots
|
|
1340
|
+
{
|
|
1341
|
+
setring save;
|
|
1342
|
+
return(ideal(1));
|
|
1343
|
+
}
|
|
1344
|
+
intvec iv;
|
|
1345
|
+
for (i=1; i<=ncols(L[1]); i++)
|
|
1346
|
+
{
|
|
1347
|
+
iv[i] = int(L[1][i]);
|
|
1348
|
+
}
|
|
1349
|
+
int l0 = Max(iv);
|
|
1350
|
+
dbprint(ppl,"// maximal integral root is " +string(l0));
|
|
1351
|
+
kill L,iv;
|
|
1352
|
+
intvec degG;
|
|
1353
|
+
ideal Gk;
|
|
1354
|
+
for (j=1; j<=ncols(G); j++)
|
|
1355
|
+
{
|
|
1356
|
+
degG[j] = deg(G[j],ww);
|
|
1357
|
+
for (i=0; i<=l0-degG[j]; i++)
|
|
1358
|
+
{
|
|
1359
|
+
Gk[ncols(Gk)+1] = var(1)^i*G[j];
|
|
1360
|
+
}
|
|
1361
|
+
}
|
|
1362
|
+
Gk = rightNFWeyl(Gk,n+2);
|
|
1363
|
+
dbprint(ppl,"// found right normalforms");
|
|
1364
|
+
module M = coeffs(Gk,var(1));
|
|
1365
|
+
setring save;
|
|
1366
|
+
def mer = makeModElimRing(save);
|
|
1367
|
+
setring mer;
|
|
1368
|
+
module M = imap(Dv,M);
|
|
1369
|
+
kill Dv;
|
|
1370
|
+
M = engine(M,eng);
|
|
1371
|
+
dbprint(ppl ,"// found GB of free module of rank " + string(l0+1));
|
|
1372
|
+
dbprint(ppl-1,"// " + string(M));
|
|
1373
|
+
M = prune(M);
|
|
1374
|
+
setring save;
|
|
1375
|
+
matrix M = imap(mer,M);
|
|
1376
|
+
kill mer;
|
|
1377
|
+
int ro = nrows(M);
|
|
1378
|
+
int co = ncols(M);
|
|
1379
|
+
ideal I;
|
|
1380
|
+
if (ro == 1) // nothing to do
|
|
1381
|
+
{
|
|
1382
|
+
I = M;
|
|
1383
|
+
}
|
|
1384
|
+
else
|
|
1385
|
+
{
|
|
1386
|
+
matrix zm[ro-1][1]; // zero matrix
|
|
1387
|
+
matrix v[ro-1][1];
|
|
1388
|
+
for (i=1; i<=co; i++)
|
|
1389
|
+
{
|
|
1390
|
+
v = M[1..ro-1,i];
|
|
1391
|
+
if (v == zm)
|
|
1392
|
+
{
|
|
1393
|
+
I[size(I)+1] = M[ro,i];
|
|
1394
|
+
}
|
|
1395
|
+
}
|
|
1396
|
+
}
|
|
1397
|
+
if (outList<>0)
|
|
1398
|
+
{
|
|
1399
|
+
return(list(I,l0+2));
|
|
1400
|
+
}
|
|
1401
|
+
else
|
|
1402
|
+
{
|
|
1403
|
+
return(I);
|
|
1404
|
+
}
|
|
1405
|
+
}
|
|
1406
|
+
example
|
|
1407
|
+
{
|
|
1408
|
+
"EXAMPLE:"; echo = 2;
|
|
1409
|
+
// (OTW), Example 8
|
|
1410
|
+
ring r = 0,(x,y,z,Dx,Dy,Dz),dp;
|
|
1411
|
+
def W = Weyl();
|
|
1412
|
+
setring W;
|
|
1413
|
+
poly f = x^3-y^2*z^2;
|
|
1414
|
+
ideal I = f^2*Dx+3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
|
|
1415
|
+
// I annihilates exp(1/f)
|
|
1416
|
+
ideal J = Dlocalization(I,f);
|
|
1417
|
+
J;
|
|
1418
|
+
Dlocalization(I,f,1); // The natural map D/I -> D/J is given by 1/f^2
|
|
1419
|
+
}
|
|
1420
|
+
|
|
1421
|
+
|
|
1422
|
+
|
|
1423
|
+
// Weyl closure ///////////////////////////////////////////////////////////////
|
|
1424
|
+
|
|
1425
|
+
static proc orderFiltrationD1 (poly f)
|
|
1426
|
+
{
|
|
1427
|
+
// returns list of ideal and intvec
|
|
1428
|
+
// ideal contains x-parts, intvec corresponding degree in Dx
|
|
1429
|
+
poly g,h;
|
|
1430
|
+
g = f;
|
|
1431
|
+
ideal I;
|
|
1432
|
+
intvec v,w,u;
|
|
1433
|
+
w = 0,1;
|
|
1434
|
+
int i,j;
|
|
1435
|
+
i = 1;
|
|
1436
|
+
while (g<>0)
|
|
1437
|
+
{
|
|
1438
|
+
h = inForm(g,w);
|
|
1439
|
+
I[i] = 0;
|
|
1440
|
+
for (j=1; j<=size(h); j++)
|
|
1441
|
+
{
|
|
1442
|
+
v = leadexp(h[j]);
|
|
1443
|
+
u[i] = v[2];
|
|
1444
|
+
v[2] = 0;
|
|
1445
|
+
I[i] = I[i] + leadcoef(h[j])*monomial(v);
|
|
1446
|
+
}
|
|
1447
|
+
g = g-h;
|
|
1448
|
+
i++;
|
|
1449
|
+
}
|
|
1450
|
+
return(list(I,u));
|
|
1451
|
+
}
|
|
1452
|
+
|
|
1453
|
+
|
|
1454
|
+
static proc kerLinMapD1 (ideal W, poly L, poly p)
|
|
1455
|
+
{
|
|
1456
|
+
// computes kernel of right multiplication with L viewed
|
|
1457
|
+
// as homomorphism of K-vector spaces span(W) -> D1/p*D1
|
|
1458
|
+
// assume p in K[x], basering is K<x,Dx>
|
|
1459
|
+
ideal G,K;
|
|
1460
|
+
G = std(p);
|
|
1461
|
+
list l;
|
|
1462
|
+
int i,j;
|
|
1463
|
+
// first, compute the image of span(W)
|
|
1464
|
+
if (simplify(W,2)[1] == 0)
|
|
1465
|
+
{
|
|
1466
|
+
return(K); // = 0
|
|
1467
|
+
}
|
|
1468
|
+
for (i=1; i<=size(W); i++)
|
|
1469
|
+
{
|
|
1470
|
+
l = orderFiltrationD1(W[i]*L);
|
|
1471
|
+
K[i] = 0;
|
|
1472
|
+
for (j=1; j<=size(l[1]); j++)
|
|
1473
|
+
{
|
|
1474
|
+
K[i] = K[i] + NF(l[1][j],G)*var(2)^(l[2][j]);
|
|
1475
|
+
}
|
|
1476
|
+
}
|
|
1477
|
+
// now, we get the kernel by linear algebra
|
|
1478
|
+
l = linReduceIdeal(K,1);
|
|
1479
|
+
i = ncols(l[1]) - size(l[1]);
|
|
1480
|
+
if (i<>0)
|
|
1481
|
+
{
|
|
1482
|
+
K = matrix(W)*matrix(l[2]);
|
|
1483
|
+
K = K[1..i];
|
|
1484
|
+
}
|
|
1485
|
+
else
|
|
1486
|
+
{
|
|
1487
|
+
K = 0;
|
|
1488
|
+
}
|
|
1489
|
+
return(K);
|
|
1490
|
+
}
|
|
1491
|
+
|
|
1492
|
+
|
|
1493
|
+
static proc leftDivisionKxD1 (poly p, poly L)
|
|
1494
|
+
{
|
|
1495
|
+
// basering is D1 = K<x,Dx>
|
|
1496
|
+
// p in K[x]
|
|
1497
|
+
// compute p^(-1)*L if p is a left divisor of L
|
|
1498
|
+
// if (rightNF(L,ideal(p))<>0)
|
|
1499
|
+
// {
|
|
1500
|
+
// ERROR("First poly is not a right factor of second poly");
|
|
1501
|
+
// }
|
|
1502
|
+
def save = basering;
|
|
1503
|
+
list l = orderFiltrationD1(L);
|
|
1504
|
+
ideal l1 = l[1];
|
|
1505
|
+
ring r = 0,x,dp;
|
|
1506
|
+
ideal l1 = fetch(save,l1);
|
|
1507
|
+
poly p = fetch(save,p);
|
|
1508
|
+
int i;
|
|
1509
|
+
for (i=1; i<=ncols(l1); i++)
|
|
1510
|
+
{
|
|
1511
|
+
l1[i] = division(l1[i],p)[1][1,1];
|
|
1512
|
+
}
|
|
1513
|
+
setring save;
|
|
1514
|
+
ideal I = fetch(r,l1);
|
|
1515
|
+
poly f;
|
|
1516
|
+
for (i=1; i<=ncols(I); i++)
|
|
1517
|
+
{
|
|
1518
|
+
f = f + I[i]*var(2)^(l[2][i]);
|
|
1519
|
+
}
|
|
1520
|
+
return(f);
|
|
1521
|
+
}
|
|
1522
|
+
|
|
1523
|
+
|
|
1524
|
+
proc WeylClosure1 (poly L)
|
|
1525
|
+
"
|
|
1526
|
+
USAGE: WeylClosure1(L); L a poly
|
|
1527
|
+
ASSUME: The basering is the first Weyl algebra D=K<x,d|dx=xd+1> over a field
|
|
1528
|
+
K of characteristic 0.
|
|
1529
|
+
RETURN: ideal, the Weyl closure of the principal left ideal generated by L
|
|
1530
|
+
REMARKS: The Weyl closure of a left ideal I in the Weyl algebra D is defined
|
|
1531
|
+
to be the intersection of I regarded as left ideal in the rational
|
|
1532
|
+
Weyl algebra K(x)<d> with the polynomial Weyl algebra D.
|
|
1533
|
+
@* Reference: (Tsa), Algorithm 1.2.4
|
|
1534
|
+
NOTE: If printlevel=1, progress debug messages will be printed,
|
|
1535
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1536
|
+
SEE ALSO: WeylClosure
|
|
1537
|
+
EXAMPLE: example WeylClosure1; shows examples
|
|
1538
|
+
"
|
|
1539
|
+
{
|
|
1540
|
+
dmodGeneralAssumptionCheck(); // assumption check
|
|
1541
|
+
int ppl = printlevel - voice + 2;
|
|
1542
|
+
def save = basering;
|
|
1543
|
+
intvec w = 0,1; // for order filtration
|
|
1544
|
+
poly p = inForm(L,w);
|
|
1545
|
+
ring @R = 0,var(1),dp;
|
|
1546
|
+
ideal mm = var(1),1;
|
|
1547
|
+
map m = save,mm;
|
|
1548
|
+
ideal @p = m(p);
|
|
1549
|
+
poly p = @p[1];
|
|
1550
|
+
poly g = gcd(p,diff(p,var(1)));
|
|
1551
|
+
if (g == 1)
|
|
1552
|
+
{
|
|
1553
|
+
g = p;
|
|
1554
|
+
}
|
|
1555
|
+
ideal facp = factorize(g,1); // g is squarefree, constants aren't interesting
|
|
1556
|
+
dbprint(ppl-1,
|
|
1557
|
+
"// squarefree part of highest coefficient w.r.t. order filtration:");
|
|
1558
|
+
dbprint(ppl-1, "// " + string(facp));
|
|
1559
|
+
setring save;
|
|
1560
|
+
p = imap(@R,p);
|
|
1561
|
+
// 1-1 extend basering by parameter and introduce new var t=x*d
|
|
1562
|
+
list RL = ringlist(save);
|
|
1563
|
+
RL = RL[1..4];
|
|
1564
|
+
list l;
|
|
1565
|
+
l[1] = int(0);
|
|
1566
|
+
l[2] = list(safeVarName("a"));
|
|
1567
|
+
l[3] = list(list("lp",intvec(1)));
|
|
1568
|
+
l[4] = ideal(0);
|
|
1569
|
+
RL[1] = l;
|
|
1570
|
+
l = RL[2] + list(safeVarName("t"));
|
|
1571
|
+
RL[2] = l;
|
|
1572
|
+
l = list();
|
|
1573
|
+
l[1] = list("dp",intvec(1,1));
|
|
1574
|
+
l[2] = list("dp",intvec(1));
|
|
1575
|
+
l[3] = list("C",intvec(0));
|
|
1576
|
+
RL[3] = l;
|
|
1577
|
+
def @Wat = ring(RL);
|
|
1578
|
+
kill RL,l;
|
|
1579
|
+
setring @Wat;
|
|
1580
|
+
matrix relD[3][3];
|
|
1581
|
+
relD[1,2] = 1;
|
|
1582
|
+
relD[1,3] = var(1);
|
|
1583
|
+
relD[2,3] = -var(2);
|
|
1584
|
+
def Wat = nc_algebra(1,relD);
|
|
1585
|
+
setring Wat;
|
|
1586
|
+
kill @Wat;
|
|
1587
|
+
// 1-2 rewrite L using Euler operators
|
|
1588
|
+
ideal mm = var(1)+par(1),var(2);
|
|
1589
|
+
map m = save,mm;
|
|
1590
|
+
poly L = m(L);
|
|
1591
|
+
w = -1,1,0; // for Bernstein filtration
|
|
1592
|
+
int i = 1;
|
|
1593
|
+
ideal Q;
|
|
1594
|
+
poly p = L;
|
|
1595
|
+
intvec d;
|
|
1596
|
+
while (p<>0)
|
|
1597
|
+
{
|
|
1598
|
+
Q[i] = inForm(p,w);
|
|
1599
|
+
p = p - Q[i];
|
|
1600
|
+
d[i] = -deg(Q[i],w);
|
|
1601
|
+
i++;
|
|
1602
|
+
}
|
|
1603
|
+
ideal S = std(var(1)*var(2)-var(3));
|
|
1604
|
+
Q = NF(Q,S);
|
|
1605
|
+
dbprint(ppl, "// found Euler representation of operator");
|
|
1606
|
+
dbprint(ppl-1,"// " + string(Q));
|
|
1607
|
+
Q = subst(Q,var(1),1);
|
|
1608
|
+
Q = subst(Q,var(2),1);
|
|
1609
|
+
// 1-3 prepare for algebraic extensions with minpoly = facp[i]
|
|
1610
|
+
list RL = ringlist(Wat);
|
|
1611
|
+
RL = RL[1..4];
|
|
1612
|
+
list l;
|
|
1613
|
+
l = string(var(3));
|
|
1614
|
+
RL[2] = l;
|
|
1615
|
+
l = list();
|
|
1616
|
+
l[1] = list("dp",intvec(1));
|
|
1617
|
+
l[2] = list("C",intvec(0));
|
|
1618
|
+
RL[3] = l;
|
|
1619
|
+
mm = par(1);
|
|
1620
|
+
m = @R,par(1);
|
|
1621
|
+
ideal facp = m(facp);
|
|
1622
|
+
kill @R,m,mm,l,S;
|
|
1623
|
+
intvec maxroots,testroots;
|
|
1624
|
+
int sq = size(Q);
|
|
1625
|
+
string strQ = "ideal Q = " + string(Q) + ";";
|
|
1626
|
+
// TODO do it without string workaround when issue with maps from
|
|
1627
|
+
// transcendental to algebraic extension fields is fixed
|
|
1628
|
+
int j,maxr;
|
|
1629
|
+
// 2-1 get max int root of lowest nonzero entry of Q in algebraic extension
|
|
1630
|
+
for (i=1; i<=size(facp); i++)
|
|
1631
|
+
{
|
|
1632
|
+
testroots = 0;
|
|
1633
|
+
def Ra = ring(RL);
|
|
1634
|
+
setring Ra;
|
|
1635
|
+
ideal mm = 1,1,var(1);
|
|
1636
|
+
map m = Wat,mm;
|
|
1637
|
+
ideal facp = m(facp);
|
|
1638
|
+
minpoly = leadcoef(facp[i]);
|
|
1639
|
+
execute(strQ);
|
|
1640
|
+
if (simplify(Q,2)[1] == poly(0))
|
|
1641
|
+
{
|
|
1642
|
+
break;
|
|
1643
|
+
}
|
|
1644
|
+
j = 1;
|
|
1645
|
+
while (j<sq)
|
|
1646
|
+
{
|
|
1647
|
+
if (Q[j]==0)
|
|
1648
|
+
{
|
|
1649
|
+
j++;
|
|
1650
|
+
}
|
|
1651
|
+
else
|
|
1652
|
+
{
|
|
1653
|
+
break;
|
|
1654
|
+
}
|
|
1655
|
+
}
|
|
1656
|
+
maxroots[i] = d[j]; // d[j] = r_k
|
|
1657
|
+
list LR = bFactor(Q[j]);
|
|
1658
|
+
LR = intRoots(LR);
|
|
1659
|
+
if (LR[2]<>0:size(LR[2])) // there are integral roots
|
|
1660
|
+
{
|
|
1661
|
+
for (j=1; j<=ncols(LR[1]); j++)
|
|
1662
|
+
{
|
|
1663
|
+
testroots[j] = int(LR[1][j]);
|
|
1664
|
+
}
|
|
1665
|
+
maxr = Max(testroots);
|
|
1666
|
+
if(maxr<0)
|
|
1667
|
+
{
|
|
1668
|
+
maxr = 0;
|
|
1669
|
+
}
|
|
1670
|
+
maxroots[i] = maxroots[i] + maxr;
|
|
1671
|
+
}
|
|
1672
|
+
kill LR;
|
|
1673
|
+
setring Wat;
|
|
1674
|
+
kill Ra;
|
|
1675
|
+
}
|
|
1676
|
+
maxr = Max(maxroots);
|
|
1677
|
+
// 3-1 build basis of vectorspace
|
|
1678
|
+
setring save;
|
|
1679
|
+
ideal KB;
|
|
1680
|
+
for (i=0; i<deg(p); i++) // it's really <, not <=
|
|
1681
|
+
{
|
|
1682
|
+
for (j=0; j<=maxr; j++) // it's really <=, not <
|
|
1683
|
+
{
|
|
1684
|
+
KB[size(KB)+1] = monomial(intvec(i,j));
|
|
1685
|
+
}
|
|
1686
|
+
}
|
|
1687
|
+
dbprint(ppl,"// got vector space basis");
|
|
1688
|
+
dbprint(ppl-1, "// " + string(KB));
|
|
1689
|
+
// 3-2 get kernel of *L: span(KB)->D/pD
|
|
1690
|
+
KB = kerLinMapD1(KB,L,p);
|
|
1691
|
+
dbprint(ppl,"// got kernel");
|
|
1692
|
+
dbprint(ppl-1, "// " + string(KB));
|
|
1693
|
+
// 4-1 get (1/p)*f*L where f in KB
|
|
1694
|
+
for (i=1; i<=ncols(KB); i++)
|
|
1695
|
+
{
|
|
1696
|
+
KB[i] = leftDivisionKxD1(p,KB[i]*L);
|
|
1697
|
+
}
|
|
1698
|
+
KB = L,KB;
|
|
1699
|
+
// 4-2 done
|
|
1700
|
+
return(KB);
|
|
1701
|
+
}
|
|
1702
|
+
example
|
|
1703
|
+
{
|
|
1704
|
+
"EXAMPLE:"; echo = 2;
|
|
1705
|
+
ring r = 0,(x,Dx),dp;
|
|
1706
|
+
def W = Weyl();
|
|
1707
|
+
setring W;
|
|
1708
|
+
poly L = (x^3+2)*Dx-3*x^2;
|
|
1709
|
+
WeylClosure1(L);
|
|
1710
|
+
L = (x^4-4*x^3+3*x^2)*Dx^2+(-6*x^3+20*x^2-12*x)*Dx+(12*x^2-32*x+12);
|
|
1711
|
+
WeylClosure1(L);
|
|
1712
|
+
}
|
|
1713
|
+
|
|
1714
|
+
|
|
1715
|
+
proc WeylClosure (ideal I)
|
|
1716
|
+
"
|
|
1717
|
+
USAGE: WeylClosure(I); I an ideal
|
|
1718
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
1719
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1720
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1721
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
1722
|
+
differential operator belonging to x(i).
|
|
1723
|
+
@* Moreover, assume that the holonomic rank of W/I is finite.
|
|
1724
|
+
RETURN: ideal, the Weyl closure of I
|
|
1725
|
+
REMARKS: The Weyl closure of a left ideal I in the Weyl algebra W is defined to
|
|
1726
|
+
be the intersection of I regarded as left ideal in the rational Weyl
|
|
1727
|
+
algebra K(x(1..n))<D(1..n)> with the polynomial Weyl algebra W.
|
|
1728
|
+
@* Reference: (Tsa), Algorithm 2.2.4
|
|
1729
|
+
NOTE: If printlevel=1, progress debug messages will be printed,
|
|
1730
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1731
|
+
SEE ALSO: WeylClosure1
|
|
1732
|
+
EXAMPLE: example WeylClosure; shows examples
|
|
1733
|
+
"
|
|
1734
|
+
{
|
|
1735
|
+
// assumption check
|
|
1736
|
+
dmodGeneralAssumptionCheck();
|
|
1737
|
+
if (holonomicRank(I)==-1)
|
|
1738
|
+
{
|
|
1739
|
+
ERROR("Input is not of finite holonomic rank.");
|
|
1740
|
+
}
|
|
1741
|
+
int ppl = printlevel - voice + 2;
|
|
1742
|
+
int eng = 0; // engine
|
|
1743
|
+
def save = basering;
|
|
1744
|
+
dbprint(ppl ,"// Starting to compute singular locus...");
|
|
1745
|
+
ideal sl = DsingularLocus(I);
|
|
1746
|
+
sl = simplify(sl,2);
|
|
1747
|
+
dbprint(ppl ,"// ...done.");
|
|
1748
|
+
dbprint(ppl-1,"// " + string(sl));
|
|
1749
|
+
if (sl[1] == 0) // can never get here
|
|
1750
|
+
{
|
|
1751
|
+
ERROR("Can't find polynomial in K[x] vanishing on singular locus.");
|
|
1752
|
+
}
|
|
1753
|
+
poly f = sl[1];
|
|
1754
|
+
dbprint(ppl ,"// Found poly vanishing on singular locus: " + string(f));
|
|
1755
|
+
dbprint(ppl ,"// Starting to compute localization...");
|
|
1756
|
+
list L = Dlocalization(I,f,1);
|
|
1757
|
+
ideal G = L[1];
|
|
1758
|
+
dbprint(ppl ,"// ...done.");
|
|
1759
|
+
dbprint(ppl-1,"// " + string(G));
|
|
1760
|
+
dbprint(ppl ,"// Starting to compute kernel of localization map...");
|
|
1761
|
+
if (eng == 0)
|
|
1762
|
+
{
|
|
1763
|
+
G = moduloSlim(f^L[2],G);
|
|
1764
|
+
}
|
|
1765
|
+
else
|
|
1766
|
+
{
|
|
1767
|
+
G = modulo(f^L[2],G);
|
|
1768
|
+
}
|
|
1769
|
+
dbprint(ppl ,"// ...done.");
|
|
1770
|
+
return(G);
|
|
1771
|
+
}
|
|
1772
|
+
example
|
|
1773
|
+
{
|
|
1774
|
+
"EXAMPLE:"; echo = 2;
|
|
1775
|
+
// (OTW), Example 8
|
|
1776
|
+
ring r = 0,(x,y,z,Dx,Dy,Dz),dp;
|
|
1777
|
+
def D3 = Weyl();
|
|
1778
|
+
setring D3;
|
|
1779
|
+
poly f = x^3-y^2*z^2;
|
|
1780
|
+
ideal I = f^2*Dx + 3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
|
|
1781
|
+
// I annihilates exp(1/f)
|
|
1782
|
+
WeylClosure(I);
|
|
1783
|
+
}
|
|
1784
|
+
|
|
1785
|
+
|
|
1786
|
+
|
|
1787
|
+
// solutions to systems of PDEs ///////////////////////////////////////////////
|
|
1788
|
+
|
|
1789
|
+
proc polSol (ideal I, list #)
|
|
1790
|
+
"
|
|
1791
|
+
USAGE: polSol(I[,w,m]); I ideal, w optional intvec, m optional int
|
|
1792
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
1793
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1794
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1795
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
1796
|
+
differential operator belonging to x(i).
|
|
1797
|
+
@* Moreover, assume that I is holonomic.
|
|
1798
|
+
RETURN: ideal, a basis of the polynomial solutions to the given system of
|
|
1799
|
+
linear PDEs with polynomial coefficients, encoded via I
|
|
1800
|
+
REMARKS: If w is given, w should consist of n strictly negative entries.
|
|
1801
|
+
Otherwise and by default, w is set to -1:n.
|
|
1802
|
+
In this case, w is used as weight vector for the computation of a
|
|
1803
|
+
b-function.
|
|
1804
|
+
@* If m is given, m is assumed to be the minimal integer root of the
|
|
1805
|
+
b-function of I w.r.t. w. Note that this assumption is not checked.
|
|
1806
|
+
@* Reference: (OTT), Algorithm 2.4
|
|
1807
|
+
NOTE: If printlevel=1, progress debug messages will be printed,
|
|
1808
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1809
|
+
SEE ALSO: polSolFiniteRank, ratSol
|
|
1810
|
+
EXAMPLE: example polSol; shows examples
|
|
1811
|
+
"
|
|
1812
|
+
{
|
|
1813
|
+
dmodGeneralAssumptionCheck();
|
|
1814
|
+
int ppl = printlevel - voice + 2;
|
|
1815
|
+
int mr,mrgiven;
|
|
1816
|
+
def save = basering;
|
|
1817
|
+
int n = nvars(save);
|
|
1818
|
+
intvec w = -1:(n div 2);
|
|
1819
|
+
if (size(#)>0)
|
|
1820
|
+
{
|
|
1821
|
+
if (typeof(#[1])=="intvec")
|
|
1822
|
+
{
|
|
1823
|
+
if (allPositive(-#[1]))
|
|
1824
|
+
{
|
|
1825
|
+
w = #[1];
|
|
1826
|
+
}
|
|
1827
|
+
}
|
|
1828
|
+
if (size(#)>1)
|
|
1829
|
+
{
|
|
1830
|
+
if (typeof(#[2])=="int")
|
|
1831
|
+
{
|
|
1832
|
+
mr = #[2];
|
|
1833
|
+
mrgiven = 1;
|
|
1834
|
+
}
|
|
1835
|
+
}
|
|
1836
|
+
}
|
|
1837
|
+
// Step 1: the b-function
|
|
1838
|
+
list L;
|
|
1839
|
+
if (!mrgiven)
|
|
1840
|
+
{
|
|
1841
|
+
if (!isHolonomic(I))
|
|
1842
|
+
{
|
|
1843
|
+
ERROR("Ideal is not holonomic. Try polSolFiniteRank.");
|
|
1844
|
+
}
|
|
1845
|
+
dbprint(ppl,"// Computing b-function...");
|
|
1846
|
+
L = bfctIdeal(I,w);
|
|
1847
|
+
dbprint(ppl,"// ...done.");
|
|
1848
|
+
dbprint(ppl-1,"// Roots: " + string(L[1]));
|
|
1849
|
+
dbprint(ppl-1,"// Multiplicities: " + string(L[2]));
|
|
1850
|
+
mr = minIntRoot2(L);
|
|
1851
|
+
dbprint(ppl,"// Minimal integer root is " + string(mr) + ".");
|
|
1852
|
+
}
|
|
1853
|
+
if (mr>0)
|
|
1854
|
+
{
|
|
1855
|
+
return(ideal(0));
|
|
1856
|
+
}
|
|
1857
|
+
// Step 2: get the form of a solution f
|
|
1858
|
+
int i;
|
|
1859
|
+
L = list();
|
|
1860
|
+
for (i=0; i<=-mr; i++)
|
|
1861
|
+
{
|
|
1862
|
+
L = L + orderedPartition(i,-w);
|
|
1863
|
+
}
|
|
1864
|
+
ideal mons;
|
|
1865
|
+
for (i=1; i<=size(L); i++)
|
|
1866
|
+
{
|
|
1867
|
+
mons[i] = monomial(L[i]);
|
|
1868
|
+
}
|
|
1869
|
+
kill L;
|
|
1870
|
+
mons = simplify(mons,2+4); // L might contain lots of 0s by construction
|
|
1871
|
+
ring @C = (0,@c(1..size(mons))),dummyvar,dp;
|
|
1872
|
+
def WC = save + @C;
|
|
1873
|
+
setring WC;
|
|
1874
|
+
ideal mons = imap(save,mons);
|
|
1875
|
+
poly f;
|
|
1876
|
+
for (i=1; i<=size(mons); i++)
|
|
1877
|
+
{
|
|
1878
|
+
f = f + par(i)*mons[i];
|
|
1879
|
+
}
|
|
1880
|
+
// Step 3: determine values of @c(i) by equating coefficients
|
|
1881
|
+
ideal I = imap(save,I);
|
|
1882
|
+
I = dmodAction(I,f,1..n);
|
|
1883
|
+
ideal M = monomialInIdeal(I);
|
|
1884
|
+
matrix CC = coeffs(I,M);
|
|
1885
|
+
int j;
|
|
1886
|
+
ideal C;
|
|
1887
|
+
for (i=1; i<=nrows(CC); i++)
|
|
1888
|
+
{
|
|
1889
|
+
f = 0;
|
|
1890
|
+
for (j=1; j<=ncols(CC); j++)
|
|
1891
|
+
{
|
|
1892
|
+
f = f + CC[i,j];
|
|
1893
|
+
}
|
|
1894
|
+
C[size(C)+1] = f;
|
|
1895
|
+
}
|
|
1896
|
+
// Step 3.1: solve a linear system
|
|
1897
|
+
ring rC = 0,(@c(1..size(mons))),dp;
|
|
1898
|
+
ideal C = imap(WC,C);
|
|
1899
|
+
matrix M = coeffs(C,maxideal(1));
|
|
1900
|
+
module MM = leftKernel(M);
|
|
1901
|
+
setring WC;
|
|
1902
|
+
module MM = imap(rC,MM);
|
|
1903
|
+
// Step 3.2: return the solution
|
|
1904
|
+
ideal F = ideal(MM*transpose(mons));
|
|
1905
|
+
setring save;
|
|
1906
|
+
ideal F = imap(WC,F);
|
|
1907
|
+
return(F);
|
|
1908
|
+
}
|
|
1909
|
+
example
|
|
1910
|
+
{
|
|
1911
|
+
"EXAMPLE:"; echo=2;
|
|
1912
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
1913
|
+
def W = Weyl();
|
|
1914
|
+
setring W;
|
|
1915
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
1916
|
+
ideal I = // Appel F1 with parameters (2,-3,-2,5)
|
|
1917
|
+
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
|
|
1918
|
+
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
|
|
1919
|
+
(x-y)*Dx*Dy+2*Dx-3*Dy;
|
|
1920
|
+
intvec w = -1,-1;
|
|
1921
|
+
polSol(I,w);
|
|
1922
|
+
}
|
|
1923
|
+
|
|
1924
|
+
|
|
1925
|
+
static proc ex_polSol()
|
|
1926
|
+
{ ring r = 0,(x,y,Dx,Dy),dp;
|
|
1927
|
+
def W = Weyl();
|
|
1928
|
+
setring W;
|
|
1929
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
1930
|
+
ideal I = // Appel F1 with parameters (2,-3,-2,5)
|
|
1931
|
+
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
|
|
1932
|
+
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
|
|
1933
|
+
(x-y)*Dx*Dy+2*Dx-3*Dy;
|
|
1934
|
+
intvec w = -5,-7;
|
|
1935
|
+
// the following gives a bug
|
|
1936
|
+
polSol(I,w);
|
|
1937
|
+
// this is due to a bug in weightKB, see ticket #339
|
|
1938
|
+
// http://www.singular.uni-kl.de:8002/trac/ticket/339
|
|
1939
|
+
}
|
|
1940
|
+
|
|
1941
|
+
|
|
1942
|
+
proc polSolFiniteRank (ideal I, list #)
|
|
1943
|
+
"
|
|
1944
|
+
USAGE: polSolFiniteRank(I[,w]); I ideal, w optional intvec
|
|
1945
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
1946
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
1947
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
1948
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
1949
|
+
differential operator belonging to x(i).
|
|
1950
|
+
@* Moreover, assume that I is of finite holonomic rank.
|
|
1951
|
+
RETURN: ideal, a basis of the polynomial solutions to the given system of
|
|
1952
|
+
linear PDEs with polynomial coefficients, encoded via I
|
|
1953
|
+
REMARKS: If w is given, w should consist of n strictly negative entries.
|
|
1954
|
+
Otherwise and by default, w is set to -1:n.
|
|
1955
|
+
In this case, w is used as weight vector for the computation of a
|
|
1956
|
+
b-function.
|
|
1957
|
+
@* Reference: (OTT), Algorithm 2.6
|
|
1958
|
+
NOTE: If printlevel=1, progress debug messages will be printed,
|
|
1959
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
1960
|
+
SEE ALSO: polSol, ratSol
|
|
1961
|
+
EXAMPLE: example polSolFiniteRank; shows examples
|
|
1962
|
+
"
|
|
1963
|
+
{
|
|
1964
|
+
dmodGeneralAssumptionCheck();
|
|
1965
|
+
if (holonomicRank(I)==-1)
|
|
1966
|
+
{
|
|
1967
|
+
ERROR("Ideal is not of finite holonomic rank.");
|
|
1968
|
+
}
|
|
1969
|
+
int ppl = printlevel - voice + 2;
|
|
1970
|
+
int n = nvars(basering) div 2;
|
|
1971
|
+
int eng;
|
|
1972
|
+
intvec w = -1:(n div 2);
|
|
1973
|
+
if (size(#)>0)
|
|
1974
|
+
{
|
|
1975
|
+
if (typeof(#[1])=="intvec")
|
|
1976
|
+
{
|
|
1977
|
+
if (allPositive(-#[1]))
|
|
1978
|
+
{
|
|
1979
|
+
w = #[1];
|
|
1980
|
+
}
|
|
1981
|
+
}
|
|
1982
|
+
}
|
|
1983
|
+
dbprint(ppl,"// Computing initial ideal...");
|
|
1984
|
+
ideal J = initialIdealW(I,-w,w);
|
|
1985
|
+
dbprint(ppl,"// ...done.");
|
|
1986
|
+
dbprint(ppl,"// Computing Weyl closure...");
|
|
1987
|
+
J = WeylClosure(J);
|
|
1988
|
+
J = engine(J,eng);
|
|
1989
|
+
dbprint(ppl,"// ...done.");
|
|
1990
|
+
poly s;
|
|
1991
|
+
int i;
|
|
1992
|
+
for (i=1; i<=n; i++)
|
|
1993
|
+
{
|
|
1994
|
+
s = s + w[i]*var(i)*var(i+n);
|
|
1995
|
+
}
|
|
1996
|
+
dbprint(ppl,"// Computing intersection...");
|
|
1997
|
+
vector v = pIntersect(s,J);
|
|
1998
|
+
list L = bFactor(vec2poly(v));
|
|
1999
|
+
dbprint(ppl-1,"// roots: " + string(L[1]));
|
|
2000
|
+
dbprint(ppl-1,"// multiplicities: " + string(L[2]));
|
|
2001
|
+
dbprint(ppl,"// ...done.");
|
|
2002
|
+
int mr = minIntRoot2(L);
|
|
2003
|
+
int pl = printlevel;
|
|
2004
|
+
printlevel = printlevel + 1;
|
|
2005
|
+
ideal K = polSol(I,w,mr);
|
|
2006
|
+
printlevel = printlevel - 1;
|
|
2007
|
+
return(K);
|
|
2008
|
+
}
|
|
2009
|
+
example
|
|
2010
|
+
{
|
|
2011
|
+
"EXAMPLE:"; echo=2;
|
|
2012
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
2013
|
+
def W = Weyl();
|
|
2014
|
+
setring W;
|
|
2015
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
2016
|
+
ideal I = // Appel F1 with parameters (2,-3,-2,5)
|
|
2017
|
+
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
|
|
2018
|
+
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
|
|
2019
|
+
(x-y)*Dx*Dy+2*Dx-3*Dy;
|
|
2020
|
+
intvec w = -1,-1;
|
|
2021
|
+
polSolFiniteRank(I,w);
|
|
2022
|
+
}
|
|
2023
|
+
|
|
2024
|
+
|
|
2025
|
+
static proc twistedIdeal(ideal I, poly f, intvec k, ideal F)
|
|
2026
|
+
{
|
|
2027
|
+
// I subset D_n, f in K[x], F = factorize(f,1), size(k) = size(F), k[i]>0
|
|
2028
|
+
def save = basering;
|
|
2029
|
+
int n = nvars(save) div 2;
|
|
2030
|
+
int i,j;
|
|
2031
|
+
intvec a,v,w;
|
|
2032
|
+
w = (0:n),(1:n);
|
|
2033
|
+
for (i=1; i<=size(I); i++)
|
|
2034
|
+
{
|
|
2035
|
+
a[i] = deg(I[i],w);
|
|
2036
|
+
}
|
|
2037
|
+
ring FD = 0,(fd(1..n)),dp;
|
|
2038
|
+
def @@WFD = save + FD;
|
|
2039
|
+
setring @@WFD;
|
|
2040
|
+
poly f = imap(save,f);
|
|
2041
|
+
list RL = ringlist(basering);
|
|
2042
|
+
RL = RL[1..4];
|
|
2043
|
+
list L = RL[3];
|
|
2044
|
+
v = (1:(2*n)),((deg(f)+1):n);
|
|
2045
|
+
L = insert(L,list("a",v));
|
|
2046
|
+
RL[3] = L;
|
|
2047
|
+
def @WFD = ring(RL);
|
|
2048
|
+
setring @WFD;
|
|
2049
|
+
poly f = imap(save,f);
|
|
2050
|
+
matrix Drel[3*n][3*n];
|
|
2051
|
+
for (i=1; i<=n; i++)
|
|
2052
|
+
{
|
|
2053
|
+
Drel[i,i+n] = 1; // [D,x]
|
|
2054
|
+
Drel[i,i+2*n] = f; // [fD,x]
|
|
2055
|
+
for (j=1; j<=n; j++)
|
|
2056
|
+
{
|
|
2057
|
+
Drel[i+n,j+2*n] = -diff(f,var(i))*var(j+n); // [fD,D]
|
|
2058
|
+
Drel[j+2*n,i+2*n] = diff(f,var(i))*var(j+2*n) - diff(f,var(j))*var(i+2*n);
|
|
2059
|
+
// [fD,fD]
|
|
2060
|
+
}
|
|
2061
|
+
}
|
|
2062
|
+
def WFD = nc_algebra(1,Drel);
|
|
2063
|
+
setring WFD;
|
|
2064
|
+
kill @WFD,@@WFD;
|
|
2065
|
+
ideal I = imap(save,I);
|
|
2066
|
+
poly f = imap(save,f);
|
|
2067
|
+
for (i=1; i<=size(I); i++)
|
|
2068
|
+
{
|
|
2069
|
+
I[i] = f^(a[i])*I[i];
|
|
2070
|
+
}
|
|
2071
|
+
ideal S;
|
|
2072
|
+
for (i=1; i<=n; i++)
|
|
2073
|
+
{
|
|
2074
|
+
S[size(S)+1] = var(i+2*n) - f*var(i+n);
|
|
2075
|
+
}
|
|
2076
|
+
S = slimgb(S);
|
|
2077
|
+
I = NF(I,S);
|
|
2078
|
+
if (select1(I,intvec((n+1)..2*n))[1] <> 0)
|
|
2079
|
+
{
|
|
2080
|
+
// should never get here
|
|
2081
|
+
ERROR("Something's wrong. Please inform the author.");
|
|
2082
|
+
}
|
|
2083
|
+
setring save;
|
|
2084
|
+
ideal mm = maxideal(1);
|
|
2085
|
+
poly s;
|
|
2086
|
+
for (i=1; i<=n; i++)
|
|
2087
|
+
{
|
|
2088
|
+
s = f*var(i+n);
|
|
2089
|
+
for (j=1; j<=size(F); j++)
|
|
2090
|
+
{
|
|
2091
|
+
s = s + k[j]*(f/F[j])*bracket(var(i+n),F[j]);
|
|
2092
|
+
}
|
|
2093
|
+
mm[i+2*n] = s;
|
|
2094
|
+
}
|
|
2095
|
+
map m = WFD,mm;
|
|
2096
|
+
ideal J = m(I);
|
|
2097
|
+
return(J);
|
|
2098
|
+
}
|
|
2099
|
+
example
|
|
2100
|
+
{
|
|
2101
|
+
"EXAMPLE"; echo=2;
|
|
2102
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
2103
|
+
def W = Weyl();
|
|
2104
|
+
setring W;
|
|
2105
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
2106
|
+
ideal I = // Appel F1 with parameters (3,-1,1,1) is a solution
|
|
2107
|
+
tx*(tx+ty)-x*(tx+ty+3)*(tx-1),
|
|
2108
|
+
ty*(tx+ty)-y*(tx+ty+3)*(ty+1);
|
|
2109
|
+
kill tx,ty;
|
|
2110
|
+
poly f = x^3*y^2-x^2*y^3-x^3*y+x*y^3+x^2*y-x*y^2;
|
|
2111
|
+
ideal F = x-1,x,-x+y,y-1,y;
|
|
2112
|
+
intvec k = -1,-1,-1,-3,-1;
|
|
2113
|
+
ideal T = twistedIdeal(I,f,k,F);
|
|
2114
|
+
// TODO change the ordering of WFD
|
|
2115
|
+
// introduce new var f??
|
|
2116
|
+
//paper:
|
|
2117
|
+
poly fx = diff(f,x);
|
|
2118
|
+
poly fy = diff(f,y);
|
|
2119
|
+
poly fDx = f*Dx;
|
|
2120
|
+
poly fDy = f*Dy;
|
|
2121
|
+
poly fd(1) = fDx;
|
|
2122
|
+
poly fd(2) = fDy;
|
|
2123
|
+
ideal K=
|
|
2124
|
+
(x^2-x^3)*(fDx)^2+x*((1-3*x)*f-(1-x)*y*fy-(1-x)*x*fx)*(fDx)
|
|
2125
|
+
+x*(1-x)*y*(fDy)*(fDx)+x*y*f*(fDy)+3*x*f^2,
|
|
2126
|
+
(y^2-y^3)*(fDy)^2+y*((1-5*y)*f-(1-y)*x*fx-(1-y)*y*fy)*(fDy)
|
|
2127
|
+
+y*(1-y)*x*(fDx)*(fDy)-y*x*f*(fDx)-3*y*f^2;
|
|
2128
|
+
}
|
|
2129
|
+
|
|
2130
|
+
|
|
2131
|
+
proc ratSol (ideal I)
|
|
2132
|
+
"
|
|
2133
|
+
USAGE: ratSol(I); I ideal
|
|
2134
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
2135
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
2136
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
2137
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
2138
|
+
differential operator belonging to x(i).
|
|
2139
|
+
@* Moreover, assume that I is holonomic.
|
|
2140
|
+
RETURN: module, a basis of the rational solutions to the given system of
|
|
2141
|
+
linear PDEs with polynomial coefficients, encoded via I
|
|
2142
|
+
Note that each entry has two components, the first one standing for
|
|
2143
|
+
the enumerator, the second one for the denominator.
|
|
2144
|
+
REMARKS: Reference: (OTT), Algorithm 3.10
|
|
2145
|
+
NOTE: If printlevel=1, progress debug messages will be printed,
|
|
2146
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
2147
|
+
SEE ALSO: polSol, polSolFiniteRank
|
|
2148
|
+
EXAMPLE: example ratSol; shows examples
|
|
2149
|
+
"
|
|
2150
|
+
{
|
|
2151
|
+
dmodGeneralAssumptionCheck();
|
|
2152
|
+
if (!isHolonomic(I))
|
|
2153
|
+
{
|
|
2154
|
+
ERROR("Ideal is not holonomic.");
|
|
2155
|
+
}
|
|
2156
|
+
int ppl = printlevel - voice + 2;
|
|
2157
|
+
def save = basering;
|
|
2158
|
+
dbprint(ppl,"// computing singular locus...");
|
|
2159
|
+
ideal S = DsingularLocus(I);
|
|
2160
|
+
dbprint(ppl,"// ...done.");
|
|
2161
|
+
poly f = S[1];
|
|
2162
|
+
dbprint(ppl,"// considering poly " + string(f));
|
|
2163
|
+
int n = nvars(save) div 2;
|
|
2164
|
+
list RL = ringlist(save);
|
|
2165
|
+
RL = RL[1..4];
|
|
2166
|
+
list L = RL[2];
|
|
2167
|
+
L = list(L[1..n]);
|
|
2168
|
+
RL[2] = L;
|
|
2169
|
+
L = list();
|
|
2170
|
+
L[1] = list("dp",intvec(1:n));
|
|
2171
|
+
L[2] = list("C",intvec(0));
|
|
2172
|
+
RL[3] = L;
|
|
2173
|
+
def rr = ring(RL);
|
|
2174
|
+
setring rr;
|
|
2175
|
+
poly f = imap(save,f);
|
|
2176
|
+
ideal F = factorize(f,1); // not interested in multiplicities
|
|
2177
|
+
dbprint(ppl,"// with irreducible factors " + string(F));
|
|
2178
|
+
setring save;
|
|
2179
|
+
ideal F = imap(rr,F);
|
|
2180
|
+
kill rr,RL;
|
|
2181
|
+
int i;
|
|
2182
|
+
intvec k;
|
|
2183
|
+
ideal FF = 1,1;
|
|
2184
|
+
dbprint(ppl,"// computing b-functions of irreducible factors...");
|
|
2185
|
+
for (i=1; i<=size(F); i++)
|
|
2186
|
+
{
|
|
2187
|
+
dbprint(ppl,"// considering " + string(F[i]) + "...");
|
|
2188
|
+
L = bfctBound(I,F[i]);
|
|
2189
|
+
if (size(L) == 3) // bfct is constant
|
|
2190
|
+
{
|
|
2191
|
+
dbprint(ppl,"// ...got " + string(L[3]));
|
|
2192
|
+
if (L[3] == "1")
|
|
2193
|
+
{
|
|
2194
|
+
return(0); // TODO type // no rational solutions
|
|
2195
|
+
}
|
|
2196
|
+
else // should never get here
|
|
2197
|
+
{
|
|
2198
|
+
ERROR("Oops, something went wrong. Please inform the author.");
|
|
2199
|
+
}
|
|
2200
|
+
}
|
|
2201
|
+
else
|
|
2202
|
+
{
|
|
2203
|
+
dbprint(ppl,"// ...got roots " + string(L[1]));
|
|
2204
|
+
dbprint(ppl,"// with multiplicities " + string(L[2]));
|
|
2205
|
+
k[i] = -maxIntRoot(L)-1;
|
|
2206
|
+
if (k[i] < 0)
|
|
2207
|
+
{
|
|
2208
|
+
FF[2] = FF[2]*F[i]^(-k[i]);
|
|
2209
|
+
}
|
|
2210
|
+
else
|
|
2211
|
+
{
|
|
2212
|
+
FF[1] = FF[1]*F[i]^(k[i]);
|
|
2213
|
+
}
|
|
2214
|
+
}
|
|
2215
|
+
}
|
|
2216
|
+
vector v = FF[1]*gen(1) + FF[2]*gen(2);
|
|
2217
|
+
kill FF;
|
|
2218
|
+
dbprint(ppl,"// ...done");
|
|
2219
|
+
ideal twI = twistedIdeal(I,f,k,F);
|
|
2220
|
+
intvec w = -1:n;
|
|
2221
|
+
dbprint(ppl,"// computing polynomial solutions of twisted system...");
|
|
2222
|
+
if (isHolonomic(twI))
|
|
2223
|
+
{
|
|
2224
|
+
ideal P = polSol(twI,w);
|
|
2225
|
+
}
|
|
2226
|
+
else
|
|
2227
|
+
{
|
|
2228
|
+
ideal P = polSolFiniteRank(twI,w);
|
|
2229
|
+
}
|
|
2230
|
+
module M;
|
|
2231
|
+
vector vv;
|
|
2232
|
+
for (i=1; i<=ncols(P); i++)
|
|
2233
|
+
{
|
|
2234
|
+
vv = P[i]*gen(1) + 1*gen(2);
|
|
2235
|
+
M[i] = multRat(v,vv);
|
|
2236
|
+
}
|
|
2237
|
+
dbprint(ppl,"// ...done");
|
|
2238
|
+
return (M);
|
|
2239
|
+
}
|
|
2240
|
+
example
|
|
2241
|
+
{
|
|
2242
|
+
"EXAMPLE"; echo=2;
|
|
2243
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
2244
|
+
def W = Weyl();
|
|
2245
|
+
setring W;
|
|
2246
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
2247
|
+
ideal I = // Appel F1 with parameters (3,-1,1,1) is a solution
|
|
2248
|
+
tx*(tx+ty)-x*(tx+ty+3)*(tx-1),
|
|
2249
|
+
ty*(tx+ty)-y*(tx+ty+3)*(ty+1);
|
|
2250
|
+
module M = ratSol(I);
|
|
2251
|
+
// We obtain a basis of the rational solutions to I represented by a
|
|
2252
|
+
// module / matrix with two rows.
|
|
2253
|
+
// Each column of the matrix represents a rational function, where
|
|
2254
|
+
// the first row correspond to the enumerator and the second row to
|
|
2255
|
+
// the denominator.
|
|
2256
|
+
print(M);
|
|
2257
|
+
}
|
|
2258
|
+
|
|
2259
|
+
|
|
2260
|
+
proc bfctBound (ideal I, poly f, list #)
|
|
2261
|
+
"
|
|
2262
|
+
USAGE: bfctBound (I,f[,primdec]); I ideal, f poly, primdec optional string
|
|
2263
|
+
ASSUME: The basering is the n-th Weyl algebra W over a field of
|
|
2264
|
+
characteristic 0 and for all 1<=i<=n the identity
|
|
2265
|
+
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
|
|
2266
|
+
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
|
|
2267
|
+
differential operator belonging to x(i).
|
|
2268
|
+
@* Moreover, assume that I is holonomic.
|
|
2269
|
+
RETURN: list of roots (of type ideal) and multiplicities (of type intvec) of
|
|
2270
|
+
a multiple of the b-function for f^s*u at a generic root of f.
|
|
2271
|
+
Here, u stands for [1] in D/I.
|
|
2272
|
+
REMARKS: Reference: (OTT), Algorithm 3.4
|
|
2273
|
+
NOTE: This procedure requires to compute a primary decomposition in a
|
|
2274
|
+
commutative ring. The optional string primdec can be used to specify
|
|
2275
|
+
the algorithm to do so. It may either be `GTZ' (Gianni, Trager,
|
|
2276
|
+
Zacharias) or `SY' (Shimoyama, Yokoyama). By default, `GTZ' is used.
|
|
2277
|
+
@* If printlevel=1, progress debug messages will be printed,
|
|
2278
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
2279
|
+
SEE ALSO: bernstein, bfct, bfctAnn
|
|
2280
|
+
EXAMPLE: example bfctBound; shows examples
|
|
2281
|
+
"
|
|
2282
|
+
{
|
|
2283
|
+
dmodGeneralAssumptionCheck();
|
|
2284
|
+
finKx(f);
|
|
2285
|
+
if (!isHolonomic(I))
|
|
2286
|
+
{
|
|
2287
|
+
ERROR("Ideal is not holonomic.");
|
|
2288
|
+
}
|
|
2289
|
+
int ppl = printlevel - voice + 2;
|
|
2290
|
+
string primdec = "GTZ";
|
|
2291
|
+
if (size(#)>1)
|
|
2292
|
+
{
|
|
2293
|
+
if (typeof(#[1])=="string")
|
|
2294
|
+
{
|
|
2295
|
+
if ( (#[1]=="SY") || (#[1]=="sy") || (#[1]=="Sy") )
|
|
2296
|
+
{
|
|
2297
|
+
primdec = "SY";
|
|
2298
|
+
}
|
|
2299
|
+
else
|
|
2300
|
+
{
|
|
2301
|
+
if ( (#[1]<>"GTZ") && (#[1]<>"gtz") && (#[1]<>"Gtz") )
|
|
2302
|
+
{
|
|
2303
|
+
print("// Warning: optional string may either be `GTZ' or `SY',");
|
|
2304
|
+
print("// proceeding with `GTZ'.");
|
|
2305
|
+
primdec = "GTZ";
|
|
2306
|
+
}
|
|
2307
|
+
}
|
|
2308
|
+
}
|
|
2309
|
+
}
|
|
2310
|
+
def save = basering;
|
|
2311
|
+
int n = nvars(save) div 2;
|
|
2312
|
+
// step 1
|
|
2313
|
+
ideal mm = maxideal(1);
|
|
2314
|
+
def Wt = extendWeyl(safeVarName("t"));
|
|
2315
|
+
setring Wt;
|
|
2316
|
+
poly f = imap(save,f);
|
|
2317
|
+
ideal mm = imap(save,mm);
|
|
2318
|
+
int i;
|
|
2319
|
+
for (i=1; i<=n; i++)
|
|
2320
|
+
{
|
|
2321
|
+
mm[i+n] = var(i+n+2) + bracket(var(i+n+2),f)*var(n+2);
|
|
2322
|
+
}
|
|
2323
|
+
map m = save,mm;
|
|
2324
|
+
ideal I = m(I);
|
|
2325
|
+
I = I, var(1)-f;
|
|
2326
|
+
// step 2
|
|
2327
|
+
intvec w = 1,(0:n);
|
|
2328
|
+
dbprint(ppl ,"// Computing initial ideal...");
|
|
2329
|
+
I = initialIdealW(I,-w,w);
|
|
2330
|
+
dbprint(ppl ,"// ...done.");
|
|
2331
|
+
dbprint(ppl-1,"// " + string(I));
|
|
2332
|
+
// step 3: rewrite I using Euler operator t*Dt
|
|
2333
|
+
list RL = ringlist(Wt);
|
|
2334
|
+
RL = RL[1..4];
|
|
2335
|
+
list L = RL[2] + list(safeVarName("s")); // s=t*Dt
|
|
2336
|
+
RL[2] = L;
|
|
2337
|
+
L = list();
|
|
2338
|
+
L[1] = list("dp",intvec(1:(2*n+2)));
|
|
2339
|
+
L[2] = list("dp",intvec(1));
|
|
2340
|
+
L[3] = list("C",intvec(0));
|
|
2341
|
+
RL[3] = L;
|
|
2342
|
+
def @Wts = ring(RL);
|
|
2343
|
+
kill L,RL;
|
|
2344
|
+
setring @Wts;
|
|
2345
|
+
matrix relD[2*n+3][2*n+3];
|
|
2346
|
+
relD[1,2*n+3] = var(1);
|
|
2347
|
+
relD[n+2,2*n+3] = -var(n+2);
|
|
2348
|
+
for (i=1; i<=n+1; i++)
|
|
2349
|
+
{
|
|
2350
|
+
relD[i,n+i+1] = 1;
|
|
2351
|
+
}
|
|
2352
|
+
def Wts = nc_algebra(1,relD);
|
|
2353
|
+
setring Wts;
|
|
2354
|
+
ideal I = imap(Wt,I);
|
|
2355
|
+
kill Wt,@Wts;
|
|
2356
|
+
ideal S = var(1)*var(n+2)-var(2*n+3);
|
|
2357
|
+
attrib(S,"isSB",1);
|
|
2358
|
+
dbprint(ppl ,"// Computing Euler representation...");
|
|
2359
|
+
// I = NF(I,S);
|
|
2360
|
+
int d;
|
|
2361
|
+
intvec ww = 0:(2*2+2); ww[1] = -1; ww[n+2] = 1;
|
|
2362
|
+
for (i=1; i<=size(I); i++)
|
|
2363
|
+
{
|
|
2364
|
+
d = deg(I[i],ww);
|
|
2365
|
+
if (d>0)
|
|
2366
|
+
{
|
|
2367
|
+
I[i] = var(1)^d*I[i];
|
|
2368
|
+
}
|
|
2369
|
+
if (d<0)
|
|
2370
|
+
{
|
|
2371
|
+
d = -d;
|
|
2372
|
+
I[i] = var(n+2)^d*I[i];
|
|
2373
|
+
}
|
|
2374
|
+
}
|
|
2375
|
+
I = NF(I,S); // now there are no t,Dt in I, only s
|
|
2376
|
+
dbprint(ppl ,"// ...done.");
|
|
2377
|
+
I = subst(I,var(2*n+3),-var(2*n+3)-1);
|
|
2378
|
+
ring Ks = 0,s,dp;
|
|
2379
|
+
def Ws = save + Ks;
|
|
2380
|
+
setring Ws;
|
|
2381
|
+
ideal I = imap(Wts,I);
|
|
2382
|
+
kill Wts;
|
|
2383
|
+
poly DD = 1;
|
|
2384
|
+
for (i=1; i<=n; i++)
|
|
2385
|
+
{
|
|
2386
|
+
DD = DD * var(n+i);
|
|
2387
|
+
}
|
|
2388
|
+
dbprint(ppl ,"// Eliminating differential operators...");
|
|
2389
|
+
ideal J = eliminate(I,DD); // J subset K[x,s]
|
|
2390
|
+
dbprint(ppl ,"// ...done.");
|
|
2391
|
+
dbprint(ppl-1,"// " + string(J));
|
|
2392
|
+
list RL = ringlist(Ws);
|
|
2393
|
+
RL = RL[1..4];
|
|
2394
|
+
list L = RL[2];
|
|
2395
|
+
L = list(L[1..n]) + list(L[2*n+1]);
|
|
2396
|
+
RL[2] = L;
|
|
2397
|
+
L = list();
|
|
2398
|
+
L[1] = list("dp",intvec(1:(n+1)));
|
|
2399
|
+
L[2] = list("C",intvec(0));
|
|
2400
|
+
RL[3] = L;
|
|
2401
|
+
def Kxs = ring(RL);
|
|
2402
|
+
setring Kxs;
|
|
2403
|
+
ideal J = imap(Ws,J);
|
|
2404
|
+
dbprint(ppl ,"// Computing primary decomposition with engine "
|
|
2405
|
+
+ primdec + "...");
|
|
2406
|
+
if (primdec == "GTZ")
|
|
2407
|
+
{
|
|
2408
|
+
list P = primdecGTZ(J);
|
|
2409
|
+
}
|
|
2410
|
+
else
|
|
2411
|
+
{
|
|
2412
|
+
list P = primdecSY(J);
|
|
2413
|
+
}
|
|
2414
|
+
dbprint(ppl ,"// ...done.");
|
|
2415
|
+
dbprint(ppl-1,"// " + string(P));
|
|
2416
|
+
ideal GP,Qix,rad,B;
|
|
2417
|
+
poly f = imap(save,f);
|
|
2418
|
+
vector v;
|
|
2419
|
+
for (i=1; i<=size(P); i++)
|
|
2420
|
+
{
|
|
2421
|
+
dbprint(ppl ,"// Considering primary component " + string(i)
|
|
2422
|
+
+ " of " + string(size(P)) + "...");
|
|
2423
|
+
dbprint(ppl ,"// Intersecting with K[x] and computing radical...");
|
|
2424
|
+
GP = std(P[i][1]);
|
|
2425
|
+
Qix = eliminate(GP,var(n+1)); // subset K[x]
|
|
2426
|
+
rad = radical(Qix);
|
|
2427
|
+
rad = std(rad);
|
|
2428
|
+
dbprint(ppl ,"// ...done.");
|
|
2429
|
+
dbprint(ppl-1,"// " + string(rad));
|
|
2430
|
+
if (rad[1]==0 || NF(f,rad)==0)
|
|
2431
|
+
{
|
|
2432
|
+
dbprint(ppl ,"// Intersecting with K[s]...");
|
|
2433
|
+
v = pIntersect(var(n+1),GP);
|
|
2434
|
+
B[size(B)+1] = vec2poly(v,n+1);
|
|
2435
|
+
dbprint(ppl ,"// ...done.");
|
|
2436
|
+
dbprint(ppl-1,"// " + string(B[size(B)]));
|
|
2437
|
+
}
|
|
2438
|
+
dbprint(ppl ,"// ...done.");
|
|
2439
|
+
}
|
|
2440
|
+
f = lcm(B); // =lcm(B[1],...,B[size(B)])
|
|
2441
|
+
list bb = bFactor(f);
|
|
2442
|
+
setring save;
|
|
2443
|
+
list bb = imap(Kxs,bb);
|
|
2444
|
+
return(bb);
|
|
2445
|
+
}
|
|
2446
|
+
example
|
|
2447
|
+
{
|
|
2448
|
+
"EXAMPLE"; echo=2;
|
|
2449
|
+
ring r = 0,(x,y,Dx,Dy),dp;
|
|
2450
|
+
def W = Weyl();
|
|
2451
|
+
setring W;
|
|
2452
|
+
poly tx,ty = x*Dx, y*Dy;
|
|
2453
|
+
ideal I = // Appel F1 with parameters (2,-3,-2,5)
|
|
2454
|
+
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
|
|
2455
|
+
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
|
|
2456
|
+
(x-y)*Dx*Dy+2*Dx-3*Dy;
|
|
2457
|
+
kill tx,ty;
|
|
2458
|
+
poly f = x-1;
|
|
2459
|
+
bfctBound(I,f);
|
|
2460
|
+
}
|
|
2461
|
+
|
|
2462
|
+
|
|
2463
|
+
//TODO check f/g or g/f, check Weyl closure of result
|
|
2464
|
+
proc annRatSyz (poly f, poly g, list #)
|
|
2465
|
+
"
|
|
2466
|
+
USAGE: annRatSyz(f,g[,db,eng]); f, g polynomials, db,eng optional integers
|
|
2467
|
+
ASSUME: The basering is commutative and over a field of characteristic 0.
|
|
2468
|
+
RETURN: ring (a Weyl algebra) containing an ideal `LD', which is (part of)
|
|
2469
|
+
the annihilator of the rational function g/f in the corresponding
|
|
2470
|
+
Weyl algebra
|
|
2471
|
+
REMARKS: This procedure uses the computation of certain syzygies.
|
|
2472
|
+
One can obtain the full annihilator by computing the Weyl closure of
|
|
2473
|
+
the ideal LD.
|
|
2474
|
+
NOTE: Activate the output ring with the @code{setring} command.
|
|
2475
|
+
In the output ring, the ideal `LD' (in Groebner basis) is (part of)
|
|
2476
|
+
the annihilator of g/f.
|
|
2477
|
+
@* If db>0 is given, operators of order up to db are considered,
|
|
2478
|
+
otherwise, and by default, a minimal holonomic solution is computed.
|
|
2479
|
+
@* If eng<>0, @code{std} is used for Groebner basis computations,
|
|
2480
|
+
otherwise, and by default, @code{slimgb} is used.
|
|
2481
|
+
@* If printlevel =1, progress debug messages will be printed,
|
|
2482
|
+
if printlevel>=2, all the debug messages will be printed.
|
|
2483
|
+
SEE ALSO: annRat, annPoly
|
|
2484
|
+
EXAMPLE: example annRatSyz; shows examples
|
|
2485
|
+
"
|
|
2486
|
+
{
|
|
2487
|
+
// check assumptions
|
|
2488
|
+
if (!isCommutative())
|
|
2489
|
+
{
|
|
2490
|
+
ERROR("Basering must be commutative.");
|
|
2491
|
+
}
|
|
2492
|
+
if ( (size(ideal(basering)) >0) || (char(basering) >0) )
|
|
2493
|
+
{
|
|
2494
|
+
ERROR("Basering is inappropriate: characteristic>0 or qring present.");
|
|
2495
|
+
}
|
|
2496
|
+
if (g == 0)
|
|
2497
|
+
{
|
|
2498
|
+
ERROR("Second polynomial must not be zero.");
|
|
2499
|
+
}
|
|
2500
|
+
int db,eng;
|
|
2501
|
+
if (size(#)>0)
|
|
2502
|
+
{
|
|
2503
|
+
if (typeof(#[1]) == "int")
|
|
2504
|
+
{
|
|
2505
|
+
db = int(#[1]);
|
|
2506
|
+
}
|
|
2507
|
+
if (size(#)>1)
|
|
2508
|
+
{
|
|
2509
|
+
if (typeof(#[2]) == "int")
|
|
2510
|
+
{
|
|
2511
|
+
eng = int(#[1]);
|
|
2512
|
+
}
|
|
2513
|
+
}
|
|
2514
|
+
}
|
|
2515
|
+
int ppl = printlevel - voice + 2;
|
|
2516
|
+
vector I = f*gen(1)+g*gen(2);
|
|
2517
|
+
checkRatInput(I);
|
|
2518
|
+
int i,j;
|
|
2519
|
+
def R = basering;
|
|
2520
|
+
int n = nvars(R);
|
|
2521
|
+
list RL = ringlist(R);
|
|
2522
|
+
RL = RL[1..4];
|
|
2523
|
+
list Ltmp = RL[2];
|
|
2524
|
+
for (i=1; i<=n; i++)
|
|
2525
|
+
{
|
|
2526
|
+
Ltmp[i+n] = safeVarName("D" + Ltmp[i]);
|
|
2527
|
+
}
|
|
2528
|
+
RL[2] = Ltmp;
|
|
2529
|
+
Ltmp = list();
|
|
2530
|
+
Ltmp[1] = list("dp",intvec(1:2*n));
|
|
2531
|
+
Ltmp[2] = list("C",intvec(0));
|
|
2532
|
+
RL[3] = Ltmp;
|
|
2533
|
+
kill Ltmp;
|
|
2534
|
+
def @D = ring(RL);
|
|
2535
|
+
setring @D;
|
|
2536
|
+
def D = Weyl();
|
|
2537
|
+
setring D;
|
|
2538
|
+
ideal DD = 1;
|
|
2539
|
+
ideal Dcd,Dnd,LD,tmp;
|
|
2540
|
+
Dnd = 1;
|
|
2541
|
+
module DS;
|
|
2542
|
+
poly DJ;
|
|
2543
|
+
kill @D;
|
|
2544
|
+
setring R;
|
|
2545
|
+
module Rnd,Rcd;
|
|
2546
|
+
Rnd[1] = I;
|
|
2547
|
+
vector RJ;
|
|
2548
|
+
ideal L = I[1];
|
|
2549
|
+
module RS;
|
|
2550
|
+
poly p,pnew;
|
|
2551
|
+
pnew = I[2];
|
|
2552
|
+
int k,c;
|
|
2553
|
+
while(1)
|
|
2554
|
+
{
|
|
2555
|
+
k++;
|
|
2556
|
+
setring R;
|
|
2557
|
+
dbprint(ppl,"// Testing order: " + string(k));
|
|
2558
|
+
Rcd = Rnd;
|
|
2559
|
+
Rnd = 0;
|
|
2560
|
+
setring D;
|
|
2561
|
+
Dcd = Dnd;
|
|
2562
|
+
Dnd = 0;
|
|
2563
|
+
dbprint(ppl-1,"// Current members of the annihilator: " + string(LD));
|
|
2564
|
+
setring R;
|
|
2565
|
+
c = size(Rcd);
|
|
2566
|
+
p = pnew;
|
|
2567
|
+
for (i=1; i<=c; i++)
|
|
2568
|
+
{
|
|
2569
|
+
for (j=1; j<=n; j++)
|
|
2570
|
+
{
|
|
2571
|
+
RJ = diffRat(Rcd[i],j);
|
|
2572
|
+
setring D;
|
|
2573
|
+
DJ = Dcd[i]*var(n+j);
|
|
2574
|
+
tmp = Dnd,DJ;
|
|
2575
|
+
if (size(Dnd) <> size(simplify(tmp,4))) // new element
|
|
2576
|
+
{
|
|
2577
|
+
Dnd[size(Dnd)+1] = DJ;
|
|
2578
|
+
setring R;
|
|
2579
|
+
Rnd[size(Rnd)+1] = RJ;
|
|
2580
|
+
pnew = lcm(pnew,RJ[2]);
|
|
2581
|
+
}
|
|
2582
|
+
else // already have DJ in Dnd
|
|
2583
|
+
{
|
|
2584
|
+
setring R;
|
|
2585
|
+
}
|
|
2586
|
+
}
|
|
2587
|
+
}
|
|
2588
|
+
p = pnew/p;
|
|
2589
|
+
for (i=1; i<=size(L); i++)
|
|
2590
|
+
{
|
|
2591
|
+
L[i] = p*L[i];
|
|
2592
|
+
}
|
|
2593
|
+
for (i=1; i<=size(Rnd); i++)
|
|
2594
|
+
{
|
|
2595
|
+
L[size(L)+1] = pnew/Rnd[i][2]*Rnd[i][1];
|
|
2596
|
+
}
|
|
2597
|
+
RS = syz(L);
|
|
2598
|
+
setring D;
|
|
2599
|
+
DD = DD,Dnd;
|
|
2600
|
+
setring R;
|
|
2601
|
+
if (RS <> 0)
|
|
2602
|
+
{
|
|
2603
|
+
setring D;
|
|
2604
|
+
DS = imap(R,RS);
|
|
2605
|
+
LD = ideal(transpose(DS)*transpose(DD));
|
|
2606
|
+
}
|
|
2607
|
+
else
|
|
2608
|
+
{
|
|
2609
|
+
setring D;
|
|
2610
|
+
}
|
|
2611
|
+
LD = engine(LD,eng);
|
|
2612
|
+
// test if we're done
|
|
2613
|
+
if (db<=0)
|
|
2614
|
+
{
|
|
2615
|
+
if (isHolonomic(LD)) { break; }
|
|
2616
|
+
}
|
|
2617
|
+
else
|
|
2618
|
+
{
|
|
2619
|
+
if (k==db) { break; }
|
|
2620
|
+
}
|
|
2621
|
+
}
|
|
2622
|
+
export(LD);
|
|
2623
|
+
setring R;
|
|
2624
|
+
return(D);
|
|
2625
|
+
}
|
|
2626
|
+
example
|
|
2627
|
+
{
|
|
2628
|
+
"EXAMPLE:"; echo = 2;
|
|
2629
|
+
// printlevel = 3;
|
|
2630
|
+
ring r = 0,(x,y),dp;
|
|
2631
|
+
poly f = 2*x*y; poly g = x^2 - y^3;
|
|
2632
|
+
def A = annRatSyz(f,g); // compute a holonomic solution
|
|
2633
|
+
setring A; A;
|
|
2634
|
+
LD;
|
|
2635
|
+
setring r;
|
|
2636
|
+
def B = annRatSyz(f,g,5); // compute a solution up to degree 5
|
|
2637
|
+
setring B;
|
|
2638
|
+
LD; // this is the full annihilator as we will check below
|
|
2639
|
+
setring r;
|
|
2640
|
+
def C = annRat(f,g); setring C;
|
|
2641
|
+
LD; // the full annihilator
|
|
2642
|
+
ideal BLD = imap(B,LD);
|
|
2643
|
+
NF(LD,std(BLD));
|
|
2644
|
+
}
|
|
2645
|
+
|