passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-singular might be problematic. Click here for more details.

Files changed (490) hide show
  1. PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
  2. passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
  3. passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
  4. passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
  5. passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
  6. passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
  7. passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
  8. passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
  9. passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
  10. passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
  11. passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
  12. passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
  13. passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
  14. passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
  15. passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
  16. passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
  17. passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
  18. passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
  19. passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
  20. passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
  21. passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
  22. sage/algebras/all__sagemath_singular.py +3 -0
  23. sage/algebras/fusion_rings/all.py +19 -0
  24. sage/algebras/fusion_rings/f_matrix.py +2448 -0
  25. sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
  26. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
  27. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
  28. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
  29. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
  30. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
  31. sage/algebras/fusion_rings/fusion_double.py +899 -0
  32. sage/algebras/fusion_rings/fusion_ring.py +1580 -0
  33. sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
  34. sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
  35. sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
  36. sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
  37. sage/algebras/fusion_rings/shm_managers.pxd +24 -0
  38. sage/algebras/fusion_rings/shm_managers.pyx +780 -0
  39. sage/algebras/letterplace/all.py +1 -0
  40. sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
  41. sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
  42. sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
  43. sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
  44. sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
  45. sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
  46. sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
  47. sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
  48. sage/algebras/quatalg/all.py +2 -0
  49. sage/algebras/quatalg/quaternion_algebra.py +4778 -0
  50. sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
  51. sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
  52. sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
  53. sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
  54. sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
  55. sage/all__sagemath_singular.py +11 -0
  56. sage/ext_data/all__sagemath_singular.py +1 -0
  57. sage/ext_data/singular/function_field/core.lib +98 -0
  58. sage/interfaces/all__sagemath_singular.py +1 -0
  59. sage/interfaces/singular.py +2835 -0
  60. sage/libs/all__sagemath_singular.py +1 -0
  61. sage/libs/singular/__init__.py +1 -0
  62. sage/libs/singular/decl.pxd +1168 -0
  63. sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
  64. sage/libs/singular/function.pxd +87 -0
  65. sage/libs/singular/function.pyx +1901 -0
  66. sage/libs/singular/function_factory.py +61 -0
  67. sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
  68. sage/libs/singular/groebner_strategy.pxd +22 -0
  69. sage/libs/singular/groebner_strategy.pyx +582 -0
  70. sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
  71. sage/libs/singular/option.pyx +671 -0
  72. sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
  73. sage/libs/singular/polynomial.pxd +39 -0
  74. sage/libs/singular/polynomial.pyx +661 -0
  75. sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
  76. sage/libs/singular/ring.pxd +58 -0
  77. sage/libs/singular/ring.pyx +893 -0
  78. sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
  79. sage/libs/singular/singular.pxd +72 -0
  80. sage/libs/singular/singular.pyx +1944 -0
  81. sage/libs/singular/standard_options.py +145 -0
  82. sage/matrix/all__sagemath_singular.py +1 -0
  83. sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
  84. sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
  85. sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
  86. sage/rings/all__sagemath_singular.py +1 -0
  87. sage/rings/function_field/all__sagemath_singular.py +1 -0
  88. sage/rings/function_field/derivations_polymod.py +911 -0
  89. sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
  90. sage/rings/function_field/element_polymod.pyx +406 -0
  91. sage/rings/function_field/function_field_polymod.py +2611 -0
  92. sage/rings/function_field/ideal_polymod.py +1775 -0
  93. sage/rings/function_field/order_polymod.py +1475 -0
  94. sage/rings/function_field/place_polymod.py +681 -0
  95. sage/rings/polynomial/all__sagemath_singular.py +1 -0
  96. sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
  97. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
  98. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
  99. sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
  100. sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
  101. sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
  102. sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
  103. sage/rings/polynomial/plural.pxd +48 -0
  104. sage/rings/polynomial/plural.pyx +3171 -0
  105. sage/symbolic/all__sagemath_singular.py +1 -0
  106. sage/symbolic/comparison_impl.pxi +428 -0
  107. sage/symbolic/constants_c_impl.pxi +178 -0
  108. sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
  109. sage/symbolic/expression.pxd +7 -0
  110. sage/symbolic/expression.pyx +14200 -0
  111. sage/symbolic/getitem_impl.pxi +202 -0
  112. sage/symbolic/pynac.pxi +572 -0
  113. sage/symbolic/pynac_constant_impl.pxi +133 -0
  114. sage/symbolic/pynac_function_impl.pxi +206 -0
  115. sage/symbolic/pynac_impl.pxi +2576 -0
  116. sage/symbolic/pynac_wrap.h +124 -0
  117. sage/symbolic/series_impl.pxi +272 -0
  118. sage/symbolic/substitution_map_impl.pxi +94 -0
  119. sage_wheels/bin/ESingular +0 -0
  120. sage_wheels/bin/Singular +0 -0
  121. sage_wheels/bin/TSingular +0 -0
  122. sage_wheels/lib/singular/MOD/cohomo.la +41 -0
  123. sage_wheels/lib/singular/MOD/cohomo.so +0 -0
  124. sage_wheels/lib/singular/MOD/customstd.la +41 -0
  125. sage_wheels/lib/singular/MOD/customstd.so +0 -0
  126. sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
  127. sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
  128. sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
  129. sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
  130. sage_wheels/lib/singular/MOD/gitfan.la +41 -0
  131. sage_wheels/lib/singular/MOD/gitfan.so +0 -0
  132. sage_wheels/lib/singular/MOD/interval.la +41 -0
  133. sage_wheels/lib/singular/MOD/interval.so +0 -0
  134. sage_wheels/lib/singular/MOD/loctriv.la +41 -0
  135. sage_wheels/lib/singular/MOD/loctriv.so +0 -0
  136. sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
  137. sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
  138. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
  139. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
  140. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
  141. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
  142. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
  143. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
  144. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
  145. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
  146. sage_wheels/lib/singular/MOD/partialgb.la +41 -0
  147. sage_wheels/lib/singular/MOD/partialgb.so +0 -0
  148. sage_wheels/lib/singular/MOD/pyobject.la +41 -0
  149. sage_wheels/lib/singular/MOD/pyobject.so +0 -0
  150. sage_wheels/lib/singular/MOD/singmathic.la +41 -0
  151. sage_wheels/lib/singular/MOD/singmathic.so +0 -0
  152. sage_wheels/lib/singular/MOD/sispasm.la +41 -0
  153. sage_wheels/lib/singular/MOD/sispasm.so +0 -0
  154. sage_wheels/lib/singular/MOD/subsets.la +41 -0
  155. sage_wheels/lib/singular/MOD/subsets.so +0 -0
  156. sage_wheels/lib/singular/MOD/systhreads.la +41 -0
  157. sage_wheels/lib/singular/MOD/systhreads.so +0 -0
  158. sage_wheels/lib/singular/MOD/syzextra.la +41 -0
  159. sage_wheels/lib/singular/MOD/syzextra.so +0 -0
  160. sage_wheels/libexec/singular/MOD/change_cost +0 -0
  161. sage_wheels/libexec/singular/MOD/singularsurf +11 -0
  162. sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
  163. sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
  164. sage_wheels/libexec/singular/MOD/solve_IP +0 -0
  165. sage_wheels/libexec/singular/MOD/surfex +16 -0
  166. sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
  167. sage_wheels/share/factory/gftables/10201 +342 -0
  168. sage_wheels/share/factory/gftables/1024 +37 -0
  169. sage_wheels/share/factory/gftables/10609 +356 -0
  170. sage_wheels/share/factory/gftables/11449 +384 -0
  171. sage_wheels/share/factory/gftables/11881 +398 -0
  172. sage_wheels/share/factory/gftables/121 +6 -0
  173. sage_wheels/share/factory/gftables/12167 +408 -0
  174. sage_wheels/share/factory/gftables/125 +7 -0
  175. sage_wheels/share/factory/gftables/12769 +428 -0
  176. sage_wheels/share/factory/gftables/128 +7 -0
  177. sage_wheels/share/factory/gftables/1331 +47 -0
  178. sage_wheels/share/factory/gftables/1369 +48 -0
  179. sage_wheels/share/factory/gftables/14641 +490 -0
  180. sage_wheels/share/factory/gftables/15625 +523 -0
  181. sage_wheels/share/factory/gftables/16 +3 -0
  182. sage_wheels/share/factory/gftables/16129 +540 -0
  183. sage_wheels/share/factory/gftables/16384 +549 -0
  184. sage_wheels/share/factory/gftables/16807 +563 -0
  185. sage_wheels/share/factory/gftables/1681 +58 -0
  186. sage_wheels/share/factory/gftables/169 +8 -0
  187. sage_wheels/share/factory/gftables/17161 +574 -0
  188. sage_wheels/share/factory/gftables/1849 +64 -0
  189. sage_wheels/share/factory/gftables/18769 +628 -0
  190. sage_wheels/share/factory/gftables/19321 +646 -0
  191. sage_wheels/share/factory/gftables/19683 +659 -0
  192. sage_wheels/share/factory/gftables/2048 +71 -0
  193. sage_wheels/share/factory/gftables/2187 +75 -0
  194. sage_wheels/share/factory/gftables/2197 +76 -0
  195. sage_wheels/share/factory/gftables/2209 +76 -0
  196. sage_wheels/share/factory/gftables/22201 +742 -0
  197. sage_wheels/share/factory/gftables/22801 +762 -0
  198. sage_wheels/share/factory/gftables/2401 +82 -0
  199. sage_wheels/share/factory/gftables/243 +11 -0
  200. sage_wheels/share/factory/gftables/24389 +815 -0
  201. sage_wheels/share/factory/gftables/24649 +824 -0
  202. sage_wheels/share/factory/gftables/25 +3 -0
  203. sage_wheels/share/factory/gftables/256 +11 -0
  204. sage_wheels/share/factory/gftables/26569 +888 -0
  205. sage_wheels/share/factory/gftables/27 +3 -0
  206. sage_wheels/share/factory/gftables/27889 +932 -0
  207. sage_wheels/share/factory/gftables/2809 +96 -0
  208. sage_wheels/share/factory/gftables/28561 +954 -0
  209. sage_wheels/share/factory/gftables/289 +12 -0
  210. sage_wheels/share/factory/gftables/29791 +995 -0
  211. sage_wheels/share/factory/gftables/29929 +1000 -0
  212. sage_wheels/share/factory/gftables/3125 +107 -0
  213. sage_wheels/share/factory/gftables/32 +4 -0
  214. sage_wheels/share/factory/gftables/32041 +1070 -0
  215. sage_wheels/share/factory/gftables/32761 +1094 -0
  216. sage_wheels/share/factory/gftables/32768 +1095 -0
  217. sage_wheels/share/factory/gftables/343 +14 -0
  218. sage_wheels/share/factory/gftables/3481 +118 -0
  219. sage_wheels/share/factory/gftables/361 +14 -0
  220. sage_wheels/share/factory/gftables/36481 +1218 -0
  221. sage_wheels/share/factory/gftables/3721 +126 -0
  222. sage_wheels/share/factory/gftables/37249 +1244 -0
  223. sage_wheels/share/factory/gftables/38809 +1296 -0
  224. sage_wheels/share/factory/gftables/39601 +1322 -0
  225. sage_wheels/share/factory/gftables/4 +3 -0
  226. sage_wheels/share/factory/gftables/4096 +139 -0
  227. sage_wheels/share/factory/gftables/44521 +1486 -0
  228. sage_wheels/share/factory/gftables/4489 +152 -0
  229. sage_wheels/share/factory/gftables/49 +4 -0
  230. sage_wheels/share/factory/gftables/4913 +166 -0
  231. sage_wheels/share/factory/gftables/49729 +1660 -0
  232. sage_wheels/share/factory/gftables/5041 +170 -0
  233. sage_wheels/share/factory/gftables/50653 +1691 -0
  234. sage_wheels/share/factory/gftables/512 +20 -0
  235. sage_wheels/share/factory/gftables/51529 +1720 -0
  236. sage_wheels/share/factory/gftables/52441 +1750 -0
  237. sage_wheels/share/factory/gftables/529 +20 -0
  238. sage_wheels/share/factory/gftables/5329 +180 -0
  239. sage_wheels/share/factory/gftables/54289 +1812 -0
  240. sage_wheels/share/factory/gftables/57121 +1906 -0
  241. sage_wheels/share/factory/gftables/58081 +1938 -0
  242. sage_wheels/share/factory/gftables/59049 +1971 -0
  243. sage_wheels/share/factory/gftables/6241 +210 -0
  244. sage_wheels/share/factory/gftables/625 +23 -0
  245. sage_wheels/share/factory/gftables/63001 +2102 -0
  246. sage_wheels/share/factory/gftables/64 +5 -0
  247. sage_wheels/share/factory/gftables/6561 +221 -0
  248. sage_wheels/share/factory/gftables/6859 +231 -0
  249. sage_wheels/share/factory/gftables/6889 +232 -0
  250. sage_wheels/share/factory/gftables/729 +27 -0
  251. sage_wheels/share/factory/gftables/7921 +266 -0
  252. sage_wheels/share/factory/gftables/8 +3 -0
  253. sage_wheels/share/factory/gftables/81 +5 -0
  254. sage_wheels/share/factory/gftables/8192 +276 -0
  255. sage_wheels/share/factory/gftables/841 +30 -0
  256. sage_wheels/share/factory/gftables/9 +3 -0
  257. sage_wheels/share/factory/gftables/9409 +316 -0
  258. sage_wheels/share/factory/gftables/961 +34 -0
  259. sage_wheels/share/info/singular.info +191898 -0
  260. sage_wheels/share/singular/LIB/GND.lib +1359 -0
  261. sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
  262. sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
  263. sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
  264. sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
  265. sage_wheels/share/singular/LIB/VecField.lib +1542 -0
  266. sage_wheels/share/singular/LIB/absfact.lib +959 -0
  267. sage_wheels/share/singular/LIB/ainvar.lib +730 -0
  268. sage_wheels/share/singular/LIB/aksaka.lib +419 -0
  269. sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
  270. sage_wheels/share/singular/LIB/algebra.lib +1193 -0
  271. sage_wheels/share/singular/LIB/all.lib +136 -0
  272. sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
  273. sage_wheels/share/singular/LIB/arnold.lib +4553 -0
  274. sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
  275. sage_wheels/share/singular/LIB/arr.lib +3486 -0
  276. sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
  277. sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
  278. sage_wheels/share/singular/LIB/bfun.lib +1964 -0
  279. sage_wheels/share/singular/LIB/bimodules.lib +774 -0
  280. sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
  281. sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
  282. sage_wheels/share/singular/LIB/central.lib +2169 -0
  283. sage_wheels/share/singular/LIB/chern.lib +4162 -0
  284. sage_wheels/share/singular/LIB/cimonom.lib +571 -0
  285. sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
  286. sage_wheels/share/singular/LIB/classify.lib +3239 -0
  287. sage_wheels/share/singular/LIB/classify2.lib +1462 -0
  288. sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
  289. sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
  290. sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
  291. sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
  292. sage_wheels/share/singular/LIB/combinat.lib +91 -0
  293. sage_wheels/share/singular/LIB/compregb.lib +276 -0
  294. sage_wheels/share/singular/LIB/control.lib +1636 -0
  295. sage_wheels/share/singular/LIB/crypto.lib +3795 -0
  296. sage_wheels/share/singular/LIB/curveInv.lib +667 -0
  297. sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
  298. sage_wheels/share/singular/LIB/customstd.lib +100 -0
  299. sage_wheels/share/singular/LIB/deRham.lib +5979 -0
  300. sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
  301. sage_wheels/share/singular/LIB/decomp.lib +1655 -0
  302. sage_wheels/share/singular/LIB/deflation.lib +872 -0
  303. sage_wheels/share/singular/LIB/deform.lib +925 -0
  304. sage_wheels/share/singular/LIB/difform.lib +3055 -0
  305. sage_wheels/share/singular/LIB/divisors.lib +750 -0
  306. sage_wheels/share/singular/LIB/dmod.lib +5817 -0
  307. sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
  308. sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
  309. sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
  310. sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
  311. sage_wheels/share/singular/LIB/dummy.lib +17 -0
  312. sage_wheels/share/singular/LIB/elim.lib +1009 -0
  313. sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
  314. sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
  315. sage_wheels/share/singular/LIB/equising.lib +2127 -0
  316. sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
  317. sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
  318. sage_wheels/share/singular/LIB/findifs.lib +778 -0
  319. sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
  320. sage_wheels/share/singular/LIB/finvar.lib +7989 -0
  321. sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
  322. sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
  323. sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
  324. sage_wheels/share/singular/LIB/freegb.lib +3853 -0
  325. sage_wheels/share/singular/LIB/general.lib +1350 -0
  326. sage_wheels/share/singular/LIB/gfan.lib +1768 -0
  327. sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
  328. sage_wheels/share/singular/LIB/gkdim.lib +99 -0
  329. sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
  330. sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
  331. sage_wheels/share/singular/LIB/goettsche.lib +909 -0
  332. sage_wheels/share/singular/LIB/graal.lib +1366 -0
  333. sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
  334. sage_wheels/share/singular/LIB/graphics.lib +360 -0
  335. sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
  336. sage_wheels/share/singular/LIB/groups.lib +1123 -0
  337. sage_wheels/share/singular/LIB/grwalk.lib +507 -0
  338. sage_wheels/share/singular/LIB/hdepth.lib +194 -0
  339. sage_wheels/share/singular/LIB/help.cnf +57 -0
  340. sage_wheels/share/singular/LIB/hess.lib +1946 -0
  341. sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
  342. sage_wheels/share/singular/LIB/hodge.lib +400 -0
  343. sage_wheels/share/singular/LIB/homolog.lib +1965 -0
  344. sage_wheels/share/singular/LIB/hyperel.lib +975 -0
  345. sage_wheels/share/singular/LIB/inout.lib +679 -0
  346. sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
  347. sage_wheels/share/singular/LIB/interval.lib +1418 -0
  348. sage_wheels/share/singular/LIB/intprog.lib +778 -0
  349. sage_wheels/share/singular/LIB/invar.lib +443 -0
  350. sage_wheels/share/singular/LIB/involut.lib +980 -0
  351. sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
  352. sage_wheels/share/singular/LIB/kskernel.lib +534 -0
  353. sage_wheels/share/singular/LIB/latex.lib +3146 -0
  354. sage_wheels/share/singular/LIB/lejeune.lib +651 -0
  355. sage_wheels/share/singular/LIB/linalg.lib +2040 -0
  356. sage_wheels/share/singular/LIB/locnormal.lib +212 -0
  357. sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
  358. sage_wheels/share/singular/LIB/makedbm.lib +294 -0
  359. sage_wheels/share/singular/LIB/mathml.lib +813 -0
  360. sage_wheels/share/singular/LIB/matrix.lib +1372 -0
  361. sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
  362. sage_wheels/share/singular/LIB/methods.lib +212 -0
  363. sage_wheels/share/singular/LIB/moddiq.lib +322 -0
  364. sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
  365. sage_wheels/share/singular/LIB/modnormal.lib +218 -0
  366. sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
  367. sage_wheels/share/singular/LIB/modquotient.lib +269 -0
  368. sage_wheels/share/singular/LIB/modstd.lib +1024 -0
  369. sage_wheels/share/singular/LIB/modular.lib +545 -0
  370. sage_wheels/share/singular/LIB/modules.lib +2561 -0
  371. sage_wheels/share/singular/LIB/modwalk.lib +609 -0
  372. sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
  373. sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
  374. sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
  375. sage_wheels/share/singular/LIB/mregular.lib +1863 -0
  376. sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
  377. sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
  378. sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
  379. sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
  380. sage_wheels/share/singular/LIB/ncall.lib +31 -0
  381. sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
  382. sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
  383. sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
  384. sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
  385. sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
  386. sage_wheels/share/singular/LIB/ncloc.lib +361 -0
  387. sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
  388. sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
  389. sage_wheels/share/singular/LIB/nctools.lib +1887 -0
  390. sage_wheels/share/singular/LIB/nets.lib +1456 -0
  391. sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
  392. sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
  393. sage_wheels/share/singular/LIB/noether.lib +1106 -0
  394. sage_wheels/share/singular/LIB/normal.lib +8700 -0
  395. sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
  396. sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
  397. sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
  398. sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
  399. sage_wheels/share/singular/LIB/olga.lib +1933 -0
  400. sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
  401. sage_wheels/share/singular/LIB/parallel.lib +319 -0
  402. sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
  403. sage_wheels/share/singular/LIB/perron.lib +202 -0
  404. sage_wheels/share/singular/LIB/pfd.lib +2223 -0
  405. sage_wheels/share/singular/LIB/phindex.lib +642 -0
  406. sage_wheels/share/singular/LIB/pointid.lib +673 -0
  407. sage_wheels/share/singular/LIB/polybori.lib +1430 -0
  408. sage_wheels/share/singular/LIB/polyclass.lib +525 -0
  409. sage_wheels/share/singular/LIB/polylib.lib +1174 -0
  410. sage_wheels/share/singular/LIB/polymake.lib +1902 -0
  411. sage_wheels/share/singular/LIB/presolve.lib +1533 -0
  412. sage_wheels/share/singular/LIB/primdec.lib +9576 -0
  413. sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
  414. sage_wheels/share/singular/LIB/primitiv.lib +401 -0
  415. sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
  416. sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
  417. sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
  418. sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
  419. sage_wheels/share/singular/LIB/random.lib +455 -0
  420. sage_wheels/share/singular/LIB/ratgb.lib +489 -0
  421. sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
  422. sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
  423. sage_wheels/share/singular/LIB/realrad.lib +1197 -0
  424. sage_wheels/share/singular/LIB/recover.lib +2628 -0
  425. sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
  426. sage_wheels/share/singular/LIB/reesclos.lib +465 -0
  427. sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
  428. sage_wheels/share/singular/LIB/resgraph.lib +789 -0
  429. sage_wheels/share/singular/LIB/resjung.lib +820 -0
  430. sage_wheels/share/singular/LIB/resolve.lib +5110 -0
  431. sage_wheels/share/singular/LIB/resources.lib +170 -0
  432. sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
  433. sage_wheels/share/singular/LIB/ring.lib +1328 -0
  434. sage_wheels/share/singular/LIB/ringgb.lib +343 -0
  435. sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
  436. sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
  437. sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
  438. sage_wheels/share/singular/LIB/rootsur.lib +886 -0
  439. sage_wheels/share/singular/LIB/rstandard.lib +607 -0
  440. sage_wheels/share/singular/LIB/rwalk.lib +336 -0
  441. sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
  442. sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
  443. sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
  444. sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
  445. sage_wheels/share/singular/LIB/schreyer.lib +321 -0
  446. sage_wheels/share/singular/LIB/schubert.lib +2551 -0
  447. sage_wheels/share/singular/LIB/sets.lib +524 -0
  448. sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
  449. sage_wheels/share/singular/LIB/signcond.lib +437 -0
  450. sage_wheels/share/singular/LIB/sing.lib +1094 -0
  451. sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
  452. sage_wheels/share/singular/LIB/solve.lib +2243 -0
  453. sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
  454. sage_wheels/share/singular/LIB/spectrum.lib +62 -0
  455. sage_wheels/share/singular/LIB/sresext.lib +757 -0
  456. sage_wheels/share/singular/LIB/ssi.lib +143 -0
  457. sage_wheels/share/singular/LIB/standard.lib +2769 -0
  458. sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
  459. sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
  460. sage_wheels/share/singular/LIB/stratify.lib +1070 -0
  461. sage_wheels/share/singular/LIB/surf.lib +506 -0
  462. sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
  463. sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
  464. sage_wheels/share/singular/LIB/surfex.lib +1462 -0
  465. sage_wheels/share/singular/LIB/swalk.lib +877 -0
  466. sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
  467. sage_wheels/share/singular/LIB/systhreads.lib +74 -0
  468. sage_wheels/share/singular/LIB/tasks.lib +1324 -0
  469. sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
  470. sage_wheels/share/singular/LIB/teachstd.lib +858 -0
  471. sage_wheels/share/singular/LIB/template.lib +116 -0
  472. sage_wheels/share/singular/LIB/toric.lib +1119 -0
  473. sage_wheels/share/singular/LIB/transformation.lib +116 -0
  474. sage_wheels/share/singular/LIB/triang.lib +1197 -0
  475. sage_wheels/share/singular/LIB/tropical.lib +8741 -0
  476. sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
  477. sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
  478. sage_wheels/share/singular/LIB/tst.lib +1108 -0
  479. sage_wheels/share/singular/LIB/weierstr.lib +241 -0
  480. sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
  481. sage_wheels/share/singular/emacs/.emacs-general +184 -0
  482. sage_wheels/share/singular/emacs/.emacs-singular +234 -0
  483. sage_wheels/share/singular/emacs/COPYING +44 -0
  484. sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
  485. sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
  486. sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
  487. sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
  488. sage_wheels/share/singular/emacs/singular.el +4273 -0
  489. sage_wheels/share/singular/emacs/singular.xpm +39 -0
  490. sage_wheels/share/singular/singular.idx +5002 -0
@@ -0,0 +1,3984 @@
1
+ ///////////////////////////////////////////////////////////////////////////
2
+ version="version redcgs.lib 4.2.0.0 Dec_2020 "; // $Id: 0f66859f752256452443f8d8d240bc0bd388c70c $
3
+ category="General purpose";
4
+ info="
5
+ LIBRARY: redcgs.lib Reduced Comprehensive Groebner Systems.
6
+
7
+ OVERVIEW:
8
+ Comprehensive Groebner Systems. Canonical Forms.
9
+ The library contains Monte's algorithms to compute disjoint, reduced
10
+ Comprehensive Groebner Systems (CGS). A CGS is a set of pairs of
11
+ (segment,basis). The segments S_i are subsets of the parameter space,
12
+ and the bases B_i are sets of polynomials specializing to Groebner
13
+ bases of the specialized ideal for every point in S_i.
14
+
15
+ The purpose of the routines in this library is to obtain CGS with
16
+ better properties, namely disjoint segments forming a partition of
17
+ the parameter space and reduced bases. Reduced bases are sets of
18
+ polynomials that specialize to the reduced Groebner basis of the
19
+ specialized ideal preserving the leading power products (lpp).
20
+ The lpp characterize the type of solution in each segment.
21
+
22
+ A further objective is to summarize as much as possible the segments
23
+ with the same lpp into a single segment, and if possible to obtain
24
+ a final result that is canonical, i.e. independent of the algorithm
25
+ and only attached to the given ideal.
26
+
27
+ There are three fundamental routines in the library: mrcgs, rcgs and
28
+ crcgs. mrcgs (Minimal Reduced CGS) is an algorithm that packs so
29
+ much as it is able to do (using algorithms adhoc) the segments with
30
+ the same lpp, obtaining the minimal number of segments. The hypothesis
31
+ is that the result is also canonical, but for the moment there is no
32
+ proof of the uniqueness of this minimal packing. Moreover, the
33
+ segments that are obtained are not locally closed, i.e. there are not
34
+ difference of two varieties.
35
+
36
+ On the other side, Michael Wibmer has proved that for homogeneous ideals,
37
+ all the segments with reduced bases having the same lpp admit a unique
38
+ basis specializing well. For this purpose it is necessary to extend the
39
+ description of the elements of the bases to functions, forming sheaves
40
+ of polynomials instead of simple polynomials, so that the polynomials in
41
+ a sheaf either preserve the lpp of the corresponding polynomial of
42
+ the specialized Groebner basis (and then it specializes well) or
43
+ it specializes to 0. Moreover, in a sheaf, for every point in the
44
+ corresponding segment, at least one of the polynomials specializes well.
45
+ specializes well. And moreover Wibmer's Theorem ensures that the packed
46
+ segments are locally closed, that is can be described as the difference of
47
+ two varieties.
48
+
49
+ Using Wibmer's Theorem we proved that an affine ideal can be homogenized,
50
+ than discussed by mrcgs and finally de-homogenized. The bases so obtained
51
+ can be reduced and specialize well in the segment. If the theoretic
52
+ objective is reached, and all the segments of the homogenized ideal
53
+ have been packed, locally closed segments will be obtained.
54
+
55
+ If we only homogenize the given basis of the ideal, then we cannot ensure
56
+ the canonicity of the partition obtained, because there are many different
57
+ bases of the given ideal that can be homogenized, and the homogenized ideals
58
+ are not identical. This corresponds to the algorithm rcgs and is recommended
59
+ as the most practical routine. It provides locally closed segments and
60
+ is usually faster than mrcgs and crcgs. But the given partition is not
61
+ always canonical.
62
+
63
+ Finally it is possible to homogenize the whole affine ideal, and then
64
+ the packing algorithm will provide canonical segments by dehomogenizing.
65
+ This corresponds to crcgs routine. It provides the best description
66
+ of the segments and bases. In contrast crcgs algorithm is usually much
67
+ more time consuming and it will not always finish in a reasonable time.
68
+ Moreover it will contain more segments than mrcgs and possibly also more
69
+ than rcgs.
70
+
71
+ But the actual algorithms in the library to pack segments have some lacks.
72
+ They are not theoretically always able to pack the segments that we know
73
+ that can be packed. Nevertheless, thanks to Wibmer's Theorem, the
74
+ algorithms rcgs and crcgs are able to detect if the objective has not been
75
+ reached, and if so, to give a Warning. The warning does not invalidate the
76
+ output, but it only recognizes that the theoretical objective is not
77
+ completely reached by the actual computing methods and that some segments
78
+ that can be packed have not been packed with a single basis.
79
+
80
+ The routine buildtree is the first algorithm used in all the previous
81
+ methods providing a first disjoint CGS, and can be used if none of the
82
+ three fundamental algorithms of the library finishes in a reasonable time.
83
+
84
+ There are also routines to visualize better the output of the previous
85
+ algorithms:
86
+ finalcases can be applied to the list provided by buildtree to obtain the
87
+ CGS. The list provided by buildtree contains the whole discussion, and
88
+ finalcases extracts the CGS.
89
+ The output of buildtree can also be transformed into a file using
90
+ buildtreetoMaple routine that can be read in Maple. Using Monte's dpgb
91
+ library in Maple the output can be plotted (with the routine tplot).
92
+ To plot the output of mrcgs, rcgs or crcgs in Maple, the library also
93
+ provides the routine cantreetoMaple. The file written using it
94
+ and read in Maple can then be plotted with the command plotcantree and
95
+ printed with printcantree from the Monte's dpgb library in Maple.
96
+ The output of mrcgs, rcgs and crcgs is given in form of tree using
97
+ prime ideals in a canonical form that is described in the papers.
98
+ Nevertheless this canonical form is somewhat uncomfortable to be
99
+ interpreted. When the segments are all locally closed (and this is
100
+ always the case for rcgs and crcgs) the routine cantodiffcgs transforms
101
+ the output into a simpler form having only one list element for
102
+ each segment and providing the two varieties whose difference represent
103
+ the segment also in a canonical form.
104
+
105
+ AUTHORS: Antonio Montes , Hans Schoenemann.
106
+ OVERVIEW: see \"Minimal Reduced Comprehensive Groebner Systems\"
107
+ by Antonio Montes. (http://www-ma2.upc.edu/~montes/).
108
+
109
+ NOTATIONS: All given and determined polynomials and ideals are in the
110
+ @* basering K[a][x]; (a=parameters, x=variables)
111
+ @* After defining the ring and calling setglobalrings(); the rings
112
+ @* @R (K[a][x]),
113
+ @* @P (K[a]),
114
+ @* @RP (K[x,a]) are defined globally
115
+ @* They are used internally and can also be used by the user.
116
+ @* The fundamental routines are: buildtree, mrcgs, rcgs and crcgs
117
+
118
+ PROCEDURES:
119
+
120
+ setglobalrings(); It is called by the fundamental routines of the library:
121
+ (buildtree, mrcgs, rcgs, crcgs).
122
+ After calling it, the rings @R, @P and @RP are defined
123
+ globally.
124
+ memberpos(f,J); Returns the list of two integers: the value 0 or 1 depending
125
+ on if f belongs to J or not, and the position in J (0 if it
126
+ does not belong).
127
+ subset(F,G); If all elements of F belong to the ideal G it returns 1,
128
+ and 0 otherwise.
129
+ pdivi2(f,F); Pseudodivision of a polynomial f by an ideal F in @R. Returns a
130
+ list (r,q,m) such that m*f=r+sum(q.G).
131
+ facvar(ideal J) Returns all the free-square factors of the elements
132
+ of ideal J (non repeated). Integer factors are ignored,
133
+ even 0 is ignored. It can be called from ideal @R, but
134
+ the given ideal J must only contain polynomials in the
135
+ parameters.
136
+ redspec(N,W); Given null and non-null conditions depending only on the
137
+ parameters it returns a red-specification.
138
+ pnormalform(f,N,W); Reduces the polynomial f w.r.t. to the null condition ideal N and the
139
+ non-null condition ideal W (both depending on the parameters).
140
+ buildtree(F); Returns a list T describing a first reduced CGS of the ideal
141
+ F in K[a][x].
142
+ buildtreetoMaple(T); Writes into a file the output of buildtree in Maple readable
143
+ form.
144
+ finalcases(T); From the output of buildtree it provides the list
145
+ of its terminal vertices. That list represents the dichotomic,
146
+ reduced CGS obtained by buildtree.
147
+ mrcgs(F); Returns a list T describing the Minimal Reduced CGS of the
148
+ ideal F of K[a][x]
149
+ rcgs(F); Returns a list T describing the Reduced CGS of the ideal F
150
+ of K[a][x] obtained by direct homogenizing and de-homogenizing
151
+ the basis of the given ideal.
152
+ crcgs(F); Returns a list T describing the Canonical Reduced CGS of the
153
+ ideal F of K[a][x] obtained by homogenizing and de-homogenizing
154
+ the initial ideal.
155
+ cantreetoMaple)(M); Writes into a file the output of mrcgs, rcgs or crcgs in Maple
156
+ readable form.
157
+ cantodiffcgs(list L);From the output of rcgs or crcgs (or even of mrcgs when
158
+ it is possible) it returns a simpler list where the segments
159
+ are given as difference of varieties.
160
+
161
+ SEE ALSO: compregb_lib
162
+ ";
163
+
164
+ // ************ Begin of the redCGS library *********************
165
+ // Library redCGS
166
+ // (Reduced Comprehesive Groebner Systems):
167
+ // Initial data: 21-1-2008
168
+ // Release 1:
169
+ // Final data: 3_7-2008
170
+ // All given and determined polynomials and ideals are in the
171
+ // basering K[a][x];
172
+ // After calling setglobalrings(); the rings
173
+ // @R (K[a][x]),
174
+ // @P (K[a]),
175
+ // @RP (K[x,a]) are globally defined
176
+ // They are used internally and can also be called by the user;
177
+ // setglobalrings() is called by buildtree, so it is not required to
178
+ // call setglobalrings before using
179
+ // the fundamental routines of the library.
180
+
181
+ // ************ Begin of buildtree ******************************
182
+
183
+ LIB "primdec.lib";
184
+
185
+ proc setglobalrings()
186
+ "USAGE: setglobalrings();
187
+ No arguments
188
+ RETURN: After its call the rings @R=K[a][x], @P=K[a], @RP=K[x,a] are
189
+ defined as global variables.
190
+ NOTE: It is called by the fundamental routines of the library.
191
+ The user does not need to call it, except when none of
192
+ the fundamental routines have been called and some
193
+ other routines of the library are used.
194
+ The basering R, must be of the form K[a][x], a=parameters,
195
+ x=variables, and should be defined previously.
196
+ KEYWORDS: ring, rings
197
+ EXAMPLE: setglobalrings; shows an example"
198
+ {
199
+ def @R=basering; // must be of the form K[a][x], a=parameters, x=variables
200
+ def Rx=ringlist(@R);
201
+ def @P=ring(Rx[1]);
202
+ list Lx;
203
+ Lx[1]=0;
204
+ Lx[2]=Rx[2]+Rx[1][2];
205
+ Lx[3]=Rx[1][3];
206
+ Lx[4]=Rx[1][4];
207
+ //def @K=ring(Lx);
208
+ //exportto(Top,@K); //global ring K[x,a] with the order of x extended to x,a
209
+ Rx[1]=0;
210
+ def D=ring(Rx);
211
+ def @RP=D+@P;
212
+ exportto(Top,@R); // global ring K[a][x]
213
+ exportto(Top,@P); // global ring K[a]
214
+ exportto(Top,@RP); // global ring K[x,a] with product order
215
+ setring(@R);
216
+ }
217
+ example
218
+ { "EXAMPLE:"; echo = 2;
219
+ ring R=(0,a,b),(x,y,z),dp;
220
+ setglobalrings();
221
+ @R;
222
+ @P;
223
+ @RP;
224
+ }
225
+
226
+ //*************Auxiliary routines**************
227
+
228
+ // cld : clears denominators of an ideal and normalizes to content 1
229
+ // can be used in @R or @P or @RP
230
+ // input:
231
+ // ideal J (J can be also poly), but the output is an ideal;
232
+ // output:
233
+ // ideal Jc (the new form of ideal J without denominators and
234
+ // normalized to content 1)
235
+ proc cld(ideal J)
236
+ {
237
+ if (size(J)==0){return(ideal(0));}
238
+ def RR=basering;
239
+ setring(@RP);
240
+ def Ja=imap(RR,J);
241
+ ideal Jb;
242
+ if (size(Ja)==0){return(ideal(0));}
243
+ int i;
244
+ def j=0;
245
+ for (i=1;i<=ncols(Ja);i++){if (size(Ja[i])!=0){j++; Jb[j]=cleardenom(Ja[i]);}}
246
+ setring(RR);
247
+ def Jc=imap(@RP,Jb);
248
+ return(Jc);
249
+ }
250
+
251
+ proc memberpos(def f,def J)
252
+ "USAGE: memberpos(f,J);
253
+ (f,J) expected (polynomial,ideal)
254
+ or (int,list(int))
255
+ or (int,intvec)
256
+ or (intvec,list(intvec))
257
+ or (list(int),list(list(int)))
258
+ or (ideal,list(ideal))
259
+ or (list(intvec), list(list(intvec))).
260
+ The ring can be @R or @P or @RP or any other.
261
+ RETURN: The list (t,pos) t int; pos int;
262
+ t is 1 if f belongs to J and 0 if not.
263
+ pos gives the position in J (or 0 if f does not belong).
264
+ EXAMPLE: memberpos; shows an example"
265
+ {
266
+ int pos=0;
267
+ int i=1;
268
+ int j;
269
+ int t=0;
270
+ int nt;
271
+ if (typeof(J)=="ideal"){nt=ncols(J);}
272
+ else{nt=size(J);}
273
+ if ((typeof(f)=="poly") or (typeof(f)=="int"))
274
+ { // (poly,ideal) or
275
+ // (poly,list(poly))
276
+ // (int,list(int)) or
277
+ // (int,intvec)
278
+ i=1;
279
+ while(i<=nt)
280
+ {
281
+ if (f==J[i]){return(list(1,i));}
282
+ i++;
283
+ }
284
+ return(list(0,0));
285
+ }
286
+ else
287
+ {
288
+ if ((typeof(f)=="intvec") or ((typeof(f)=="list") and (typeof(f[1])=="int")))
289
+ { // (intvec,list(intvec)) or
290
+ // (list(int),list(list(int)))
291
+ i=1;
292
+ t=0;
293
+ pos=0;
294
+ while((i<=nt) and (t==0))
295
+ {
296
+ t=1;
297
+ j=1;
298
+ if (size(f)!=size(J[i])){t=0;}
299
+ else
300
+ {
301
+ while ((j<=size(f)) and t)
302
+ {
303
+ if (f[j]!=J[i][j]){t=0;}
304
+ j++;
305
+ }
306
+ }
307
+ if (t){pos=i;}
308
+ i++;
309
+ }
310
+ if (t){return(list(1,pos));}
311
+ else{return(list(0,0));}
312
+ }
313
+ else
314
+ {
315
+ if (typeof(f)=="ideal")
316
+ { // (ideal,list(ideal))
317
+ i=1;
318
+ t=0;
319
+ pos=0;
320
+ while((i<=nt) and (t==0))
321
+ {
322
+ t=1;
323
+ j=1;
324
+ if (ncols(f)!=ncols(J[i])){t=0;}
325
+ else
326
+ {
327
+ while ((j<=ncols(f)) and t)
328
+ {
329
+ if (f[j]!=J[i][j]){t=0;}
330
+ j++;
331
+ }
332
+ }
333
+ if (t){pos=i;}
334
+ i++;
335
+ }
336
+ if (t){return(list(1,pos));}
337
+ else{return(list(0,0));}
338
+ }
339
+ else
340
+ {
341
+ if ((typeof(f)=="list") and (typeof(f[1])=="intvec"))
342
+ { // (list(intvec),list(list(intvec)))
343
+ i=1;
344
+ t=0;
345
+ pos=0;
346
+ while((i<=nt) and (t==0))
347
+ {
348
+ t=1;
349
+ j=1;
350
+ if (size(f)!=size(J[i])){t=0;}
351
+ else
352
+ {
353
+ while ((j<=size(f)) and t)
354
+ {
355
+ if (f[j]!=J[i][j]){t=0;}
356
+ j++;
357
+ }
358
+ }
359
+ if (t){pos=i;}
360
+ i++;
361
+ }
362
+ if (t){return(list(1,pos));}
363
+ else{return(list(0,0));}
364
+ }
365
+ }
366
+ }
367
+ }
368
+ } example
369
+ { "EXAMPLE:"; echo = 2;
370
+ list L=(7,4,5,1,1,4,9);
371
+ memberpos(1,L);
372
+ }
373
+
374
+
375
+ proc subset(def J,def K)
376
+ "USAGE: subset(J,K);
377
+ (J,K) expected (ideal,ideal)
378
+ or (list, list)
379
+ RETURN: 1 if all the elements of J are in K, 0 if not.
380
+ EXAMPLE: subset; shows an example;"
381
+ {
382
+ int i=1;
383
+ int nt;
384
+ if (typeof(J)=="ideal"){nt=ncols(J);}
385
+ else{nt=size(J);}
386
+ if (size(J)==0){return(1);}
387
+ while(i<=nt)
388
+ {
389
+ if (memberpos(J[i],K)[1]){i++;}
390
+ else {return(0);}
391
+ }
392
+ return(1);
393
+ }
394
+ example
395
+ { "EXAMPLE:"; echo = 2;
396
+ list J=list(7,3,2);
397
+ list K=list(1,2,3,5,7,8);
398
+ subset(J,K);
399
+ }
400
+
401
+ //*************Auxiliary routines**************
402
+
403
+
404
+ // elimintfromideal: elimine the constant numbers from the ideal
405
+ // (designed for W, nonnull conditions)
406
+ // input: ideal J in the ring @P
407
+ // output:ideal K with the elements of J that are non constants, in the ring @P
408
+ proc elimintfromideal(ideal J)
409
+ {
410
+ int i;
411
+ int j=0;
412
+ ideal K;
413
+ if (size(J)==0){return(ideal(0));}
414
+ for (i=1;i<=ncols(J);i++){if (size(variables(J[i])) !=0){j++; K[j]=J[i];}}
415
+ return(K);
416
+ }
417
+
418
+ // simpqcoeffs : simplifies a quotient of two polynomials of @R
419
+ // for ring @R
420
+ // input: two coefficients (or terms) of @R (that are considered as quotients)
421
+ // output: the two coefficients reduced without common factors
422
+ proc simpqcoeffs(poly n,poly m)
423
+ {
424
+ def nc=content(n);
425
+ def mc=content(m);
426
+ def gc=gcd(nc,mc);
427
+ ideal s=n/gc,m/gc;
428
+ return (s);
429
+ }
430
+
431
+
432
+ // pdivi2 : pseudodivision of a polynomial f by an ideal F in @R
433
+ // in the ring @R
434
+ // input:
435
+ // poly f0 (given in the ring @R)
436
+ // ideal F0 (given in the ring @R)
437
+ // output:
438
+ // list (poly r, ideal q, poly mu)
439
+ proc pdivi2(poly f,ideal F)
440
+ "USAGE: pdivi2(f,F);
441
+ poly f: the polynomial to be divided
442
+ ideal F: the divisor ideal
443
+ RETURN: A list (poly r, ideal q, poly m). r is the remainder of the
444
+ pseudodivision, q is the ideal of quotients, and m is the
445
+ factor by which f is to be multiplied.
446
+ NOTE: Pseudodivision of a polynomial f by an ideal F in @R. Returns a
447
+ list (r,q,m) such that m*f=r+sum(q.G).
448
+ KEYWORDS: division, reduce
449
+ EXAMPLE: example pdivi2; shows an example"
450
+ {
451
+ int i;
452
+ int j;
453
+ poly r=0;
454
+ poly mu=1;
455
+ def p=f;
456
+ ideal q;
457
+ for (i=1; i<=size(F); i++){q[i]=0;}
458
+ ideal lpf;
459
+ ideal lcf;
460
+ for (i=1;i<=size(F);i++){lpf[i]=leadmonom(F[i]);}
461
+ for (i=1;i<=size(F);i++){lcf[i]=leadcoef(F[i]);}
462
+ poly lpp;
463
+ poly lcp;
464
+ poly qlm;
465
+ poly nu;
466
+ poly rho;
467
+ int divoc=0;
468
+ ideal qlc;
469
+ while (p!=0)
470
+ {
471
+ i=1;
472
+ divoc=0;
473
+ lpp=leadmonom(p);
474
+ lcp=leadcoef(p);
475
+ while (divoc==0 and i<=size(F))
476
+ {
477
+ qlm=lpp/lpf[i];
478
+ if (qlm!=0)
479
+ {
480
+ qlc=simpqcoeffs(lcp,lcf[i]);
481
+ nu=qlc[2];
482
+ mu=mu*nu;
483
+ rho=qlc[1]*qlm;
484
+ p=nu*p-rho*F[i];
485
+ r=nu*r;
486
+ for (j=1;j<=size(F);j++){q[j]=nu*q[j];}
487
+ q[i]=q[i]+rho;
488
+ divoc=1;
489
+ }
490
+ else {i++;}
491
+ }
492
+ if (divoc==0)
493
+ {
494
+ r=r+lcp*lpp;
495
+ p=p-lcp*lpp;
496
+ }
497
+ }
498
+ list res=r,q,mu;
499
+ return(res);
500
+ }
501
+ example
502
+ { "EXAMPLE:"; echo = 2;
503
+ ring R=(0,a,b,c),(x,y),dp;
504
+ setglobalrings();
505
+ poly f=(ab-ac)*xy+(ab)*x+(5c);
506
+ ideal F=ax+b,cy+a;
507
+ def r=pdivi2(f,F);
508
+ r;
509
+ r[3]*f-(r[2][1]*F[1]+r[2][2]*F[2])-r[1];
510
+ }
511
+
512
+ // pspol : S-poly of two polynomials in @R
513
+ // @R
514
+ // input:
515
+ // poly f (given in the ring @R)
516
+ // poly g (given in the ring @R)
517
+ // output:
518
+ // list (S, red): S is the S-poly(f,g) and red is a Boolean variable
519
+ // if red==1 then S reduces by Buchberger 1st criterion (not used)
520
+ proc pspol(poly f,poly g)
521
+ {
522
+ def lcf=leadcoef(f);
523
+ def lcg=leadcoef(g);
524
+ def lpf=leadmonom(f);
525
+ def lpg=leadmonom(g);
526
+ def v=gcd(lpf,lpg);
527
+ def s=simpqcoeffs(lcf,lcg);
528
+ def vf=lpf/v;
529
+ def vg=lpg/v;
530
+ poly S=s[2]*vg*f-s[1]*vf*g;
531
+ return(S);
532
+ }
533
+
534
+ // facvar: Returns all the free-square factors of the elements
535
+ // of ideal J (non repeated). Integer factors are ignored,
536
+ // even 0 is ignored. It can be called from ideal @R, but
537
+ // the given ideal J must only contain poynomials in the
538
+ // parameters.
539
+ // Operates in the ring @P, but can be called from ring @R.
540
+ // input: ideal J
541
+ // output: ideal Jc: Returns all the free-square factors of the elements
542
+ // of ideal J (non repeated). Integer factors are ignored,
543
+ // even 0 is ignored. It can be called from ideal @R, but
544
+ // the given ideal J must only contain poynomials in the
545
+ // parameters.
546
+ proc facvar(ideal J)
547
+ "USAGE: facvar(J);
548
+ J: an ideal in the parameters
549
+ RETURN: all the free-square factors of the elements
550
+ of ideal J (non repeated). Integer factors are ignored,
551
+ even 0 is ignored. It can be called from ideal @R, but
552
+ the given ideal J must only contain poynomials in the
553
+ parameters.
554
+ NOTE: Operates in the ring @P, and the ideal J must contain only
555
+ polynomials in the parameters, but can be called from ring @R.
556
+ KEYWORDS: factor
557
+ EXAMPLE: facvar; shows an example"
558
+ {
559
+ int i;
560
+ def RR=basering;
561
+ setring(@P);
562
+ def Ja=imap(RR,J);
563
+ if(size(Ja)==0){return(ideal(0));}
564
+ Ja=elimintfromideal(Ja); // also in ideal @P
565
+ ideal Jb;
566
+ if (size(Ja)==0){Jb=ideal(0);}
567
+ else
568
+ {
569
+ for (i=1;i<=ncols(Ja);i++){if(size(Ja[i])!=0){Jb=Jb,factorize(Ja[i],1);}}
570
+ Jb=simplify(Jb,2+4+8);
571
+ Jb=cld(Jb);
572
+ Jb=elimintfromideal(Jb); // also in ideal @P
573
+ }
574
+ setring(RR);
575
+ def Jc=imap(@P,Jb);
576
+ return(Jc);
577
+ }
578
+ example
579
+ { "EXAMPLE:"; echo = 2;
580
+ ring R=(0,a,b,c),(x,y,z),dp;
581
+ setglobalrings();
582
+ ideal J=a2-b2,a2-2ab+b2,abc-bc;
583
+ facvar(J);
584
+ }
585
+
586
+ // Wred: eliminate the factors in the polynom f that are in W
587
+ // in ring @RP
588
+ // input:
589
+ // poly f:
590
+ // ideal W of non-null conditions (already supposed that it is facvar)
591
+ // output:
592
+ // poly f2 where the non-null conditions in W have been dropped from f
593
+ proc Wred(poly f, ideal W)
594
+ {
595
+ if (f==0){return(f);}
596
+ def RR=basering;
597
+ setring(@RP);
598
+ def ff=imap(RR,f);
599
+ def RPW=imap(RR,W);
600
+ def l=factorize(ff,2);
601
+ int i;
602
+ poly f1=1;
603
+ for(i=1;i<=size(l[1]);i++)
604
+ {
605
+ if ((memberpos(l[1][i],RPW)[1]) or (memberpos(-l[1][i],RPW)[1])){;}
606
+ else{f1=f1*((l[1][i])^(l[2][i]));}
607
+ }
608
+ setring(RR);
609
+ def f2=imap(@RP,f1);
610
+ return(f2);
611
+ }
612
+
613
+ // pnormalform: reduces a polynomial w.r.t. a red-spec dividing by N and eliminating factors in W.
614
+ // called in the ring @R
615
+ // operates in the ring @RP
616
+ // input:
617
+ // poly f
618
+ // ideal N (depends only on the parameters)
619
+ // ideal W (depends only on the parameters)
620
+ // (N,W) must be a red-spec (depends only on the parameters)
621
+ // output: poly f2 reduced w.r.t. to the red-spec (N,W)
622
+ // note: for security a lot of work is done. If (N,W) is already a red-spec it should be simplified
623
+ proc pnormalform(poly f, ideal N, ideal W)
624
+ "USAGE: pnormalform(f,N,W);
625
+ f: the polynomial to be reduced modulo N,W (in parameters and
626
+ variables)
627
+ N: the null conditions ideal
628
+ W: the non-null conditions (set of irreducible polynomials, ideal)
629
+ RETURN: a reduced polynomial g of f, whose coefficients are reduced
630
+ modulo N and having no factor in W.
631
+ NOTE: Should be called from ring @R. Ideals N and W must be polynomials
632
+ in the parameters forming a red-specification (see definition) the papers).
633
+ KEYWORDS: division, pdivi2, reduce
634
+ EXAMPLE: pnormalform; shows an example"
635
+ {
636
+ def RR=basering;
637
+ setring(@RP);
638
+ def fa=imap(RR,f);
639
+ def Na=imap(RR,N);
640
+ def Wa=imap(RR,W);
641
+ option(redSB);
642
+ Na=groebner(Na);
643
+ def r=cld(reduce(fa,Na));
644
+ def f1=Wred(r[1],Wa);
645
+ setring(RR);
646
+ def f2=imap(@RP,f1);
647
+ return(f2)
648
+ }
649
+ example
650
+ { "EXAMPLE:"; echo = 2;
651
+ ring R=(0,a,b,c),(x,y),dp;
652
+ setglobalrings();
653
+ poly f=(b^2-1)*x^3*y+(c^2-1)*x*y^2+(c^2*b-b)*x+(a-bc)*y;
654
+ ideal N=(ab-c)*(a-b),(a-bc)*(a-b);
655
+ ideal W=a^2-b^2,bc;
656
+ def r=redspec(N,W);
657
+ pnormalform(f,r[1],r[2]);
658
+ }
659
+
660
+ // idint: ideal intersection
661
+ // in the ring @P.
662
+ // it works in an extended ring
663
+ // input: two ideals in the ring @P
664
+ // output the intersection of both (is not a GB)
665
+ proc idint(ideal I, ideal J)
666
+ {
667
+ def RR=basering;
668
+ ring T=0,t,lp;
669
+ def K=T+RR;
670
+ setring(K);
671
+ def Ia=imap(RR,I);
672
+ def Ja=imap(RR,J);
673
+ ideal IJ;
674
+ int i;
675
+ for(i=1;i<=size(Ia);i++){IJ[i]=t*Ia[i];}
676
+ for(i=1;i<=size(Ja);i++){IJ[size(Ia)+i]=(1-t)*Ja[i];}
677
+ ideal eIJ=eliminate(IJ,t);
678
+ setring(RR);
679
+ return(imap(K,eIJ));
680
+ }
681
+
682
+
683
+ // redspec: generates a red-specification
684
+ // called in any ring
685
+ // it changes to the ring @P
686
+ // input:
687
+ // ideal N : the ideal of null-conditions
688
+ // ideal W : set of non-null polynomials: if W corresponds to no non null conditions then W=ideal(0)
689
+ // otherwise it should be given as an ideal.
690
+ // returns: list (Na,Wa,DGN)
691
+ // the completely reduced specification:
692
+ // Na = ideal reduced and radical of the red-spec
693
+ // facvar(Wa) = ideal the reduced non-null set of polynomials of the red-spec.
694
+ // if it corresponds to no non null conditions then it is ideal(0)
695
+ // otherwise the ideal is returned.
696
+ // DGN = the list of prime ideals associated to Na (uses primASSGTZ in "primdec.lib")
697
+ // none of the polynomials in facvar(Wa) are contained in none of the ideals in DGN
698
+ // If the given conditions are not compatible, then N=ideal(1) and DGN=list(ideal(1))
699
+ proc redspec(ideal Ni, ideal Wi)
700
+ "USAGE: redspec(N,W);
701
+ N: null conditions ideal
702
+ W: set of non-null polynomials (ideal)
703
+ RETURN: a list (N1,W1,L1) containing a red-specification of the segment (N,W).
704
+ N1 is the radical reduced ideal characterizing the segment.
705
+ V(N1) is the Zarisky closure of the segment (N,W).
706
+ The segment S=V(N1) \ V(h), where h=prod(w in W1)
707
+ N1 is uniquely determined and no prime component of N1 contains none of
708
+ the polynomials in W1. The polynomials in W1 are prime and reduced
709
+ w.r.t. N1, and are considered non-null on the segment.
710
+ L1 contains the list of prime components of N1.
711
+ NOTE: can be called from ring @R but it works in ring @P.
712
+ KEYWORDS: specification
713
+ EXAMPLE: redspec; shows an example"
714
+ {
715
+ ideal Nc;
716
+ ideal Wc;
717
+ def RR=basering;
718
+ setring(@P);
719
+ def N=imap(RR,Ni);
720
+ def W=imap(RR,Wi);
721
+ ideal Wa;
722
+ ideal Wb;
723
+ if(size(W)==0){Wa=ideal(0);}
724
+ //when there are no non-null conditions then W=ideal(0)
725
+ else
726
+ {
727
+ Wa=facvar(W);
728
+ }
729
+ if (size(N)==0)
730
+ {
731
+ setring(RR);
732
+ Wc=imap(@P,Wa);
733
+ return(list(ideal(0), Wc, list(ideal(0))));
734
+ }
735
+ int i;
736
+ list LNb;
737
+ list LNa;
738
+ def LN=minAssGTZ(N);
739
+ for (i=1;i<=size(LN);i++)
740
+ {
741
+ option(redSB);
742
+ LNa[i]=groebner(LN[i]);
743
+ }
744
+ poly h=1;
745
+ if (size(Wa)!=0)
746
+ {
747
+ for(i=1;i<=size(Wa);i++){h=h*Wa[i];}
748
+ }
749
+ ideal Na;
750
+ intvec save_opt=option(get);
751
+ if (size(N)!=0 and (size(LNa)>0))
752
+ {
753
+ option(returnSB);
754
+ Na=intersect(LNa[1..size(LNa)]);
755
+ option(redSB);
756
+ Na=groebner(Na); // T_ is needed?
757
+ option(set,save_opt);
758
+ }
759
+ attrib(Na,"isSB",1);
760
+ if (reduce(h,Na,1)==0)
761
+ {
762
+ setring(RR);
763
+ Wc=imap(@P,Wa);
764
+ return(list (ideal(1),Wc,list(ideal(1))));
765
+ }
766
+ i=1;
767
+ while(i<=size(LNa))
768
+ {
769
+ if (reduce(h,LNa[i],1)==0){LNa=delete(LNa,i);}
770
+ else{ i++;}
771
+ }
772
+ if (size(LNa)==0)
773
+ {
774
+ setring(RR);
775
+ return(list(ideal(1),ideal(0),list(ideal(1))));
776
+ }
777
+ option(returnSB);
778
+ ideal Nb=intersect(LNa[1..size(LNa)]);
779
+ option(redSB);
780
+ Nb=groebner(Nb); // T_ is needed?
781
+ option(set,save_opt);
782
+ if (size(Wa)==0)
783
+ {
784
+ setring(RR);
785
+ Nc=imap(@P,Nb);
786
+ Wc=imap(@P,Wa);
787
+ LNb=imap(@P,LNa);
788
+ return(list(Nc,Wc,LNb));
789
+ }
790
+ Wb=ideal(0);
791
+ attrib(Nb,"isSB",1);
792
+ for (i=1;i<=size(Wa);i++){Wb[i]=reduce(Wa[i],Nb);}
793
+ Wb=facvar(Wb);
794
+ if (size(LNa)!=0)
795
+ {
796
+ setring(RR);
797
+ Nc=imap(@P,Nb);
798
+ Wc=imap(@P,Wb);
799
+ LNb=imap(@P,LNa);
800
+ return(list(Nc,Wc,LNb))
801
+ }
802
+ else
803
+ {
804
+ setring(RR);
805
+ Nd=imap(@P,Nb);
806
+ Wc=imap(@P,Wb);
807
+ kill LNb;
808
+ list LNb;
809
+ return(list(Nd,Wc,LNb))
810
+ }
811
+ }
812
+ example
813
+ { "EXAMPLE:"; echo = 2;
814
+ ring r=(0,a,b,c),(x,y),dp;
815
+ setglobalrings();
816
+ ideal N=(ab-c)*(a-b),(a-bc)*(a-b);
817
+ ideal W=a^2-b^2,bc;
818
+ redspec(N,W);
819
+ }
820
+
821
+ // lesspol: compare two polynomials by its leading power products
822
+ // input: two polynomials f,g in the ring @R
823
+ // output: 0 if f<g, 1 if f>=g
824
+ proc lesspol(poly f, poly g)
825
+ {
826
+ if (leadmonom(f)<leadmonom(g)){return(1);}
827
+ else
828
+ {
829
+ if (leadmonom(g)<leadmonom(f)){return(0);}
830
+ else
831
+ {
832
+ if (leadcoef(f)<leadcoef(g)){return(1);}
833
+ else {return(0);}
834
+ }
835
+ }
836
+ }
837
+
838
+ // delfromideal: deletes the i-th polynomial from the ideal F
839
+ proc delfromideal(ideal F, int i)
840
+ {
841
+ int j;
842
+ ideal G;
843
+ if (size(F)<i){ERROR("delfromideal was called incorrect arguments");}
844
+ if (size(F)<=1){return(ideal(0));}
845
+ if (i==0){return(F)}
846
+ for (j=1;j<=size(F);j++)
847
+ {
848
+ if (j!=i){G[size(G)+1]=F[j];}
849
+ }
850
+ return(G);
851
+ }
852
+
853
+ // delidfromid: deletes the polynomials in J that are in I
854
+ // input: ideals I,J
855
+ // output: the ideal J without the polynomials in I
856
+ proc delidfromid(ideal I, ideal J)
857
+ {
858
+ int i; list r;
859
+ ideal JJ=J;
860
+ for (i=1;i<=size(I);i++)
861
+ {
862
+ r=memberpos(I[i],JJ);
863
+ if (r[1])
864
+ {
865
+ JJ=delfromideal(JJ,r[2]);
866
+ }
867
+ }
868
+ return(JJ);
869
+ }
870
+
871
+ // sortideal: sorts the polynomials in an ideal by lm in ascending order
872
+ proc sortideal(ideal Fi)
873
+ {
874
+ def RR=basering;
875
+ setring(@RP);
876
+ def F=imap(RR,Fi);
877
+ def H=F;
878
+ ideal G;
879
+ int i;
880
+ int j;
881
+ poly p;
882
+ while (size(H)!=0)
883
+ {
884
+ j=1;
885
+ p=H[1];
886
+ for (i=1;i<=size(H);i++)
887
+ {
888
+ if(lesspol(H[i],p)){j=i;p=H[j];}
889
+ }
890
+ G[size(G)+1]=p;
891
+ H=delfromideal(H,j);
892
+ }
893
+ setring(RR);
894
+ def GG=imap(@RP,G);
895
+ return(GG);
896
+ }
897
+
898
+ // mingb: given a basis (gb reducing) it
899
+ // order the polynomials is ascending order and
900
+ // eliminate the polynomials whose lpp is divisible by some
901
+ // smaller one
902
+ proc mingb(ideal F)
903
+ {
904
+ int t; int i; int j;
905
+ def H=sortideal(F);
906
+ ideal G;
907
+ if (ncols(H)<=1){return(H);}
908
+ G=H[1];
909
+ for (i=2; i<=ncols(H); i++)
910
+ {
911
+ t=1;
912
+ j=1;
913
+ while (t and (j<i))
914
+ {
915
+ if((leadmonom(H[i])/leadmonom(H[j]))!=0) {t=0;}
916
+ j++;
917
+ }
918
+ if (t) {G[size(G)+1]=H[i];}
919
+ }
920
+ return(G);
921
+ }
922
+
923
+
924
+ // redgb: given a minimal bases (gb reducing) it
925
+ // reduces each polynomial w.r.t. to the others
926
+ proc redgb(ideal F, ideal N, ideal W)
927
+ {
928
+ ideal G;
929
+ ideal H;
930
+ int i;
931
+ if (size(F)==0){return(ideal(0));}
932
+ for (i=1;i<=size(F);i++)
933
+ {
934
+ H=delfromideal(F,i);
935
+ G[i]=pnormalform(pdivi2(F[i],H)[1],N,W);
936
+ }
937
+ return(G);
938
+ }
939
+
940
+
941
+ //********************Main routines for buildtree******************
942
+
943
+
944
+ // splitspec: a new leading coefficient f is given to a red-spec
945
+ // then splitspec computes the two new red-spec by
946
+ // considering it null, and non null.
947
+ // in ring @P
948
+ // given f, and the red-spec (N,W)
949
+ // it outputs the null and the non-null red-spec adding f.
950
+ // if some of the output specifications has N=1 then
951
+ // there must be no split and buildtree must continue on
952
+ // the compatible red-spec
953
+ // input: poly f coefficient to split if needed
954
+ // list r=(N,W,LN) redspec
955
+ // output: list L = list(ideal N0, ideal W0), list(ideal N1, ideal W1), cond
956
+ proc splitspec(poly fi, list ri)
957
+ {
958
+ def RR=basering;
959
+ def Ni=ri[1];
960
+ def Wi=ri[2];
961
+ setring(@P);
962
+ def f=imap(RR,fi);
963
+ def N=imap(RR,Ni);
964
+ def W=imap(RR,Wi);
965
+ f=Wred(f,W);
966
+ def N0=N;
967
+ def W1=W;
968
+ N0[size(N0)+1]=f;
969
+ def r0=redspec(N0,W);
970
+ W1[size(W1)+1]=f;
971
+ def r1=redspec(N,W1);
972
+ setring(RR);
973
+ def ra0=imap(@P,r0);
974
+ def ra1=imap(@P,r1);
975
+ def cond=imap(@P,f);
976
+ return (list(ra0,ra1,cond));
977
+ }
978
+
979
+ // discusspolys: given a basis B and a red-spec (N,W), it analyzes the
980
+ // leadcoef of the polynomials in B until it finds
981
+ // that one of them can be either null or non null.
982
+ // If at the end only the non null option is compatible
983
+ // then the reduced B has all the leadcoef non null.
984
+ // Else recbuildtree must split.
985
+ // ring @R
986
+ // input: ideal B
987
+ // ideal N
988
+ // ideal W (a reduced-specification)
989
+ // output: list of ((N0,W0,LN0),(N1,W1,LN1),Br,cond)
990
+ // cond is the condition to branch
991
+ proc discusspolys(ideal B, list r)
992
+ {
993
+ poly f; poly f1; poly f2;
994
+ poly cond;
995
+ def N=r[1]; def W=r[2]; def LN=r[3];
996
+ def Ba=B; def F=B;
997
+ ideal N0=1; def W0=W; list LN0=ideal(1);
998
+ def N1=N; def W1=W; def LN1=LN;
999
+ list L;
1000
+ list M; list M0; list M1;
1001
+ list rr;
1002
+ if (size(B)==0)
1003
+ {
1004
+ M0=N0,W0,LN0; // incompatible
1005
+ M1=N1,W1,LN1;
1006
+ M=M0,M1,B,poly(1);
1007
+ return(M);
1008
+ }
1009
+ while ((size(F)!=0) and ((N0[1]==1) or (N1[1]==1)))
1010
+ {
1011
+ f=F[1];
1012
+ F=delfromideal(F,1);
1013
+ f1=pnormalform(f,N,W);
1014
+ rr=memberpos(f,Ba);
1015
+ if (f1!=0)
1016
+ {
1017
+ Ba[rr[2]]=f1;
1018
+ if (pardeg(leadcoef(f1))!=0)
1019
+ {
1020
+ f2=Wred(leadcoef(f1),W);
1021
+ L=splitspec(f2,list(N,W,LN));
1022
+ N0=L[1][1]; W0=L[1][2]; LN0=L[1][3]; N1=L[2][1]; W1=L[2][2]; LN1=L[2][3];
1023
+ cond=L[3];
1024
+ }
1025
+ }
1026
+ else
1027
+ {
1028
+ Ba=delfromideal(Ba,rr[2]);
1029
+ N0=ideal(1); //F=ideal(0);
1030
+ }
1031
+ }
1032
+ M0=N0,W0,LN0;
1033
+ M1=N1,W1,LN1;
1034
+ M=M0,M1,Ba,cond;
1035
+ return(M);
1036
+ }
1037
+
1038
+
1039
+ // lcmlmonoms: computes the lcm of the leading monomials
1040
+ // of the polynomils f and g
1041
+ // ring @R
1042
+ proc lcmlmonoms(poly f,poly g)
1043
+ {
1044
+ def lf=leadmonom(f);
1045
+ def lg=leadmonom(g);
1046
+ def gls=gcd(lf,lg);
1047
+ return((lf*lg)/gls);
1048
+ }
1049
+
1050
+ // placepairinlist
1051
+ // input: given a new pair of the form (i,j,lmij)
1052
+ // and a list of pairs of the same form
1053
+ // ring @R
1054
+ // output: it inserts the new pair in ascending order of lmij
1055
+ proc placepairinlist(list pair,list P)
1056
+ {
1057
+ list Pr;
1058
+ if (size(P)==0){Pr=insert(P,pair); return(Pr);}
1059
+ if (pair[3]<P[1][3]){Pr=insert(P,pair); return(Pr);}
1060
+ if (pair[3]>=P[size(P)][3]){Pr=insert(P,pair,size(P)); return(Pr);}
1061
+ kill Pr;
1062
+ list Pr;
1063
+ int j;
1064
+ int i=1;
1065
+ int loc=0;
1066
+ while((i<=size(P)) and (loc==0))
1067
+ {
1068
+ if (pair[3]>=P[i][3]){j=i; i++;}
1069
+ else{loc=1; j=i-1;}
1070
+ }
1071
+ Pr=insert(P,pair,j);
1072
+ return(Pr);
1073
+ }
1074
+
1075
+ // orderingpairs:
1076
+ // input: ideal F
1077
+ // output: list of ordered pairs (i,j,lcmij) of F in ascending order of lcmij
1078
+ // if a pair verifies Buchberger 1st criterion it is not stored
1079
+ // ring @R
1080
+ proc orderingpairs(ideal F)
1081
+ {
1082
+ int i;
1083
+ int j;
1084
+ poly lm;
1085
+ poly lpf;
1086
+ poly lpg;
1087
+ list P;
1088
+ list pair;
1089
+ if (size(F)<=1){return(P);}
1090
+ for (i=1;i<=size(F)-1;i++)
1091
+ {
1092
+ for (j=i+1;j<=size(F);j++)
1093
+ {
1094
+ lm=lcmlmonoms(F[i],F[j]);
1095
+ // Buchberger 1st criterion
1096
+ lpf=leadmonom(F[i]);
1097
+ lpg=leadmonom(F[j]);
1098
+ if (lpf*lpg!=lm)
1099
+ {
1100
+ pair=(i,j,lm);
1101
+ P=placepairinlist(pair,P);
1102
+ }
1103
+ }
1104
+ }
1105
+ return(P);
1106
+ }
1107
+
1108
+ // Buchberger 2nd criterion
1109
+ // input: integers i,j
1110
+ // list P of pairs of the form (i,j) not yet verified
1111
+ // ring @R
1112
+ proc criterion(int i, int j, list P, ideal B)
1113
+ {
1114
+ def lcmij=lcmlmonoms(B[i],B[j]);
1115
+ int crit=0;
1116
+ int k=1;
1117
+ list ik; list jk;
1118
+ while ((k<=size(B)) and (crit==0))
1119
+ {
1120
+ if ((k!=i) and (k!=j))
1121
+ {
1122
+ if (i<k){ik=i,k;} else{ik=k,i;}
1123
+ if (j<k){jk=i,k;} else{jk=k,j;}
1124
+ if (not((memberpos(ik,P)[1]) or (memberpos(jk,P)[1])))
1125
+ {
1126
+ if ((lcmij)/leadmonom(B[k])!=0){crit=1;}
1127
+ }
1128
+ }
1129
+ k++;
1130
+ }
1131
+ return(crit);
1132
+ }
1133
+
1134
+ // discussSpolys: given a basis B and a red-spec (N,W), it analyzes the
1135
+ // leadcoef of the polynomials in B until it finds
1136
+ // that one of them can be either null or non null.
1137
+ // If at the end only the non null option is compatible
1138
+ // then the reduced B has all the leadcoef non null.
1139
+ // Else recbuildtree must split.
1140
+ // ring @R
1141
+ // input: ideal B
1142
+ // ideal N
1143
+ // ideal W (a reduced-specification)
1144
+ // list P current set of pairs of polynomials from B to be tested.
1145
+ // output: list of (N0,W0,LN0),(N1,W1,LN1),Br,Pr,cond]
1146
+ // list Pr the not checked list of pairs.
1147
+ proc discussSpolys(ideal B, list r, list P)
1148
+ {
1149
+ int i; int j; int k;
1150
+ int npols; int nSpols; int tt;
1151
+ poly cond=1;
1152
+ poly lm; poly lpf; poly lpg;
1153
+ def F=B; def Pa=P; list Pa0;
1154
+ def N=r[1]; def W=r[2]; def LN=r[3];
1155
+ ideal N0=1; def W0=W; list LN0=ideal(1);
1156
+ def N1=N; def W1=W; def LN1=LN;
1157
+ ideal Bw;
1158
+ poly S;
1159
+ list L; list L0; list L1;
1160
+ list M; list M0; list M1;
1161
+ list pair;
1162
+ list KK; int loc;
1163
+ int crit;
1164
+ poly h;
1165
+ if (size(B)==0)
1166
+ {
1167
+ M0=N0,W0,LN0;
1168
+ M1=N1,W1,LN1;
1169
+ M=M0,M1,ideal(0),Pa,cond;
1170
+ return(M);
1171
+ }
1172
+ tt=1;
1173
+ i=1;
1174
+ while ((tt) and (i<=size(B)))
1175
+ {
1176
+ h=B[i];
1177
+ for (j=1;j<=npars(@R);j++)
1178
+ {
1179
+ h=subst(h,par(j),0);
1180
+ }
1181
+ if (h!=B[i]){tt=0;}
1182
+ i++;
1183
+ }
1184
+ if (tt)
1185
+ {
1186
+ //"T_ a non parametric system occurred";
1187
+ def RR=basering;
1188
+ def RL=ringlist(RR);
1189
+ RL[1]=0;
1190
+ def LRR=ring(RL);
1191
+ setring(LRR);
1192
+ def BP=imap(RR,B);
1193
+ option(redSB);
1194
+ BP=groebner(BP);
1195
+ setring(RR);
1196
+ B=imap(LRR,BP);
1197
+ M0=ideal(1),W0,LN0;
1198
+ M1=N1,W1,LN1;
1199
+ M=M0,M1,B,list(),cond;
1200
+ return(M);
1201
+ }
1202
+ if (size(Pa)==0){npols=size(B); Pa=orderingpairs(F); nSpols=size(Pa);}
1203
+ while ((size(Pa)!=0) and (N0[1]==1) or (N1[1]==1))
1204
+ {
1205
+ pair=Pa[1];
1206
+ i=pair[1];
1207
+ j=pair[2];
1208
+ Pa=delete(Pa,1);
1209
+ // Buchberger 1st criterion (not needed here, it is already eliminated
1210
+ // when creating the list of pairs
1211
+ //T_ lpf=leadmonom(F[i]);
1212
+ //T_ lpg=leadmonom(F[j]);
1213
+ //T_ if (lpf*lpg!=pair[3])
1214
+ //T_ {
1215
+ for (k=1;k<=size(Pa);k++){Pa0[k]=delete(Pa[k],3);}
1216
+ //crit=criterion(i,j,Pa0,F); // produces errors?
1217
+ crit=0;
1218
+ if (not(crit))
1219
+ {
1220
+ S=pspol(F[i],F[j]);
1221
+ KK=pdivi2(S,F);
1222
+ S=KK[1];
1223
+ if (S!=0)
1224
+ {
1225
+ S=pnormalform(S,N,W);
1226
+ if (S!=0)
1227
+ {
1228
+ L=discusspolys(ideal(S),list(N,W,LN));
1229
+ N0=L[1][1];
1230
+ W0=L[1][2];
1231
+ LN0=L[1][3];
1232
+ N1=L[2][1];
1233
+ W1=L[2][2];
1234
+ LN1=L[2][3];
1235
+ S=L[3][1];
1236
+ cond=L[4];
1237
+ if (S==1)
1238
+ {
1239
+ M0=ideal(1),W0,list(ideal(1));
1240
+ M1=N1,W1,LN1;
1241
+ M=M0,M1,ideal(1),list(),cond;
1242
+ return(M);
1243
+ }
1244
+ if (S!=0)
1245
+ {
1246
+ F[size(F)+1]=S;
1247
+ npols=size(F);
1248
+ //"T_ number of polynoms in the basis="; npols;
1249
+ for (k=1;k<size(F);k++)
1250
+ {
1251
+ lm=lcmlmonoms(F[k],S);
1252
+ // Buchberger 1st criterion
1253
+ lpf=leadmonom(F[k]);
1254
+ lpg=leadmonom(S);
1255
+ if (lpf*lpg!=lm)
1256
+ {
1257
+ pair=k,size(F),lm;
1258
+ Pa=placepairinlist(pair,Pa);
1259
+ nSpols=size(Pa);
1260
+ //"T_ number of S-polynoms to test="; nSpols;
1261
+ }
1262
+ }
1263
+ if (N0[1]==1){N=N1; W=W1; LN=LN1;}
1264
+ }
1265
+ }
1266
+ }
1267
+ }
1268
+ //T_ }
1269
+ }
1270
+ M0=N0,W0,LN0;
1271
+ M1=N1,W1,LN1;
1272
+ M=M0,M1,F,Pa,cond;
1273
+ return(M);
1274
+ }
1275
+
1276
+
1277
+ // buildtree: Basic routine generating a first reduced CGS
1278
+ // it will define the rings @R, @P and @RP as global rings
1279
+ // and the list @T a global list that will be killed at the output
1280
+ // input: ideal F in ring K[a][x];
1281
+ // output: list T of lists whose list elements are of the form
1282
+ // T[i]=list(list lab, boolean terminal, ideal B, ideal N, ideal W, list of ideals decomp of N,
1283
+ // ideal of monomials lpp);
1284
+ // all the ideals are in the ring K[a][x];
1285
+ proc buildtree(ideal F, list #)
1286
+ "USAGE: buildtree(F);
1287
+ F: ideal in K[a][x] (parameters and variables) to be discussed
1288
+ RETURN: Returns a list T describing a dichotomic discussion tree, whose
1289
+ content is the first discussion of the ideal F of K[a][x].
1290
+ The first element of the list is the root, and contains
1291
+ [1] label: intvec(-1)
1292
+ [2] number of children : int
1293
+ [3] the ideal F
1294
+ [4], [5], [6] the red-spec of the null and non-null conditions
1295
+ given (as option). ideal (0), ideal (0), list(ideal(0)) if
1296
+ no optional conditions are given.
1297
+ [7] the set of lpp of ideal F
1298
+ [8] condition that was taken to reach the vertex
1299
+ (poly 1, for the root).
1300
+ The remaining elements of the list represent vertices of the tree:
1301
+ with the same structure:
1302
+ [1] label: intvec (1,0,0,1,...) gives its position in the tree:
1303
+ first branch condition is taken non-null, second null,...
1304
+ [2] number of children (0 if it is a terminal vertex)
1305
+ [3] the specialized ideal with the previous assumed conditions
1306
+ to reach the vertex
1307
+ [4],[5],[6] the red-spec of the previous assumed conditions
1308
+ to reach the vertex
1309
+ [7] the set of lpp of the specialized ideal at this stage
1310
+ [8] condition that was taken to reach the vertex from the
1311
+ father's vertex (that was taken non-null if the last
1312
+ integer in the label is 1, and null if it is 0)
1313
+ The terminal vertices form a disjoint partition of the parameter space
1314
+ whose bases specialize to the reduced Groebner basis of the
1315
+ specialized ideal on each point of the segment and preserve
1316
+ the lpp. So they form a disjoint reduced CGS.
1317
+ NOTE: The basering R, must be of the form K[a][x], a=parameters,
1318
+ x=variables, and should be defined previously. The ideal must
1319
+ be defined on R.
1320
+ The disjoint and reduced CGS built by buildtree can be obtained
1321
+ from the output of buildtree by calling finalcases(T); this
1322
+ selects the terminal vertices.
1323
+ The content of buildtree can be written in a file that is readable
1324
+ by Maple in order to plot its content using buildtreetoMaple;
1325
+ The file written by buildtreetoMaple when read in a Maple
1326
+ worksheet can be plotted using the dbgb routine tplot;
1327
+
1328
+ KEYWORDS: CGS, disjoint, reduced, comprehensive Groebner system
1329
+ EXAMPLE: buildtree; shows an example"
1330
+ {
1331
+ list @T;
1332
+ exportto(Top,@T);
1333
+ def @R=basering;
1334
+ setglobalrings();
1335
+ int i;
1336
+ int j;
1337
+ ideal B;
1338
+ poly f;
1339
+ poly cond=1;
1340
+ def N=ideal(0);
1341
+ def W=ideal(0);
1342
+ list LN;
1343
+ LN[1]=ideal(0);
1344
+ if (size(#)==2)
1345
+ {
1346
+ N=#[1];
1347
+ W=#[2];
1348
+ def LL=redspec(N,W);
1349
+ N=LL[1];
1350
+ W=LL[2];
1351
+ LN=LL[3];
1352
+ j=1;
1353
+ for (i=1;i<=size(F);i++)
1354
+ {
1355
+ f=pnormalform(F[i],N,W);
1356
+ if (f!=0){B[j]=f;j++;}
1357
+ }
1358
+ }
1359
+ else {B=F;}
1360
+ def lpp=ideal(0);
1361
+ if (size(B)==0){lpp=ideal(0);}
1362
+ else
1363
+ {
1364
+ for (i=1;i<=size(B);i++){lpp[i]=leadmonom(B[i]);}
1365
+ // lpp=ideal of lead power product of the polys in B
1366
+ }
1367
+ intvec lab=-1;
1368
+ int term=0;
1369
+ list root;
1370
+ root[1]=lab;
1371
+ root[2]=term;
1372
+ root[3]=B;
1373
+ root[4]=N;
1374
+ root[5]=W;
1375
+ root[6]=LN;
1376
+ root[7]=lpp;
1377
+ root[8]=cond;
1378
+ @T[1]=root;
1379
+ list P;
1380
+ recbuildtree(root,P);
1381
+ def T=@T;
1382
+ kill @T;
1383
+ return(T)
1384
+ }
1385
+ example
1386
+ { "EXAMPLE:"; echo = 2;
1387
+ ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
1388
+ ideal F=x4-a4+a2,
1389
+ x1+x2+x3+x4-a1-a3-a4,
1390
+ x1*x3*x4-a1*a3*a4,
1391
+ x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
1392
+ def T=buildtree(F);
1393
+ finalcases(T);
1394
+ buildtreetoMaple(T,"Tb","Tb.txt");
1395
+ }
1396
+
1397
+ // recbuildtree: auxiiary recursive routine called by buildtree
1398
+ proc recbuildtree(list v, list P)
1399
+ {
1400
+ def vertex=v;
1401
+ int i;
1402
+ int j;
1403
+ int pos;
1404
+ list P0;
1405
+ list P1;
1406
+ poly f;
1407
+ def lab=vertex[1];
1408
+ if ((size(lab)>1) and (lab[1]==-1))
1409
+ {lab=lab[2..size(lab)];}
1410
+ def term=vertex[2];
1411
+ def B=vertex[3];
1412
+ def N=vertex[4];
1413
+ def W=vertex[5];
1414
+ def LN=vertex[6];
1415
+ def lpp=vertex[7];
1416
+ def cond=vertex[8];
1417
+ def lab0=lab;
1418
+ def lab1=lab;
1419
+ if ((size(lab)==1) and (lab[1]==-1))
1420
+ {
1421
+ lab0=0;
1422
+ lab1=1;
1423
+ }
1424
+ else
1425
+ {
1426
+ lab0[size(lab)+1]=0;
1427
+ lab1[size(lab)+1]=1;
1428
+ }
1429
+ list vertex0;
1430
+ list vertex1;
1431
+ ideal B0;
1432
+ ideal lpp0;
1433
+ ideal lpp1;
1434
+ ideal N0=1;
1435
+ def W0=ideal(0);
1436
+ list LN0=ideal(1);
1437
+ def B1=B;
1438
+ def N1=N;
1439
+ def W1=W;
1440
+ list LN1=LN;
1441
+ list L;
1442
+ if (size(P)==0)
1443
+ {
1444
+ L=discusspolys(B,list(N,W,LN));
1445
+ N0=L[1][1];
1446
+ W0=L[1][2];
1447
+ LN0=L[1][3];
1448
+ N1=L[2][1];
1449
+ W1=L[2][2];
1450
+ LN1=L[2][3];
1451
+ B1=L[3];
1452
+ cond=L[4];
1453
+ }
1454
+ if ((size(B1)!=0) and (N0[1]==1))
1455
+ {
1456
+ L=discussSpolys(B1,list(N1,W1,LN1),P);
1457
+ N0=L[1][1];
1458
+ W0=L[1][2];
1459
+ LN0=L[1][3];
1460
+ N1=L[2][1];
1461
+ W1=L[2][2];
1462
+ LN1=L[2][3];
1463
+ B1=L[3];
1464
+ P1=L[4];
1465
+ cond=L[5];
1466
+ lpp=ideal(0);
1467
+ for (i=1;i<=size(B1);i++){lpp[i]=leadmonom(B1[i]);}
1468
+ }
1469
+ vertex[3]=B1;
1470
+ vertex[4]=N1; // unnecessary
1471
+ vertex[5]=W1; // unnecessary
1472
+ vertex[6]=LN1;// unnecessary
1473
+ vertex[7]=lpp;
1474
+ vertex[8]=cond;
1475
+ if (size(@T)>0)
1476
+ {
1477
+ pos=size(@T)+1;
1478
+ @T[pos]=vertex;
1479
+ }
1480
+ if ((N0[1]!=1) and (N1[1]!=1))
1481
+ {
1482
+ vertex1[1]=lab1;
1483
+ vertex1[2]=0;
1484
+ vertex1[3]=B1;
1485
+ vertex1[4]=N1;
1486
+ vertex1[5]=W1;
1487
+ vertex1[6]=LN1;
1488
+ vertex1[7]=lpp1;
1489
+ vertex1[8]=cond;
1490
+ if (size(B1)==0){B0=ideal(0); lpp0=ideal(0);}
1491
+ else
1492
+ {
1493
+ j=1;
1494
+ lpp0=ideal(0);
1495
+ for (i=1;i<=size(B1);i++)
1496
+ {
1497
+ f=pnormalform(B1[i],N0,W0);
1498
+ if (f!=0){B0[j]=f; lpp0[j]=leadmonom(f);j++;}
1499
+ }
1500
+ }
1501
+ vertex0[1]=lab0;
1502
+ vertex0[2]=0;
1503
+ vertex0[3]=B0;
1504
+ vertex0[4]=N0;
1505
+ vertex0[5]=W0;
1506
+ vertex0[6]=LN0;
1507
+ vertex0[7]=lpp0;
1508
+ vertex0[8]=cond;
1509
+ recbuildtree(vertex0,P0);
1510
+ recbuildtree(vertex1,P1);
1511
+ }
1512
+ else
1513
+ {
1514
+ vertex[2]=1;
1515
+ B1=mingb(B1);
1516
+ vertex[3]=redgb(B1,N1,W1);
1517
+ vertex[4]=N1;
1518
+ vertex[5]=W1;
1519
+ vertex[6]=LN1;
1520
+ lpp=ideal(0);
1521
+ for (i=1;i<=size(vertex[3]);i++){lpp[i]=leadmonom(vertex[3][i]);}
1522
+ vertex[7]=lpp;
1523
+ vertex[8]=cond;
1524
+ @T[pos]=vertex;
1525
+ }
1526
+ }
1527
+
1528
+ //****************End of BuildTree*************************************
1529
+
1530
+ //****************Begin BuildTree To Maple*****************************
1531
+
1532
+ // buildtreetoMaple: writes the list provided by buildtree to a file
1533
+ // containing the table representing it in Maple
1534
+
1535
+ // writes the list L=buildtree(F) to a file "writefile" that
1536
+ // is readable by Maple with name T
1537
+ // input:
1538
+ // L: the list output by buildtree
1539
+ // T: the name (string) of the output table in Maple
1540
+ // writefile: the name of the datafile where the output is to be stored
1541
+ // output:
1542
+ // the result is written on the datafile "writefile" containing
1543
+ // the assignment to the table with name "T"
1544
+ proc buildtreetoMaple(list L, string T, string writefile)
1545
+ "USAGE: buildtreetoMaple(T, TM, writefile);
1546
+ T: is the list provided by buildtree,
1547
+ TM: is the name (string) of the table variable in Maple that will represent
1548
+ the output of buildtree,
1549
+ writefile: is the name (string) of the file where to write the content.
1550
+ RETURN: writes the list provided by buildtree to a file
1551
+ containing the table representing it in Maple.
1552
+ KEYWORDS: buildtree, Maple
1553
+ EXAMPLE: buildtreetoMaple; shows an example"
1554
+ {
1555
+ short=0;
1556
+ poly cond;
1557
+ int i;
1558
+ link LLw=":w "+writefile;
1559
+ string La=string("table(",T,");");
1560
+ write(LLw, La);
1561
+ close(LLw);
1562
+ link LLa=":a "+writefile;
1563
+ def RL=ringlist(@R);
1564
+ list p=RL[1][2];
1565
+ string param=string(p[1]);
1566
+ if (size(p)>1)
1567
+ {
1568
+ for(i=2;i<=size(p);i++){param=string(param,",",p[i]);}
1569
+ }
1570
+ list v=RL[2];
1571
+ string vars=string(v[1]);
1572
+ if (size(v)>1)
1573
+ {
1574
+ for(i=2;i<=size(v);i++){vars=string(vars,",",v[i]);}
1575
+ }
1576
+ list xord;
1577
+ list pord;
1578
+ if (RL[1][3][1][1]=="dp"){pord=string("tdeg(",param);}
1579
+ if (RL[1][3][1][1]=="lp"){pord=string("plex(",param);}
1580
+ if (RL[3][1][1]=="dp"){xord=string("tdeg(",vars);}
1581
+ if (RL[3][1][1]=="lp"){xord=string("plex(",vars);}
1582
+ write(LLa,string(T,"[[9]]:=",xord,");"));
1583
+ write(LLa,string(T,"[[10]]:=",pord,");"));
1584
+ write(LLa,string(T,"[[11]]:=true; "));
1585
+ list S;
1586
+ for (i=1;i<=size(L);i++)
1587
+ {
1588
+ if (L[i][2]==0)
1589
+ {
1590
+ cond=L[i][8];
1591
+ S=btcond(T,L[i],cond);
1592
+ write(LLa,S[1]);
1593
+ write(LLa,S[2]);
1594
+ }
1595
+ S=btbasis(T,L[i]);
1596
+ write(LLa,S);
1597
+ S=btN(T,L[i]);
1598
+ write(LLa,S);
1599
+ S=btW(T,L[i]);
1600
+ write(LLa,S);
1601
+ if (L[i][2]==1) {S=btterminal(T,L[i]); write(LLa,S);}
1602
+ S=btlpp(T,L[i]);
1603
+ write(LLa,S);
1604
+ }
1605
+ close(LLa);
1606
+ }
1607
+ example
1608
+ { "EXAMPLE:"; echo = 2;
1609
+ ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
1610
+ ideal F=x4-a4+a2,
1611
+ x1+x2+x3+x4-a1-a3-a4,
1612
+ x1*x3*x4-a1*a3*a4,
1613
+ x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
1614
+ def T=buildtree(F);
1615
+ finalcases(T);
1616
+ buildtreetoMaple(T,"Tb","Tb.txt");
1617
+ }
1618
+
1619
+ // auxiliary routine called by buildtreetoMaple
1620
+ // input:
1621
+ // list L: element i of the list of buildtree(F)
1622
+ // output:
1623
+ // the string of T[[lab,1]]:=label; in Maple
1624
+ proc btterminal(string T, list L)
1625
+ {
1626
+ int i;
1627
+ string Li;
1628
+ string term;
1629
+ string coma=",";
1630
+ if (L[2]==0){term="false";} else {term="true";}
1631
+ def lab=L[1];
1632
+ string slab;
1633
+ if ((size(lab)==1) and lab[1]==-1)
1634
+ {slab="";coma="";} //if (size(lab)==0)
1635
+ else
1636
+ {
1637
+ slab=string(lab[1]);
1638
+ if (size(lab)>=1)
1639
+ {
1640
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1641
+ }
1642
+ }
1643
+ Li=string(T,"[[",slab,coma,"6]]:=",term,"; ");
1644
+ return(Li);
1645
+ }
1646
+
1647
+ // auxiliary routine called by buildtreetoMaple
1648
+ // input:
1649
+ // list L: element i of the list of buildtree(F)
1650
+ // output:
1651
+ // the string of T[[lab,3]] (basis); in Maple
1652
+ proc btbasis(string T, list L)
1653
+ {
1654
+ int i;
1655
+ string Li;
1656
+ string coma=",";
1657
+ def lab=L[1];
1658
+ string slab;
1659
+ if ((size(lab)==1) and lab[1]==-1)
1660
+ {slab="";coma="";} //if (size(lab)==0)
1661
+ else
1662
+ {
1663
+ slab=string(lab[1]);
1664
+ if (size(lab)>=1)
1665
+ {
1666
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1667
+ }
1668
+ }
1669
+ Li=string(T,"[[",slab,coma,"3]]:=[",L[3],"]; ");
1670
+ return(Li);
1671
+ }
1672
+
1673
+ // auxiliary routine called by buildtreetoMaple
1674
+ // input:
1675
+ // list L: element i of the list of buildtree(F)
1676
+ // output:
1677
+ // the string of T[[lab,4]] (null conditions ideal); in Maple
1678
+ proc btN(string T, list L)
1679
+ {
1680
+ int i;
1681
+ string Li;
1682
+ string coma=",";
1683
+ def lab=L[1];
1684
+ string slab;
1685
+ if ((size(lab)==1) and lab[1]==-1)
1686
+ {slab=""; coma="";}
1687
+ else
1688
+ {
1689
+ slab=string(lab[1]);
1690
+ if (size(lab)>=1)
1691
+ {
1692
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1693
+ }
1694
+ }
1695
+ if ((size(lab)==1) and lab[1]==-1)
1696
+ {Li=string(T,"[[",slab,coma,"4]]:=[ ]; ");}
1697
+ else
1698
+ {Li=string(T,"[[",slab,coma,"4]]:=[",L[4],"]; ");}
1699
+ return(Li);
1700
+ }
1701
+
1702
+ // auxiliary routine called by buildtreetoMaple
1703
+ // input:
1704
+ // list L: element i of the list of buildtree(F)
1705
+ // output:
1706
+ // the string of T[[lab,5]] (null conditions ideal); in Maple
1707
+ proc btW(string T, list L)
1708
+ {
1709
+ int i;
1710
+ string Li;
1711
+ string coma=",";
1712
+ def lab=L[1];
1713
+ string slab;
1714
+ if ((size(lab)==1) and lab[1]==-1)
1715
+ {slab=""; coma="";}
1716
+ else
1717
+ {
1718
+ slab=string(lab[1]);
1719
+ if (size(lab)>=1)
1720
+ {
1721
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1722
+ }
1723
+ }
1724
+ if (size(L[5])==0)
1725
+ {Li=string(T,"[[",slab,coma,"5]]:={ }; ");}
1726
+ else
1727
+ {Li=string(T,"[[",slab,coma,"5]]:={",L[5],"}; ");}
1728
+ return(Li);
1729
+ }
1730
+
1731
+ // auxiliary routine called by buildtreetoMaple
1732
+ // input:
1733
+ // list L: element i of the list of buildtree(F)
1734
+ // output:
1735
+ // the string of T[[lab,12]] (lpp); in Maple
1736
+ proc btlpp(string T, list L)
1737
+ {
1738
+ int i;
1739
+ string Li;
1740
+ string coma=",";;
1741
+ def lab=L[1];
1742
+ string slab;
1743
+ if ((size(lab)==1) and lab[1]==-1)
1744
+ {slab=""; coma="";}
1745
+ else
1746
+ {
1747
+ slab=string(lab[1]);
1748
+ if (size(lab)>=1)
1749
+ {
1750
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1751
+ }
1752
+ }
1753
+ if (size(L[7])==0)
1754
+ {
1755
+ Li=string(T,"[[",slab,coma,"12]]:=[ ]; ");
1756
+ }
1757
+ else
1758
+ {
1759
+ Li=string(T,"[[",slab,coma,"12]]:=[",L[7],"]; ");
1760
+ }
1761
+ return(Li);
1762
+ }
1763
+
1764
+ // auxiliary routine called by buildtreetoMaple
1765
+ // input:
1766
+ // list L: element i of the list of buildtree(F)
1767
+ // output:
1768
+ // the list of strings of (T[[lab,0]]=0,T[[lab,1]]<>0); in Maple
1769
+ proc btcond(string T, list L, poly cond)
1770
+ {
1771
+ int i;
1772
+ string Li1;
1773
+ string Li2;
1774
+ def lab=L[1];
1775
+ string slab;
1776
+ string coma=",";;
1777
+ if ((size(lab)==1) and lab[1]==-1)
1778
+ {slab=""; coma="";}
1779
+ else
1780
+ {
1781
+ slab=string(lab[1]);
1782
+ if (size(lab)>=1)
1783
+ {
1784
+ for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
1785
+ }
1786
+ }
1787
+ Li1=string(T,"[[",slab+coma,"0]]:=",L[8],"=0; ");
1788
+ Li2=string(T,"[[",slab+coma,"1]]:=",L[8],"<>0; ");
1789
+ return(list(Li1,Li2));
1790
+ }
1791
+
1792
+ //*****************End of BuildtreetoMaple*********************
1793
+
1794
+ //*****************Begin of Selectcases************************
1795
+
1796
+ // given an intvec with sum=n
1797
+ // it returns the list of intvect with the sum=n+1
1798
+ proc comp1(intvec l)
1799
+ {
1800
+ list L;
1801
+ int p=size(l);
1802
+ int i;
1803
+ if (p==0){return(l);}
1804
+ if (p==1){return(list(intvec(l[1]+1)));}
1805
+ L[1]=intvec((l[1]+1),l[2..p]);
1806
+ L[p]=intvec(l[1..p-1],(l[p]+1));
1807
+ for (i=2;i<p;i++)
1808
+ {
1809
+ L[i]=intvec(l[1..(i-1)],(l[i]+1),l[(i+1)..p]);
1810
+ }
1811
+ return(L);
1812
+ }
1813
+
1814
+ // comp: p-compositions of n
1815
+ // input
1816
+ // int n;
1817
+ // int p;
1818
+ // return
1819
+ // the list of all intvec (p-composition of n)
1820
+ proc comp(int n,int p)
1821
+ {
1822
+ if (n<0){ERROR("comp was called with negative argument");}
1823
+ if (n==0){return(list(0:p));}
1824
+ int i;
1825
+ int k;
1826
+ list L1=comp(n-1,p);
1827
+ list L=comp1(L1[1]);
1828
+ list l;
1829
+ list la;
1830
+ for (i=2; i<=size(L1);i++)
1831
+ {
1832
+ l=comp1(L1[i]);
1833
+ for (k=1;k<=size(l);k++)
1834
+ {
1835
+ if(not(memberpos(l[k],L)[1]))
1836
+ {L[size(L)+1]=l[k];}
1837
+ }
1838
+ }
1839
+ return(L);
1840
+ }
1841
+
1842
+ // given the matrices of coefficients and monomials m amd m1 of
1843
+ // two polynomials (the first one contains all the terms of f
1844
+ // and the second only those of f
1845
+ // it returns the list with the common monomials and the list of coefficients
1846
+ // of the polynomial f with zeroes if necessary.
1847
+ proc adaptcoef(matrix m, matrix m1)
1848
+ {
1849
+ int i;
1850
+ int j;
1851
+ int ncm=ncols(m);
1852
+ int ncm1=ncols(m1);
1853
+ ideal T;
1854
+ for (i=1;i<=ncm;i++){T[i]=m[1,i];}
1855
+ ideal C;
1856
+ for (i=1;i<=ncm;i++){C[i]=0;}
1857
+ for (i=1;i<=ncm;i++)
1858
+ {
1859
+ j=1;
1860
+ while((j<ncm1) and (m1[1,j]>m[1,i])){j++;}
1861
+ if (m1[1,j]==m[1,i]){C[i]=m1[2,j];}
1862
+ }
1863
+ return(list(T,C));
1864
+ }
1865
+
1866
+ // given the ideal of non-null conditions and an intvec lambda
1867
+ // with the exponents of each w in W
1868
+ // it returns the polynomial prod (w_i)^(lambda_i).
1869
+ proc WW(ideal W, intvec lambda)
1870
+ {
1871
+ if (size(W)==0){return(poly(1));}
1872
+ poly w=1;
1873
+ int i;
1874
+ for (i=1;i<=ncols(W);i++)
1875
+ {
1876
+ w=w*(W[i])^(lambda[i]);
1877
+ }
1878
+ return(w);
1879
+ }
1880
+
1881
+ // given a polynomial f and the non-null conditions W
1882
+ // WPred eliminates the factors in f that are in W
1883
+ // ring @PAB
1884
+ // input:
1885
+ // poly f:
1886
+ // ideal W of non-null conditions (already supposed that it is facvar)
1887
+ // output:
1888
+ // poly f2 where the non-null conditions in W have been dropped from f
1889
+ proc WPred(poly f, ideal W)
1890
+ {
1891
+ if (f==0){return(f);}
1892
+ def l=factorize(f,2);
1893
+ int i;
1894
+ poly f1=1;
1895
+ for(i=1;i<=size(l[1]);i++)
1896
+ {
1897
+ if (memberpos(l[1][i],W)[1]){;}
1898
+ else{f1=f1*((l[1][i])^(l[2][i]));}
1899
+ }
1900
+ return(f1);
1901
+ }
1902
+
1903
+ //genimage
1904
+ // ring @R
1905
+ //input:
1906
+ // poly f1, idel N1,ideal W1,poly f2, ideal N2, ideal W2
1907
+ // corresponding to two polynomials having the same lpp
1908
+ // f1 in the redspec given by N1,W1, f2 in the redspec given by N2,W2
1909
+ //output:
1910
+ // the list of (ideal GG, list(list r1, list r2))
1911
+ // where g an ideal whose elements have the same lpp as f1 and f2
1912
+ // that specialize well to f1 in N1,W1 and to f2 in N2,W2.
1913
+ // If it doesn't exist a genimage, then g=ideal(0).
1914
+ proc genimage(poly f1, ideal N1, ideal W1, poly f2, ideal N2, ideal W2)
1915
+ {
1916
+ int i; ideal W12; poly ff1; poly g1=0; ideal GG;
1917
+ int tt=1;
1918
+ // detect whether f1 reduces to 0 on segment 2
1919
+ ff1=pnormalform(f1,N2,W2);
1920
+ if (ff1==0)
1921
+ {
1922
+ // detect whether N1 is included in N2
1923
+ def RR=basering;
1924
+ setring @P;
1925
+ def NP1=imap(RR,N1);
1926
+ def NP2=imap(RR,N2);
1927
+ poly nr;
1928
+ i=1;
1929
+ while ((tt) and (i<=size(NP1)))
1930
+ {
1931
+ nr=reduce(NP1[i],NP2);
1932
+ if (nr!=0){tt=0;}
1933
+ i++;
1934
+ }
1935
+ setring(RR);
1936
+ }
1937
+ else{tt=0;}
1938
+ if (tt==1)
1939
+ {
1940
+ // detect whether W1 intersect W2 is non-empty
1941
+ for (i=1;i<=size(W1);i++)
1942
+ {
1943
+ if (memberpos(W1[i],W2)[1])
1944
+ {
1945
+ W12[size(W12)+1]=W1[i];
1946
+ }
1947
+ else
1948
+ {
1949
+ if (nonnull(W1[i],N2,W2))
1950
+ {
1951
+ W12[size(W12)+1]=W1[i];
1952
+ }
1953
+ }
1954
+ }
1955
+ for (i=1;i<=size(W2);i++)
1956
+ {
1957
+ if (not(memberpos(W2[i],W12)[1]))
1958
+ {
1959
+ W12[size(W12)+1]=W2[i];
1960
+ }
1961
+ }
1962
+ }
1963
+ if (tt==1){g1=extendpoly(f1,N1,W12);}
1964
+ if (g1!=0)
1965
+ {
1966
+ //T_ "genimage has found a more generic basis (method 1)";
1967
+ //T_ "f1:"; f1; "N1:"; N1; "W1:"; W1;
1968
+ //T_ "f2:"; f2; "N2:"; N2; "W2:"; W2;
1969
+ //T_ "g1:"; g1;
1970
+ if (pnormalform(g1,N1,W1)==0)
1971
+ {
1972
+ GG=f1,g1;
1973
+ //T_ "A sheaf has been found (method 2)";
1974
+ }
1975
+ else
1976
+ {
1977
+ GG=g1;
1978
+ }
1979
+ return(GG);
1980
+ }
1981
+
1982
+ // begins the second step;
1983
+ int bound=6;
1984
+ // in ring @R
1985
+ int j; int g=0; int alpha; int r1; int s1=1; int s2=1;
1986
+ poly G;
1987
+ matrix qT;
1988
+ matrix T;
1989
+ ideal N10;
1990
+ poly GT;
1991
+ ideal N12=N1,N2;
1992
+ def varx=maxideal(1);
1993
+ int nx=size(varx);
1994
+ poly pvarx=1;
1995
+ for (i=1;i<=nx;i++){pvarx=pvarx*varx[i];}
1996
+ def m=coef(43*f1+157*f2,pvarx);
1997
+ def m1=coef(f1,pvarx);
1998
+ def m2=coef(f2,pvarx);
1999
+ list L1=adaptcoef(m,m1);
2000
+ list L2=adaptcoef(m,m2);
2001
+ ideal Tm=L1[1];
2002
+ ideal c1=L1[2];
2003
+ ideal c2=L2[2];
2004
+ poly ww1;
2005
+ poly ww2;
2006
+ poly cA1;
2007
+ poly cB1;
2008
+ matrix TT;
2009
+ poly H;
2010
+ list r;
2011
+ ideal q;
2012
+ poly mu;
2013
+ ideal N;
2014
+
2015
+ // in ring @PAB
2016
+ list Px=ringlist(@P);
2017
+ list v="@A","@B";
2018
+ Px[2]=Px[2]+v;
2019
+ def npx=size(Px[3][1][2]);
2020
+ Px[3][1][2]=1:(npx+size(v));
2021
+ def @PAB=ring(Px);
2022
+ setring(@PAB);
2023
+
2024
+ poly PH;
2025
+ ideal NP;
2026
+ list rP;
2027
+ def PN1=imap(@R,N1);
2028
+ def PW1=imap(@R,W1);
2029
+ def PN2=imap(@R,N2);
2030
+ def PW2=imap(@R,W2);
2031
+ def a1=imap(@R,c1);
2032
+ def a2=imap(@R,c2);
2033
+ matrix PT;
2034
+ ideal PN;
2035
+ ideal PN12=PN1,PN2;
2036
+ PN=liftstd(PN12,PT);
2037
+ list compos1;
2038
+ list compos2;
2039
+ list compos0;
2040
+ intvec comp0;
2041
+ poly w1=0;
2042
+ poly w2=0;
2043
+ poly h;
2044
+ poly cA=0;
2045
+ poly cB=0;
2046
+ int t=0;
2047
+ list l;
2048
+ poly h1;
2049
+ g=0;
2050
+ while ((g<=bound) and not(t))
2051
+ {
2052
+ compos0=comp(g,2);
2053
+ r1=1;
2054
+ while ((r1<=size(compos0)) and not(t))
2055
+ {
2056
+ comp0=compos0[r1];
2057
+ if (comp0[1]<=bound/2)
2058
+ {
2059
+ compos1=comp(comp0[1],ncols(PW1));
2060
+ s1=1;
2061
+ while ((s1<=size(compos1)) and not(t))
2062
+ {
2063
+ if (comp0[2]<=bound/2)
2064
+ {
2065
+ compos2=comp(comp0[2],ncols(PW2));
2066
+ s2=1;
2067
+ while ((s2<=size(compos2)) and not(t))
2068
+ {
2069
+ w1=WW(PW1,compos1[s1]);
2070
+ w2=WW(PW2,compos2[s2]);
2071
+ h=@A*w1*a1[1]-@B*w2*a2[1];
2072
+ h=reduce(h,PN);
2073
+ if (h==0){cA=1;cB=-1;}
2074
+ else
2075
+ {
2076
+ l=factorize(h,2);
2077
+ h1=1;
2078
+ for(i=1;i<=size(l[1]);i++)
2079
+ {
2080
+ if ((memberpos(@A,variables(l[1][i]))[1]) or (memberpos(@B,variables(l[1][i]))[1]))
2081
+ {h1=h1*l[1][i];}
2082
+ }
2083
+ cA=diff(h1,@B);
2084
+ cB=diff(h1,@A);
2085
+ }
2086
+ if ((cA!=0) and (cB!=0) and (jet(cA,0)==cA) and (jet(cB,0)==cB))
2087
+ {
2088
+ t=1;
2089
+ alpha=1;
2090
+ while((t) and (alpha<=ncols(a1)))
2091
+ {
2092
+ h=cA*w1*a1[alpha]+cB*w2*a2[alpha];
2093
+ if (not(reduce(h,PN,1)==0)){t=0;}
2094
+ alpha++;
2095
+ }
2096
+ }
2097
+ else{t=0;}
2098
+ s2++;
2099
+ }
2100
+ }
2101
+ s1++;
2102
+ }
2103
+ }
2104
+ r1++;
2105
+ }
2106
+ g++;
2107
+ }
2108
+ setring(@R);
2109
+ ww1=imap(@PAB,w1);
2110
+ ww2=imap(@PAB,w2);
2111
+ T=imap(@PAB,PT);
2112
+ N=imap(@PAB,PN);
2113
+ cA1=imap(@PAB,cA);
2114
+ cB1=imap(@PAB,cB);
2115
+ if (t)
2116
+ {
2117
+ G=0;
2118
+ for (alpha=1;alpha<=ncols(Tm);alpha++)
2119
+ {
2120
+ H=cA1*ww1*c1[alpha]+cB1*ww2*c2[alpha];
2121
+ setring(@PAB);
2122
+ PH=imap(@R,H);
2123
+ PN=imap(@R,N);
2124
+ rP=division(PH,PN);
2125
+ setring(@R);
2126
+ r=imap(@PAB,rP);
2127
+ if (r[2][1]!=0){ERROR("the division is not null and it should be");}
2128
+ q=r[1];
2129
+ qT=transpose(matrix(q));
2130
+ N10=N12;
2131
+ for (i=size(N1)+1;i<=size(N1)+size(N2);i++){N10[i]=0;}
2132
+ G=G+(cA1*ww1*c1[alpha]-(matrix(N10)*T*qT)[1,1])*Tm[alpha];
2133
+ }
2134
+ //T_ "genimage has found a more generic basis (method 2)";
2135
+ //T_ "f1:"; f1; "N1:"; N1; "W1:"; W1;
2136
+ //T_ "f2:"; f2; "N2:"; N2; "W2:"; W2;
2137
+ //T_ "G:"; G;
2138
+ GG=ideal(G);
2139
+ }
2140
+ else{GG=ideal(0);}
2141
+ return(GG);
2142
+ }
2143
+
2144
+ // purpose: given a polynomial f (in the reduced basis)
2145
+ // the null-conditions ideal N in the segment
2146
+ // end the set of non-null polynomials common to the segment and
2147
+ // a new segment,
2148
+ // to obtain an equivalent polynomial with a leading coefficient
2149
+ // that is non-null in the second segment.
2150
+ // input:
2151
+ // poly f: a polynomials of the reduced basis in the segment (N,W)
2152
+ // ideal N: the null-conditions ideal in the segment
2153
+ // ideal W12: the set of non-null polynomials common to the segment and
2154
+ // a second segment
2155
+ proc extendpoly(poly f, ideal N, ideal W12)
2156
+ {
2157
+ int bound=4;
2158
+ ideal cfs;
2159
+ ideal cfsn;
2160
+ ideal ppfs;
2161
+ poly p=f;
2162
+ poly fn;
2163
+ poly lm; poly lc;
2164
+ int tt=0;
2165
+ int i;
2166
+ while (p!=0)
2167
+ {
2168
+ lm=leadmonom(p);
2169
+ lc=leadcoef(p);
2170
+ cfs[size(cfs)+1]=lc;
2171
+ ppfs[size(ppfs)+1]=lm;
2172
+ p=p-lc*lm;
2173
+ }
2174
+ def lcf=cfs[1];
2175
+ int r1=0; int s1;
2176
+ def RR=basering;
2177
+ setring @P;
2178
+ list compos1;
2179
+ poly w1;
2180
+ ideal q;
2181
+ def lcfp=imap(RR,lcf);
2182
+ def W=imap(RR,W12);
2183
+ def Np=imap(RR,N);
2184
+ def cfsp=imap(RR,cfs);
2185
+ ideal cfspn;
2186
+ matrix T;
2187
+ ideal H=lcfp,Np;
2188
+ def G=liftstd(H,T);
2189
+ list r;
2190
+ while ((r1<=bound) and not(tt))
2191
+ {
2192
+ compos1=comp(r1,ncols(W));
2193
+ s1=1;
2194
+ while ((s1<=size(compos1)) and not(tt))
2195
+ {
2196
+ w1=WW(W,compos1[s1]);
2197
+ cfspn=ideal(0);
2198
+ cfspn[1]=w1;
2199
+ tt=1;
2200
+ i=2;
2201
+ while ((i<=size(cfsp)) and (tt))
2202
+ {
2203
+ r=division(w1*cfsp[i],G);
2204
+ if (r[2][1]!=0){tt=0;}
2205
+ else
2206
+ {
2207
+ q=r[1];
2208
+ cfspn[i]=(T*transpose(matrix(q)))[1,1];
2209
+ }
2210
+ i++;
2211
+ }
2212
+ s1++;
2213
+ }
2214
+ r1++;
2215
+ }
2216
+ setring RR;
2217
+ if (tt)
2218
+ {
2219
+ cfsn=imap(@P,cfspn);
2220
+ fn=0;
2221
+ for (i=1;i<=size(ppfs);i++)
2222
+ {
2223
+ fn=fn+cfsn[i]*ppfs[i];
2224
+ }
2225
+ }
2226
+ else{fn=0;}
2227
+ return(fn);
2228
+ }
2229
+
2230
+ // nonnull
2231
+ // ring @P (or @R)
2232
+ // input:
2233
+ // poly f
2234
+ // ideal N
2235
+ // ideal W
2236
+ // output:
2237
+ // 1 if f is nonnull in the segment (N,W)
2238
+ // 0 if it can be zero
2239
+ proc nonnull(poly f, ideal N, ideal W)
2240
+ {
2241
+ int tt;
2242
+ ideal N0=N;
2243
+ N0[size(N0)+1]=f;
2244
+ poly h=1;
2245
+ int i;
2246
+ for (i=1;i<=size(W);i++){h=h*W[i];}
2247
+ def RR=basering;
2248
+ setring(@P);
2249
+ list Px=ringlist(@P);
2250
+ list v="@C";
2251
+ Px[2]=Px[2]+v;
2252
+ def npx=size(Px[3][1][2]);
2253
+ Px[3][1][1]="dp";
2254
+ Px[3][1][2]=1:(npx+size(v));
2255
+ def @PC=ring(Px);
2256
+ setring(@PC);
2257
+ def N1=imap(RR,N0);
2258
+ def h1=imap(RR,h);
2259
+ ideal G=1-@C*h1;
2260
+ G=G+N1;
2261
+ option(redSB);
2262
+ ideal G1=groebner(G);
2263
+ if (G1[1]==1){tt=1;} else{tt=0;}
2264
+ setring(RR);
2265
+ return(tt);
2266
+ }
2267
+
2268
+ // decide
2269
+ // input:
2270
+ // given two corresponding polynomials g1 and g2 with the same lpp
2271
+ // g1 belonging to the basis in the segment N1,W1
2272
+ // g2 belonging to the basis in the segment N2,W2
2273
+ // output:
2274
+ // an ideal (with a single polynomial of more if a sheaf is needed)
2275
+ // that specializes well on both segments to g1 and g2 respectively.
2276
+ // If ideal(0) is output, then no such polynomial nor sheaf exists.
2277
+ proc decide(poly g1, ideal N1, ideal W1, poly g2, ideal N2, ideal W2)
2278
+ {
2279
+ poly S;
2280
+ poly S1;
2281
+ poly S2;
2282
+ S=leadcoef(g2)*g1-leadcoef(g1)*g2;
2283
+ def RR=basering;
2284
+ setring(@RP);
2285
+ def SR=imap(RR,S);
2286
+ def N1R=imap(RR,N1);
2287
+ def N2R=imap(RR,N2);
2288
+ attrib(N1R,"isSB",1);
2289
+ attrib(N2R,"isSB",1);
2290
+ poly S1R=reduce(SR,N1R);
2291
+ poly S2R=reduce(SR,N2R);
2292
+ setring(RR);
2293
+ S1=imap(@RP,S1R);
2294
+ S2=imap(@RP,S2R);
2295
+ if ((S2==0) and (nonnull(leadcoef(g1),N2,W2))){return(ideal(g1));}
2296
+ if ((S1==0) and (nonnull(leadcoef(g2),N1,W1))){return(ideal(g2));}
2297
+ if ((S1==0) and (S2==0))
2298
+ {
2299
+ //T_ "A sheaf has been found (method 1)";
2300
+ return(ideal(g1,g2));
2301
+ }
2302
+ return(ideal(genimage(g1,N1,W1,g2,N2,W2)));
2303
+ }
2304
+
2305
+ // input: the tree (list) from buildtree output
2306
+ // output: the list of terminal vertices.
2307
+ proc finalcases(list T)
2308
+ "USAGE: finalcases(T);
2309
+ T is the list provided by buildtree
2310
+ RETURN: A list with the CGS determined by buildtree.
2311
+ Each element of the list represents one segment
2312
+ of the buildtree CGS.
2313
+ The list elements have the following structure:
2314
+ [1]: label (an intvec(1,0,..)) that indicates the position
2315
+ in the buildtree but that is irrelevant for the CGS
2316
+ [2]: 1 (integer) it is also irrelevant and indicates
2317
+ that this was a terminal vertex in buildtree.
2318
+ [3]: the reduced basis of the segment.
2319
+ [4], [5], [6]: the red-spec of the null and non-null conditions
2320
+ of the segment.
2321
+ [4] is the null-conditions radical ideal N,
2322
+ [5] is the non-null polynomials set (ideal) W,
2323
+ [6] is the set of prime components (ideals) of N.
2324
+ [7]: is the set of lpp
2325
+ [8]: poly 1 (irrelevant) is the condition to branch (but no
2326
+ more branch is necessary in the discussion, so 1 is the result.
2327
+ NOTE: It can be called having as argument the list output by buildtree
2328
+ KEYWORDS: buildtree, buildtreetoMaple, CGS
2329
+ EXAMPLE: finalcases; shows an example"
2330
+ {
2331
+ int i;
2332
+ list L;
2333
+ for (i=1;i<=size(T);i++)
2334
+ {
2335
+ if (T[i][2])
2336
+ {L[size(L)+1]=T[i];}
2337
+ }
2338
+ return(L);
2339
+ }
2340
+ example
2341
+ { "EXAMPLE:"; echo = 2;
2342
+ ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
2343
+ ideal F=x4-a4+a2, x1+x2+x3+x4-a1-a3-a4, x1*x3*x4-a1*a3*a4, x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
2344
+ def T=buildtree(F);
2345
+ finalcases(T);
2346
+ }
2347
+
2348
+ // input: the list of terminal vertices of buildtree (output of finalcases)
2349
+ // output: the same terminal vertices grouped by lpp
2350
+ proc groupsegments(list T)
2351
+ {
2352
+ int i;
2353
+ list L;
2354
+ list lpp;
2355
+ list lp;
2356
+ list ls;
2357
+ int n=size(T);
2358
+ lpp[1]=T[n][7];
2359
+ L[1]=list(lpp[1],list(list(T[n][1],T[n][3],T[n][4],T[n][5],T[n][6])));
2360
+ if (n>1)
2361
+ {
2362
+ for (i=1;i<=size(T)-1;i++)
2363
+ {
2364
+ lp=memberpos(T[n-i][7],lpp);
2365
+ if(lp[1]==1)
2366
+ {
2367
+ ls=L[lp[2]][2];
2368
+ ls[size(ls)+1]=list(T[n-i][1],T[n-i][3],T[n-i][4],T[n-i][5],T[n-i][6]);
2369
+ L[lp[2]][2]=ls;
2370
+ }
2371
+ else
2372
+ {
2373
+ lpp[size(lpp)+1]=T[n-i][7];
2374
+ L[size(L)+1]=list(T[n-i][7],list(list(T[n-i][1],T[n-i][3],T[n-i][4],T[n-i][5],T[n-i][6])));
2375
+ }
2376
+ }
2377
+ }
2378
+ return(L);
2379
+ }
2380
+
2381
+ // eliminates repeated elements form an ideal
2382
+ proc elimrepeated(ideal F)
2383
+ {
2384
+ int i;
2385
+ int j;
2386
+ ideal FF;
2387
+ FF[1]=F[1];
2388
+ for (i=2;i<=ncols(F);i++)
2389
+ {
2390
+ if (not(memberpos(F[i],FF)[1]))
2391
+ {
2392
+ FF[size(FF)+1]=F[i];
2393
+ }
2394
+ }
2395
+ return(FF);
2396
+ }
2397
+
2398
+
2399
+ // decide F is the same as decide but allows as first element a sheaf F
2400
+ proc decideF(ideal F,ideal N,ideal W, poly f2, ideal N2, ideal W2)
2401
+ {
2402
+ int i;
2403
+ ideal G=F;
2404
+ ideal g;
2405
+ if (ncols(F)==1) {return(decide(F[1],N,W,f2,N2,W2));}
2406
+ for (i=1;i<=ncols(F);i++)
2407
+ {
2408
+ G=G+decide(F[i],N,W,f2,N2,W2);
2409
+ }
2410
+ return(elimrepeated(G));
2411
+ }
2412
+
2413
+ // newredspec
2414
+ // input: two redspec in the form of N,W and Nj,Wj
2415
+ // output: a redspec representing the minimal redspec segment that contains
2416
+ // both input segments.
2417
+ proc newredspec(ideal N,ideal W, ideal Nj, ideal Wj)
2418
+ {
2419
+ ideal nN;
2420
+ ideal nW;
2421
+ int u;
2422
+ def RR=basering;
2423
+ setring(@P);
2424
+ list r;
2425
+ def Np=imap(RR,N);
2426
+ def Wp=imap(RR,W);
2427
+ def Njp=imap(RR,Nj);
2428
+ def Wjp=imap(RR,Wj);
2429
+ Np=intersect(Np,Njp);
2430
+ ideal WR;
2431
+ for(u=1;u<=size(Wjp);u++)
2432
+ {
2433
+ if(nonnull(Wjp[u],Np,Wp)){WR[size(WR)+1]=Wjp[u];}
2434
+ }
2435
+ for(u=1;u<=size(Wp);u++)
2436
+ {
2437
+ if((not(memberpos(Wp[u],WR)[1])) and (nonnull(Wp[u],Njp,Wjp)))
2438
+ {
2439
+ WR[size(WR)+1]=Wp[u];
2440
+ }
2441
+ }
2442
+ r=redspec(Np,WR);
2443
+ option(redSB);
2444
+ Np=groebner(r[1]);
2445
+ Wp=r[2];
2446
+ setring(RR);
2447
+ nN=imap(@P,Np);
2448
+ nW=imap(@P,Wp);
2449
+ return(list(nN,nW));
2450
+ }
2451
+
2452
+ // selectcases
2453
+ // input:
2454
+ // list bT: the list output by buildtree.
2455
+ // output:
2456
+ // list L it contins the list of segments allowing a common
2457
+ // reduced basis. The elements of L are of the form
2458
+ // list (lpp,B,list(list(N,W,L),..list(N,W,L)) )
2459
+ proc selectcases(list bT)
2460
+ {
2461
+ list T=groupsegments(finalcases(bT));
2462
+ list T0=bT[1];
2463
+ // first element of the list of buildtree
2464
+ list TT0;
2465
+ TT0[1]=list(T0[7],T0[3],list(list(T0[4],T0[5],T0[6])));
2466
+ // first element of the output of selectcases
2467
+ list T1=T; // the initial list; it is only actualized (split)
2468
+ // when a segment is completely revised (all split are
2469
+ // already be considered);
2470
+ // ( (lpp, ((lab,B,N,W,L),.. ()) ), .. (..) )
2471
+ list TT; // the output list ( (lpp,B,((N,W,L),..()) ),.. (..) )
2472
+ // case i
2473
+ list S1; // the segments in case i T1[i][2]; ( (lab,B,N,W,L),..() )
2474
+ list S2; // the segments in case i that are being summarized in
2475
+ // actual segment ( (N,W,L),..() )
2476
+ list S3; // the segments in case i that cannot be summarized in
2477
+ // the actual case. When the case is finished a new case
2478
+ // is created with them ( (lab,B,N,W,L),..() )
2479
+ list s3; // list of integers s whose segment cannot be summarized
2480
+ // in the actual case
2481
+ ideal lpp; // the summarized lpp (can contain repetitions)
2482
+ ideal lppi;// in proecess of summarizing lpp (can contain repetitions)
2483
+ ideal B; // the summarized B (can contain polynomials with
2484
+ // the same lpp (sheaves))
2485
+ ideal Bi; // in process of summarizing B (can contain polynomials with
2486
+ // the same lpp (sheaves))
2487
+ ideal N; // the summarized N
2488
+ ideal W; // the summarized W
2489
+ ideal F; // the summarized polynomial j (can contain a sheaf instead of
2490
+ // a single poly)
2491
+ ideal FF; // the same as F but it can be ideal(0)
2492
+ poly lpj;
2493
+ poly fj;
2494
+ ideal Nj;
2495
+ ideal Wj;
2496
+ ideal G;
2497
+ int i; // the index of the case i in T1;
2498
+ int j; // the index of the polynomial j of the basis
2499
+ int s; // the index of the segment s in S1;
2500
+ int u;
2501
+ int tests; // true if al the polynomial in segment s have been generalized;
2502
+ list r;
2503
+ // initializing the new list
2504
+ i=1;
2505
+ while(i<=size(T1))
2506
+ {
2507
+ S1=T1[i][2]; // ((lab,B,N,W,L)..) of the segments in case i
2508
+ if (size(S1)==1)
2509
+ {
2510
+ TT[i]=list(T1[i][1],S1[1][2],list(list(S1[1][3],S1[1][4],S1[1][5])));
2511
+ }
2512
+ else
2513
+ {
2514
+ S2=list();
2515
+ S3=list(); // ((lab,B,N,W,L)..) of the segments in case i to
2516
+ // create another segment i+1
2517
+ s3=list();
2518
+ B=S1[1][2];
2519
+ Bi=ideal(0);
2520
+ lpp=T1[i][1];
2521
+ j=1;
2522
+ tests=1;
2523
+ while (j<=size(S1[1][2]))
2524
+ { // j desings the new j-th polynomial
2525
+ N=S1[1][3];
2526
+ W=S1[1][4];
2527
+ F=ideal(S1[1][2][j]);
2528
+ s=2;
2529
+ while (s<=size(S1) and not(memberpos(s,s3)[1]))
2530
+ { // s desings the new segment s
2531
+ fj=S1[s][2][j];
2532
+ Nj=S1[s][3];
2533
+ Wj=S1[s][4];
2534
+ FF=decideF(F,N,W,fj,Nj,Wj);
2535
+ if (FF[1]==0)
2536
+ {
2537
+ if (@ish)
2538
+ {
2539
+ "Warning: Dealing with an homogeneous ideal";
2540
+ "mrcgs was not able to summarize all lpp cases into a single segment";
2541
+ "Please send a mail with your Problem to antonio.montes@upc.edu";
2542
+ "You found a counterexample of the complete success of the actual mrcgs algorithm";
2543
+ //"T_"; "f1:"; F; "N1:"; N; "W1:"; W; "f2:"; fj; "N2:"; Nj; "W2:"; Wj;
2544
+ }
2545
+ S3[size(S3)+1]=S1[s];
2546
+ s3[size(s3)+1]=s;
2547
+ tests=0;
2548
+ }
2549
+ else
2550
+ {
2551
+ F=FF;
2552
+ lpj=leadmonom(fj);
2553
+ r=newredspec(N,W,Nj,Wj);
2554
+ N=r[1];
2555
+ W=r[2];
2556
+ }
2557
+ s++;
2558
+ }
2559
+ if (Bi[1]==0){Bi=FF;}
2560
+ else
2561
+ {
2562
+ Bi=Bi+FF;
2563
+ }
2564
+ j++;
2565
+ }
2566
+ if (tests)
2567
+ {
2568
+ B=Bi;
2569
+ lpp=ideal(0);
2570
+ for (u=1;u<=size(B);u++){lpp[u]=leadmonom(B[u]);}
2571
+ }
2572
+ for (s=1;s<=size(T1[i][2]);s++)
2573
+ {
2574
+ if (not(memberpos(s,s3)[1]))
2575
+ {
2576
+ S2[size(S2)+1]=list(S1[s][3],S1[s][4],S1[s][5]);
2577
+ }
2578
+ }
2579
+ TT[i]=list(lpp,B,S2);
2580
+ // for (s=1;s<=size(s3);s++){S1=delete(S1,s);}
2581
+ T1[i][2]=S2;
2582
+ if (size(S3)>0){T1=insert(T1,list(T1[i][1],S3),i);}
2583
+ }
2584
+ i++;
2585
+ }
2586
+ for (i=1;i<=size(TT);i++){TT0[i+1]=TT[i];}
2587
+ return(TT0);
2588
+ }
2589
+
2590
+ //*****************End of Selectcases**************************
2591
+
2592
+ //*****************Begin of CanTree****************************
2593
+
2594
+ // equalideals
2595
+ // input: 2 ideals F and G;
2596
+ // output: 1 if they are identical (the same polynomials in the same order)
2597
+ // 0 else
2598
+ proc equalideals(ideal F, ideal G)
2599
+ {
2600
+ int i=1; int t=1;
2601
+ if (size(F)!=size(G)){return(0);}
2602
+ while ((i<=size(F)) and (t))
2603
+ {
2604
+ if (F[i]!=G[i]){t=0;}
2605
+ i++;
2606
+ }
2607
+ return(t);
2608
+ }
2609
+
2610
+ // delintvec
2611
+ // input: intvec V
2612
+ // int i
2613
+ // output:
2614
+ // intvec W (equal to V but the coordinate i is deleted
2615
+ proc delintvec(intvec V, int i)
2616
+ {
2617
+ int j;
2618
+ intvec W;
2619
+ for (j=1;j<i;j++){W[j]=V[j];}
2620
+ for (j=i+1;j<=size(V);j++){W[j-1]=V[j];}
2621
+ return(W);
2622
+ }
2623
+
2624
+ // redtocanspec
2625
+ // Computes the canonical specification of a redspec (N,W,L).
2626
+ // input:
2627
+ // ideal N (null conditions, must be radical)
2628
+ // ideal W (non-null conditions ideal)
2629
+ // list L must contain the radical decomposition of N.
2630
+ // output:
2631
+ // the list of elements of the (ideal N1,list(ideal M11,..,ideal M1k))
2632
+ // determining the canonical specification of the difference of
2633
+ // V(N) \ V(h), where h=prod(w in W).
2634
+ proc redtocanspec(intvec lab, int child, list rs)
2635
+ {
2636
+ ideal N=rs[1]; ideal W=rs[2]; list L=rs[3];
2637
+ intvec labi; intvec labij;
2638
+ int childi;
2639
+ int i; int j; list L0;
2640
+ L0[1]=list(lab,size(L));
2641
+ if (W[1]==0)
2642
+ {
2643
+ for (i=1;i<=size(L);i++)
2644
+ {
2645
+ labi=lab,child+i;
2646
+ L0[size(L0)+1]=list(labi,1,L[i]);
2647
+ labij=labi,1;
2648
+ L0[size(L0)+1]=list(labij,0,ideal(1));
2649
+ }
2650
+ return(L0);
2651
+ }
2652
+ if (N[1]==1)
2653
+ {
2654
+ L0[1]=list(lab,1);
2655
+ labi=lab,child+1;
2656
+ L0[size(L0)+1]=list(labi,1,ideal(1));
2657
+ labij=labi,1;
2658
+ L0[size(L0)+1]=list(labij,0,ideal(1));
2659
+ }
2660
+ def RR=basering;
2661
+ setring(@P);
2662
+ ideal Np=imap(RR,N);
2663
+ ideal Wp=imap(RR,W);
2664
+ poly h=1;
2665
+ for (i=1;i<=size(Wp);i++){h=h*Wp[i];}
2666
+ list Lp=imap(RR,L);
2667
+ list r; list Ti; list LL;
2668
+ LL[1]=list(lab,size(Lp));
2669
+ for (i=1;i<=size(Lp);i++)
2670
+ {
2671
+ Ti=minAssGTZ(Lp[i]+h);
2672
+ for(j=1;j<=size(Ti);j++)
2673
+ {
2674
+ option(redSB);
2675
+ Ti[j]=groebner(Ti[j]);
2676
+ }
2677
+ labi=lab,child+i;
2678
+ childi=size(Ti);
2679
+ LL[size(LL)+1]=list(labi,childi,Lp[i]);
2680
+ for (j=1;j<=childi;j++)
2681
+ {
2682
+ labij=labi,j;
2683
+ LL[size(LL)+1]=list(labij,0,Ti[j]);
2684
+ }
2685
+ }
2686
+ LL[1]=list(lab,size(Lp));
2687
+ setring(RR);
2688
+ return(imap(@P,LL));
2689
+ }
2690
+
2691
+ // difftocanspec
2692
+ // Computes the canonical specification of a diffspec V(N) \ V(M)
2693
+ // input:
2694
+ // intvec lab: label where to hang the canspec
2695
+ // list N ideal of null conditions.
2696
+ // ideal M ideal of the variety to be substacted
2697
+ // output:
2698
+ // the list of elements determining the canonical specification of
2699
+ // the difference V(N) \ V(M):
2700
+ // ( (intvec(i),children), ...(lab, children, prime ideal),...)
2701
+ proc difftocanspec(intvec lab, int child, ideal N, ideal M)
2702
+ {
2703
+ int i; int j; list LLL;
2704
+ def RR=basering;
2705
+ setring(@P);
2706
+ ideal Np=imap(RR,N);
2707
+ ideal Mp=imap(RR,M);
2708
+ def L=minAssGTZ(Np);
2709
+ for(j=1;j<=size(L);j++)
2710
+ {
2711
+ option(redSB);
2712
+ L[j]=groebner(L[j]);
2713
+ }
2714
+ intvec labi; intvec labij;
2715
+ int childi;
2716
+ list LL;
2717
+ if ((Mp[1]==0) or ((size(L)==1) and (L[1][1]==1)))
2718
+ {
2719
+ //LL[1]=list(lab,1);
2720
+ //labi=lab,1;
2721
+ //LL[2]=list(labi,1,ideal(1));
2722
+ //labij=labi,1;
2723
+ //LL[3]=list(labij,0,ideal(1));
2724
+ setring(RR);
2725
+ return(LLL);
2726
+ }
2727
+ list r; list Ti;
2728
+ def k=0;
2729
+ LL[1]=list(lab,0);
2730
+ for (i=1;i<=size(L);i++)
2731
+ {
2732
+ Ti=minAssGTZ(L[i]+Mp);
2733
+ for(j=1;j<=size(Ti);j++)
2734
+ {
2735
+ option(redSB);
2736
+ Ti[j]=groebner(Ti[j]);
2737
+ }
2738
+ if (not((size(Ti)==1) and (equalideals(L[i],Ti[1]))))
2739
+ {
2740
+ k++;
2741
+ labi=lab,child+k;
2742
+ childi=size(Ti);
2743
+ LL[size(LL)+1]=list(labi,childi,L[i]);
2744
+ for (j=1;j<=childi;j++)
2745
+ {
2746
+ labij=labi,j;
2747
+ LL[size(LL)+1]=list(labij,0,Ti[j]);
2748
+ }
2749
+ }
2750
+ else{setring(RR); return(LLL);}
2751
+ }
2752
+ if (size(LL)>0)
2753
+ {
2754
+ LL[1]=list(lab,k);
2755
+ setring(RR);
2756
+ return(imap(@P,LL));
2757
+ }
2758
+ else {setring(RR); return(LLL);}
2759
+ }
2760
+
2761
+ // tree
2762
+ // purpose: given a label and the list L of vertices of the tree,
2763
+ // whose content
2764
+ // are of the form list(intvec lab, int children, ideal P)
2765
+ // to obtain the vertex and its position
2766
+ // input:
2767
+ // intvec lab: label of the vertex
2768
+ // list: L the list containing the vertices
2769
+ // output:
2770
+ // list V the vertex list(lab, children, P)
2771
+ proc tree(intvec lab,list L)
2772
+ {
2773
+ int i=0; int tt=1; list V; intvec labi;
2774
+ while ((i<size(L)) and (tt))
2775
+ {
2776
+ i++;
2777
+ labi=L[i][1];
2778
+ if (labi==lab)
2779
+ {
2780
+ V=list(L[i],i);
2781
+ tt=0;
2782
+ }
2783
+ }
2784
+ if (tt==0){return(V);}
2785
+ else{return(list(list(intvec(0)),0));}
2786
+ }
2787
+
2788
+ // GCS (generalized canonical specification)
2789
+ // new structure of a GCS
2790
+
2791
+ // L is a list of vertices V of the GCS.
2792
+ // first vertex=list(intvec lab, int children, ideal lpp, ideal B)
2793
+ // other vertices=list(intvec lab, int children, ideal P)
2794
+ // the individual vertices can be accessed with the function tree
2795
+ // by the call V=tree(lab,L), that outputs the vertex if it exists
2796
+ // and its position in L, or nothing if it does not exist.
2797
+ // The first element of the list must be the root of the tree and has
2798
+ // label lab=i, and other information.
2799
+
2800
+ // example:
2801
+ // the canonical specification
2802
+ // V(a^2-ac-ba+c-abc) \ (union( V(b,a), V(c,a), V(b,a-c), V(c,a-b)))
2803
+ // is represented by the list
2804
+ // L=((intvec(i),children=1,lpp,B),(intvec(i,1),4,ideal(a^2-ac-ba+c-abc)),
2805
+ // (intvec(i,1,1),0,ideal(b,a)), (intvec(i,1,2),0,ideal(c,a)),
2806
+ // (intvec(i,1,3),0,ideal(b,a-c)), (intvec(i,1,4),0,ideal(c,a-b))
2807
+ // )
2808
+ // example:
2809
+ // the canonical specification
2810
+ // (V(a)\(union(V(c,a),V(b+c,a),V(b,a)))) union
2811
+ // (V(b)\(union(V(b,a),V(b,a-c)))) union
2812
+ // (V(c)\(union(V(c,a),V(c,a-b))))
2813
+ // is represented by the list
2814
+ // L=((i,children=3,lpp,B),
2815
+ // (intvec(i,1),3,ideal(a)),
2816
+ // (intvec(i,1,1),0,(c,a)),(intvec(i,1,2),0,(b+c,a)),(intvec(i,1,3),0,(b,a)),
2817
+ // (intvec(i,2),2,ideal(b)),
2818
+ // (intvec(i,2,1),0,(b,a)),(intvec(i,2,2),0,(b,a-c)),
2819
+ // (intvec(i,3),2,ideal(c)),
2820
+ // (intvec(i,3,1),0,(c,a)),(intvec(i,3,2),0,(c,a-b))
2821
+ // )
2822
+ // If L is the list in the last example, the call
2823
+ // tree(intvec(i,2,1),L) will output ((intvec(i,2,1),0,(b,a)),7)
2824
+
2825
+ // GCS
2826
+ // input: list T is supposed to be an element L[i] of selectcases:
2827
+ // T= list( ideal lpp, ideal B, list(N,W,L),.., list(N,W,L))
2828
+ // output: the list L of vertices being the GCS of the addition of
2829
+ // all the segments in T.
2830
+ // list(list(intvec lab, int children, ideal lpp, ideal B),
2831
+ // list(intvec lab, int children, ideal P),..
2832
+ // )
2833
+ proc GCS(intvec lab, list case)
2834
+ {
2835
+ int i; int ii; int t;
2836
+ list @L;
2837
+ @L[1]=list(lab,0,case[1],case[2]);
2838
+ exportto(Top,@L);
2839
+ int j;
2840
+ list u; intvec labu; int childu;
2841
+ list v; intvec labv; int childv;
2842
+ list T=case[3];
2843
+ for (j=1;j<=size(T);j++)
2844
+ {
2845
+ t=addcase(lab,T[j]);
2846
+ deletebrotherscontaining(lab);
2847
+ }
2848
+ relabelingindices(lab,lab);
2849
+ list L=@L;
2850
+ kill @L;
2851
+ return(L);
2852
+ }
2853
+
2854
+ // sorbylab:
2855
+ // purpose: given the list of mrcgs to order it by increasing label
2856
+ proc sortbylab(list L)
2857
+ {
2858
+ int n=L[1][2];
2859
+ int i; int j;
2860
+ list H=L;
2861
+ list LL;
2862
+ list L1;
2863
+ //LL[1]=L[1];
2864
+ //H=delete(H,1);
2865
+ while (size(H)!=0)
2866
+ {
2867
+ j=1;
2868
+ L1=H[1];
2869
+ for (i=1;i<=size(H);i++)
2870
+ {
2871
+ if(lesslab(H[i],L1)){j=i;L1=H[j];}
2872
+ }
2873
+ LL[size(LL)+1]=L1;
2874
+ H=delete(H,j);
2875
+ }
2876
+ return(LL);
2877
+ }
2878
+
2879
+ // lesslab
2880
+ // purpose: given two elements of the list of mrcgs it
2881
+ // returns 1 if the label of the first is less than that of the second
2882
+ proc lesslab(list l1, list l2)
2883
+ {
2884
+ intvec lab1=l1[1];
2885
+ intvec lab2=l2[1];
2886
+ int n1=size(lab1);
2887
+ int n2=size(lab2);
2888
+ int n=n1;
2889
+ if (n2<n1){n=n2;}
2890
+ int tt=0;
2891
+ int j=1;
2892
+ while ((lab1[j]==lab2[j]) and (j<n)){j++;}
2893
+ if (lab1[j]<lab2[j]){tt=1;}
2894
+ if ((j==n) and (lab1[j]==lab2[j]) and (n2>n1)){tt=1;}
2895
+ return(tt);
2896
+ }
2897
+
2898
+ // cantree
2899
+ // input: the list provided by selectcases
2900
+ // output: the list providing the canonicaltree
2901
+ proc cantree(list S)
2902
+ {
2903
+ string method=" ";
2904
+ list T0=S[1];
2905
+ // first element of the list of selectcases
2906
+ int i; int j;
2907
+ list L;
2908
+ list T;
2909
+ L[1]=list(intvec(0),size(S)-1,T0[1],T0[2],T0[3][1],method);
2910
+ for (i=2;i<=size(S);i++)
2911
+ {
2912
+ T=GCS(intvec(i-1),S[i]);
2913
+ T=sortbylab(T);
2914
+ for (j=1;j<=size(T);j++)
2915
+ {L[size(L)+1]=T[j];}
2916
+ }
2917
+ return(L);
2918
+ }
2919
+
2920
+ // addcase
2921
+ // recursive routine that adds to the list @L, (an already GCS)
2922
+ // a new redspec rs=(N,W,L);
2923
+ // and returns the test t whose value is
2924
+ // 0 if the new canspec is not to be hung to the fathers vertex,
2925
+ // 1 if yes.
2926
+ proc addcase(intvec labu, list rs)
2927
+ {
2928
+ int i; int j; int childu; ideal Pu;
2929
+ list T; int nchildu;
2930
+ def N=rs[1]; def W=rs[2]; def PN=rs[3];
2931
+ ideal NN; ideal MM;
2932
+ int tt=1;
2933
+ poly h=1; for (i=1;i<=size(W);i++){h=h*W[i];}
2934
+ list u=tree(labu,@L); childu=u[1][2];
2935
+ list v; intvec labv; int childv; list w; intvec labw;
2936
+ if (childu>0)
2937
+ {
2938
+ v=firstchild(u[1][1]);
2939
+ while(v[2][1]!=0)
2940
+ {
2941
+ labv=v[1][1];
2942
+ w=firstchild(labv);
2943
+ while(w[2][1]!=0)
2944
+ {
2945
+ labw=w[1][1];
2946
+ if(addcase(labw,rs)==0)
2947
+ {tt=0;}
2948
+ w=nextbrother(labw);
2949
+ }
2950
+ u=tree(labu,@L);
2951
+ childu=u[1][2];
2952
+ v=nextbrother(v[1][1]);
2953
+ }
2954
+ deletebrotherscontaining(labu);
2955
+ relabelingindices(labu,labu);
2956
+ }
2957
+ if (tt==1)
2958
+ {
2959
+ u=tree(labu,@L);
2960
+ nchildu=lastchildrenindex(labu);
2961
+ if (size(labu)==1)
2962
+ {
2963
+ T=redtocanspec(labu,nchildu,rs);
2964
+ tt=0;
2965
+ }
2966
+ else
2967
+ {
2968
+ NN=N;
2969
+ if (containedP(u[1][3],N)){tt=0;}
2970
+ for (i=1;i<=size(u[1][3]);i++)
2971
+ {
2972
+ NN[size(NN)+1]=u[1][3][i];
2973
+ }
2974
+ MM=NN;
2975
+ MM[size(MM)+1]=h;
2976
+ T=difftocanspec(labu,nchildu,NN,MM);
2977
+ }
2978
+ if (size(T)>0)
2979
+ {
2980
+ @L[u[2]][2]=@L[u[2]][2]+T[1][2];
2981
+ for (i=2;i<=size(T);i++){@L[size(@L)+1]=T[i];}
2982
+ if (size(labu)>1)
2983
+ {
2984
+ simplifynewadded(labu);
2985
+ }
2986
+ }
2987
+ else{tt=1;}
2988
+ }
2989
+ return(tt);
2990
+ }
2991
+
2992
+ // reduceR
2993
+ // reduces the polynomial f w.r.t. N, in the ring @P
2994
+ proc reduceR(poly f, ideal N)
2995
+ {
2996
+ def RR=basering;
2997
+ setring(@P);
2998
+ def fP=imap(RR,f);
2999
+ def NP=imap(RR,N);
3000
+ attrib(NP,"isSB",1);
3001
+ def rp=reduce(fP,NP);
3002
+ setring(RR);
3003
+ return(imap(@P,rp));
3004
+ }
3005
+
3006
+ // containedP
3007
+ // returns 1 if ideal Pu is contained in ideal Pv
3008
+ // returns 0 if not
3009
+ // in ring @P
3010
+ proc containedP(ideal Pu,ideal Pv)
3011
+ {
3012
+ int t=1;
3013
+ int n=size(Pu);
3014
+ int i=0;
3015
+ poly r=0;
3016
+ while ((t) and (i<n))
3017
+ {
3018
+ i++;
3019
+ r=reduceR(Pu[i],Pv);
3020
+ if (r!=0){t=0;}
3021
+ }
3022
+ return(t);
3023
+ }
3024
+
3025
+ // simplifynewadded
3026
+ // auxiliary routine of addcase
3027
+ // when a new redspec is added to a non terminal vertex,
3028
+ // it is applied to simplify the addition.
3029
+ // When Pu==Pv, the children of w are hung from u fathers
3030
+ // and deleted the whole new addition.
3031
+ // Finally, deletebrotherscontaining is applied to u fathers
3032
+ // in order to eliminate branches contained.
3033
+ proc simplifynewadded(intvec labu)
3034
+ {
3035
+ int t; int ii; int k; int kk; int j;
3036
+ intvec labfu=delintvec(labu,size(labu)); list fu; int childfu;
3037
+ list u=tree(labu,@L); int childu=u[1][2]; ideal Pu=u[1][3];
3038
+ list v; intvec labv; int childv; ideal Pv;
3039
+ list w; intvec labw; intvec nlab; list ww;
3040
+ if (childu>0)
3041
+ {
3042
+ v=firstchild(u[1][1]); labv=v[1][1]; childv=v[1][2]; Pv=v[1][3];
3043
+ ii=0;
3044
+ t=0;
3045
+ while ((not(t)) and (ii<childu))
3046
+ {
3047
+ ii++;
3048
+ if (equalideals(Pu,Pv))
3049
+ {
3050
+ fu=tree(labfu,@L);
3051
+ childfu=fu[1][2];
3052
+ j=lastchildrenindex(fu[1][1])+1;
3053
+ k=0;
3054
+ w=firstchild(v[1][1]);
3055
+ childv=v[1][2];
3056
+ for (kk=1;kk<=childv;kk++)
3057
+ {
3058
+ if (kk<childv){ww=nextbrother(w[1][1]);}
3059
+ nlab=labfu,j;
3060
+ @L[w[2]][1]=nlab;
3061
+ j++;
3062
+ if (kk<childv){w=ww;}
3063
+ }
3064
+ childfu=fu[1][2]+childv-1;
3065
+ @L[fu[2]][2]=childfu;
3066
+ @L[v[2]][2]=0;
3067
+ t=1;
3068
+ deleteverts(labu);
3069
+ }
3070
+ }
3071
+ }
3072
+ deletebrotherscontaining(labfu);
3073
+ }
3074
+
3075
+ // given the label labfu of the vertex fu it returns the last
3076
+ // int of the label of the last existing children.
3077
+ // if no child exists, then it outputs 0.
3078
+ proc lastchildrenindex(intvec labfu)
3079
+ {
3080
+ int i;
3081
+ int lastlabi; intvec labi; intvec labfi;
3082
+ int lastlab=0;
3083
+ for (i=1;i<=size(@L);i++)
3084
+ {
3085
+ labi=@L[i][1];
3086
+ if (size(labi)>1)
3087
+ {
3088
+ labfi=delintvec(labi,size(labi));
3089
+ if (labfu==labfi)
3090
+ {
3091
+ lastlabi=labi[size(labi)];
3092
+ if (lastlab<lastlabi)
3093
+ {
3094
+ lastlab=lastlabi;
3095
+ }
3096
+ }
3097
+ }
3098
+ }
3099
+ return(lastlab);
3100
+ }
3101
+
3102
+ // given the vertex u it provides the next brother of u.
3103
+ // if it does not exist, then it outputs v=list(list(intvec(0)),0)
3104
+ proc nextbrother(intvec labu)
3105
+ {
3106
+ list L; int i; int j; list next;
3107
+ int lastlabu=labu[size(labu)];
3108
+ intvec labfu=delintvec(labu,size(labu));
3109
+ int lastlabi; intvec labi; intvec labfi;
3110
+ for (i=1;i<=size(@L);i++)
3111
+ {
3112
+ labi=@L[i][1];
3113
+ if (size(labi)>1)
3114
+ {
3115
+ labfi=delintvec(labi,size(labi));
3116
+ if (labfu==labfi)
3117
+ {
3118
+ lastlabi=labi[size(labi)];
3119
+ if (lastlabu<lastlabi)
3120
+ {L[size(L)+1]=list(lastlabi,list(@L[i],i));}
3121
+ }
3122
+ }
3123
+ }
3124
+ if (size(L)==0){return(list(intvec(0),0));}
3125
+ next=L[1];
3126
+ for (i=2;i<=size(L);i++)
3127
+ {
3128
+ if (L[i][1]<next[1]){next=L[i];}
3129
+ }
3130
+ return(next[2]);
3131
+ }
3132
+
3133
+ // gives the first child of vertex fu
3134
+ proc firstchild(def labfu)
3135
+ {
3136
+ intvec labfu0=labfu;
3137
+ labfu0[size(labfu0)+1]=0;
3138
+ return(nextbrother(labfu0));
3139
+ }
3140
+
3141
+ // purpose: eliminate the children vertices of fu and all its descendents
3142
+ // whose prime ideal Pu contains a prime ideal Pv of some brother vertex w.
3143
+ proc deletebrotherscontaining(intvec labfu)
3144
+ {
3145
+ int i; int t;
3146
+ list fu=tree(labfu,@L);
3147
+ int childfu=fu[1][2];
3148
+ list u; intvec labu; ideal Pu;
3149
+ list v; intvec labv; ideal Pv;
3150
+ u=firstchild(labfu);
3151
+ for (i=1;i<=childfu;i++)
3152
+ {
3153
+ labu=u[1][1];
3154
+ Pu=u[1][3];
3155
+ v=firstchild(fu[1][1]);
3156
+ t=1;
3157
+ while ((t) and (v[2]!=0))
3158
+ {
3159
+ labv=v[1][1];
3160
+ Pv=v[1][3];
3161
+ if (labu!=labv)
3162
+ {
3163
+ if (containedP(Pv,Pu))
3164
+ {
3165
+ deleteverts(labu);
3166
+ fu=tree(labfu,@L);
3167
+ @L[fu[2]][2]=fu[1][2]-1;
3168
+ t=0;
3169
+ }
3170
+ }
3171
+ if (t!=0)
3172
+ {
3173
+ v=nextbrother(v[1][1]);
3174
+ }
3175
+ }
3176
+ if (i<childfu)
3177
+ {
3178
+ u=nextbrother(u[1][1]);
3179
+ }
3180
+ }
3181
+ }
3182
+
3183
+ // purpose: delete all descendent vertices from u included u
3184
+ // from the list @L.
3185
+ // It must be noted that after the operation, the number of children
3186
+ // in fathers vertex must be decreased in 1 unitity. This operation is not
3187
+ // performed inside this recursive routine.
3188
+ proc deleteverts(intvec labu)
3189
+ {
3190
+ int i; int ii; list v; intvec labv;
3191
+ list u=tree(labu,@L);
3192
+ int childu=u[1][2];
3193
+ @L=delete(@L,u[2]);
3194
+ if (childu>0)
3195
+ {
3196
+ v=firstchild(labu);
3197
+ labv=v[1][1];
3198
+ for (ii=1;ii<=childu;ii++)
3199
+ {
3200
+ deleteverts(labv);
3201
+ if (ii<childu)
3202
+ {
3203
+ v=nextbrother(v[1][1]);
3204
+ labv=v[1][1];
3205
+ }
3206
+ }
3207
+ }
3208
+ }
3209
+
3210
+ // purpose: starting from vertex olab (initially nlab=olab)
3211
+ // relabels the vertices of @L to be consecutive
3212
+ proc relabelingindices(intvec olab, intvec nlab)
3213
+ {
3214
+ int i;
3215
+ intvec nlabi; intvec labv;
3216
+ list u=tree(olab,@L);
3217
+ int childu=u[1][2];
3218
+ list v;
3219
+ if (childu==0){@L[u[2]][1]=nlab;}
3220
+ else
3221
+ {
3222
+ v=firstchild(u[1][1]);
3223
+ @L[u[2]][1]=nlab;
3224
+ i=1;
3225
+ while(v[2]!=0)
3226
+ {
3227
+ labv=v[1][1];
3228
+ nlabi=nlab,i;
3229
+ relabelingindices(labv,nlabi);
3230
+ v=nextbrother(labv);
3231
+ i++;
3232
+ }
3233
+ }
3234
+ }
3235
+
3236
+ // mrcgs
3237
+ // fundamental routine giving the
3238
+ // "Minimal Reduced Comprehensive Groebner System"
3239
+ // input: F = ideal in ring R=K[a][x]
3240
+ // output: a list L representing the tree of the mrcgs.
3241
+ proc mrcgs(ideal F, list #)
3242
+ "USAGE: mrcgs(F);
3243
+ F is the ideal from which to obtain the Minimal Reduced CGS.
3244
+ Alternatively, as option:
3245
+ mrcgs(F,L);
3246
+ where L is a list of the null conditions ideal N, and W the set of
3247
+ non-null polynomials (ideal). If this option is set, the ideals N and W
3248
+ must depend only on the parameters and the parameter space is
3249
+ reduced to V(N) \ V(h), where h=prod(w), for w in W.
3250
+ A reduced specification of (N,W) will be computed and used to
3251
+ restrict the parameter-space. The output will omit the known restrictions
3252
+ given as option.
3253
+ RETURN: The list representing the Minimal Reduced CGS.
3254
+ The description given here is identical for rcgs and crcgs.
3255
+ The elements of the list T computed by mrcgs are lists representing
3256
+ a rooted tree.
3257
+ Each element has as the two first entries with the following content:@*
3258
+ [1]: The label (intvec) representing the position in the rooted
3259
+ tree: 0 for the root (and this is a special element)
3260
+ i for the root of the segment i
3261
+ (i,...) for the children of the segment i
3262
+ [2]: the number of children (int) of the vertex.
3263
+ There thus three kind of vertices:
3264
+ 1) the root (first element labelled 0),
3265
+ 2) the vertices labelled with a single integer i,
3266
+ 3) the rest of vertices labelled with more indices.
3267
+ Description of the root. Vertex type 1)
3268
+ There is a special vertex (the first one) whose content is
3269
+ the following:
3270
+ [3] lpp of the given ideal
3271
+ [4] the given ideal
3272
+ [5] the red-spec of the (optional) given null and non-null conditions
3273
+ (see redspec for the description)
3274
+ [6] MRCGS (to remember which algorithm has been used). If the
3275
+ algorithm used is rcgs of crcgs then this will be stated
3276
+ at this vertex (RCGS or CRCGS).
3277
+ Description of vertices type 2). These are the vertices that
3278
+ initiate a segment, and are labelled with a single integer.
3279
+ [3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
3280
+ will correspond to a sheaf.
3281
+ [4] the reduced basis (ideal) of the segment.
3282
+ Description of vertices type 3). These vertices have as first
3283
+ label i and descend form vertex i in the position of the label
3284
+ (i,...). They contain moreover a unique prime ideal in the parameters
3285
+ and form ascending chains of ideals.
3286
+ How is to be read the mrcgs tree? The vertices with an even number of
3287
+ integers in the label are to be considered as additive and those
3288
+ with an odd number of integers in the label are to be considered as
3289
+ subtraction. As an example consider the following vertices:
3290
+ v1=((i),2,lpp,B),
3291
+ v2=((i,1),2,P_{(i,1)}),
3292
+ v3=((i,1,1),2,P_{(i,1,1)},
3293
+ v4=((i,1,1,1),1,P_{(i,1,1,1)},
3294
+ v5=((i,1,1,1,1),0,P_{(i,1,1,1,1)},
3295
+ v6=((i,1,1,2),1,P_{(i,1,1,2)},
3296
+ v7=((i,1,1,2,1),0,P_{(i,1,1,2,1)},
3297
+ v8=((i,1,2),0,P_{(i,1,2)},
3298
+ v9=((i,2),1,P_{(i,2)},
3299
+ v10=((i,2,1),0,P_{(i,2,1)},
3300
+ They represent the segment:
3301
+ (V(i,1)\(((V(i,1,1) \ ((V(i,1,1,1) \ V(i,1,1,1,1)) u (V(i,1,1,2) \ V(i,1,1,2,1)))))
3302
+ u V(i,1,2)) u (V(i,2) \ V(i,2,1))
3303
+ and can also be represented by
3304
+ (V(i,1) \ (V(i,1,1) u V(i,1,2))) u
3305
+ (V(i,1,1,1) \ V(i,1,1,1)) u
3306
+ (V(i,1,1,2) \ V(i,1,1,2,1)) u
3307
+ (V(i,2) \ V(i,2,1))
3308
+ where V(i,j,..) = V(P_{(i,j,..)}
3309
+ NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
3310
+ mrcgs (Minimal Reduced CGS) is an algorithm that packs so much as it
3311
+ is able to do (using algorithms adhoc) the segments with the same lpp,
3312
+ obtaining the minimal number of segments. The hypothesis is that this
3313
+ is also canonical, but for the moment there is no proof of the uniqueness
3314
+ of that minimal packing. Moreover, the segments that are obtained are not
3315
+ locally closed, i.e. there are not always the difference of two varieties,
3316
+ but can be a union of differences.
3317
+ The output can be visualized using cantreetoMaple, that will
3318
+ write a file with the content of mrcgs that can be read in Maple
3319
+ and plotted using the Maple plotcantree routine of the Monte's dpgb library
3320
+ You can also try the routine cantodiffcgs when the segments are all
3321
+ difference of two varieties to have a simpler view of the output.
3322
+ But it will give an error if the output is not locally closed.
3323
+ KEYWORDS: rcgs, crcgs, buildtree, cantreetoMaple, cantodiffcgs
3324
+ EXAMPLE: mrcgs; shows an example"
3325
+ {
3326
+ int i=1;
3327
+ int @ish=1;
3328
+ exportto(Top,@ish);
3329
+ while((@ish) and (i<=size(F)))
3330
+ {
3331
+ @ish=ishomog(F[i]);
3332
+ i++;
3333
+ }
3334
+ list L=buildtree(F, #);
3335
+ list S=selectcases(L);
3336
+ list T=cantree(S);
3337
+ T[1][6]="MRCGS";
3338
+ T[1][4]=F;
3339
+ for (i=1;i<=size(F);i++)
3340
+ {
3341
+ T[1][3][i]=leadmonom(F[i]);
3342
+ }
3343
+ if (size(#)>0)
3344
+ {
3345
+ ideal N=#[1];
3346
+ ideal W=#[2];
3347
+ T=reduceconds(T,N,W);
3348
+ }
3349
+ kill @ish;
3350
+ return(T);
3351
+ }
3352
+ example
3353
+ { "EXAMPLE:"; echo = 2;
3354
+ ring R=(0,b,c,d,e,f),(x,y),dp;
3355
+ ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
3356
+ def T=mrcgs(F);
3357
+ T;
3358
+ cantreetoMaple(T,"Tm","Tm.txt");
3359
+ //cantodiffcgs(T); // has non locally closed segments
3360
+ ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
3361
+ ideal F2=x4-a4+a2, x1+x2+x3+x4-a1-a3-a4, x1*x3*x4-a1*a3*a4, x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
3362
+ def T2=mrcgs(F2);
3363
+ T2;
3364
+ cantreetoMaple(T2,"T2m","T2m.txt");
3365
+ cantodiffcgs(T2);
3366
+ }
3367
+
3368
+ // reduceconds: when null and nonnull conditions are specified it
3369
+ // takes the output of cantree and reduces the tree
3370
+ // assuming the null and nonnull conditions
3371
+ // input: list T (the output of cantree computed with null and nonull conditions
3372
+ // ideal N: null conditions
3373
+ // ideal W: non-null conditions
3374
+ // output: the list T assuming the null and non-null conditions
3375
+ proc reduceconds(list T,ideal N,ideal W)
3376
+ {
3377
+ int i; intvec lab; intvec labfu; list fu; int j; int t;
3378
+ list @L=T;
3379
+ exportto(Top,@L);
3380
+ int n=size(W);
3381
+ for (i=2;i<=size(@L);i++)
3382
+ {
3383
+ t=0; j=0;
3384
+ while ((not(t)) and (j<n))
3385
+ {
3386
+ j++;
3387
+ if (size(@L[i][1])>1)
3388
+ {
3389
+ if (memberpos(W[j],@L[i][3])[1])
3390
+ {
3391
+ t=1;
3392
+ @L[i][3]=ideal(1);
3393
+ }
3394
+ }
3395
+ }
3396
+ }
3397
+ for (i=2;i<=size(@L);i++)
3398
+ {
3399
+ if (size(@L[i][1])>1)
3400
+ {
3401
+ @L[i][3]=delidfromid(N,@L[i][3]);
3402
+ }
3403
+ }
3404
+ for (i=2;i<=size(@L);i++)
3405
+ {
3406
+ if ((size(@L[i][1])>1) and (size(@L[i][1]) mod 2==1) and (equalideals(@L[i][3],ideal(0))))
3407
+ {
3408
+ lab=@L[i][1];
3409
+ labfu=delintvec(lab,size(lab));
3410
+ fu=tree(labfu,@L);
3411
+ @L[fu[2]][2]=@L[fu[2]][2]-1;
3412
+ deleteverts(lab);
3413
+ }
3414
+ }
3415
+ for (j=2; j<=size(@L); j++)
3416
+ {
3417
+ if (@L[j][2]>0)
3418
+ {
3419
+ deletebrotherscontaining(@L[j][1]);
3420
+ }
3421
+ }
3422
+ for (i=1;i<=@L[1][2];i++)
3423
+ {
3424
+ relabelingindices(intvec(i),intvec(i));
3425
+ }
3426
+ list TT=@L;
3427
+ kill @L;
3428
+ return(TT);
3429
+ }
3430
+
3431
+ //**************End of cantree******************************
3432
+
3433
+ //**************Begin of CanTreeTo Maple********************
3434
+
3435
+ // cantreetoMaple
3436
+ // input: list L: the output of cantree
3437
+ // string T: the name of the table of Maple that represents L
3438
+ // in Maple
3439
+ // string writefile: the name of the file where the table T
3440
+ // is written
3441
+ proc cantreetoMaple(list L, string T, string writefile)
3442
+ "USAGE: cantreetoMaple(T, TM, writefile);
3443
+ T: is the list provided by mrcgs or crcgs or crcgs,
3444
+ TM: is the name (string) of the table variable in Maple that will represent
3445
+ the output of the fundamental routines,
3446
+ writefile: is the name (string) of the file where to write the content.
3447
+ RETURN: writes the list provided by mrcgs or crcgs or crcgs to a file
3448
+ containing the table representing it in Maple.
3449
+ NOTE: It can be called from the output of mrcgs or rcgs of crcgs
3450
+ KEYWORDS: mrcgs, rcgs, crcgs, Maple
3451
+ EXAMPLE: cantreetoMaple; shows an example"
3452
+ {
3453
+ short=0;
3454
+ int i;
3455
+ list L0=L[1];
3456
+ int numcases=L0[2];
3457
+ link LLw=":w "+writefile;
3458
+ string La=string("table(",T,");");
3459
+ write(LLw, La);
3460
+ close(LLw);
3461
+ link LLa=":a "+writefile;
3462
+ def RL=ringlist(@R);
3463
+ list p=RL[1][2];
3464
+ string param=string(p[1]);
3465
+ if (size(p)>1)
3466
+ {
3467
+ for(i=2;i<=size(p);i++){param=string(param,",",p[i]);}
3468
+ }
3469
+ list v=RL[2];
3470
+ string vars=string(v[1]);
3471
+ if (size(v)>1)
3472
+ {
3473
+ for(i=2;i<=size(v);i++){vars=string(vars,",",v[i]);}
3474
+ }
3475
+ list xord;
3476
+ list pord;
3477
+ if (RL[1][3][1][1]=="dp"){pord=string("tdeg(",param);}
3478
+ else
3479
+ {
3480
+ if (RL[1][3][1][1]=="lp"){pord=string("plex(",param);}
3481
+ }
3482
+ if (RL[3][1][1]=="dp"){xord=string("tdeg(",vars);}
3483
+ else
3484
+ {
3485
+ if (RL[3][1][1]=="lp"){xord=string("plex(",vars);}
3486
+ }
3487
+ write(LLa,string(T,"[[___xord]]:=",xord,");"));
3488
+ write(LLa,string(T,"[[___pord]]:=",pord,");"));
3489
+ //write(LLa,string(T,"[[11]]:=true; "));
3490
+ list S;
3491
+ S=string(T,"[[0]]:=",numcases,";");
3492
+ write(LLa,S);
3493
+ S=string(T,"[[___method]]:=",L[1][6],";");
3494
+ // Method L[1][6];
3495
+ write(LLa,S);
3496
+ S=string(T,"[[___basis]]:=[",L0[4],"];");
3497
+ write(LLa,S);
3498
+ S=string(T,"[[___nullcond]]:=[",L0[5][1],"];");
3499
+ write(LLa,S);
3500
+ S=string(T,"[[___notnullcond]]:={",L0[5][2],"};");
3501
+ write(LLa,S);
3502
+ for (i=1;i<=numcases;i++)
3503
+ {
3504
+ S=ctlppbasis(T,L,intvec(i));
3505
+ write(LLa,S[1]);
3506
+ write(LLa,S[2]);
3507
+ write(LLa,S[3]);
3508
+ //write(LLa,S[4]);
3509
+ ctrecwrite(LLa, L, T, intvec(i),S[4]);
3510
+ }
3511
+ close(LLa);
3512
+ }
3513
+ example
3514
+ { "EXAMPLE:"; echo = 2;
3515
+ ring R=(0,b,c,d,e,f),(x,y),dp;
3516
+ ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
3517
+ def T=mrcgs(F);
3518
+ T;
3519
+ cantreetoMaple(T,"Tm","Tm.txt");
3520
+ }
3521
+
3522
+ // ctlppbasis: auxiliary cantreetoMaple routine
3523
+ // input:
3524
+ // string T: the name of the table in Maple
3525
+ // intvec lab: the label of the case
3526
+ // ideal B: the basis of the case
3527
+ // output:
3528
+ // the string of T[[lab]] (basis); in Maple
3529
+ proc ctlppbasis(string T, list L, intvec lab)
3530
+ {
3531
+ list u;
3532
+ intvec lab0=lab,0;
3533
+ u=tree(lab,L);
3534
+ list Li;
3535
+ Li[1]=string(T,"[[",lab,",___lpp]]:=[",u[1][3],"]; ");
3536
+ Li[2]=string(T,"[[",lab,"]]:=[",u[1][4],"]; ");
3537
+ Li[3]=string(T,"[[",lab0,"]]:=",u[1][2],"; ");
3538
+ Li[4]=u[1][2];
3539
+ return(Li);
3540
+ }
3541
+
3542
+ // ctlppbasis: auxiliary cantreetoMaple routine
3543
+ // recursive routine to write all elements
3544
+ proc ctrecwrite(LLa, list L, string T, intvec lab, int n)
3545
+ {
3546
+ int i;
3547
+ intvec labi; intvec labi0;
3548
+ string S;
3549
+ list u;
3550
+ for (i=1;i<=n;i++)
3551
+ {
3552
+ labi=lab,i;
3553
+ u=tree(labi,L);
3554
+ S=string(T,"[[",labi,"]]:=[",u[1][3],"];");
3555
+ write(LLa,S);
3556
+ labi0=labi,0;
3557
+ S=string(T,"[[",labi0,"]]:=",u[1][2],";");
3558
+ write(LLa,S);
3559
+ ctrecwrite(LLa, L, T, labi, u[1][2]);
3560
+ }
3561
+ }
3562
+
3563
+ //**************End of CanTreeTo Maple********************
3564
+
3565
+ //**************Begin homogenizing************************
3566
+
3567
+ // ishomog:
3568
+ // Purpose: test if a polynomial is homogeneous in the variables or not
3569
+ // input: poly f
3570
+ // output 1 if f is homogeneous, 0 if not
3571
+ proc ishomog(def f)
3572
+ {
3573
+ int i; poly r; int d; int dr;
3574
+ if (f==0){return(1);}
3575
+ d=deg(f); dr=d; r=f;
3576
+ while ((d==dr) and (r!=0))
3577
+ {
3578
+ r=r-lead(r);
3579
+ dr=deg(r);
3580
+ }
3581
+ if (r==0){return(1);}
3582
+ else{return(0);}
3583
+ }
3584
+
3585
+ proc rcgs(ideal F, list #)
3586
+ "USAGE: rcgs(F);
3587
+ F is the ideal from which to obtain the Reduced CGS.
3588
+ rcgs(F,L);
3589
+ where L is a list of the null conditions ideal N, and W the set of
3590
+ non-null polynomials (ideal). If this option is set, the ideals N and W
3591
+ must depend only on the parameters and the parameter space is
3592
+ reduced to V(N) \ V(h), where h=prod(w), for w in W.
3593
+ A reduced specification of (N,W) will be computed and used to
3594
+ restrict the parameter-space. The output will omit the known restrictions
3595
+ given as option.
3596
+ RETURN: The list representing the Reduced CGS.
3597
+ The description given here is analogous as for mrcgs and crcgs.
3598
+ The elements of the list T computed by rcgs are lists representing
3599
+ a rooted tree.
3600
+ Each element has as the two first entries with the following content:@*
3601
+ [1]: The label (intvec) representing the position in the rooted
3602
+ tree: 0 for the root (and this is a special element)
3603
+ i for the root of the segment i
3604
+ (i,...) for the children of the segment i
3605
+ [2]: the number of children (int) of the vertex.
3606
+ There thus three kind of vertices:
3607
+ 1) the root (first element labelled 0),
3608
+ 2) the vertices labelled with a single integer i,
3609
+ 3) the rest of vertices labelled with more indices.
3610
+ Description of the root. Vertex type 1)
3611
+ There is a special vertex (the first one) whose content is
3612
+ the following:
3613
+ [3] lpp of the given ideal
3614
+ [4] the given ideal
3615
+ [5] the red-spec of the (optional) given null and non-null conditions
3616
+ (see redspec for the description)
3617
+ [6] RCGS (to remember which algorithm has been used). If the
3618
+ algorithm used is mrcgs or crcgs then this will be stated
3619
+ at this vertex (mrcgs or CRCGS).
3620
+ Description of vertices type 2). These are the vertices that
3621
+ initiate a segment, and are labelled with a single integer.
3622
+ [3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
3623
+ will correspond to a sheaf.
3624
+ [4] the reduced basis (ideal) of the segment.
3625
+ Description of vertices type 3). These vertices have as first
3626
+ label i and descend form vertex i in the position of the label
3627
+ (i,...). They contain moreover a unique prime ideal in the parameters
3628
+ and form ascending chains of ideals.
3629
+ How is to be read the rcgs tree? The vertices with an even number of
3630
+ integers in the label are to be considered as additive and those
3631
+ with an odd number of integers in the label are to be considered as
3632
+ subtraction. As an example consider the following vertices:
3633
+ v1=((i),2,lpp,B),
3634
+ v2=((i,1),2,P_{(i,1)}),
3635
+ v3=((i,1,1),0,P_{(i,1,1)}, v4=((i,1,2),0,P_{(i,1,1)}),
3636
+ v5=((i,2),2,P_{(i,2)},
3637
+ v6=((i,2,1),0,P_{(i,2,1)}, v7=((i,2,2),0,P_{(i,2,2)}
3638
+ They represent the segment:
3639
+ (V(i,1)\(V(i,1,1) u V(i,1,2))) u
3640
+ (V(i,2)\(V(i,2,1) u V(i,2,2)))
3641
+ where V(i,j,..) = V(P_{(i,j,..)}
3642
+ NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
3643
+ rcgs (Reduced CGS) is an algorithm that first homogenizes the
3644
+ basis of the given ideal then applies mrcgs and finally de-homogenizes
3645
+ and reduces the resulting bases. (See the note of mrcgs).
3646
+ As a result of Wibmer's Theorem, the resulting segments are
3647
+ locally closed (i.e. difference of varieties). Nevertheless, the
3648
+ output is not completely canonical as the homogeneous ideal considered
3649
+ is not the homogenized ideal of the given ideal but only the ideal
3650
+ obtained by homogenizing the given basis.
3651
+
3652
+ The output can be visualized using cantreetoMaple, that will
3653
+ write a file with the content of mrcgs that can be read in Maple
3654
+ and plotted using the Maple plotcantree routine of the Monte's dpgb library
3655
+ You can also use the routine cantodiffcgs as the segments are all
3656
+ difference of two varieties to have a simpler view of the output.
3657
+ KEYWORDS: rcgs, crcgs, buildtree, cantreetoMaple, cantodiffcgs
3658
+ EXAMPLE: rcgs; shows an example"
3659
+ {
3660
+ ideal N;
3661
+ ideal W;
3662
+ int j; int i;
3663
+ poly f;
3664
+ if (size(#)==2)
3665
+ {
3666
+ N=#[1];
3667
+ W=#[2];
3668
+ }
3669
+ i=1; int postred=0;
3670
+ int ish=1;
3671
+ while ((ish) and (i<=size(F)))
3672
+ {
3673
+ ish=ishomog(F[i]);
3674
+ i++;
3675
+ }
3676
+ if (ish){return(mrcgs(F, #));}
3677
+ def RR=basering;
3678
+ list RRL=ringlist(RR);
3679
+ if (RRL[3][1][1]!="dp"){ERROR("the order must be dp");}
3680
+ poly @t;
3681
+ ring H=0,@t,dp;
3682
+ def RH=RR+H;
3683
+ setring(RH);
3684
+ setglobalrings();
3685
+ def FH=imap(RR,F);
3686
+ list u; ideal B; ideal lpp; intvec lab;
3687
+ FH=homog(FH,@t);
3688
+ def Nh=imap(RR,N);
3689
+ def Wh=imap(RR,W);
3690
+ list L;
3691
+ if ((size(Nh)>0) or (size(Wh)>0))
3692
+ {
3693
+ L=mrcgs(FH,list(Nh,Wh));
3694
+ }
3695
+ else
3696
+ {
3697
+ L=mrcgs(FH);
3698
+ }
3699
+ L[1][3]=subst(L[1][3],@t,1);
3700
+ L[1][4]=subst(L[1][4],@t,1);
3701
+ for (i=1; i<=L[1][2]; i++)
3702
+ {
3703
+ lab=intvec(i);
3704
+ u=tree(lab,L);
3705
+ postred=difflpp(u[1][3]);
3706
+ B=sortideal(subst(L[u[2]][4],@t,1));
3707
+ lpp=sortideal(subst(L[u[2]][3],@t,1));
3708
+ if (memberpos(1,B)[1]){B=ideal(1); lpp=ideal(1);}
3709
+ if (postred)
3710
+ {
3711
+ lpp=ideal(0);
3712
+ B=postredgb(mingb(B));
3713
+ for (j=1;j<=size(B);j++){lpp[j]=leadmonom(B[j]);}
3714
+ }
3715
+ else{"Sheaves present, not reduced bases in the case with:";lpp;}
3716
+ L[u[2]][4]=B;
3717
+ L[u[2]][3]=lpp;
3718
+ }
3719
+ setring(RR);
3720
+ setglobalrings();
3721
+ list LL=imap(RH,L);
3722
+ LL[1][6]="RCGS";
3723
+ return(LL);
3724
+ }
3725
+ example
3726
+ { "EXAMPLE:"; echo = 2;
3727
+ ring R=(0,b,c,d,e,f),(x,y),dp;
3728
+ ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
3729
+ def T=rcgs(F);
3730
+ T;
3731
+ cantreetoMaple(T,"Tr","Tr.txt");
3732
+ cantodiffcgs(T);
3733
+ }
3734
+
3735
+ proc difflpp(ideal lpp)
3736
+ {
3737
+ int t=1; int i;
3738
+ poly lp1=lpp[1];
3739
+ poly lp;
3740
+ i=2;
3741
+ while ((i<=size(lpp)) and (t))
3742
+ {
3743
+ lp=lpp[i];
3744
+ if (lp==lp1){t=0;}
3745
+ lp1=lp;
3746
+ i++;
3747
+ }
3748
+ return(t);
3749
+ }
3750
+
3751
+ // redgb: given a minimal bases (gb reducing) it
3752
+ // reduces each polynomial w.r.t. to the others
3753
+ proc postredgb(ideal F)
3754
+ {
3755
+ ideal G;
3756
+ ideal H;
3757
+ int i;
3758
+ if (size(F)==0){return(ideal(0));}
3759
+ for (i=1;i<=size(F);i++)
3760
+ {
3761
+ H=delfromideal(F,i);
3762
+ G[i]=pdivi2(F[i],H)[1];
3763
+ }
3764
+ return(G);
3765
+ }
3766
+
3767
+ proc crcgs(ideal F, list #)
3768
+ "USAGE: crcgs(F);
3769
+ F is the ideal from which to obtain the Canonical Reduced CGS.
3770
+ crcgs(F,L);
3771
+ where L is a list of the null conditions ideal N, and W the set of
3772
+ non-null polynomials (ideal). If this option is set, the ideals N and W
3773
+ must depend only on the parameters and the parameter space is
3774
+ reduced to V(N) \ V(h), where h=prod(w), for w in W.
3775
+ A reduced specification of (N,W) will be computed and used to
3776
+ restrict the parameter-space. The output will omit the known restrictions
3777
+ given as option.
3778
+ RETURN: The list representing the Canonical Reduced CGS.
3779
+ The description given here is identical for mrcgs and rcgs.
3780
+ The elements of the list T computed by crcgs are lists representing
3781
+ a rooted tree.
3782
+ Each element has as the two first entries with the following content:@*
3783
+ [1]: The label (intvec) representing the position in the rooted
3784
+ tree: 0 for the root (and this is a special element)
3785
+ i for the root of the segment i
3786
+ (i,...) for the children of the segment i
3787
+ [2]: the number of children (int) of the vertex.
3788
+ There thus three kind of vertices:
3789
+ 1) the root (first element labelled 0),
3790
+ 2) the vertices labelled with a single integer i,
3791
+ 3) the rest of vertices labelled with more indices.
3792
+ Description of the root. Vertex type 1)
3793
+ There is a special vertex (the first one) whose content is
3794
+ the following:
3795
+ [3] lpp of the given ideal
3796
+ [4] the given ideal
3797
+ [5] the red-spec of the (optional) given null and non-null conditions
3798
+ (see redspec for the description)
3799
+ [6] mrcgs (to remember which algorithm has been used). If the
3800
+ algorithm used is rcgs of crcgs then this will be stated
3801
+ at this vertex (RCGS or CRCGS).
3802
+ Description of vertices type 2). These are the vertices that
3803
+ initiate a segment, and are labelled with a single integer.
3804
+ [3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
3805
+ will correspond to a sheaf.
3806
+ [4] the reduced basis (ideal) of the segment.
3807
+ Description of vertices type 3). These vertices have as first
3808
+ label i and descend form vertex i in the position of the label
3809
+ (i,...). They contain moreover a unique prime ideal in the parameters
3810
+ and form ascending chains of ideals.
3811
+ How is to be read the mrcgs tree? The vertices with an even number of
3812
+ integers in the label are to be considered as additive and those
3813
+ with an odd number of integers in the label are to be considered as
3814
+ subtraction. As an example consider the following vertices:
3815
+ v1=((i),2,lpp,B),
3816
+ v2=((i,1),2,P_{(i,1)}),
3817
+ v3=((i,1,1),0,P_{(i,1,1)}, v4=((i,1,2),0,P_{(i,1,1)}),
3818
+ v5=((i,2),2,P_{(i,2)},
3819
+ v6=((i,2,1),0,P_{(i,2,1)}, v7=((i,2,2),0,P_{(i,2,2)}
3820
+ They represent the segment:
3821
+ (V(i,1)\(V(i,1,1) u V(i,1,2))) u
3822
+ (V(i,2)\(V(i,2,1) u V(i,2,2)))
3823
+ where V(i,j,..) = V(P_{(i,j,..)}
3824
+ NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
3825
+ crcgs (Canonical Reduced CGS) is an algorithm that first homogenizes the
3826
+ the given ideal then applies mrcgs and finally de-homogenizes
3827
+ and reduces the resulting bases. (See the note of mrcgs).
3828
+ As a result of Wibmer's Theorem, the resulting segments are
3829
+ locally closed (i.e. difference of varieties) and the partition is
3830
+ canonical as the homogenized ideal is uniquely associated to the given
3831
+ ideal not depending of the given basis.
3832
+
3833
+ Nevertheless the computations to do are usually more time consuming
3834
+ and so it is preferable to compute first the rcgs and only if
3835
+ it success you can try crcgs.
3836
+
3837
+ The output can be visualized using cantreetoMaple, that will
3838
+ write a file with the content of crcgs that can be read in Maple
3839
+ and plotted using the Maple plotcantree routine of the Monte's dpgb library
3840
+ You can also use the routine cantodiffcgs as the segments are all
3841
+ difference of two varieties to have a simpler view of the output.
3842
+ KEYWORDS: mrcgs, rcgs, buildtree, cantreetoMaple, cantodiffcgs
3843
+ EXAMPLE: mrcgs; shows an example"
3844
+ {
3845
+ int ish=1; int i=1;
3846
+ while ((ish) and (i<=size(F)))
3847
+ {
3848
+ ish=ishomog(F[i]);
3849
+ i++;
3850
+ }
3851
+ if (ish){return(mrcgs(F, #));}
3852
+ list L;
3853
+ def RR=basering;
3854
+ setglobalrings();
3855
+ setring(@RP);
3856
+ ideal FP=imap(RR,F);
3857
+ option(redSB);
3858
+ def G=groebner(FP);
3859
+ setring(RR);
3860
+ def GR=imap(@RP,G);
3861
+ kill @RP;
3862
+ kill @P;
3863
+ L=rcgs(GR, #);
3864
+ L[1][6]="CRCGS";
3865
+ return(L);
3866
+ }
3867
+ example
3868
+ { "EXAMPLE:"; echo = 2;
3869
+ ring R=(0,b,c,d,e,f),(x,y),dp;
3870
+ ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
3871
+ def T=crcgs(F);
3872
+ T;
3873
+ cantreetoMaple(T,"Tc","Tc.txt");
3874
+ cantodiffcgs(T);
3875
+ }
3876
+
3877
+ //purpose ideal intersection called in @R and computed in @P
3878
+ proc idintR(ideal N, ideal M)
3879
+ {
3880
+ def RR=basering;
3881
+ setring(@P);
3882
+ def Np=imap(RR,N);
3883
+ def Mp=imap(RR,M);
3884
+ def Jp=idint(Np,Mp);
3885
+ setring(RR);
3886
+ return(imap(@P,Jp));
3887
+ }
3888
+
3889
+ //purpose reduced groebner basis called in @R and computed in @P
3890
+ proc gbR(ideal N)
3891
+ {
3892
+ def RR=basering;
3893
+ setring(@P);
3894
+ def Np=imap(RR,N);
3895
+ option(redSB);
3896
+ Np=groebner(Np);
3897
+ setring(RR);
3898
+ return(imap(@P,Np));
3899
+ }
3900
+
3901
+ // purpose: given the output of a locally closed CGS (i.e. from rcgs or crcgs)
3902
+ // it returns the segments as difference of varieties.
3903
+ proc cantodiffcgs(list L)
3904
+ "USAGE: canttodiffcgs(T);
3905
+ T: is the list provided by mrcgs or crcgs or crcgs,
3906
+ RETURN: The list transforming the content of these routines to a simpler
3907
+ output where each segment corresponds to a single element of the list
3908
+ that is described as difference of two varieties.
3909
+
3910
+ The first element of the list is identical to the first element
3911
+ of the list provided by the corresponding cgs algorithm, and
3912
+ contains general information on the call (see mrcgs).
3913
+ The remaining elements are lists of 4 elements,
3914
+ representing segments. These elements are
3915
+ [1]: the lpp of the segment
3916
+ [2]: the basis of the segment
3917
+ [3]; the ideal of the first variety (radical)
3918
+ [4]; the ideal of the second variety (radical)
3919
+ The segment is V([3]) \ V([4]).
3920
+
3921
+ NOTE: It can be called from the output of mrcgs or rcgs of crcgs
3922
+ KEYWORDS: mrcgs, rcgs, crcgs, Maple
3923
+ EXAMPLE: cantodiffcgs; shows an example"
3924
+ {
3925
+ int i; int j; int k; int depth; list LL; list u; list v; list w;
3926
+ ideal N; ideal Nn; ideal M; ideal Mn; ideal N0; ideal W0;
3927
+ LL[1]=L[1];
3928
+ N0=L[1][5][1];
3929
+ W0=L[1][5][2];
3930
+ def RR=basering;
3931
+ setring(@P);
3932
+ def N0P=imap(RR,N0);
3933
+ def W0P=imap(RR,N0);
3934
+ ideal NP;
3935
+ ideal MP;
3936
+ setring(RR);
3937
+ for (i=2;i<=size(L);i++)
3938
+ {
3939
+ depth=size(L[i][1]);
3940
+ if (depth>3){ERROR("the given CGS has non locally closed segments");}
3941
+ }
3942
+ for (i=1;i<=L[1][2];i++)
3943
+ {
3944
+ N=ideal(1);
3945
+ M=ideal(1);
3946
+ u=tree(intvec(i),L);
3947
+ for (j=1;j<=u[1][2];j++)
3948
+ {
3949
+ v=tree(intvec(i,j),L);
3950
+ Nn=v[1][3];
3951
+ N=idintR(N,Nn);
3952
+ for (k=1;k<=v[1][2];k++)
3953
+ {
3954
+ w=tree(intvec(i,j,k),L);
3955
+ Mn=w[1][3];
3956
+ M=idintR(M,Mn);
3957
+ }
3958
+ }
3959
+ setring(@P);
3960
+ def NP=imap(RR,N);
3961
+ def MP=imap(RR,M);
3962
+ MP=MP+N0P;
3963
+ for (j=1;j<=size(W0P);j++){MP=MP+ideal(W0P[j]);}
3964
+ NP=NP+N0P;
3965
+ NP=gbR(NP);
3966
+ MP=gbR(MP);
3967
+ setring(RR);
3968
+ N=imap(@P,NP);
3969
+ M=imap(@P,MP);
3970
+ LL[i+1]=list(u[1][3],u[1][4],N,M);
3971
+ }
3972
+ return(LL);
3973
+ }
3974
+ example
3975
+ { "EXAMPLE:"; echo = 2;
3976
+ ring R=(0,b,c,d,e,f),(x,y),dp;
3977
+ ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
3978
+ def T=crcgs(F);
3979
+ T;
3980
+ cantreetoMaple(T,"Tc","Tc.txt");
3981
+ cantodiffcgs(T);
3982
+ }
3983
+
3984
+ //**************End homogenizing************************