passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-aarch64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +490 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-6a2a8666.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-ac579979.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-66e33516.4.1.so +0 -0
- passagemath_singular.libs/libflint-81de1160.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-0043a3a2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-06512335.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-cb7246b5.4.1.so +0 -0
- passagemath_singular.libs/libreadline-28330744.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-8c425241.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-f81c2d16.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,3984 @@
|
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version redcgs.lib 4.2.0.0 Dec_2020 "; // $Id: 0f66859f752256452443f8d8d240bc0bd388c70c $
|
|
3
|
+
category="General purpose";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: redcgs.lib Reduced Comprehensive Groebner Systems.
|
|
6
|
+
|
|
7
|
+
OVERVIEW:
|
|
8
|
+
Comprehensive Groebner Systems. Canonical Forms.
|
|
9
|
+
The library contains Monte's algorithms to compute disjoint, reduced
|
|
10
|
+
Comprehensive Groebner Systems (CGS). A CGS is a set of pairs of
|
|
11
|
+
(segment,basis). The segments S_i are subsets of the parameter space,
|
|
12
|
+
and the bases B_i are sets of polynomials specializing to Groebner
|
|
13
|
+
bases of the specialized ideal for every point in S_i.
|
|
14
|
+
|
|
15
|
+
The purpose of the routines in this library is to obtain CGS with
|
|
16
|
+
better properties, namely disjoint segments forming a partition of
|
|
17
|
+
the parameter space and reduced bases. Reduced bases are sets of
|
|
18
|
+
polynomials that specialize to the reduced Groebner basis of the
|
|
19
|
+
specialized ideal preserving the leading power products (lpp).
|
|
20
|
+
The lpp characterize the type of solution in each segment.
|
|
21
|
+
|
|
22
|
+
A further objective is to summarize as much as possible the segments
|
|
23
|
+
with the same lpp into a single segment, and if possible to obtain
|
|
24
|
+
a final result that is canonical, i.e. independent of the algorithm
|
|
25
|
+
and only attached to the given ideal.
|
|
26
|
+
|
|
27
|
+
There are three fundamental routines in the library: mrcgs, rcgs and
|
|
28
|
+
crcgs. mrcgs (Minimal Reduced CGS) is an algorithm that packs so
|
|
29
|
+
much as it is able to do (using algorithms adhoc) the segments with
|
|
30
|
+
the same lpp, obtaining the minimal number of segments. The hypothesis
|
|
31
|
+
is that the result is also canonical, but for the moment there is no
|
|
32
|
+
proof of the uniqueness of this minimal packing. Moreover, the
|
|
33
|
+
segments that are obtained are not locally closed, i.e. there are not
|
|
34
|
+
difference of two varieties.
|
|
35
|
+
|
|
36
|
+
On the other side, Michael Wibmer has proved that for homogeneous ideals,
|
|
37
|
+
all the segments with reduced bases having the same lpp admit a unique
|
|
38
|
+
basis specializing well. For this purpose it is necessary to extend the
|
|
39
|
+
description of the elements of the bases to functions, forming sheaves
|
|
40
|
+
of polynomials instead of simple polynomials, so that the polynomials in
|
|
41
|
+
a sheaf either preserve the lpp of the corresponding polynomial of
|
|
42
|
+
the specialized Groebner basis (and then it specializes well) or
|
|
43
|
+
it specializes to 0. Moreover, in a sheaf, for every point in the
|
|
44
|
+
corresponding segment, at least one of the polynomials specializes well.
|
|
45
|
+
specializes well. And moreover Wibmer's Theorem ensures that the packed
|
|
46
|
+
segments are locally closed, that is can be described as the difference of
|
|
47
|
+
two varieties.
|
|
48
|
+
|
|
49
|
+
Using Wibmer's Theorem we proved that an affine ideal can be homogenized,
|
|
50
|
+
than discussed by mrcgs and finally de-homogenized. The bases so obtained
|
|
51
|
+
can be reduced and specialize well in the segment. If the theoretic
|
|
52
|
+
objective is reached, and all the segments of the homogenized ideal
|
|
53
|
+
have been packed, locally closed segments will be obtained.
|
|
54
|
+
|
|
55
|
+
If we only homogenize the given basis of the ideal, then we cannot ensure
|
|
56
|
+
the canonicity of the partition obtained, because there are many different
|
|
57
|
+
bases of the given ideal that can be homogenized, and the homogenized ideals
|
|
58
|
+
are not identical. This corresponds to the algorithm rcgs and is recommended
|
|
59
|
+
as the most practical routine. It provides locally closed segments and
|
|
60
|
+
is usually faster than mrcgs and crcgs. But the given partition is not
|
|
61
|
+
always canonical.
|
|
62
|
+
|
|
63
|
+
Finally it is possible to homogenize the whole affine ideal, and then
|
|
64
|
+
the packing algorithm will provide canonical segments by dehomogenizing.
|
|
65
|
+
This corresponds to crcgs routine. It provides the best description
|
|
66
|
+
of the segments and bases. In contrast crcgs algorithm is usually much
|
|
67
|
+
more time consuming and it will not always finish in a reasonable time.
|
|
68
|
+
Moreover it will contain more segments than mrcgs and possibly also more
|
|
69
|
+
than rcgs.
|
|
70
|
+
|
|
71
|
+
But the actual algorithms in the library to pack segments have some lacks.
|
|
72
|
+
They are not theoretically always able to pack the segments that we know
|
|
73
|
+
that can be packed. Nevertheless, thanks to Wibmer's Theorem, the
|
|
74
|
+
algorithms rcgs and crcgs are able to detect if the objective has not been
|
|
75
|
+
reached, and if so, to give a Warning. The warning does not invalidate the
|
|
76
|
+
output, but it only recognizes that the theoretical objective is not
|
|
77
|
+
completely reached by the actual computing methods and that some segments
|
|
78
|
+
that can be packed have not been packed with a single basis.
|
|
79
|
+
|
|
80
|
+
The routine buildtree is the first algorithm used in all the previous
|
|
81
|
+
methods providing a first disjoint CGS, and can be used if none of the
|
|
82
|
+
three fundamental algorithms of the library finishes in a reasonable time.
|
|
83
|
+
|
|
84
|
+
There are also routines to visualize better the output of the previous
|
|
85
|
+
algorithms:
|
|
86
|
+
finalcases can be applied to the list provided by buildtree to obtain the
|
|
87
|
+
CGS. The list provided by buildtree contains the whole discussion, and
|
|
88
|
+
finalcases extracts the CGS.
|
|
89
|
+
The output of buildtree can also be transformed into a file using
|
|
90
|
+
buildtreetoMaple routine that can be read in Maple. Using Monte's dpgb
|
|
91
|
+
library in Maple the output can be plotted (with the routine tplot).
|
|
92
|
+
To plot the output of mrcgs, rcgs or crcgs in Maple, the library also
|
|
93
|
+
provides the routine cantreetoMaple. The file written using it
|
|
94
|
+
and read in Maple can then be plotted with the command plotcantree and
|
|
95
|
+
printed with printcantree from the Monte's dpgb library in Maple.
|
|
96
|
+
The output of mrcgs, rcgs and crcgs is given in form of tree using
|
|
97
|
+
prime ideals in a canonical form that is described in the papers.
|
|
98
|
+
Nevertheless this canonical form is somewhat uncomfortable to be
|
|
99
|
+
interpreted. When the segments are all locally closed (and this is
|
|
100
|
+
always the case for rcgs and crcgs) the routine cantodiffcgs transforms
|
|
101
|
+
the output into a simpler form having only one list element for
|
|
102
|
+
each segment and providing the two varieties whose difference represent
|
|
103
|
+
the segment also in a canonical form.
|
|
104
|
+
|
|
105
|
+
AUTHORS: Antonio Montes , Hans Schoenemann.
|
|
106
|
+
OVERVIEW: see \"Minimal Reduced Comprehensive Groebner Systems\"
|
|
107
|
+
by Antonio Montes. (http://www-ma2.upc.edu/~montes/).
|
|
108
|
+
|
|
109
|
+
NOTATIONS: All given and determined polynomials and ideals are in the
|
|
110
|
+
@* basering K[a][x]; (a=parameters, x=variables)
|
|
111
|
+
@* After defining the ring and calling setglobalrings(); the rings
|
|
112
|
+
@* @R (K[a][x]),
|
|
113
|
+
@* @P (K[a]),
|
|
114
|
+
@* @RP (K[x,a]) are defined globally
|
|
115
|
+
@* They are used internally and can also be used by the user.
|
|
116
|
+
@* The fundamental routines are: buildtree, mrcgs, rcgs and crcgs
|
|
117
|
+
|
|
118
|
+
PROCEDURES:
|
|
119
|
+
|
|
120
|
+
setglobalrings(); It is called by the fundamental routines of the library:
|
|
121
|
+
(buildtree, mrcgs, rcgs, crcgs).
|
|
122
|
+
After calling it, the rings @R, @P and @RP are defined
|
|
123
|
+
globally.
|
|
124
|
+
memberpos(f,J); Returns the list of two integers: the value 0 or 1 depending
|
|
125
|
+
on if f belongs to J or not, and the position in J (0 if it
|
|
126
|
+
does not belong).
|
|
127
|
+
subset(F,G); If all elements of F belong to the ideal G it returns 1,
|
|
128
|
+
and 0 otherwise.
|
|
129
|
+
pdivi2(f,F); Pseudodivision of a polynomial f by an ideal F in @R. Returns a
|
|
130
|
+
list (r,q,m) such that m*f=r+sum(q.G).
|
|
131
|
+
facvar(ideal J) Returns all the free-square factors of the elements
|
|
132
|
+
of ideal J (non repeated). Integer factors are ignored,
|
|
133
|
+
even 0 is ignored. It can be called from ideal @R, but
|
|
134
|
+
the given ideal J must only contain polynomials in the
|
|
135
|
+
parameters.
|
|
136
|
+
redspec(N,W); Given null and non-null conditions depending only on the
|
|
137
|
+
parameters it returns a red-specification.
|
|
138
|
+
pnormalform(f,N,W); Reduces the polynomial f w.r.t. to the null condition ideal N and the
|
|
139
|
+
non-null condition ideal W (both depending on the parameters).
|
|
140
|
+
buildtree(F); Returns a list T describing a first reduced CGS of the ideal
|
|
141
|
+
F in K[a][x].
|
|
142
|
+
buildtreetoMaple(T); Writes into a file the output of buildtree in Maple readable
|
|
143
|
+
form.
|
|
144
|
+
finalcases(T); From the output of buildtree it provides the list
|
|
145
|
+
of its terminal vertices. That list represents the dichotomic,
|
|
146
|
+
reduced CGS obtained by buildtree.
|
|
147
|
+
mrcgs(F); Returns a list T describing the Minimal Reduced CGS of the
|
|
148
|
+
ideal F of K[a][x]
|
|
149
|
+
rcgs(F); Returns a list T describing the Reduced CGS of the ideal F
|
|
150
|
+
of K[a][x] obtained by direct homogenizing and de-homogenizing
|
|
151
|
+
the basis of the given ideal.
|
|
152
|
+
crcgs(F); Returns a list T describing the Canonical Reduced CGS of the
|
|
153
|
+
ideal F of K[a][x] obtained by homogenizing and de-homogenizing
|
|
154
|
+
the initial ideal.
|
|
155
|
+
cantreetoMaple)(M); Writes into a file the output of mrcgs, rcgs or crcgs in Maple
|
|
156
|
+
readable form.
|
|
157
|
+
cantodiffcgs(list L);From the output of rcgs or crcgs (or even of mrcgs when
|
|
158
|
+
it is possible) it returns a simpler list where the segments
|
|
159
|
+
are given as difference of varieties.
|
|
160
|
+
|
|
161
|
+
SEE ALSO: compregb_lib
|
|
162
|
+
";
|
|
163
|
+
|
|
164
|
+
// ************ Begin of the redCGS library *********************
|
|
165
|
+
// Library redCGS
|
|
166
|
+
// (Reduced Comprehesive Groebner Systems):
|
|
167
|
+
// Initial data: 21-1-2008
|
|
168
|
+
// Release 1:
|
|
169
|
+
// Final data: 3_7-2008
|
|
170
|
+
// All given and determined polynomials and ideals are in the
|
|
171
|
+
// basering K[a][x];
|
|
172
|
+
// After calling setglobalrings(); the rings
|
|
173
|
+
// @R (K[a][x]),
|
|
174
|
+
// @P (K[a]),
|
|
175
|
+
// @RP (K[x,a]) are globally defined
|
|
176
|
+
// They are used internally and can also be called by the user;
|
|
177
|
+
// setglobalrings() is called by buildtree, so it is not required to
|
|
178
|
+
// call setglobalrings before using
|
|
179
|
+
// the fundamental routines of the library.
|
|
180
|
+
|
|
181
|
+
// ************ Begin of buildtree ******************************
|
|
182
|
+
|
|
183
|
+
LIB "primdec.lib";
|
|
184
|
+
|
|
185
|
+
proc setglobalrings()
|
|
186
|
+
"USAGE: setglobalrings();
|
|
187
|
+
No arguments
|
|
188
|
+
RETURN: After its call the rings @R=K[a][x], @P=K[a], @RP=K[x,a] are
|
|
189
|
+
defined as global variables.
|
|
190
|
+
NOTE: It is called by the fundamental routines of the library.
|
|
191
|
+
The user does not need to call it, except when none of
|
|
192
|
+
the fundamental routines have been called and some
|
|
193
|
+
other routines of the library are used.
|
|
194
|
+
The basering R, must be of the form K[a][x], a=parameters,
|
|
195
|
+
x=variables, and should be defined previously.
|
|
196
|
+
KEYWORDS: ring, rings
|
|
197
|
+
EXAMPLE: setglobalrings; shows an example"
|
|
198
|
+
{
|
|
199
|
+
def @R=basering; // must be of the form K[a][x], a=parameters, x=variables
|
|
200
|
+
def Rx=ringlist(@R);
|
|
201
|
+
def @P=ring(Rx[1]);
|
|
202
|
+
list Lx;
|
|
203
|
+
Lx[1]=0;
|
|
204
|
+
Lx[2]=Rx[2]+Rx[1][2];
|
|
205
|
+
Lx[3]=Rx[1][3];
|
|
206
|
+
Lx[4]=Rx[1][4];
|
|
207
|
+
//def @K=ring(Lx);
|
|
208
|
+
//exportto(Top,@K); //global ring K[x,a] with the order of x extended to x,a
|
|
209
|
+
Rx[1]=0;
|
|
210
|
+
def D=ring(Rx);
|
|
211
|
+
def @RP=D+@P;
|
|
212
|
+
exportto(Top,@R); // global ring K[a][x]
|
|
213
|
+
exportto(Top,@P); // global ring K[a]
|
|
214
|
+
exportto(Top,@RP); // global ring K[x,a] with product order
|
|
215
|
+
setring(@R);
|
|
216
|
+
}
|
|
217
|
+
example
|
|
218
|
+
{ "EXAMPLE:"; echo = 2;
|
|
219
|
+
ring R=(0,a,b),(x,y,z),dp;
|
|
220
|
+
setglobalrings();
|
|
221
|
+
@R;
|
|
222
|
+
@P;
|
|
223
|
+
@RP;
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
//*************Auxiliary routines**************
|
|
227
|
+
|
|
228
|
+
// cld : clears denominators of an ideal and normalizes to content 1
|
|
229
|
+
// can be used in @R or @P or @RP
|
|
230
|
+
// input:
|
|
231
|
+
// ideal J (J can be also poly), but the output is an ideal;
|
|
232
|
+
// output:
|
|
233
|
+
// ideal Jc (the new form of ideal J without denominators and
|
|
234
|
+
// normalized to content 1)
|
|
235
|
+
proc cld(ideal J)
|
|
236
|
+
{
|
|
237
|
+
if (size(J)==0){return(ideal(0));}
|
|
238
|
+
def RR=basering;
|
|
239
|
+
setring(@RP);
|
|
240
|
+
def Ja=imap(RR,J);
|
|
241
|
+
ideal Jb;
|
|
242
|
+
if (size(Ja)==0){return(ideal(0));}
|
|
243
|
+
int i;
|
|
244
|
+
def j=0;
|
|
245
|
+
for (i=1;i<=ncols(Ja);i++){if (size(Ja[i])!=0){j++; Jb[j]=cleardenom(Ja[i]);}}
|
|
246
|
+
setring(RR);
|
|
247
|
+
def Jc=imap(@RP,Jb);
|
|
248
|
+
return(Jc);
|
|
249
|
+
}
|
|
250
|
+
|
|
251
|
+
proc memberpos(def f,def J)
|
|
252
|
+
"USAGE: memberpos(f,J);
|
|
253
|
+
(f,J) expected (polynomial,ideal)
|
|
254
|
+
or (int,list(int))
|
|
255
|
+
or (int,intvec)
|
|
256
|
+
or (intvec,list(intvec))
|
|
257
|
+
or (list(int),list(list(int)))
|
|
258
|
+
or (ideal,list(ideal))
|
|
259
|
+
or (list(intvec), list(list(intvec))).
|
|
260
|
+
The ring can be @R or @P or @RP or any other.
|
|
261
|
+
RETURN: The list (t,pos) t int; pos int;
|
|
262
|
+
t is 1 if f belongs to J and 0 if not.
|
|
263
|
+
pos gives the position in J (or 0 if f does not belong).
|
|
264
|
+
EXAMPLE: memberpos; shows an example"
|
|
265
|
+
{
|
|
266
|
+
int pos=0;
|
|
267
|
+
int i=1;
|
|
268
|
+
int j;
|
|
269
|
+
int t=0;
|
|
270
|
+
int nt;
|
|
271
|
+
if (typeof(J)=="ideal"){nt=ncols(J);}
|
|
272
|
+
else{nt=size(J);}
|
|
273
|
+
if ((typeof(f)=="poly") or (typeof(f)=="int"))
|
|
274
|
+
{ // (poly,ideal) or
|
|
275
|
+
// (poly,list(poly))
|
|
276
|
+
// (int,list(int)) or
|
|
277
|
+
// (int,intvec)
|
|
278
|
+
i=1;
|
|
279
|
+
while(i<=nt)
|
|
280
|
+
{
|
|
281
|
+
if (f==J[i]){return(list(1,i));}
|
|
282
|
+
i++;
|
|
283
|
+
}
|
|
284
|
+
return(list(0,0));
|
|
285
|
+
}
|
|
286
|
+
else
|
|
287
|
+
{
|
|
288
|
+
if ((typeof(f)=="intvec") or ((typeof(f)=="list") and (typeof(f[1])=="int")))
|
|
289
|
+
{ // (intvec,list(intvec)) or
|
|
290
|
+
// (list(int),list(list(int)))
|
|
291
|
+
i=1;
|
|
292
|
+
t=0;
|
|
293
|
+
pos=0;
|
|
294
|
+
while((i<=nt) and (t==0))
|
|
295
|
+
{
|
|
296
|
+
t=1;
|
|
297
|
+
j=1;
|
|
298
|
+
if (size(f)!=size(J[i])){t=0;}
|
|
299
|
+
else
|
|
300
|
+
{
|
|
301
|
+
while ((j<=size(f)) and t)
|
|
302
|
+
{
|
|
303
|
+
if (f[j]!=J[i][j]){t=0;}
|
|
304
|
+
j++;
|
|
305
|
+
}
|
|
306
|
+
}
|
|
307
|
+
if (t){pos=i;}
|
|
308
|
+
i++;
|
|
309
|
+
}
|
|
310
|
+
if (t){return(list(1,pos));}
|
|
311
|
+
else{return(list(0,0));}
|
|
312
|
+
}
|
|
313
|
+
else
|
|
314
|
+
{
|
|
315
|
+
if (typeof(f)=="ideal")
|
|
316
|
+
{ // (ideal,list(ideal))
|
|
317
|
+
i=1;
|
|
318
|
+
t=0;
|
|
319
|
+
pos=0;
|
|
320
|
+
while((i<=nt) and (t==0))
|
|
321
|
+
{
|
|
322
|
+
t=1;
|
|
323
|
+
j=1;
|
|
324
|
+
if (ncols(f)!=ncols(J[i])){t=0;}
|
|
325
|
+
else
|
|
326
|
+
{
|
|
327
|
+
while ((j<=ncols(f)) and t)
|
|
328
|
+
{
|
|
329
|
+
if (f[j]!=J[i][j]){t=0;}
|
|
330
|
+
j++;
|
|
331
|
+
}
|
|
332
|
+
}
|
|
333
|
+
if (t){pos=i;}
|
|
334
|
+
i++;
|
|
335
|
+
}
|
|
336
|
+
if (t){return(list(1,pos));}
|
|
337
|
+
else{return(list(0,0));}
|
|
338
|
+
}
|
|
339
|
+
else
|
|
340
|
+
{
|
|
341
|
+
if ((typeof(f)=="list") and (typeof(f[1])=="intvec"))
|
|
342
|
+
{ // (list(intvec),list(list(intvec)))
|
|
343
|
+
i=1;
|
|
344
|
+
t=0;
|
|
345
|
+
pos=0;
|
|
346
|
+
while((i<=nt) and (t==0))
|
|
347
|
+
{
|
|
348
|
+
t=1;
|
|
349
|
+
j=1;
|
|
350
|
+
if (size(f)!=size(J[i])){t=0;}
|
|
351
|
+
else
|
|
352
|
+
{
|
|
353
|
+
while ((j<=size(f)) and t)
|
|
354
|
+
{
|
|
355
|
+
if (f[j]!=J[i][j]){t=0;}
|
|
356
|
+
j++;
|
|
357
|
+
}
|
|
358
|
+
}
|
|
359
|
+
if (t){pos=i;}
|
|
360
|
+
i++;
|
|
361
|
+
}
|
|
362
|
+
if (t){return(list(1,pos));}
|
|
363
|
+
else{return(list(0,0));}
|
|
364
|
+
}
|
|
365
|
+
}
|
|
366
|
+
}
|
|
367
|
+
}
|
|
368
|
+
} example
|
|
369
|
+
{ "EXAMPLE:"; echo = 2;
|
|
370
|
+
list L=(7,4,5,1,1,4,9);
|
|
371
|
+
memberpos(1,L);
|
|
372
|
+
}
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
proc subset(def J,def K)
|
|
376
|
+
"USAGE: subset(J,K);
|
|
377
|
+
(J,K) expected (ideal,ideal)
|
|
378
|
+
or (list, list)
|
|
379
|
+
RETURN: 1 if all the elements of J are in K, 0 if not.
|
|
380
|
+
EXAMPLE: subset; shows an example;"
|
|
381
|
+
{
|
|
382
|
+
int i=1;
|
|
383
|
+
int nt;
|
|
384
|
+
if (typeof(J)=="ideal"){nt=ncols(J);}
|
|
385
|
+
else{nt=size(J);}
|
|
386
|
+
if (size(J)==0){return(1);}
|
|
387
|
+
while(i<=nt)
|
|
388
|
+
{
|
|
389
|
+
if (memberpos(J[i],K)[1]){i++;}
|
|
390
|
+
else {return(0);}
|
|
391
|
+
}
|
|
392
|
+
return(1);
|
|
393
|
+
}
|
|
394
|
+
example
|
|
395
|
+
{ "EXAMPLE:"; echo = 2;
|
|
396
|
+
list J=list(7,3,2);
|
|
397
|
+
list K=list(1,2,3,5,7,8);
|
|
398
|
+
subset(J,K);
|
|
399
|
+
}
|
|
400
|
+
|
|
401
|
+
//*************Auxiliary routines**************
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
// elimintfromideal: elimine the constant numbers from the ideal
|
|
405
|
+
// (designed for W, nonnull conditions)
|
|
406
|
+
// input: ideal J in the ring @P
|
|
407
|
+
// output:ideal K with the elements of J that are non constants, in the ring @P
|
|
408
|
+
proc elimintfromideal(ideal J)
|
|
409
|
+
{
|
|
410
|
+
int i;
|
|
411
|
+
int j=0;
|
|
412
|
+
ideal K;
|
|
413
|
+
if (size(J)==0){return(ideal(0));}
|
|
414
|
+
for (i=1;i<=ncols(J);i++){if (size(variables(J[i])) !=0){j++; K[j]=J[i];}}
|
|
415
|
+
return(K);
|
|
416
|
+
}
|
|
417
|
+
|
|
418
|
+
// simpqcoeffs : simplifies a quotient of two polynomials of @R
|
|
419
|
+
// for ring @R
|
|
420
|
+
// input: two coefficients (or terms) of @R (that are considered as quotients)
|
|
421
|
+
// output: the two coefficients reduced without common factors
|
|
422
|
+
proc simpqcoeffs(poly n,poly m)
|
|
423
|
+
{
|
|
424
|
+
def nc=content(n);
|
|
425
|
+
def mc=content(m);
|
|
426
|
+
def gc=gcd(nc,mc);
|
|
427
|
+
ideal s=n/gc,m/gc;
|
|
428
|
+
return (s);
|
|
429
|
+
}
|
|
430
|
+
|
|
431
|
+
|
|
432
|
+
// pdivi2 : pseudodivision of a polynomial f by an ideal F in @R
|
|
433
|
+
// in the ring @R
|
|
434
|
+
// input:
|
|
435
|
+
// poly f0 (given in the ring @R)
|
|
436
|
+
// ideal F0 (given in the ring @R)
|
|
437
|
+
// output:
|
|
438
|
+
// list (poly r, ideal q, poly mu)
|
|
439
|
+
proc pdivi2(poly f,ideal F)
|
|
440
|
+
"USAGE: pdivi2(f,F);
|
|
441
|
+
poly f: the polynomial to be divided
|
|
442
|
+
ideal F: the divisor ideal
|
|
443
|
+
RETURN: A list (poly r, ideal q, poly m). r is the remainder of the
|
|
444
|
+
pseudodivision, q is the ideal of quotients, and m is the
|
|
445
|
+
factor by which f is to be multiplied.
|
|
446
|
+
NOTE: Pseudodivision of a polynomial f by an ideal F in @R. Returns a
|
|
447
|
+
list (r,q,m) such that m*f=r+sum(q.G).
|
|
448
|
+
KEYWORDS: division, reduce
|
|
449
|
+
EXAMPLE: example pdivi2; shows an example"
|
|
450
|
+
{
|
|
451
|
+
int i;
|
|
452
|
+
int j;
|
|
453
|
+
poly r=0;
|
|
454
|
+
poly mu=1;
|
|
455
|
+
def p=f;
|
|
456
|
+
ideal q;
|
|
457
|
+
for (i=1; i<=size(F); i++){q[i]=0;}
|
|
458
|
+
ideal lpf;
|
|
459
|
+
ideal lcf;
|
|
460
|
+
for (i=1;i<=size(F);i++){lpf[i]=leadmonom(F[i]);}
|
|
461
|
+
for (i=1;i<=size(F);i++){lcf[i]=leadcoef(F[i]);}
|
|
462
|
+
poly lpp;
|
|
463
|
+
poly lcp;
|
|
464
|
+
poly qlm;
|
|
465
|
+
poly nu;
|
|
466
|
+
poly rho;
|
|
467
|
+
int divoc=0;
|
|
468
|
+
ideal qlc;
|
|
469
|
+
while (p!=0)
|
|
470
|
+
{
|
|
471
|
+
i=1;
|
|
472
|
+
divoc=0;
|
|
473
|
+
lpp=leadmonom(p);
|
|
474
|
+
lcp=leadcoef(p);
|
|
475
|
+
while (divoc==0 and i<=size(F))
|
|
476
|
+
{
|
|
477
|
+
qlm=lpp/lpf[i];
|
|
478
|
+
if (qlm!=0)
|
|
479
|
+
{
|
|
480
|
+
qlc=simpqcoeffs(lcp,lcf[i]);
|
|
481
|
+
nu=qlc[2];
|
|
482
|
+
mu=mu*nu;
|
|
483
|
+
rho=qlc[1]*qlm;
|
|
484
|
+
p=nu*p-rho*F[i];
|
|
485
|
+
r=nu*r;
|
|
486
|
+
for (j=1;j<=size(F);j++){q[j]=nu*q[j];}
|
|
487
|
+
q[i]=q[i]+rho;
|
|
488
|
+
divoc=1;
|
|
489
|
+
}
|
|
490
|
+
else {i++;}
|
|
491
|
+
}
|
|
492
|
+
if (divoc==0)
|
|
493
|
+
{
|
|
494
|
+
r=r+lcp*lpp;
|
|
495
|
+
p=p-lcp*lpp;
|
|
496
|
+
}
|
|
497
|
+
}
|
|
498
|
+
list res=r,q,mu;
|
|
499
|
+
return(res);
|
|
500
|
+
}
|
|
501
|
+
example
|
|
502
|
+
{ "EXAMPLE:"; echo = 2;
|
|
503
|
+
ring R=(0,a,b,c),(x,y),dp;
|
|
504
|
+
setglobalrings();
|
|
505
|
+
poly f=(ab-ac)*xy+(ab)*x+(5c);
|
|
506
|
+
ideal F=ax+b,cy+a;
|
|
507
|
+
def r=pdivi2(f,F);
|
|
508
|
+
r;
|
|
509
|
+
r[3]*f-(r[2][1]*F[1]+r[2][2]*F[2])-r[1];
|
|
510
|
+
}
|
|
511
|
+
|
|
512
|
+
// pspol : S-poly of two polynomials in @R
|
|
513
|
+
// @R
|
|
514
|
+
// input:
|
|
515
|
+
// poly f (given in the ring @R)
|
|
516
|
+
// poly g (given in the ring @R)
|
|
517
|
+
// output:
|
|
518
|
+
// list (S, red): S is the S-poly(f,g) and red is a Boolean variable
|
|
519
|
+
// if red==1 then S reduces by Buchberger 1st criterion (not used)
|
|
520
|
+
proc pspol(poly f,poly g)
|
|
521
|
+
{
|
|
522
|
+
def lcf=leadcoef(f);
|
|
523
|
+
def lcg=leadcoef(g);
|
|
524
|
+
def lpf=leadmonom(f);
|
|
525
|
+
def lpg=leadmonom(g);
|
|
526
|
+
def v=gcd(lpf,lpg);
|
|
527
|
+
def s=simpqcoeffs(lcf,lcg);
|
|
528
|
+
def vf=lpf/v;
|
|
529
|
+
def vg=lpg/v;
|
|
530
|
+
poly S=s[2]*vg*f-s[1]*vf*g;
|
|
531
|
+
return(S);
|
|
532
|
+
}
|
|
533
|
+
|
|
534
|
+
// facvar: Returns all the free-square factors of the elements
|
|
535
|
+
// of ideal J (non repeated). Integer factors are ignored,
|
|
536
|
+
// even 0 is ignored. It can be called from ideal @R, but
|
|
537
|
+
// the given ideal J must only contain poynomials in the
|
|
538
|
+
// parameters.
|
|
539
|
+
// Operates in the ring @P, but can be called from ring @R.
|
|
540
|
+
// input: ideal J
|
|
541
|
+
// output: ideal Jc: Returns all the free-square factors of the elements
|
|
542
|
+
// of ideal J (non repeated). Integer factors are ignored,
|
|
543
|
+
// even 0 is ignored. It can be called from ideal @R, but
|
|
544
|
+
// the given ideal J must only contain poynomials in the
|
|
545
|
+
// parameters.
|
|
546
|
+
proc facvar(ideal J)
|
|
547
|
+
"USAGE: facvar(J);
|
|
548
|
+
J: an ideal in the parameters
|
|
549
|
+
RETURN: all the free-square factors of the elements
|
|
550
|
+
of ideal J (non repeated). Integer factors are ignored,
|
|
551
|
+
even 0 is ignored. It can be called from ideal @R, but
|
|
552
|
+
the given ideal J must only contain poynomials in the
|
|
553
|
+
parameters.
|
|
554
|
+
NOTE: Operates in the ring @P, and the ideal J must contain only
|
|
555
|
+
polynomials in the parameters, but can be called from ring @R.
|
|
556
|
+
KEYWORDS: factor
|
|
557
|
+
EXAMPLE: facvar; shows an example"
|
|
558
|
+
{
|
|
559
|
+
int i;
|
|
560
|
+
def RR=basering;
|
|
561
|
+
setring(@P);
|
|
562
|
+
def Ja=imap(RR,J);
|
|
563
|
+
if(size(Ja)==0){return(ideal(0));}
|
|
564
|
+
Ja=elimintfromideal(Ja); // also in ideal @P
|
|
565
|
+
ideal Jb;
|
|
566
|
+
if (size(Ja)==0){Jb=ideal(0);}
|
|
567
|
+
else
|
|
568
|
+
{
|
|
569
|
+
for (i=1;i<=ncols(Ja);i++){if(size(Ja[i])!=0){Jb=Jb,factorize(Ja[i],1);}}
|
|
570
|
+
Jb=simplify(Jb,2+4+8);
|
|
571
|
+
Jb=cld(Jb);
|
|
572
|
+
Jb=elimintfromideal(Jb); // also in ideal @P
|
|
573
|
+
}
|
|
574
|
+
setring(RR);
|
|
575
|
+
def Jc=imap(@P,Jb);
|
|
576
|
+
return(Jc);
|
|
577
|
+
}
|
|
578
|
+
example
|
|
579
|
+
{ "EXAMPLE:"; echo = 2;
|
|
580
|
+
ring R=(0,a,b,c),(x,y,z),dp;
|
|
581
|
+
setglobalrings();
|
|
582
|
+
ideal J=a2-b2,a2-2ab+b2,abc-bc;
|
|
583
|
+
facvar(J);
|
|
584
|
+
}
|
|
585
|
+
|
|
586
|
+
// Wred: eliminate the factors in the polynom f that are in W
|
|
587
|
+
// in ring @RP
|
|
588
|
+
// input:
|
|
589
|
+
// poly f:
|
|
590
|
+
// ideal W of non-null conditions (already supposed that it is facvar)
|
|
591
|
+
// output:
|
|
592
|
+
// poly f2 where the non-null conditions in W have been dropped from f
|
|
593
|
+
proc Wred(poly f, ideal W)
|
|
594
|
+
{
|
|
595
|
+
if (f==0){return(f);}
|
|
596
|
+
def RR=basering;
|
|
597
|
+
setring(@RP);
|
|
598
|
+
def ff=imap(RR,f);
|
|
599
|
+
def RPW=imap(RR,W);
|
|
600
|
+
def l=factorize(ff,2);
|
|
601
|
+
int i;
|
|
602
|
+
poly f1=1;
|
|
603
|
+
for(i=1;i<=size(l[1]);i++)
|
|
604
|
+
{
|
|
605
|
+
if ((memberpos(l[1][i],RPW)[1]) or (memberpos(-l[1][i],RPW)[1])){;}
|
|
606
|
+
else{f1=f1*((l[1][i])^(l[2][i]));}
|
|
607
|
+
}
|
|
608
|
+
setring(RR);
|
|
609
|
+
def f2=imap(@RP,f1);
|
|
610
|
+
return(f2);
|
|
611
|
+
}
|
|
612
|
+
|
|
613
|
+
// pnormalform: reduces a polynomial w.r.t. a red-spec dividing by N and eliminating factors in W.
|
|
614
|
+
// called in the ring @R
|
|
615
|
+
// operates in the ring @RP
|
|
616
|
+
// input:
|
|
617
|
+
// poly f
|
|
618
|
+
// ideal N (depends only on the parameters)
|
|
619
|
+
// ideal W (depends only on the parameters)
|
|
620
|
+
// (N,W) must be a red-spec (depends only on the parameters)
|
|
621
|
+
// output: poly f2 reduced w.r.t. to the red-spec (N,W)
|
|
622
|
+
// note: for security a lot of work is done. If (N,W) is already a red-spec it should be simplified
|
|
623
|
+
proc pnormalform(poly f, ideal N, ideal W)
|
|
624
|
+
"USAGE: pnormalform(f,N,W);
|
|
625
|
+
f: the polynomial to be reduced modulo N,W (in parameters and
|
|
626
|
+
variables)
|
|
627
|
+
N: the null conditions ideal
|
|
628
|
+
W: the non-null conditions (set of irreducible polynomials, ideal)
|
|
629
|
+
RETURN: a reduced polynomial g of f, whose coefficients are reduced
|
|
630
|
+
modulo N and having no factor in W.
|
|
631
|
+
NOTE: Should be called from ring @R. Ideals N and W must be polynomials
|
|
632
|
+
in the parameters forming a red-specification (see definition) the papers).
|
|
633
|
+
KEYWORDS: division, pdivi2, reduce
|
|
634
|
+
EXAMPLE: pnormalform; shows an example"
|
|
635
|
+
{
|
|
636
|
+
def RR=basering;
|
|
637
|
+
setring(@RP);
|
|
638
|
+
def fa=imap(RR,f);
|
|
639
|
+
def Na=imap(RR,N);
|
|
640
|
+
def Wa=imap(RR,W);
|
|
641
|
+
option(redSB);
|
|
642
|
+
Na=groebner(Na);
|
|
643
|
+
def r=cld(reduce(fa,Na));
|
|
644
|
+
def f1=Wred(r[1],Wa);
|
|
645
|
+
setring(RR);
|
|
646
|
+
def f2=imap(@RP,f1);
|
|
647
|
+
return(f2)
|
|
648
|
+
}
|
|
649
|
+
example
|
|
650
|
+
{ "EXAMPLE:"; echo = 2;
|
|
651
|
+
ring R=(0,a,b,c),(x,y),dp;
|
|
652
|
+
setglobalrings();
|
|
653
|
+
poly f=(b^2-1)*x^3*y+(c^2-1)*x*y^2+(c^2*b-b)*x+(a-bc)*y;
|
|
654
|
+
ideal N=(ab-c)*(a-b),(a-bc)*(a-b);
|
|
655
|
+
ideal W=a^2-b^2,bc;
|
|
656
|
+
def r=redspec(N,W);
|
|
657
|
+
pnormalform(f,r[1],r[2]);
|
|
658
|
+
}
|
|
659
|
+
|
|
660
|
+
// idint: ideal intersection
|
|
661
|
+
// in the ring @P.
|
|
662
|
+
// it works in an extended ring
|
|
663
|
+
// input: two ideals in the ring @P
|
|
664
|
+
// output the intersection of both (is not a GB)
|
|
665
|
+
proc idint(ideal I, ideal J)
|
|
666
|
+
{
|
|
667
|
+
def RR=basering;
|
|
668
|
+
ring T=0,t,lp;
|
|
669
|
+
def K=T+RR;
|
|
670
|
+
setring(K);
|
|
671
|
+
def Ia=imap(RR,I);
|
|
672
|
+
def Ja=imap(RR,J);
|
|
673
|
+
ideal IJ;
|
|
674
|
+
int i;
|
|
675
|
+
for(i=1;i<=size(Ia);i++){IJ[i]=t*Ia[i];}
|
|
676
|
+
for(i=1;i<=size(Ja);i++){IJ[size(Ia)+i]=(1-t)*Ja[i];}
|
|
677
|
+
ideal eIJ=eliminate(IJ,t);
|
|
678
|
+
setring(RR);
|
|
679
|
+
return(imap(K,eIJ));
|
|
680
|
+
}
|
|
681
|
+
|
|
682
|
+
|
|
683
|
+
// redspec: generates a red-specification
|
|
684
|
+
// called in any ring
|
|
685
|
+
// it changes to the ring @P
|
|
686
|
+
// input:
|
|
687
|
+
// ideal N : the ideal of null-conditions
|
|
688
|
+
// ideal W : set of non-null polynomials: if W corresponds to no non null conditions then W=ideal(0)
|
|
689
|
+
// otherwise it should be given as an ideal.
|
|
690
|
+
// returns: list (Na,Wa,DGN)
|
|
691
|
+
// the completely reduced specification:
|
|
692
|
+
// Na = ideal reduced and radical of the red-spec
|
|
693
|
+
// facvar(Wa) = ideal the reduced non-null set of polynomials of the red-spec.
|
|
694
|
+
// if it corresponds to no non null conditions then it is ideal(0)
|
|
695
|
+
// otherwise the ideal is returned.
|
|
696
|
+
// DGN = the list of prime ideals associated to Na (uses primASSGTZ in "primdec.lib")
|
|
697
|
+
// none of the polynomials in facvar(Wa) are contained in none of the ideals in DGN
|
|
698
|
+
// If the given conditions are not compatible, then N=ideal(1) and DGN=list(ideal(1))
|
|
699
|
+
proc redspec(ideal Ni, ideal Wi)
|
|
700
|
+
"USAGE: redspec(N,W);
|
|
701
|
+
N: null conditions ideal
|
|
702
|
+
W: set of non-null polynomials (ideal)
|
|
703
|
+
RETURN: a list (N1,W1,L1) containing a red-specification of the segment (N,W).
|
|
704
|
+
N1 is the radical reduced ideal characterizing the segment.
|
|
705
|
+
V(N1) is the Zarisky closure of the segment (N,W).
|
|
706
|
+
The segment S=V(N1) \ V(h), where h=prod(w in W1)
|
|
707
|
+
N1 is uniquely determined and no prime component of N1 contains none of
|
|
708
|
+
the polynomials in W1. The polynomials in W1 are prime and reduced
|
|
709
|
+
w.r.t. N1, and are considered non-null on the segment.
|
|
710
|
+
L1 contains the list of prime components of N1.
|
|
711
|
+
NOTE: can be called from ring @R but it works in ring @P.
|
|
712
|
+
KEYWORDS: specification
|
|
713
|
+
EXAMPLE: redspec; shows an example"
|
|
714
|
+
{
|
|
715
|
+
ideal Nc;
|
|
716
|
+
ideal Wc;
|
|
717
|
+
def RR=basering;
|
|
718
|
+
setring(@P);
|
|
719
|
+
def N=imap(RR,Ni);
|
|
720
|
+
def W=imap(RR,Wi);
|
|
721
|
+
ideal Wa;
|
|
722
|
+
ideal Wb;
|
|
723
|
+
if(size(W)==0){Wa=ideal(0);}
|
|
724
|
+
//when there are no non-null conditions then W=ideal(0)
|
|
725
|
+
else
|
|
726
|
+
{
|
|
727
|
+
Wa=facvar(W);
|
|
728
|
+
}
|
|
729
|
+
if (size(N)==0)
|
|
730
|
+
{
|
|
731
|
+
setring(RR);
|
|
732
|
+
Wc=imap(@P,Wa);
|
|
733
|
+
return(list(ideal(0), Wc, list(ideal(0))));
|
|
734
|
+
}
|
|
735
|
+
int i;
|
|
736
|
+
list LNb;
|
|
737
|
+
list LNa;
|
|
738
|
+
def LN=minAssGTZ(N);
|
|
739
|
+
for (i=1;i<=size(LN);i++)
|
|
740
|
+
{
|
|
741
|
+
option(redSB);
|
|
742
|
+
LNa[i]=groebner(LN[i]);
|
|
743
|
+
}
|
|
744
|
+
poly h=1;
|
|
745
|
+
if (size(Wa)!=0)
|
|
746
|
+
{
|
|
747
|
+
for(i=1;i<=size(Wa);i++){h=h*Wa[i];}
|
|
748
|
+
}
|
|
749
|
+
ideal Na;
|
|
750
|
+
intvec save_opt=option(get);
|
|
751
|
+
if (size(N)!=0 and (size(LNa)>0))
|
|
752
|
+
{
|
|
753
|
+
option(returnSB);
|
|
754
|
+
Na=intersect(LNa[1..size(LNa)]);
|
|
755
|
+
option(redSB);
|
|
756
|
+
Na=groebner(Na); // T_ is needed?
|
|
757
|
+
option(set,save_opt);
|
|
758
|
+
}
|
|
759
|
+
attrib(Na,"isSB",1);
|
|
760
|
+
if (reduce(h,Na,1)==0)
|
|
761
|
+
{
|
|
762
|
+
setring(RR);
|
|
763
|
+
Wc=imap(@P,Wa);
|
|
764
|
+
return(list (ideal(1),Wc,list(ideal(1))));
|
|
765
|
+
}
|
|
766
|
+
i=1;
|
|
767
|
+
while(i<=size(LNa))
|
|
768
|
+
{
|
|
769
|
+
if (reduce(h,LNa[i],1)==0){LNa=delete(LNa,i);}
|
|
770
|
+
else{ i++;}
|
|
771
|
+
}
|
|
772
|
+
if (size(LNa)==0)
|
|
773
|
+
{
|
|
774
|
+
setring(RR);
|
|
775
|
+
return(list(ideal(1),ideal(0),list(ideal(1))));
|
|
776
|
+
}
|
|
777
|
+
option(returnSB);
|
|
778
|
+
ideal Nb=intersect(LNa[1..size(LNa)]);
|
|
779
|
+
option(redSB);
|
|
780
|
+
Nb=groebner(Nb); // T_ is needed?
|
|
781
|
+
option(set,save_opt);
|
|
782
|
+
if (size(Wa)==0)
|
|
783
|
+
{
|
|
784
|
+
setring(RR);
|
|
785
|
+
Nc=imap(@P,Nb);
|
|
786
|
+
Wc=imap(@P,Wa);
|
|
787
|
+
LNb=imap(@P,LNa);
|
|
788
|
+
return(list(Nc,Wc,LNb));
|
|
789
|
+
}
|
|
790
|
+
Wb=ideal(0);
|
|
791
|
+
attrib(Nb,"isSB",1);
|
|
792
|
+
for (i=1;i<=size(Wa);i++){Wb[i]=reduce(Wa[i],Nb);}
|
|
793
|
+
Wb=facvar(Wb);
|
|
794
|
+
if (size(LNa)!=0)
|
|
795
|
+
{
|
|
796
|
+
setring(RR);
|
|
797
|
+
Nc=imap(@P,Nb);
|
|
798
|
+
Wc=imap(@P,Wb);
|
|
799
|
+
LNb=imap(@P,LNa);
|
|
800
|
+
return(list(Nc,Wc,LNb))
|
|
801
|
+
}
|
|
802
|
+
else
|
|
803
|
+
{
|
|
804
|
+
setring(RR);
|
|
805
|
+
Nd=imap(@P,Nb);
|
|
806
|
+
Wc=imap(@P,Wb);
|
|
807
|
+
kill LNb;
|
|
808
|
+
list LNb;
|
|
809
|
+
return(list(Nd,Wc,LNb))
|
|
810
|
+
}
|
|
811
|
+
}
|
|
812
|
+
example
|
|
813
|
+
{ "EXAMPLE:"; echo = 2;
|
|
814
|
+
ring r=(0,a,b,c),(x,y),dp;
|
|
815
|
+
setglobalrings();
|
|
816
|
+
ideal N=(ab-c)*(a-b),(a-bc)*(a-b);
|
|
817
|
+
ideal W=a^2-b^2,bc;
|
|
818
|
+
redspec(N,W);
|
|
819
|
+
}
|
|
820
|
+
|
|
821
|
+
// lesspol: compare two polynomials by its leading power products
|
|
822
|
+
// input: two polynomials f,g in the ring @R
|
|
823
|
+
// output: 0 if f<g, 1 if f>=g
|
|
824
|
+
proc lesspol(poly f, poly g)
|
|
825
|
+
{
|
|
826
|
+
if (leadmonom(f)<leadmonom(g)){return(1);}
|
|
827
|
+
else
|
|
828
|
+
{
|
|
829
|
+
if (leadmonom(g)<leadmonom(f)){return(0);}
|
|
830
|
+
else
|
|
831
|
+
{
|
|
832
|
+
if (leadcoef(f)<leadcoef(g)){return(1);}
|
|
833
|
+
else {return(0);}
|
|
834
|
+
}
|
|
835
|
+
}
|
|
836
|
+
}
|
|
837
|
+
|
|
838
|
+
// delfromideal: deletes the i-th polynomial from the ideal F
|
|
839
|
+
proc delfromideal(ideal F, int i)
|
|
840
|
+
{
|
|
841
|
+
int j;
|
|
842
|
+
ideal G;
|
|
843
|
+
if (size(F)<i){ERROR("delfromideal was called incorrect arguments");}
|
|
844
|
+
if (size(F)<=1){return(ideal(0));}
|
|
845
|
+
if (i==0){return(F)}
|
|
846
|
+
for (j=1;j<=size(F);j++)
|
|
847
|
+
{
|
|
848
|
+
if (j!=i){G[size(G)+1]=F[j];}
|
|
849
|
+
}
|
|
850
|
+
return(G);
|
|
851
|
+
}
|
|
852
|
+
|
|
853
|
+
// delidfromid: deletes the polynomials in J that are in I
|
|
854
|
+
// input: ideals I,J
|
|
855
|
+
// output: the ideal J without the polynomials in I
|
|
856
|
+
proc delidfromid(ideal I, ideal J)
|
|
857
|
+
{
|
|
858
|
+
int i; list r;
|
|
859
|
+
ideal JJ=J;
|
|
860
|
+
for (i=1;i<=size(I);i++)
|
|
861
|
+
{
|
|
862
|
+
r=memberpos(I[i],JJ);
|
|
863
|
+
if (r[1])
|
|
864
|
+
{
|
|
865
|
+
JJ=delfromideal(JJ,r[2]);
|
|
866
|
+
}
|
|
867
|
+
}
|
|
868
|
+
return(JJ);
|
|
869
|
+
}
|
|
870
|
+
|
|
871
|
+
// sortideal: sorts the polynomials in an ideal by lm in ascending order
|
|
872
|
+
proc sortideal(ideal Fi)
|
|
873
|
+
{
|
|
874
|
+
def RR=basering;
|
|
875
|
+
setring(@RP);
|
|
876
|
+
def F=imap(RR,Fi);
|
|
877
|
+
def H=F;
|
|
878
|
+
ideal G;
|
|
879
|
+
int i;
|
|
880
|
+
int j;
|
|
881
|
+
poly p;
|
|
882
|
+
while (size(H)!=0)
|
|
883
|
+
{
|
|
884
|
+
j=1;
|
|
885
|
+
p=H[1];
|
|
886
|
+
for (i=1;i<=size(H);i++)
|
|
887
|
+
{
|
|
888
|
+
if(lesspol(H[i],p)){j=i;p=H[j];}
|
|
889
|
+
}
|
|
890
|
+
G[size(G)+1]=p;
|
|
891
|
+
H=delfromideal(H,j);
|
|
892
|
+
}
|
|
893
|
+
setring(RR);
|
|
894
|
+
def GG=imap(@RP,G);
|
|
895
|
+
return(GG);
|
|
896
|
+
}
|
|
897
|
+
|
|
898
|
+
// mingb: given a basis (gb reducing) it
|
|
899
|
+
// order the polynomials is ascending order and
|
|
900
|
+
// eliminate the polynomials whose lpp is divisible by some
|
|
901
|
+
// smaller one
|
|
902
|
+
proc mingb(ideal F)
|
|
903
|
+
{
|
|
904
|
+
int t; int i; int j;
|
|
905
|
+
def H=sortideal(F);
|
|
906
|
+
ideal G;
|
|
907
|
+
if (ncols(H)<=1){return(H);}
|
|
908
|
+
G=H[1];
|
|
909
|
+
for (i=2; i<=ncols(H); i++)
|
|
910
|
+
{
|
|
911
|
+
t=1;
|
|
912
|
+
j=1;
|
|
913
|
+
while (t and (j<i))
|
|
914
|
+
{
|
|
915
|
+
if((leadmonom(H[i])/leadmonom(H[j]))!=0) {t=0;}
|
|
916
|
+
j++;
|
|
917
|
+
}
|
|
918
|
+
if (t) {G[size(G)+1]=H[i];}
|
|
919
|
+
}
|
|
920
|
+
return(G);
|
|
921
|
+
}
|
|
922
|
+
|
|
923
|
+
|
|
924
|
+
// redgb: given a minimal bases (gb reducing) it
|
|
925
|
+
// reduces each polynomial w.r.t. to the others
|
|
926
|
+
proc redgb(ideal F, ideal N, ideal W)
|
|
927
|
+
{
|
|
928
|
+
ideal G;
|
|
929
|
+
ideal H;
|
|
930
|
+
int i;
|
|
931
|
+
if (size(F)==0){return(ideal(0));}
|
|
932
|
+
for (i=1;i<=size(F);i++)
|
|
933
|
+
{
|
|
934
|
+
H=delfromideal(F,i);
|
|
935
|
+
G[i]=pnormalform(pdivi2(F[i],H)[1],N,W);
|
|
936
|
+
}
|
|
937
|
+
return(G);
|
|
938
|
+
}
|
|
939
|
+
|
|
940
|
+
|
|
941
|
+
//********************Main routines for buildtree******************
|
|
942
|
+
|
|
943
|
+
|
|
944
|
+
// splitspec: a new leading coefficient f is given to a red-spec
|
|
945
|
+
// then splitspec computes the two new red-spec by
|
|
946
|
+
// considering it null, and non null.
|
|
947
|
+
// in ring @P
|
|
948
|
+
// given f, and the red-spec (N,W)
|
|
949
|
+
// it outputs the null and the non-null red-spec adding f.
|
|
950
|
+
// if some of the output specifications has N=1 then
|
|
951
|
+
// there must be no split and buildtree must continue on
|
|
952
|
+
// the compatible red-spec
|
|
953
|
+
// input: poly f coefficient to split if needed
|
|
954
|
+
// list r=(N,W,LN) redspec
|
|
955
|
+
// output: list L = list(ideal N0, ideal W0), list(ideal N1, ideal W1), cond
|
|
956
|
+
proc splitspec(poly fi, list ri)
|
|
957
|
+
{
|
|
958
|
+
def RR=basering;
|
|
959
|
+
def Ni=ri[1];
|
|
960
|
+
def Wi=ri[2];
|
|
961
|
+
setring(@P);
|
|
962
|
+
def f=imap(RR,fi);
|
|
963
|
+
def N=imap(RR,Ni);
|
|
964
|
+
def W=imap(RR,Wi);
|
|
965
|
+
f=Wred(f,W);
|
|
966
|
+
def N0=N;
|
|
967
|
+
def W1=W;
|
|
968
|
+
N0[size(N0)+1]=f;
|
|
969
|
+
def r0=redspec(N0,W);
|
|
970
|
+
W1[size(W1)+1]=f;
|
|
971
|
+
def r1=redspec(N,W1);
|
|
972
|
+
setring(RR);
|
|
973
|
+
def ra0=imap(@P,r0);
|
|
974
|
+
def ra1=imap(@P,r1);
|
|
975
|
+
def cond=imap(@P,f);
|
|
976
|
+
return (list(ra0,ra1,cond));
|
|
977
|
+
}
|
|
978
|
+
|
|
979
|
+
// discusspolys: given a basis B and a red-spec (N,W), it analyzes the
|
|
980
|
+
// leadcoef of the polynomials in B until it finds
|
|
981
|
+
// that one of them can be either null or non null.
|
|
982
|
+
// If at the end only the non null option is compatible
|
|
983
|
+
// then the reduced B has all the leadcoef non null.
|
|
984
|
+
// Else recbuildtree must split.
|
|
985
|
+
// ring @R
|
|
986
|
+
// input: ideal B
|
|
987
|
+
// ideal N
|
|
988
|
+
// ideal W (a reduced-specification)
|
|
989
|
+
// output: list of ((N0,W0,LN0),(N1,W1,LN1),Br,cond)
|
|
990
|
+
// cond is the condition to branch
|
|
991
|
+
proc discusspolys(ideal B, list r)
|
|
992
|
+
{
|
|
993
|
+
poly f; poly f1; poly f2;
|
|
994
|
+
poly cond;
|
|
995
|
+
def N=r[1]; def W=r[2]; def LN=r[3];
|
|
996
|
+
def Ba=B; def F=B;
|
|
997
|
+
ideal N0=1; def W0=W; list LN0=ideal(1);
|
|
998
|
+
def N1=N; def W1=W; def LN1=LN;
|
|
999
|
+
list L;
|
|
1000
|
+
list M; list M0; list M1;
|
|
1001
|
+
list rr;
|
|
1002
|
+
if (size(B)==0)
|
|
1003
|
+
{
|
|
1004
|
+
M0=N0,W0,LN0; // incompatible
|
|
1005
|
+
M1=N1,W1,LN1;
|
|
1006
|
+
M=M0,M1,B,poly(1);
|
|
1007
|
+
return(M);
|
|
1008
|
+
}
|
|
1009
|
+
while ((size(F)!=0) and ((N0[1]==1) or (N1[1]==1)))
|
|
1010
|
+
{
|
|
1011
|
+
f=F[1];
|
|
1012
|
+
F=delfromideal(F,1);
|
|
1013
|
+
f1=pnormalform(f,N,W);
|
|
1014
|
+
rr=memberpos(f,Ba);
|
|
1015
|
+
if (f1!=0)
|
|
1016
|
+
{
|
|
1017
|
+
Ba[rr[2]]=f1;
|
|
1018
|
+
if (pardeg(leadcoef(f1))!=0)
|
|
1019
|
+
{
|
|
1020
|
+
f2=Wred(leadcoef(f1),W);
|
|
1021
|
+
L=splitspec(f2,list(N,W,LN));
|
|
1022
|
+
N0=L[1][1]; W0=L[1][2]; LN0=L[1][3]; N1=L[2][1]; W1=L[2][2]; LN1=L[2][3];
|
|
1023
|
+
cond=L[3];
|
|
1024
|
+
}
|
|
1025
|
+
}
|
|
1026
|
+
else
|
|
1027
|
+
{
|
|
1028
|
+
Ba=delfromideal(Ba,rr[2]);
|
|
1029
|
+
N0=ideal(1); //F=ideal(0);
|
|
1030
|
+
}
|
|
1031
|
+
}
|
|
1032
|
+
M0=N0,W0,LN0;
|
|
1033
|
+
M1=N1,W1,LN1;
|
|
1034
|
+
M=M0,M1,Ba,cond;
|
|
1035
|
+
return(M);
|
|
1036
|
+
}
|
|
1037
|
+
|
|
1038
|
+
|
|
1039
|
+
// lcmlmonoms: computes the lcm of the leading monomials
|
|
1040
|
+
// of the polynomils f and g
|
|
1041
|
+
// ring @R
|
|
1042
|
+
proc lcmlmonoms(poly f,poly g)
|
|
1043
|
+
{
|
|
1044
|
+
def lf=leadmonom(f);
|
|
1045
|
+
def lg=leadmonom(g);
|
|
1046
|
+
def gls=gcd(lf,lg);
|
|
1047
|
+
return((lf*lg)/gls);
|
|
1048
|
+
}
|
|
1049
|
+
|
|
1050
|
+
// placepairinlist
|
|
1051
|
+
// input: given a new pair of the form (i,j,lmij)
|
|
1052
|
+
// and a list of pairs of the same form
|
|
1053
|
+
// ring @R
|
|
1054
|
+
// output: it inserts the new pair in ascending order of lmij
|
|
1055
|
+
proc placepairinlist(list pair,list P)
|
|
1056
|
+
{
|
|
1057
|
+
list Pr;
|
|
1058
|
+
if (size(P)==0){Pr=insert(P,pair); return(Pr);}
|
|
1059
|
+
if (pair[3]<P[1][3]){Pr=insert(P,pair); return(Pr);}
|
|
1060
|
+
if (pair[3]>=P[size(P)][3]){Pr=insert(P,pair,size(P)); return(Pr);}
|
|
1061
|
+
kill Pr;
|
|
1062
|
+
list Pr;
|
|
1063
|
+
int j;
|
|
1064
|
+
int i=1;
|
|
1065
|
+
int loc=0;
|
|
1066
|
+
while((i<=size(P)) and (loc==0))
|
|
1067
|
+
{
|
|
1068
|
+
if (pair[3]>=P[i][3]){j=i; i++;}
|
|
1069
|
+
else{loc=1; j=i-1;}
|
|
1070
|
+
}
|
|
1071
|
+
Pr=insert(P,pair,j);
|
|
1072
|
+
return(Pr);
|
|
1073
|
+
}
|
|
1074
|
+
|
|
1075
|
+
// orderingpairs:
|
|
1076
|
+
// input: ideal F
|
|
1077
|
+
// output: list of ordered pairs (i,j,lcmij) of F in ascending order of lcmij
|
|
1078
|
+
// if a pair verifies Buchberger 1st criterion it is not stored
|
|
1079
|
+
// ring @R
|
|
1080
|
+
proc orderingpairs(ideal F)
|
|
1081
|
+
{
|
|
1082
|
+
int i;
|
|
1083
|
+
int j;
|
|
1084
|
+
poly lm;
|
|
1085
|
+
poly lpf;
|
|
1086
|
+
poly lpg;
|
|
1087
|
+
list P;
|
|
1088
|
+
list pair;
|
|
1089
|
+
if (size(F)<=1){return(P);}
|
|
1090
|
+
for (i=1;i<=size(F)-1;i++)
|
|
1091
|
+
{
|
|
1092
|
+
for (j=i+1;j<=size(F);j++)
|
|
1093
|
+
{
|
|
1094
|
+
lm=lcmlmonoms(F[i],F[j]);
|
|
1095
|
+
// Buchberger 1st criterion
|
|
1096
|
+
lpf=leadmonom(F[i]);
|
|
1097
|
+
lpg=leadmonom(F[j]);
|
|
1098
|
+
if (lpf*lpg!=lm)
|
|
1099
|
+
{
|
|
1100
|
+
pair=(i,j,lm);
|
|
1101
|
+
P=placepairinlist(pair,P);
|
|
1102
|
+
}
|
|
1103
|
+
}
|
|
1104
|
+
}
|
|
1105
|
+
return(P);
|
|
1106
|
+
}
|
|
1107
|
+
|
|
1108
|
+
// Buchberger 2nd criterion
|
|
1109
|
+
// input: integers i,j
|
|
1110
|
+
// list P of pairs of the form (i,j) not yet verified
|
|
1111
|
+
// ring @R
|
|
1112
|
+
proc criterion(int i, int j, list P, ideal B)
|
|
1113
|
+
{
|
|
1114
|
+
def lcmij=lcmlmonoms(B[i],B[j]);
|
|
1115
|
+
int crit=0;
|
|
1116
|
+
int k=1;
|
|
1117
|
+
list ik; list jk;
|
|
1118
|
+
while ((k<=size(B)) and (crit==0))
|
|
1119
|
+
{
|
|
1120
|
+
if ((k!=i) and (k!=j))
|
|
1121
|
+
{
|
|
1122
|
+
if (i<k){ik=i,k;} else{ik=k,i;}
|
|
1123
|
+
if (j<k){jk=i,k;} else{jk=k,j;}
|
|
1124
|
+
if (not((memberpos(ik,P)[1]) or (memberpos(jk,P)[1])))
|
|
1125
|
+
{
|
|
1126
|
+
if ((lcmij)/leadmonom(B[k])!=0){crit=1;}
|
|
1127
|
+
}
|
|
1128
|
+
}
|
|
1129
|
+
k++;
|
|
1130
|
+
}
|
|
1131
|
+
return(crit);
|
|
1132
|
+
}
|
|
1133
|
+
|
|
1134
|
+
// discussSpolys: given a basis B and a red-spec (N,W), it analyzes the
|
|
1135
|
+
// leadcoef of the polynomials in B until it finds
|
|
1136
|
+
// that one of them can be either null or non null.
|
|
1137
|
+
// If at the end only the non null option is compatible
|
|
1138
|
+
// then the reduced B has all the leadcoef non null.
|
|
1139
|
+
// Else recbuildtree must split.
|
|
1140
|
+
// ring @R
|
|
1141
|
+
// input: ideal B
|
|
1142
|
+
// ideal N
|
|
1143
|
+
// ideal W (a reduced-specification)
|
|
1144
|
+
// list P current set of pairs of polynomials from B to be tested.
|
|
1145
|
+
// output: list of (N0,W0,LN0),(N1,W1,LN1),Br,Pr,cond]
|
|
1146
|
+
// list Pr the not checked list of pairs.
|
|
1147
|
+
proc discussSpolys(ideal B, list r, list P)
|
|
1148
|
+
{
|
|
1149
|
+
int i; int j; int k;
|
|
1150
|
+
int npols; int nSpols; int tt;
|
|
1151
|
+
poly cond=1;
|
|
1152
|
+
poly lm; poly lpf; poly lpg;
|
|
1153
|
+
def F=B; def Pa=P; list Pa0;
|
|
1154
|
+
def N=r[1]; def W=r[2]; def LN=r[3];
|
|
1155
|
+
ideal N0=1; def W0=W; list LN0=ideal(1);
|
|
1156
|
+
def N1=N; def W1=W; def LN1=LN;
|
|
1157
|
+
ideal Bw;
|
|
1158
|
+
poly S;
|
|
1159
|
+
list L; list L0; list L1;
|
|
1160
|
+
list M; list M0; list M1;
|
|
1161
|
+
list pair;
|
|
1162
|
+
list KK; int loc;
|
|
1163
|
+
int crit;
|
|
1164
|
+
poly h;
|
|
1165
|
+
if (size(B)==0)
|
|
1166
|
+
{
|
|
1167
|
+
M0=N0,W0,LN0;
|
|
1168
|
+
M1=N1,W1,LN1;
|
|
1169
|
+
M=M0,M1,ideal(0),Pa,cond;
|
|
1170
|
+
return(M);
|
|
1171
|
+
}
|
|
1172
|
+
tt=1;
|
|
1173
|
+
i=1;
|
|
1174
|
+
while ((tt) and (i<=size(B)))
|
|
1175
|
+
{
|
|
1176
|
+
h=B[i];
|
|
1177
|
+
for (j=1;j<=npars(@R);j++)
|
|
1178
|
+
{
|
|
1179
|
+
h=subst(h,par(j),0);
|
|
1180
|
+
}
|
|
1181
|
+
if (h!=B[i]){tt=0;}
|
|
1182
|
+
i++;
|
|
1183
|
+
}
|
|
1184
|
+
if (tt)
|
|
1185
|
+
{
|
|
1186
|
+
//"T_ a non parametric system occurred";
|
|
1187
|
+
def RR=basering;
|
|
1188
|
+
def RL=ringlist(RR);
|
|
1189
|
+
RL[1]=0;
|
|
1190
|
+
def LRR=ring(RL);
|
|
1191
|
+
setring(LRR);
|
|
1192
|
+
def BP=imap(RR,B);
|
|
1193
|
+
option(redSB);
|
|
1194
|
+
BP=groebner(BP);
|
|
1195
|
+
setring(RR);
|
|
1196
|
+
B=imap(LRR,BP);
|
|
1197
|
+
M0=ideal(1),W0,LN0;
|
|
1198
|
+
M1=N1,W1,LN1;
|
|
1199
|
+
M=M0,M1,B,list(),cond;
|
|
1200
|
+
return(M);
|
|
1201
|
+
}
|
|
1202
|
+
if (size(Pa)==0){npols=size(B); Pa=orderingpairs(F); nSpols=size(Pa);}
|
|
1203
|
+
while ((size(Pa)!=0) and (N0[1]==1) or (N1[1]==1))
|
|
1204
|
+
{
|
|
1205
|
+
pair=Pa[1];
|
|
1206
|
+
i=pair[1];
|
|
1207
|
+
j=pair[2];
|
|
1208
|
+
Pa=delete(Pa,1);
|
|
1209
|
+
// Buchberger 1st criterion (not needed here, it is already eliminated
|
|
1210
|
+
// when creating the list of pairs
|
|
1211
|
+
//T_ lpf=leadmonom(F[i]);
|
|
1212
|
+
//T_ lpg=leadmonom(F[j]);
|
|
1213
|
+
//T_ if (lpf*lpg!=pair[3])
|
|
1214
|
+
//T_ {
|
|
1215
|
+
for (k=1;k<=size(Pa);k++){Pa0[k]=delete(Pa[k],3);}
|
|
1216
|
+
//crit=criterion(i,j,Pa0,F); // produces errors?
|
|
1217
|
+
crit=0;
|
|
1218
|
+
if (not(crit))
|
|
1219
|
+
{
|
|
1220
|
+
S=pspol(F[i],F[j]);
|
|
1221
|
+
KK=pdivi2(S,F);
|
|
1222
|
+
S=KK[1];
|
|
1223
|
+
if (S!=0)
|
|
1224
|
+
{
|
|
1225
|
+
S=pnormalform(S,N,W);
|
|
1226
|
+
if (S!=0)
|
|
1227
|
+
{
|
|
1228
|
+
L=discusspolys(ideal(S),list(N,W,LN));
|
|
1229
|
+
N0=L[1][1];
|
|
1230
|
+
W0=L[1][2];
|
|
1231
|
+
LN0=L[1][3];
|
|
1232
|
+
N1=L[2][1];
|
|
1233
|
+
W1=L[2][2];
|
|
1234
|
+
LN1=L[2][3];
|
|
1235
|
+
S=L[3][1];
|
|
1236
|
+
cond=L[4];
|
|
1237
|
+
if (S==1)
|
|
1238
|
+
{
|
|
1239
|
+
M0=ideal(1),W0,list(ideal(1));
|
|
1240
|
+
M1=N1,W1,LN1;
|
|
1241
|
+
M=M0,M1,ideal(1),list(),cond;
|
|
1242
|
+
return(M);
|
|
1243
|
+
}
|
|
1244
|
+
if (S!=0)
|
|
1245
|
+
{
|
|
1246
|
+
F[size(F)+1]=S;
|
|
1247
|
+
npols=size(F);
|
|
1248
|
+
//"T_ number of polynoms in the basis="; npols;
|
|
1249
|
+
for (k=1;k<size(F);k++)
|
|
1250
|
+
{
|
|
1251
|
+
lm=lcmlmonoms(F[k],S);
|
|
1252
|
+
// Buchberger 1st criterion
|
|
1253
|
+
lpf=leadmonom(F[k]);
|
|
1254
|
+
lpg=leadmonom(S);
|
|
1255
|
+
if (lpf*lpg!=lm)
|
|
1256
|
+
{
|
|
1257
|
+
pair=k,size(F),lm;
|
|
1258
|
+
Pa=placepairinlist(pair,Pa);
|
|
1259
|
+
nSpols=size(Pa);
|
|
1260
|
+
//"T_ number of S-polynoms to test="; nSpols;
|
|
1261
|
+
}
|
|
1262
|
+
}
|
|
1263
|
+
if (N0[1]==1){N=N1; W=W1; LN=LN1;}
|
|
1264
|
+
}
|
|
1265
|
+
}
|
|
1266
|
+
}
|
|
1267
|
+
}
|
|
1268
|
+
//T_ }
|
|
1269
|
+
}
|
|
1270
|
+
M0=N0,W0,LN0;
|
|
1271
|
+
M1=N1,W1,LN1;
|
|
1272
|
+
M=M0,M1,F,Pa,cond;
|
|
1273
|
+
return(M);
|
|
1274
|
+
}
|
|
1275
|
+
|
|
1276
|
+
|
|
1277
|
+
// buildtree: Basic routine generating a first reduced CGS
|
|
1278
|
+
// it will define the rings @R, @P and @RP as global rings
|
|
1279
|
+
// and the list @T a global list that will be killed at the output
|
|
1280
|
+
// input: ideal F in ring K[a][x];
|
|
1281
|
+
// output: list T of lists whose list elements are of the form
|
|
1282
|
+
// T[i]=list(list lab, boolean terminal, ideal B, ideal N, ideal W, list of ideals decomp of N,
|
|
1283
|
+
// ideal of monomials lpp);
|
|
1284
|
+
// all the ideals are in the ring K[a][x];
|
|
1285
|
+
proc buildtree(ideal F, list #)
|
|
1286
|
+
"USAGE: buildtree(F);
|
|
1287
|
+
F: ideal in K[a][x] (parameters and variables) to be discussed
|
|
1288
|
+
RETURN: Returns a list T describing a dichotomic discussion tree, whose
|
|
1289
|
+
content is the first discussion of the ideal F of K[a][x].
|
|
1290
|
+
The first element of the list is the root, and contains
|
|
1291
|
+
[1] label: intvec(-1)
|
|
1292
|
+
[2] number of children : int
|
|
1293
|
+
[3] the ideal F
|
|
1294
|
+
[4], [5], [6] the red-spec of the null and non-null conditions
|
|
1295
|
+
given (as option). ideal (0), ideal (0), list(ideal(0)) if
|
|
1296
|
+
no optional conditions are given.
|
|
1297
|
+
[7] the set of lpp of ideal F
|
|
1298
|
+
[8] condition that was taken to reach the vertex
|
|
1299
|
+
(poly 1, for the root).
|
|
1300
|
+
The remaining elements of the list represent vertices of the tree:
|
|
1301
|
+
with the same structure:
|
|
1302
|
+
[1] label: intvec (1,0,0,1,...) gives its position in the tree:
|
|
1303
|
+
first branch condition is taken non-null, second null,...
|
|
1304
|
+
[2] number of children (0 if it is a terminal vertex)
|
|
1305
|
+
[3] the specialized ideal with the previous assumed conditions
|
|
1306
|
+
to reach the vertex
|
|
1307
|
+
[4],[5],[6] the red-spec of the previous assumed conditions
|
|
1308
|
+
to reach the vertex
|
|
1309
|
+
[7] the set of lpp of the specialized ideal at this stage
|
|
1310
|
+
[8] condition that was taken to reach the vertex from the
|
|
1311
|
+
father's vertex (that was taken non-null if the last
|
|
1312
|
+
integer in the label is 1, and null if it is 0)
|
|
1313
|
+
The terminal vertices form a disjoint partition of the parameter space
|
|
1314
|
+
whose bases specialize to the reduced Groebner basis of the
|
|
1315
|
+
specialized ideal on each point of the segment and preserve
|
|
1316
|
+
the lpp. So they form a disjoint reduced CGS.
|
|
1317
|
+
NOTE: The basering R, must be of the form K[a][x], a=parameters,
|
|
1318
|
+
x=variables, and should be defined previously. The ideal must
|
|
1319
|
+
be defined on R.
|
|
1320
|
+
The disjoint and reduced CGS built by buildtree can be obtained
|
|
1321
|
+
from the output of buildtree by calling finalcases(T); this
|
|
1322
|
+
selects the terminal vertices.
|
|
1323
|
+
The content of buildtree can be written in a file that is readable
|
|
1324
|
+
by Maple in order to plot its content using buildtreetoMaple;
|
|
1325
|
+
The file written by buildtreetoMaple when read in a Maple
|
|
1326
|
+
worksheet can be plotted using the dbgb routine tplot;
|
|
1327
|
+
|
|
1328
|
+
KEYWORDS: CGS, disjoint, reduced, comprehensive Groebner system
|
|
1329
|
+
EXAMPLE: buildtree; shows an example"
|
|
1330
|
+
{
|
|
1331
|
+
list @T;
|
|
1332
|
+
exportto(Top,@T);
|
|
1333
|
+
def @R=basering;
|
|
1334
|
+
setglobalrings();
|
|
1335
|
+
int i;
|
|
1336
|
+
int j;
|
|
1337
|
+
ideal B;
|
|
1338
|
+
poly f;
|
|
1339
|
+
poly cond=1;
|
|
1340
|
+
def N=ideal(0);
|
|
1341
|
+
def W=ideal(0);
|
|
1342
|
+
list LN;
|
|
1343
|
+
LN[1]=ideal(0);
|
|
1344
|
+
if (size(#)==2)
|
|
1345
|
+
{
|
|
1346
|
+
N=#[1];
|
|
1347
|
+
W=#[2];
|
|
1348
|
+
def LL=redspec(N,W);
|
|
1349
|
+
N=LL[1];
|
|
1350
|
+
W=LL[2];
|
|
1351
|
+
LN=LL[3];
|
|
1352
|
+
j=1;
|
|
1353
|
+
for (i=1;i<=size(F);i++)
|
|
1354
|
+
{
|
|
1355
|
+
f=pnormalform(F[i],N,W);
|
|
1356
|
+
if (f!=0){B[j]=f;j++;}
|
|
1357
|
+
}
|
|
1358
|
+
}
|
|
1359
|
+
else {B=F;}
|
|
1360
|
+
def lpp=ideal(0);
|
|
1361
|
+
if (size(B)==0){lpp=ideal(0);}
|
|
1362
|
+
else
|
|
1363
|
+
{
|
|
1364
|
+
for (i=1;i<=size(B);i++){lpp[i]=leadmonom(B[i]);}
|
|
1365
|
+
// lpp=ideal of lead power product of the polys in B
|
|
1366
|
+
}
|
|
1367
|
+
intvec lab=-1;
|
|
1368
|
+
int term=0;
|
|
1369
|
+
list root;
|
|
1370
|
+
root[1]=lab;
|
|
1371
|
+
root[2]=term;
|
|
1372
|
+
root[3]=B;
|
|
1373
|
+
root[4]=N;
|
|
1374
|
+
root[5]=W;
|
|
1375
|
+
root[6]=LN;
|
|
1376
|
+
root[7]=lpp;
|
|
1377
|
+
root[8]=cond;
|
|
1378
|
+
@T[1]=root;
|
|
1379
|
+
list P;
|
|
1380
|
+
recbuildtree(root,P);
|
|
1381
|
+
def T=@T;
|
|
1382
|
+
kill @T;
|
|
1383
|
+
return(T)
|
|
1384
|
+
}
|
|
1385
|
+
example
|
|
1386
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1387
|
+
ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
|
|
1388
|
+
ideal F=x4-a4+a2,
|
|
1389
|
+
x1+x2+x3+x4-a1-a3-a4,
|
|
1390
|
+
x1*x3*x4-a1*a3*a4,
|
|
1391
|
+
x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
|
|
1392
|
+
def T=buildtree(F);
|
|
1393
|
+
finalcases(T);
|
|
1394
|
+
buildtreetoMaple(T,"Tb","Tb.txt");
|
|
1395
|
+
}
|
|
1396
|
+
|
|
1397
|
+
// recbuildtree: auxiiary recursive routine called by buildtree
|
|
1398
|
+
proc recbuildtree(list v, list P)
|
|
1399
|
+
{
|
|
1400
|
+
def vertex=v;
|
|
1401
|
+
int i;
|
|
1402
|
+
int j;
|
|
1403
|
+
int pos;
|
|
1404
|
+
list P0;
|
|
1405
|
+
list P1;
|
|
1406
|
+
poly f;
|
|
1407
|
+
def lab=vertex[1];
|
|
1408
|
+
if ((size(lab)>1) and (lab[1]==-1))
|
|
1409
|
+
{lab=lab[2..size(lab)];}
|
|
1410
|
+
def term=vertex[2];
|
|
1411
|
+
def B=vertex[3];
|
|
1412
|
+
def N=vertex[4];
|
|
1413
|
+
def W=vertex[5];
|
|
1414
|
+
def LN=vertex[6];
|
|
1415
|
+
def lpp=vertex[7];
|
|
1416
|
+
def cond=vertex[8];
|
|
1417
|
+
def lab0=lab;
|
|
1418
|
+
def lab1=lab;
|
|
1419
|
+
if ((size(lab)==1) and (lab[1]==-1))
|
|
1420
|
+
{
|
|
1421
|
+
lab0=0;
|
|
1422
|
+
lab1=1;
|
|
1423
|
+
}
|
|
1424
|
+
else
|
|
1425
|
+
{
|
|
1426
|
+
lab0[size(lab)+1]=0;
|
|
1427
|
+
lab1[size(lab)+1]=1;
|
|
1428
|
+
}
|
|
1429
|
+
list vertex0;
|
|
1430
|
+
list vertex1;
|
|
1431
|
+
ideal B0;
|
|
1432
|
+
ideal lpp0;
|
|
1433
|
+
ideal lpp1;
|
|
1434
|
+
ideal N0=1;
|
|
1435
|
+
def W0=ideal(0);
|
|
1436
|
+
list LN0=ideal(1);
|
|
1437
|
+
def B1=B;
|
|
1438
|
+
def N1=N;
|
|
1439
|
+
def W1=W;
|
|
1440
|
+
list LN1=LN;
|
|
1441
|
+
list L;
|
|
1442
|
+
if (size(P)==0)
|
|
1443
|
+
{
|
|
1444
|
+
L=discusspolys(B,list(N,W,LN));
|
|
1445
|
+
N0=L[1][1];
|
|
1446
|
+
W0=L[1][2];
|
|
1447
|
+
LN0=L[1][3];
|
|
1448
|
+
N1=L[2][1];
|
|
1449
|
+
W1=L[2][2];
|
|
1450
|
+
LN1=L[2][3];
|
|
1451
|
+
B1=L[3];
|
|
1452
|
+
cond=L[4];
|
|
1453
|
+
}
|
|
1454
|
+
if ((size(B1)!=0) and (N0[1]==1))
|
|
1455
|
+
{
|
|
1456
|
+
L=discussSpolys(B1,list(N1,W1,LN1),P);
|
|
1457
|
+
N0=L[1][1];
|
|
1458
|
+
W0=L[1][2];
|
|
1459
|
+
LN0=L[1][3];
|
|
1460
|
+
N1=L[2][1];
|
|
1461
|
+
W1=L[2][2];
|
|
1462
|
+
LN1=L[2][3];
|
|
1463
|
+
B1=L[3];
|
|
1464
|
+
P1=L[4];
|
|
1465
|
+
cond=L[5];
|
|
1466
|
+
lpp=ideal(0);
|
|
1467
|
+
for (i=1;i<=size(B1);i++){lpp[i]=leadmonom(B1[i]);}
|
|
1468
|
+
}
|
|
1469
|
+
vertex[3]=B1;
|
|
1470
|
+
vertex[4]=N1; // unnecessary
|
|
1471
|
+
vertex[5]=W1; // unnecessary
|
|
1472
|
+
vertex[6]=LN1;// unnecessary
|
|
1473
|
+
vertex[7]=lpp;
|
|
1474
|
+
vertex[8]=cond;
|
|
1475
|
+
if (size(@T)>0)
|
|
1476
|
+
{
|
|
1477
|
+
pos=size(@T)+1;
|
|
1478
|
+
@T[pos]=vertex;
|
|
1479
|
+
}
|
|
1480
|
+
if ((N0[1]!=1) and (N1[1]!=1))
|
|
1481
|
+
{
|
|
1482
|
+
vertex1[1]=lab1;
|
|
1483
|
+
vertex1[2]=0;
|
|
1484
|
+
vertex1[3]=B1;
|
|
1485
|
+
vertex1[4]=N1;
|
|
1486
|
+
vertex1[5]=W1;
|
|
1487
|
+
vertex1[6]=LN1;
|
|
1488
|
+
vertex1[7]=lpp1;
|
|
1489
|
+
vertex1[8]=cond;
|
|
1490
|
+
if (size(B1)==0){B0=ideal(0); lpp0=ideal(0);}
|
|
1491
|
+
else
|
|
1492
|
+
{
|
|
1493
|
+
j=1;
|
|
1494
|
+
lpp0=ideal(0);
|
|
1495
|
+
for (i=1;i<=size(B1);i++)
|
|
1496
|
+
{
|
|
1497
|
+
f=pnormalform(B1[i],N0,W0);
|
|
1498
|
+
if (f!=0){B0[j]=f; lpp0[j]=leadmonom(f);j++;}
|
|
1499
|
+
}
|
|
1500
|
+
}
|
|
1501
|
+
vertex0[1]=lab0;
|
|
1502
|
+
vertex0[2]=0;
|
|
1503
|
+
vertex0[3]=B0;
|
|
1504
|
+
vertex0[4]=N0;
|
|
1505
|
+
vertex0[5]=W0;
|
|
1506
|
+
vertex0[6]=LN0;
|
|
1507
|
+
vertex0[7]=lpp0;
|
|
1508
|
+
vertex0[8]=cond;
|
|
1509
|
+
recbuildtree(vertex0,P0);
|
|
1510
|
+
recbuildtree(vertex1,P1);
|
|
1511
|
+
}
|
|
1512
|
+
else
|
|
1513
|
+
{
|
|
1514
|
+
vertex[2]=1;
|
|
1515
|
+
B1=mingb(B1);
|
|
1516
|
+
vertex[3]=redgb(B1,N1,W1);
|
|
1517
|
+
vertex[4]=N1;
|
|
1518
|
+
vertex[5]=W1;
|
|
1519
|
+
vertex[6]=LN1;
|
|
1520
|
+
lpp=ideal(0);
|
|
1521
|
+
for (i=1;i<=size(vertex[3]);i++){lpp[i]=leadmonom(vertex[3][i]);}
|
|
1522
|
+
vertex[7]=lpp;
|
|
1523
|
+
vertex[8]=cond;
|
|
1524
|
+
@T[pos]=vertex;
|
|
1525
|
+
}
|
|
1526
|
+
}
|
|
1527
|
+
|
|
1528
|
+
//****************End of BuildTree*************************************
|
|
1529
|
+
|
|
1530
|
+
//****************Begin BuildTree To Maple*****************************
|
|
1531
|
+
|
|
1532
|
+
// buildtreetoMaple: writes the list provided by buildtree to a file
|
|
1533
|
+
// containing the table representing it in Maple
|
|
1534
|
+
|
|
1535
|
+
// writes the list L=buildtree(F) to a file "writefile" that
|
|
1536
|
+
// is readable by Maple with name T
|
|
1537
|
+
// input:
|
|
1538
|
+
// L: the list output by buildtree
|
|
1539
|
+
// T: the name (string) of the output table in Maple
|
|
1540
|
+
// writefile: the name of the datafile where the output is to be stored
|
|
1541
|
+
// output:
|
|
1542
|
+
// the result is written on the datafile "writefile" containing
|
|
1543
|
+
// the assignment to the table with name "T"
|
|
1544
|
+
proc buildtreetoMaple(list L, string T, string writefile)
|
|
1545
|
+
"USAGE: buildtreetoMaple(T, TM, writefile);
|
|
1546
|
+
T: is the list provided by buildtree,
|
|
1547
|
+
TM: is the name (string) of the table variable in Maple that will represent
|
|
1548
|
+
the output of buildtree,
|
|
1549
|
+
writefile: is the name (string) of the file where to write the content.
|
|
1550
|
+
RETURN: writes the list provided by buildtree to a file
|
|
1551
|
+
containing the table representing it in Maple.
|
|
1552
|
+
KEYWORDS: buildtree, Maple
|
|
1553
|
+
EXAMPLE: buildtreetoMaple; shows an example"
|
|
1554
|
+
{
|
|
1555
|
+
short=0;
|
|
1556
|
+
poly cond;
|
|
1557
|
+
int i;
|
|
1558
|
+
link LLw=":w "+writefile;
|
|
1559
|
+
string La=string("table(",T,");");
|
|
1560
|
+
write(LLw, La);
|
|
1561
|
+
close(LLw);
|
|
1562
|
+
link LLa=":a "+writefile;
|
|
1563
|
+
def RL=ringlist(@R);
|
|
1564
|
+
list p=RL[1][2];
|
|
1565
|
+
string param=string(p[1]);
|
|
1566
|
+
if (size(p)>1)
|
|
1567
|
+
{
|
|
1568
|
+
for(i=2;i<=size(p);i++){param=string(param,",",p[i]);}
|
|
1569
|
+
}
|
|
1570
|
+
list v=RL[2];
|
|
1571
|
+
string vars=string(v[1]);
|
|
1572
|
+
if (size(v)>1)
|
|
1573
|
+
{
|
|
1574
|
+
for(i=2;i<=size(v);i++){vars=string(vars,",",v[i]);}
|
|
1575
|
+
}
|
|
1576
|
+
list xord;
|
|
1577
|
+
list pord;
|
|
1578
|
+
if (RL[1][3][1][1]=="dp"){pord=string("tdeg(",param);}
|
|
1579
|
+
if (RL[1][3][1][1]=="lp"){pord=string("plex(",param);}
|
|
1580
|
+
if (RL[3][1][1]=="dp"){xord=string("tdeg(",vars);}
|
|
1581
|
+
if (RL[3][1][1]=="lp"){xord=string("plex(",vars);}
|
|
1582
|
+
write(LLa,string(T,"[[9]]:=",xord,");"));
|
|
1583
|
+
write(LLa,string(T,"[[10]]:=",pord,");"));
|
|
1584
|
+
write(LLa,string(T,"[[11]]:=true; "));
|
|
1585
|
+
list S;
|
|
1586
|
+
for (i=1;i<=size(L);i++)
|
|
1587
|
+
{
|
|
1588
|
+
if (L[i][2]==0)
|
|
1589
|
+
{
|
|
1590
|
+
cond=L[i][8];
|
|
1591
|
+
S=btcond(T,L[i],cond);
|
|
1592
|
+
write(LLa,S[1]);
|
|
1593
|
+
write(LLa,S[2]);
|
|
1594
|
+
}
|
|
1595
|
+
S=btbasis(T,L[i]);
|
|
1596
|
+
write(LLa,S);
|
|
1597
|
+
S=btN(T,L[i]);
|
|
1598
|
+
write(LLa,S);
|
|
1599
|
+
S=btW(T,L[i]);
|
|
1600
|
+
write(LLa,S);
|
|
1601
|
+
if (L[i][2]==1) {S=btterminal(T,L[i]); write(LLa,S);}
|
|
1602
|
+
S=btlpp(T,L[i]);
|
|
1603
|
+
write(LLa,S);
|
|
1604
|
+
}
|
|
1605
|
+
close(LLa);
|
|
1606
|
+
}
|
|
1607
|
+
example
|
|
1608
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1609
|
+
ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
|
|
1610
|
+
ideal F=x4-a4+a2,
|
|
1611
|
+
x1+x2+x3+x4-a1-a3-a4,
|
|
1612
|
+
x1*x3*x4-a1*a3*a4,
|
|
1613
|
+
x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
|
|
1614
|
+
def T=buildtree(F);
|
|
1615
|
+
finalcases(T);
|
|
1616
|
+
buildtreetoMaple(T,"Tb","Tb.txt");
|
|
1617
|
+
}
|
|
1618
|
+
|
|
1619
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1620
|
+
// input:
|
|
1621
|
+
// list L: element i of the list of buildtree(F)
|
|
1622
|
+
// output:
|
|
1623
|
+
// the string of T[[lab,1]]:=label; in Maple
|
|
1624
|
+
proc btterminal(string T, list L)
|
|
1625
|
+
{
|
|
1626
|
+
int i;
|
|
1627
|
+
string Li;
|
|
1628
|
+
string term;
|
|
1629
|
+
string coma=",";
|
|
1630
|
+
if (L[2]==0){term="false";} else {term="true";}
|
|
1631
|
+
def lab=L[1];
|
|
1632
|
+
string slab;
|
|
1633
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1634
|
+
{slab="";coma="";} //if (size(lab)==0)
|
|
1635
|
+
else
|
|
1636
|
+
{
|
|
1637
|
+
slab=string(lab[1]);
|
|
1638
|
+
if (size(lab)>=1)
|
|
1639
|
+
{
|
|
1640
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1641
|
+
}
|
|
1642
|
+
}
|
|
1643
|
+
Li=string(T,"[[",slab,coma,"6]]:=",term,"; ");
|
|
1644
|
+
return(Li);
|
|
1645
|
+
}
|
|
1646
|
+
|
|
1647
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1648
|
+
// input:
|
|
1649
|
+
// list L: element i of the list of buildtree(F)
|
|
1650
|
+
// output:
|
|
1651
|
+
// the string of T[[lab,3]] (basis); in Maple
|
|
1652
|
+
proc btbasis(string T, list L)
|
|
1653
|
+
{
|
|
1654
|
+
int i;
|
|
1655
|
+
string Li;
|
|
1656
|
+
string coma=",";
|
|
1657
|
+
def lab=L[1];
|
|
1658
|
+
string slab;
|
|
1659
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1660
|
+
{slab="";coma="";} //if (size(lab)==0)
|
|
1661
|
+
else
|
|
1662
|
+
{
|
|
1663
|
+
slab=string(lab[1]);
|
|
1664
|
+
if (size(lab)>=1)
|
|
1665
|
+
{
|
|
1666
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1667
|
+
}
|
|
1668
|
+
}
|
|
1669
|
+
Li=string(T,"[[",slab,coma,"3]]:=[",L[3],"]; ");
|
|
1670
|
+
return(Li);
|
|
1671
|
+
}
|
|
1672
|
+
|
|
1673
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1674
|
+
// input:
|
|
1675
|
+
// list L: element i of the list of buildtree(F)
|
|
1676
|
+
// output:
|
|
1677
|
+
// the string of T[[lab,4]] (null conditions ideal); in Maple
|
|
1678
|
+
proc btN(string T, list L)
|
|
1679
|
+
{
|
|
1680
|
+
int i;
|
|
1681
|
+
string Li;
|
|
1682
|
+
string coma=",";
|
|
1683
|
+
def lab=L[1];
|
|
1684
|
+
string slab;
|
|
1685
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1686
|
+
{slab=""; coma="";}
|
|
1687
|
+
else
|
|
1688
|
+
{
|
|
1689
|
+
slab=string(lab[1]);
|
|
1690
|
+
if (size(lab)>=1)
|
|
1691
|
+
{
|
|
1692
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1693
|
+
}
|
|
1694
|
+
}
|
|
1695
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1696
|
+
{Li=string(T,"[[",slab,coma,"4]]:=[ ]; ");}
|
|
1697
|
+
else
|
|
1698
|
+
{Li=string(T,"[[",slab,coma,"4]]:=[",L[4],"]; ");}
|
|
1699
|
+
return(Li);
|
|
1700
|
+
}
|
|
1701
|
+
|
|
1702
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1703
|
+
// input:
|
|
1704
|
+
// list L: element i of the list of buildtree(F)
|
|
1705
|
+
// output:
|
|
1706
|
+
// the string of T[[lab,5]] (null conditions ideal); in Maple
|
|
1707
|
+
proc btW(string T, list L)
|
|
1708
|
+
{
|
|
1709
|
+
int i;
|
|
1710
|
+
string Li;
|
|
1711
|
+
string coma=",";
|
|
1712
|
+
def lab=L[1];
|
|
1713
|
+
string slab;
|
|
1714
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1715
|
+
{slab=""; coma="";}
|
|
1716
|
+
else
|
|
1717
|
+
{
|
|
1718
|
+
slab=string(lab[1]);
|
|
1719
|
+
if (size(lab)>=1)
|
|
1720
|
+
{
|
|
1721
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1722
|
+
}
|
|
1723
|
+
}
|
|
1724
|
+
if (size(L[5])==0)
|
|
1725
|
+
{Li=string(T,"[[",slab,coma,"5]]:={ }; ");}
|
|
1726
|
+
else
|
|
1727
|
+
{Li=string(T,"[[",slab,coma,"5]]:={",L[5],"}; ");}
|
|
1728
|
+
return(Li);
|
|
1729
|
+
}
|
|
1730
|
+
|
|
1731
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1732
|
+
// input:
|
|
1733
|
+
// list L: element i of the list of buildtree(F)
|
|
1734
|
+
// output:
|
|
1735
|
+
// the string of T[[lab,12]] (lpp); in Maple
|
|
1736
|
+
proc btlpp(string T, list L)
|
|
1737
|
+
{
|
|
1738
|
+
int i;
|
|
1739
|
+
string Li;
|
|
1740
|
+
string coma=",";;
|
|
1741
|
+
def lab=L[1];
|
|
1742
|
+
string slab;
|
|
1743
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1744
|
+
{slab=""; coma="";}
|
|
1745
|
+
else
|
|
1746
|
+
{
|
|
1747
|
+
slab=string(lab[1]);
|
|
1748
|
+
if (size(lab)>=1)
|
|
1749
|
+
{
|
|
1750
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1751
|
+
}
|
|
1752
|
+
}
|
|
1753
|
+
if (size(L[7])==0)
|
|
1754
|
+
{
|
|
1755
|
+
Li=string(T,"[[",slab,coma,"12]]:=[ ]; ");
|
|
1756
|
+
}
|
|
1757
|
+
else
|
|
1758
|
+
{
|
|
1759
|
+
Li=string(T,"[[",slab,coma,"12]]:=[",L[7],"]; ");
|
|
1760
|
+
}
|
|
1761
|
+
return(Li);
|
|
1762
|
+
}
|
|
1763
|
+
|
|
1764
|
+
// auxiliary routine called by buildtreetoMaple
|
|
1765
|
+
// input:
|
|
1766
|
+
// list L: element i of the list of buildtree(F)
|
|
1767
|
+
// output:
|
|
1768
|
+
// the list of strings of (T[[lab,0]]=0,T[[lab,1]]<>0); in Maple
|
|
1769
|
+
proc btcond(string T, list L, poly cond)
|
|
1770
|
+
{
|
|
1771
|
+
int i;
|
|
1772
|
+
string Li1;
|
|
1773
|
+
string Li2;
|
|
1774
|
+
def lab=L[1];
|
|
1775
|
+
string slab;
|
|
1776
|
+
string coma=",";;
|
|
1777
|
+
if ((size(lab)==1) and lab[1]==-1)
|
|
1778
|
+
{slab=""; coma="";}
|
|
1779
|
+
else
|
|
1780
|
+
{
|
|
1781
|
+
slab=string(lab[1]);
|
|
1782
|
+
if (size(lab)>=1)
|
|
1783
|
+
{
|
|
1784
|
+
for (i=2;i<=size(lab);i++){slab=string(slab,",",lab[i]);}
|
|
1785
|
+
}
|
|
1786
|
+
}
|
|
1787
|
+
Li1=string(T,"[[",slab+coma,"0]]:=",L[8],"=0; ");
|
|
1788
|
+
Li2=string(T,"[[",slab+coma,"1]]:=",L[8],"<>0; ");
|
|
1789
|
+
return(list(Li1,Li2));
|
|
1790
|
+
}
|
|
1791
|
+
|
|
1792
|
+
//*****************End of BuildtreetoMaple*********************
|
|
1793
|
+
|
|
1794
|
+
//*****************Begin of Selectcases************************
|
|
1795
|
+
|
|
1796
|
+
// given an intvec with sum=n
|
|
1797
|
+
// it returns the list of intvect with the sum=n+1
|
|
1798
|
+
proc comp1(intvec l)
|
|
1799
|
+
{
|
|
1800
|
+
list L;
|
|
1801
|
+
int p=size(l);
|
|
1802
|
+
int i;
|
|
1803
|
+
if (p==0){return(l);}
|
|
1804
|
+
if (p==1){return(list(intvec(l[1]+1)));}
|
|
1805
|
+
L[1]=intvec((l[1]+1),l[2..p]);
|
|
1806
|
+
L[p]=intvec(l[1..p-1],(l[p]+1));
|
|
1807
|
+
for (i=2;i<p;i++)
|
|
1808
|
+
{
|
|
1809
|
+
L[i]=intvec(l[1..(i-1)],(l[i]+1),l[(i+1)..p]);
|
|
1810
|
+
}
|
|
1811
|
+
return(L);
|
|
1812
|
+
}
|
|
1813
|
+
|
|
1814
|
+
// comp: p-compositions of n
|
|
1815
|
+
// input
|
|
1816
|
+
// int n;
|
|
1817
|
+
// int p;
|
|
1818
|
+
// return
|
|
1819
|
+
// the list of all intvec (p-composition of n)
|
|
1820
|
+
proc comp(int n,int p)
|
|
1821
|
+
{
|
|
1822
|
+
if (n<0){ERROR("comp was called with negative argument");}
|
|
1823
|
+
if (n==0){return(list(0:p));}
|
|
1824
|
+
int i;
|
|
1825
|
+
int k;
|
|
1826
|
+
list L1=comp(n-1,p);
|
|
1827
|
+
list L=comp1(L1[1]);
|
|
1828
|
+
list l;
|
|
1829
|
+
list la;
|
|
1830
|
+
for (i=2; i<=size(L1);i++)
|
|
1831
|
+
{
|
|
1832
|
+
l=comp1(L1[i]);
|
|
1833
|
+
for (k=1;k<=size(l);k++)
|
|
1834
|
+
{
|
|
1835
|
+
if(not(memberpos(l[k],L)[1]))
|
|
1836
|
+
{L[size(L)+1]=l[k];}
|
|
1837
|
+
}
|
|
1838
|
+
}
|
|
1839
|
+
return(L);
|
|
1840
|
+
}
|
|
1841
|
+
|
|
1842
|
+
// given the matrices of coefficients and monomials m amd m1 of
|
|
1843
|
+
// two polynomials (the first one contains all the terms of f
|
|
1844
|
+
// and the second only those of f
|
|
1845
|
+
// it returns the list with the common monomials and the list of coefficients
|
|
1846
|
+
// of the polynomial f with zeroes if necessary.
|
|
1847
|
+
proc adaptcoef(matrix m, matrix m1)
|
|
1848
|
+
{
|
|
1849
|
+
int i;
|
|
1850
|
+
int j;
|
|
1851
|
+
int ncm=ncols(m);
|
|
1852
|
+
int ncm1=ncols(m1);
|
|
1853
|
+
ideal T;
|
|
1854
|
+
for (i=1;i<=ncm;i++){T[i]=m[1,i];}
|
|
1855
|
+
ideal C;
|
|
1856
|
+
for (i=1;i<=ncm;i++){C[i]=0;}
|
|
1857
|
+
for (i=1;i<=ncm;i++)
|
|
1858
|
+
{
|
|
1859
|
+
j=1;
|
|
1860
|
+
while((j<ncm1) and (m1[1,j]>m[1,i])){j++;}
|
|
1861
|
+
if (m1[1,j]==m[1,i]){C[i]=m1[2,j];}
|
|
1862
|
+
}
|
|
1863
|
+
return(list(T,C));
|
|
1864
|
+
}
|
|
1865
|
+
|
|
1866
|
+
// given the ideal of non-null conditions and an intvec lambda
|
|
1867
|
+
// with the exponents of each w in W
|
|
1868
|
+
// it returns the polynomial prod (w_i)^(lambda_i).
|
|
1869
|
+
proc WW(ideal W, intvec lambda)
|
|
1870
|
+
{
|
|
1871
|
+
if (size(W)==0){return(poly(1));}
|
|
1872
|
+
poly w=1;
|
|
1873
|
+
int i;
|
|
1874
|
+
for (i=1;i<=ncols(W);i++)
|
|
1875
|
+
{
|
|
1876
|
+
w=w*(W[i])^(lambda[i]);
|
|
1877
|
+
}
|
|
1878
|
+
return(w);
|
|
1879
|
+
}
|
|
1880
|
+
|
|
1881
|
+
// given a polynomial f and the non-null conditions W
|
|
1882
|
+
// WPred eliminates the factors in f that are in W
|
|
1883
|
+
// ring @PAB
|
|
1884
|
+
// input:
|
|
1885
|
+
// poly f:
|
|
1886
|
+
// ideal W of non-null conditions (already supposed that it is facvar)
|
|
1887
|
+
// output:
|
|
1888
|
+
// poly f2 where the non-null conditions in W have been dropped from f
|
|
1889
|
+
proc WPred(poly f, ideal W)
|
|
1890
|
+
{
|
|
1891
|
+
if (f==0){return(f);}
|
|
1892
|
+
def l=factorize(f,2);
|
|
1893
|
+
int i;
|
|
1894
|
+
poly f1=1;
|
|
1895
|
+
for(i=1;i<=size(l[1]);i++)
|
|
1896
|
+
{
|
|
1897
|
+
if (memberpos(l[1][i],W)[1]){;}
|
|
1898
|
+
else{f1=f1*((l[1][i])^(l[2][i]));}
|
|
1899
|
+
}
|
|
1900
|
+
return(f1);
|
|
1901
|
+
}
|
|
1902
|
+
|
|
1903
|
+
//genimage
|
|
1904
|
+
// ring @R
|
|
1905
|
+
//input:
|
|
1906
|
+
// poly f1, idel N1,ideal W1,poly f2, ideal N2, ideal W2
|
|
1907
|
+
// corresponding to two polynomials having the same lpp
|
|
1908
|
+
// f1 in the redspec given by N1,W1, f2 in the redspec given by N2,W2
|
|
1909
|
+
//output:
|
|
1910
|
+
// the list of (ideal GG, list(list r1, list r2))
|
|
1911
|
+
// where g an ideal whose elements have the same lpp as f1 and f2
|
|
1912
|
+
// that specialize well to f1 in N1,W1 and to f2 in N2,W2.
|
|
1913
|
+
// If it doesn't exist a genimage, then g=ideal(0).
|
|
1914
|
+
proc genimage(poly f1, ideal N1, ideal W1, poly f2, ideal N2, ideal W2)
|
|
1915
|
+
{
|
|
1916
|
+
int i; ideal W12; poly ff1; poly g1=0; ideal GG;
|
|
1917
|
+
int tt=1;
|
|
1918
|
+
// detect whether f1 reduces to 0 on segment 2
|
|
1919
|
+
ff1=pnormalform(f1,N2,W2);
|
|
1920
|
+
if (ff1==0)
|
|
1921
|
+
{
|
|
1922
|
+
// detect whether N1 is included in N2
|
|
1923
|
+
def RR=basering;
|
|
1924
|
+
setring @P;
|
|
1925
|
+
def NP1=imap(RR,N1);
|
|
1926
|
+
def NP2=imap(RR,N2);
|
|
1927
|
+
poly nr;
|
|
1928
|
+
i=1;
|
|
1929
|
+
while ((tt) and (i<=size(NP1)))
|
|
1930
|
+
{
|
|
1931
|
+
nr=reduce(NP1[i],NP2);
|
|
1932
|
+
if (nr!=0){tt=0;}
|
|
1933
|
+
i++;
|
|
1934
|
+
}
|
|
1935
|
+
setring(RR);
|
|
1936
|
+
}
|
|
1937
|
+
else{tt=0;}
|
|
1938
|
+
if (tt==1)
|
|
1939
|
+
{
|
|
1940
|
+
// detect whether W1 intersect W2 is non-empty
|
|
1941
|
+
for (i=1;i<=size(W1);i++)
|
|
1942
|
+
{
|
|
1943
|
+
if (memberpos(W1[i],W2)[1])
|
|
1944
|
+
{
|
|
1945
|
+
W12[size(W12)+1]=W1[i];
|
|
1946
|
+
}
|
|
1947
|
+
else
|
|
1948
|
+
{
|
|
1949
|
+
if (nonnull(W1[i],N2,W2))
|
|
1950
|
+
{
|
|
1951
|
+
W12[size(W12)+1]=W1[i];
|
|
1952
|
+
}
|
|
1953
|
+
}
|
|
1954
|
+
}
|
|
1955
|
+
for (i=1;i<=size(W2);i++)
|
|
1956
|
+
{
|
|
1957
|
+
if (not(memberpos(W2[i],W12)[1]))
|
|
1958
|
+
{
|
|
1959
|
+
W12[size(W12)+1]=W2[i];
|
|
1960
|
+
}
|
|
1961
|
+
}
|
|
1962
|
+
}
|
|
1963
|
+
if (tt==1){g1=extendpoly(f1,N1,W12);}
|
|
1964
|
+
if (g1!=0)
|
|
1965
|
+
{
|
|
1966
|
+
//T_ "genimage has found a more generic basis (method 1)";
|
|
1967
|
+
//T_ "f1:"; f1; "N1:"; N1; "W1:"; W1;
|
|
1968
|
+
//T_ "f2:"; f2; "N2:"; N2; "W2:"; W2;
|
|
1969
|
+
//T_ "g1:"; g1;
|
|
1970
|
+
if (pnormalform(g1,N1,W1)==0)
|
|
1971
|
+
{
|
|
1972
|
+
GG=f1,g1;
|
|
1973
|
+
//T_ "A sheaf has been found (method 2)";
|
|
1974
|
+
}
|
|
1975
|
+
else
|
|
1976
|
+
{
|
|
1977
|
+
GG=g1;
|
|
1978
|
+
}
|
|
1979
|
+
return(GG);
|
|
1980
|
+
}
|
|
1981
|
+
|
|
1982
|
+
// begins the second step;
|
|
1983
|
+
int bound=6;
|
|
1984
|
+
// in ring @R
|
|
1985
|
+
int j; int g=0; int alpha; int r1; int s1=1; int s2=1;
|
|
1986
|
+
poly G;
|
|
1987
|
+
matrix qT;
|
|
1988
|
+
matrix T;
|
|
1989
|
+
ideal N10;
|
|
1990
|
+
poly GT;
|
|
1991
|
+
ideal N12=N1,N2;
|
|
1992
|
+
def varx=maxideal(1);
|
|
1993
|
+
int nx=size(varx);
|
|
1994
|
+
poly pvarx=1;
|
|
1995
|
+
for (i=1;i<=nx;i++){pvarx=pvarx*varx[i];}
|
|
1996
|
+
def m=coef(43*f1+157*f2,pvarx);
|
|
1997
|
+
def m1=coef(f1,pvarx);
|
|
1998
|
+
def m2=coef(f2,pvarx);
|
|
1999
|
+
list L1=adaptcoef(m,m1);
|
|
2000
|
+
list L2=adaptcoef(m,m2);
|
|
2001
|
+
ideal Tm=L1[1];
|
|
2002
|
+
ideal c1=L1[2];
|
|
2003
|
+
ideal c2=L2[2];
|
|
2004
|
+
poly ww1;
|
|
2005
|
+
poly ww2;
|
|
2006
|
+
poly cA1;
|
|
2007
|
+
poly cB1;
|
|
2008
|
+
matrix TT;
|
|
2009
|
+
poly H;
|
|
2010
|
+
list r;
|
|
2011
|
+
ideal q;
|
|
2012
|
+
poly mu;
|
|
2013
|
+
ideal N;
|
|
2014
|
+
|
|
2015
|
+
// in ring @PAB
|
|
2016
|
+
list Px=ringlist(@P);
|
|
2017
|
+
list v="@A","@B";
|
|
2018
|
+
Px[2]=Px[2]+v;
|
|
2019
|
+
def npx=size(Px[3][1][2]);
|
|
2020
|
+
Px[3][1][2]=1:(npx+size(v));
|
|
2021
|
+
def @PAB=ring(Px);
|
|
2022
|
+
setring(@PAB);
|
|
2023
|
+
|
|
2024
|
+
poly PH;
|
|
2025
|
+
ideal NP;
|
|
2026
|
+
list rP;
|
|
2027
|
+
def PN1=imap(@R,N1);
|
|
2028
|
+
def PW1=imap(@R,W1);
|
|
2029
|
+
def PN2=imap(@R,N2);
|
|
2030
|
+
def PW2=imap(@R,W2);
|
|
2031
|
+
def a1=imap(@R,c1);
|
|
2032
|
+
def a2=imap(@R,c2);
|
|
2033
|
+
matrix PT;
|
|
2034
|
+
ideal PN;
|
|
2035
|
+
ideal PN12=PN1,PN2;
|
|
2036
|
+
PN=liftstd(PN12,PT);
|
|
2037
|
+
list compos1;
|
|
2038
|
+
list compos2;
|
|
2039
|
+
list compos0;
|
|
2040
|
+
intvec comp0;
|
|
2041
|
+
poly w1=0;
|
|
2042
|
+
poly w2=0;
|
|
2043
|
+
poly h;
|
|
2044
|
+
poly cA=0;
|
|
2045
|
+
poly cB=0;
|
|
2046
|
+
int t=0;
|
|
2047
|
+
list l;
|
|
2048
|
+
poly h1;
|
|
2049
|
+
g=0;
|
|
2050
|
+
while ((g<=bound) and not(t))
|
|
2051
|
+
{
|
|
2052
|
+
compos0=comp(g,2);
|
|
2053
|
+
r1=1;
|
|
2054
|
+
while ((r1<=size(compos0)) and not(t))
|
|
2055
|
+
{
|
|
2056
|
+
comp0=compos0[r1];
|
|
2057
|
+
if (comp0[1]<=bound/2)
|
|
2058
|
+
{
|
|
2059
|
+
compos1=comp(comp0[1],ncols(PW1));
|
|
2060
|
+
s1=1;
|
|
2061
|
+
while ((s1<=size(compos1)) and not(t))
|
|
2062
|
+
{
|
|
2063
|
+
if (comp0[2]<=bound/2)
|
|
2064
|
+
{
|
|
2065
|
+
compos2=comp(comp0[2],ncols(PW2));
|
|
2066
|
+
s2=1;
|
|
2067
|
+
while ((s2<=size(compos2)) and not(t))
|
|
2068
|
+
{
|
|
2069
|
+
w1=WW(PW1,compos1[s1]);
|
|
2070
|
+
w2=WW(PW2,compos2[s2]);
|
|
2071
|
+
h=@A*w1*a1[1]-@B*w2*a2[1];
|
|
2072
|
+
h=reduce(h,PN);
|
|
2073
|
+
if (h==0){cA=1;cB=-1;}
|
|
2074
|
+
else
|
|
2075
|
+
{
|
|
2076
|
+
l=factorize(h,2);
|
|
2077
|
+
h1=1;
|
|
2078
|
+
for(i=1;i<=size(l[1]);i++)
|
|
2079
|
+
{
|
|
2080
|
+
if ((memberpos(@A,variables(l[1][i]))[1]) or (memberpos(@B,variables(l[1][i]))[1]))
|
|
2081
|
+
{h1=h1*l[1][i];}
|
|
2082
|
+
}
|
|
2083
|
+
cA=diff(h1,@B);
|
|
2084
|
+
cB=diff(h1,@A);
|
|
2085
|
+
}
|
|
2086
|
+
if ((cA!=0) and (cB!=0) and (jet(cA,0)==cA) and (jet(cB,0)==cB))
|
|
2087
|
+
{
|
|
2088
|
+
t=1;
|
|
2089
|
+
alpha=1;
|
|
2090
|
+
while((t) and (alpha<=ncols(a1)))
|
|
2091
|
+
{
|
|
2092
|
+
h=cA*w1*a1[alpha]+cB*w2*a2[alpha];
|
|
2093
|
+
if (not(reduce(h,PN,1)==0)){t=0;}
|
|
2094
|
+
alpha++;
|
|
2095
|
+
}
|
|
2096
|
+
}
|
|
2097
|
+
else{t=0;}
|
|
2098
|
+
s2++;
|
|
2099
|
+
}
|
|
2100
|
+
}
|
|
2101
|
+
s1++;
|
|
2102
|
+
}
|
|
2103
|
+
}
|
|
2104
|
+
r1++;
|
|
2105
|
+
}
|
|
2106
|
+
g++;
|
|
2107
|
+
}
|
|
2108
|
+
setring(@R);
|
|
2109
|
+
ww1=imap(@PAB,w1);
|
|
2110
|
+
ww2=imap(@PAB,w2);
|
|
2111
|
+
T=imap(@PAB,PT);
|
|
2112
|
+
N=imap(@PAB,PN);
|
|
2113
|
+
cA1=imap(@PAB,cA);
|
|
2114
|
+
cB1=imap(@PAB,cB);
|
|
2115
|
+
if (t)
|
|
2116
|
+
{
|
|
2117
|
+
G=0;
|
|
2118
|
+
for (alpha=1;alpha<=ncols(Tm);alpha++)
|
|
2119
|
+
{
|
|
2120
|
+
H=cA1*ww1*c1[alpha]+cB1*ww2*c2[alpha];
|
|
2121
|
+
setring(@PAB);
|
|
2122
|
+
PH=imap(@R,H);
|
|
2123
|
+
PN=imap(@R,N);
|
|
2124
|
+
rP=division(PH,PN);
|
|
2125
|
+
setring(@R);
|
|
2126
|
+
r=imap(@PAB,rP);
|
|
2127
|
+
if (r[2][1]!=0){ERROR("the division is not null and it should be");}
|
|
2128
|
+
q=r[1];
|
|
2129
|
+
qT=transpose(matrix(q));
|
|
2130
|
+
N10=N12;
|
|
2131
|
+
for (i=size(N1)+1;i<=size(N1)+size(N2);i++){N10[i]=0;}
|
|
2132
|
+
G=G+(cA1*ww1*c1[alpha]-(matrix(N10)*T*qT)[1,1])*Tm[alpha];
|
|
2133
|
+
}
|
|
2134
|
+
//T_ "genimage has found a more generic basis (method 2)";
|
|
2135
|
+
//T_ "f1:"; f1; "N1:"; N1; "W1:"; W1;
|
|
2136
|
+
//T_ "f2:"; f2; "N2:"; N2; "W2:"; W2;
|
|
2137
|
+
//T_ "G:"; G;
|
|
2138
|
+
GG=ideal(G);
|
|
2139
|
+
}
|
|
2140
|
+
else{GG=ideal(0);}
|
|
2141
|
+
return(GG);
|
|
2142
|
+
}
|
|
2143
|
+
|
|
2144
|
+
// purpose: given a polynomial f (in the reduced basis)
|
|
2145
|
+
// the null-conditions ideal N in the segment
|
|
2146
|
+
// end the set of non-null polynomials common to the segment and
|
|
2147
|
+
// a new segment,
|
|
2148
|
+
// to obtain an equivalent polynomial with a leading coefficient
|
|
2149
|
+
// that is non-null in the second segment.
|
|
2150
|
+
// input:
|
|
2151
|
+
// poly f: a polynomials of the reduced basis in the segment (N,W)
|
|
2152
|
+
// ideal N: the null-conditions ideal in the segment
|
|
2153
|
+
// ideal W12: the set of non-null polynomials common to the segment and
|
|
2154
|
+
// a second segment
|
|
2155
|
+
proc extendpoly(poly f, ideal N, ideal W12)
|
|
2156
|
+
{
|
|
2157
|
+
int bound=4;
|
|
2158
|
+
ideal cfs;
|
|
2159
|
+
ideal cfsn;
|
|
2160
|
+
ideal ppfs;
|
|
2161
|
+
poly p=f;
|
|
2162
|
+
poly fn;
|
|
2163
|
+
poly lm; poly lc;
|
|
2164
|
+
int tt=0;
|
|
2165
|
+
int i;
|
|
2166
|
+
while (p!=0)
|
|
2167
|
+
{
|
|
2168
|
+
lm=leadmonom(p);
|
|
2169
|
+
lc=leadcoef(p);
|
|
2170
|
+
cfs[size(cfs)+1]=lc;
|
|
2171
|
+
ppfs[size(ppfs)+1]=lm;
|
|
2172
|
+
p=p-lc*lm;
|
|
2173
|
+
}
|
|
2174
|
+
def lcf=cfs[1];
|
|
2175
|
+
int r1=0; int s1;
|
|
2176
|
+
def RR=basering;
|
|
2177
|
+
setring @P;
|
|
2178
|
+
list compos1;
|
|
2179
|
+
poly w1;
|
|
2180
|
+
ideal q;
|
|
2181
|
+
def lcfp=imap(RR,lcf);
|
|
2182
|
+
def W=imap(RR,W12);
|
|
2183
|
+
def Np=imap(RR,N);
|
|
2184
|
+
def cfsp=imap(RR,cfs);
|
|
2185
|
+
ideal cfspn;
|
|
2186
|
+
matrix T;
|
|
2187
|
+
ideal H=lcfp,Np;
|
|
2188
|
+
def G=liftstd(H,T);
|
|
2189
|
+
list r;
|
|
2190
|
+
while ((r1<=bound) and not(tt))
|
|
2191
|
+
{
|
|
2192
|
+
compos1=comp(r1,ncols(W));
|
|
2193
|
+
s1=1;
|
|
2194
|
+
while ((s1<=size(compos1)) and not(tt))
|
|
2195
|
+
{
|
|
2196
|
+
w1=WW(W,compos1[s1]);
|
|
2197
|
+
cfspn=ideal(0);
|
|
2198
|
+
cfspn[1]=w1;
|
|
2199
|
+
tt=1;
|
|
2200
|
+
i=2;
|
|
2201
|
+
while ((i<=size(cfsp)) and (tt))
|
|
2202
|
+
{
|
|
2203
|
+
r=division(w1*cfsp[i],G);
|
|
2204
|
+
if (r[2][1]!=0){tt=0;}
|
|
2205
|
+
else
|
|
2206
|
+
{
|
|
2207
|
+
q=r[1];
|
|
2208
|
+
cfspn[i]=(T*transpose(matrix(q)))[1,1];
|
|
2209
|
+
}
|
|
2210
|
+
i++;
|
|
2211
|
+
}
|
|
2212
|
+
s1++;
|
|
2213
|
+
}
|
|
2214
|
+
r1++;
|
|
2215
|
+
}
|
|
2216
|
+
setring RR;
|
|
2217
|
+
if (tt)
|
|
2218
|
+
{
|
|
2219
|
+
cfsn=imap(@P,cfspn);
|
|
2220
|
+
fn=0;
|
|
2221
|
+
for (i=1;i<=size(ppfs);i++)
|
|
2222
|
+
{
|
|
2223
|
+
fn=fn+cfsn[i]*ppfs[i];
|
|
2224
|
+
}
|
|
2225
|
+
}
|
|
2226
|
+
else{fn=0;}
|
|
2227
|
+
return(fn);
|
|
2228
|
+
}
|
|
2229
|
+
|
|
2230
|
+
// nonnull
|
|
2231
|
+
// ring @P (or @R)
|
|
2232
|
+
// input:
|
|
2233
|
+
// poly f
|
|
2234
|
+
// ideal N
|
|
2235
|
+
// ideal W
|
|
2236
|
+
// output:
|
|
2237
|
+
// 1 if f is nonnull in the segment (N,W)
|
|
2238
|
+
// 0 if it can be zero
|
|
2239
|
+
proc nonnull(poly f, ideal N, ideal W)
|
|
2240
|
+
{
|
|
2241
|
+
int tt;
|
|
2242
|
+
ideal N0=N;
|
|
2243
|
+
N0[size(N0)+1]=f;
|
|
2244
|
+
poly h=1;
|
|
2245
|
+
int i;
|
|
2246
|
+
for (i=1;i<=size(W);i++){h=h*W[i];}
|
|
2247
|
+
def RR=basering;
|
|
2248
|
+
setring(@P);
|
|
2249
|
+
list Px=ringlist(@P);
|
|
2250
|
+
list v="@C";
|
|
2251
|
+
Px[2]=Px[2]+v;
|
|
2252
|
+
def npx=size(Px[3][1][2]);
|
|
2253
|
+
Px[3][1][1]="dp";
|
|
2254
|
+
Px[3][1][2]=1:(npx+size(v));
|
|
2255
|
+
def @PC=ring(Px);
|
|
2256
|
+
setring(@PC);
|
|
2257
|
+
def N1=imap(RR,N0);
|
|
2258
|
+
def h1=imap(RR,h);
|
|
2259
|
+
ideal G=1-@C*h1;
|
|
2260
|
+
G=G+N1;
|
|
2261
|
+
option(redSB);
|
|
2262
|
+
ideal G1=groebner(G);
|
|
2263
|
+
if (G1[1]==1){tt=1;} else{tt=0;}
|
|
2264
|
+
setring(RR);
|
|
2265
|
+
return(tt);
|
|
2266
|
+
}
|
|
2267
|
+
|
|
2268
|
+
// decide
|
|
2269
|
+
// input:
|
|
2270
|
+
// given two corresponding polynomials g1 and g2 with the same lpp
|
|
2271
|
+
// g1 belonging to the basis in the segment N1,W1
|
|
2272
|
+
// g2 belonging to the basis in the segment N2,W2
|
|
2273
|
+
// output:
|
|
2274
|
+
// an ideal (with a single polynomial of more if a sheaf is needed)
|
|
2275
|
+
// that specializes well on both segments to g1 and g2 respectively.
|
|
2276
|
+
// If ideal(0) is output, then no such polynomial nor sheaf exists.
|
|
2277
|
+
proc decide(poly g1, ideal N1, ideal W1, poly g2, ideal N2, ideal W2)
|
|
2278
|
+
{
|
|
2279
|
+
poly S;
|
|
2280
|
+
poly S1;
|
|
2281
|
+
poly S2;
|
|
2282
|
+
S=leadcoef(g2)*g1-leadcoef(g1)*g2;
|
|
2283
|
+
def RR=basering;
|
|
2284
|
+
setring(@RP);
|
|
2285
|
+
def SR=imap(RR,S);
|
|
2286
|
+
def N1R=imap(RR,N1);
|
|
2287
|
+
def N2R=imap(RR,N2);
|
|
2288
|
+
attrib(N1R,"isSB",1);
|
|
2289
|
+
attrib(N2R,"isSB",1);
|
|
2290
|
+
poly S1R=reduce(SR,N1R);
|
|
2291
|
+
poly S2R=reduce(SR,N2R);
|
|
2292
|
+
setring(RR);
|
|
2293
|
+
S1=imap(@RP,S1R);
|
|
2294
|
+
S2=imap(@RP,S2R);
|
|
2295
|
+
if ((S2==0) and (nonnull(leadcoef(g1),N2,W2))){return(ideal(g1));}
|
|
2296
|
+
if ((S1==0) and (nonnull(leadcoef(g2),N1,W1))){return(ideal(g2));}
|
|
2297
|
+
if ((S1==0) and (S2==0))
|
|
2298
|
+
{
|
|
2299
|
+
//T_ "A sheaf has been found (method 1)";
|
|
2300
|
+
return(ideal(g1,g2));
|
|
2301
|
+
}
|
|
2302
|
+
return(ideal(genimage(g1,N1,W1,g2,N2,W2)));
|
|
2303
|
+
}
|
|
2304
|
+
|
|
2305
|
+
// input: the tree (list) from buildtree output
|
|
2306
|
+
// output: the list of terminal vertices.
|
|
2307
|
+
proc finalcases(list T)
|
|
2308
|
+
"USAGE: finalcases(T);
|
|
2309
|
+
T is the list provided by buildtree
|
|
2310
|
+
RETURN: A list with the CGS determined by buildtree.
|
|
2311
|
+
Each element of the list represents one segment
|
|
2312
|
+
of the buildtree CGS.
|
|
2313
|
+
The list elements have the following structure:
|
|
2314
|
+
[1]: label (an intvec(1,0,..)) that indicates the position
|
|
2315
|
+
in the buildtree but that is irrelevant for the CGS
|
|
2316
|
+
[2]: 1 (integer) it is also irrelevant and indicates
|
|
2317
|
+
that this was a terminal vertex in buildtree.
|
|
2318
|
+
[3]: the reduced basis of the segment.
|
|
2319
|
+
[4], [5], [6]: the red-spec of the null and non-null conditions
|
|
2320
|
+
of the segment.
|
|
2321
|
+
[4] is the null-conditions radical ideal N,
|
|
2322
|
+
[5] is the non-null polynomials set (ideal) W,
|
|
2323
|
+
[6] is the set of prime components (ideals) of N.
|
|
2324
|
+
[7]: is the set of lpp
|
|
2325
|
+
[8]: poly 1 (irrelevant) is the condition to branch (but no
|
|
2326
|
+
more branch is necessary in the discussion, so 1 is the result.
|
|
2327
|
+
NOTE: It can be called having as argument the list output by buildtree
|
|
2328
|
+
KEYWORDS: buildtree, buildtreetoMaple, CGS
|
|
2329
|
+
EXAMPLE: finalcases; shows an example"
|
|
2330
|
+
{
|
|
2331
|
+
int i;
|
|
2332
|
+
list L;
|
|
2333
|
+
for (i=1;i<=size(T);i++)
|
|
2334
|
+
{
|
|
2335
|
+
if (T[i][2])
|
|
2336
|
+
{L[size(L)+1]=T[i];}
|
|
2337
|
+
}
|
|
2338
|
+
return(L);
|
|
2339
|
+
}
|
|
2340
|
+
example
|
|
2341
|
+
{ "EXAMPLE:"; echo = 2;
|
|
2342
|
+
ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
|
|
2343
|
+
ideal F=x4-a4+a2, x1+x2+x3+x4-a1-a3-a4, x1*x3*x4-a1*a3*a4, x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
|
|
2344
|
+
def T=buildtree(F);
|
|
2345
|
+
finalcases(T);
|
|
2346
|
+
}
|
|
2347
|
+
|
|
2348
|
+
// input: the list of terminal vertices of buildtree (output of finalcases)
|
|
2349
|
+
// output: the same terminal vertices grouped by lpp
|
|
2350
|
+
proc groupsegments(list T)
|
|
2351
|
+
{
|
|
2352
|
+
int i;
|
|
2353
|
+
list L;
|
|
2354
|
+
list lpp;
|
|
2355
|
+
list lp;
|
|
2356
|
+
list ls;
|
|
2357
|
+
int n=size(T);
|
|
2358
|
+
lpp[1]=T[n][7];
|
|
2359
|
+
L[1]=list(lpp[1],list(list(T[n][1],T[n][3],T[n][4],T[n][5],T[n][6])));
|
|
2360
|
+
if (n>1)
|
|
2361
|
+
{
|
|
2362
|
+
for (i=1;i<=size(T)-1;i++)
|
|
2363
|
+
{
|
|
2364
|
+
lp=memberpos(T[n-i][7],lpp);
|
|
2365
|
+
if(lp[1]==1)
|
|
2366
|
+
{
|
|
2367
|
+
ls=L[lp[2]][2];
|
|
2368
|
+
ls[size(ls)+1]=list(T[n-i][1],T[n-i][3],T[n-i][4],T[n-i][5],T[n-i][6]);
|
|
2369
|
+
L[lp[2]][2]=ls;
|
|
2370
|
+
}
|
|
2371
|
+
else
|
|
2372
|
+
{
|
|
2373
|
+
lpp[size(lpp)+1]=T[n-i][7];
|
|
2374
|
+
L[size(L)+1]=list(T[n-i][7],list(list(T[n-i][1],T[n-i][3],T[n-i][4],T[n-i][5],T[n-i][6])));
|
|
2375
|
+
}
|
|
2376
|
+
}
|
|
2377
|
+
}
|
|
2378
|
+
return(L);
|
|
2379
|
+
}
|
|
2380
|
+
|
|
2381
|
+
// eliminates repeated elements form an ideal
|
|
2382
|
+
proc elimrepeated(ideal F)
|
|
2383
|
+
{
|
|
2384
|
+
int i;
|
|
2385
|
+
int j;
|
|
2386
|
+
ideal FF;
|
|
2387
|
+
FF[1]=F[1];
|
|
2388
|
+
for (i=2;i<=ncols(F);i++)
|
|
2389
|
+
{
|
|
2390
|
+
if (not(memberpos(F[i],FF)[1]))
|
|
2391
|
+
{
|
|
2392
|
+
FF[size(FF)+1]=F[i];
|
|
2393
|
+
}
|
|
2394
|
+
}
|
|
2395
|
+
return(FF);
|
|
2396
|
+
}
|
|
2397
|
+
|
|
2398
|
+
|
|
2399
|
+
// decide F is the same as decide but allows as first element a sheaf F
|
|
2400
|
+
proc decideF(ideal F,ideal N,ideal W, poly f2, ideal N2, ideal W2)
|
|
2401
|
+
{
|
|
2402
|
+
int i;
|
|
2403
|
+
ideal G=F;
|
|
2404
|
+
ideal g;
|
|
2405
|
+
if (ncols(F)==1) {return(decide(F[1],N,W,f2,N2,W2));}
|
|
2406
|
+
for (i=1;i<=ncols(F);i++)
|
|
2407
|
+
{
|
|
2408
|
+
G=G+decide(F[i],N,W,f2,N2,W2);
|
|
2409
|
+
}
|
|
2410
|
+
return(elimrepeated(G));
|
|
2411
|
+
}
|
|
2412
|
+
|
|
2413
|
+
// newredspec
|
|
2414
|
+
// input: two redspec in the form of N,W and Nj,Wj
|
|
2415
|
+
// output: a redspec representing the minimal redspec segment that contains
|
|
2416
|
+
// both input segments.
|
|
2417
|
+
proc newredspec(ideal N,ideal W, ideal Nj, ideal Wj)
|
|
2418
|
+
{
|
|
2419
|
+
ideal nN;
|
|
2420
|
+
ideal nW;
|
|
2421
|
+
int u;
|
|
2422
|
+
def RR=basering;
|
|
2423
|
+
setring(@P);
|
|
2424
|
+
list r;
|
|
2425
|
+
def Np=imap(RR,N);
|
|
2426
|
+
def Wp=imap(RR,W);
|
|
2427
|
+
def Njp=imap(RR,Nj);
|
|
2428
|
+
def Wjp=imap(RR,Wj);
|
|
2429
|
+
Np=intersect(Np,Njp);
|
|
2430
|
+
ideal WR;
|
|
2431
|
+
for(u=1;u<=size(Wjp);u++)
|
|
2432
|
+
{
|
|
2433
|
+
if(nonnull(Wjp[u],Np,Wp)){WR[size(WR)+1]=Wjp[u];}
|
|
2434
|
+
}
|
|
2435
|
+
for(u=1;u<=size(Wp);u++)
|
|
2436
|
+
{
|
|
2437
|
+
if((not(memberpos(Wp[u],WR)[1])) and (nonnull(Wp[u],Njp,Wjp)))
|
|
2438
|
+
{
|
|
2439
|
+
WR[size(WR)+1]=Wp[u];
|
|
2440
|
+
}
|
|
2441
|
+
}
|
|
2442
|
+
r=redspec(Np,WR);
|
|
2443
|
+
option(redSB);
|
|
2444
|
+
Np=groebner(r[1]);
|
|
2445
|
+
Wp=r[2];
|
|
2446
|
+
setring(RR);
|
|
2447
|
+
nN=imap(@P,Np);
|
|
2448
|
+
nW=imap(@P,Wp);
|
|
2449
|
+
return(list(nN,nW));
|
|
2450
|
+
}
|
|
2451
|
+
|
|
2452
|
+
// selectcases
|
|
2453
|
+
// input:
|
|
2454
|
+
// list bT: the list output by buildtree.
|
|
2455
|
+
// output:
|
|
2456
|
+
// list L it contins the list of segments allowing a common
|
|
2457
|
+
// reduced basis. The elements of L are of the form
|
|
2458
|
+
// list (lpp,B,list(list(N,W,L),..list(N,W,L)) )
|
|
2459
|
+
proc selectcases(list bT)
|
|
2460
|
+
{
|
|
2461
|
+
list T=groupsegments(finalcases(bT));
|
|
2462
|
+
list T0=bT[1];
|
|
2463
|
+
// first element of the list of buildtree
|
|
2464
|
+
list TT0;
|
|
2465
|
+
TT0[1]=list(T0[7],T0[3],list(list(T0[4],T0[5],T0[6])));
|
|
2466
|
+
// first element of the output of selectcases
|
|
2467
|
+
list T1=T; // the initial list; it is only actualized (split)
|
|
2468
|
+
// when a segment is completely revised (all split are
|
|
2469
|
+
// already be considered);
|
|
2470
|
+
// ( (lpp, ((lab,B,N,W,L),.. ()) ), .. (..) )
|
|
2471
|
+
list TT; // the output list ( (lpp,B,((N,W,L),..()) ),.. (..) )
|
|
2472
|
+
// case i
|
|
2473
|
+
list S1; // the segments in case i T1[i][2]; ( (lab,B,N,W,L),..() )
|
|
2474
|
+
list S2; // the segments in case i that are being summarized in
|
|
2475
|
+
// actual segment ( (N,W,L),..() )
|
|
2476
|
+
list S3; // the segments in case i that cannot be summarized in
|
|
2477
|
+
// the actual case. When the case is finished a new case
|
|
2478
|
+
// is created with them ( (lab,B,N,W,L),..() )
|
|
2479
|
+
list s3; // list of integers s whose segment cannot be summarized
|
|
2480
|
+
// in the actual case
|
|
2481
|
+
ideal lpp; // the summarized lpp (can contain repetitions)
|
|
2482
|
+
ideal lppi;// in proecess of summarizing lpp (can contain repetitions)
|
|
2483
|
+
ideal B; // the summarized B (can contain polynomials with
|
|
2484
|
+
// the same lpp (sheaves))
|
|
2485
|
+
ideal Bi; // in process of summarizing B (can contain polynomials with
|
|
2486
|
+
// the same lpp (sheaves))
|
|
2487
|
+
ideal N; // the summarized N
|
|
2488
|
+
ideal W; // the summarized W
|
|
2489
|
+
ideal F; // the summarized polynomial j (can contain a sheaf instead of
|
|
2490
|
+
// a single poly)
|
|
2491
|
+
ideal FF; // the same as F but it can be ideal(0)
|
|
2492
|
+
poly lpj;
|
|
2493
|
+
poly fj;
|
|
2494
|
+
ideal Nj;
|
|
2495
|
+
ideal Wj;
|
|
2496
|
+
ideal G;
|
|
2497
|
+
int i; // the index of the case i in T1;
|
|
2498
|
+
int j; // the index of the polynomial j of the basis
|
|
2499
|
+
int s; // the index of the segment s in S1;
|
|
2500
|
+
int u;
|
|
2501
|
+
int tests; // true if al the polynomial in segment s have been generalized;
|
|
2502
|
+
list r;
|
|
2503
|
+
// initializing the new list
|
|
2504
|
+
i=1;
|
|
2505
|
+
while(i<=size(T1))
|
|
2506
|
+
{
|
|
2507
|
+
S1=T1[i][2]; // ((lab,B,N,W,L)..) of the segments in case i
|
|
2508
|
+
if (size(S1)==1)
|
|
2509
|
+
{
|
|
2510
|
+
TT[i]=list(T1[i][1],S1[1][2],list(list(S1[1][3],S1[1][4],S1[1][5])));
|
|
2511
|
+
}
|
|
2512
|
+
else
|
|
2513
|
+
{
|
|
2514
|
+
S2=list();
|
|
2515
|
+
S3=list(); // ((lab,B,N,W,L)..) of the segments in case i to
|
|
2516
|
+
// create another segment i+1
|
|
2517
|
+
s3=list();
|
|
2518
|
+
B=S1[1][2];
|
|
2519
|
+
Bi=ideal(0);
|
|
2520
|
+
lpp=T1[i][1];
|
|
2521
|
+
j=1;
|
|
2522
|
+
tests=1;
|
|
2523
|
+
while (j<=size(S1[1][2]))
|
|
2524
|
+
{ // j desings the new j-th polynomial
|
|
2525
|
+
N=S1[1][3];
|
|
2526
|
+
W=S1[1][4];
|
|
2527
|
+
F=ideal(S1[1][2][j]);
|
|
2528
|
+
s=2;
|
|
2529
|
+
while (s<=size(S1) and not(memberpos(s,s3)[1]))
|
|
2530
|
+
{ // s desings the new segment s
|
|
2531
|
+
fj=S1[s][2][j];
|
|
2532
|
+
Nj=S1[s][3];
|
|
2533
|
+
Wj=S1[s][4];
|
|
2534
|
+
FF=decideF(F,N,W,fj,Nj,Wj);
|
|
2535
|
+
if (FF[1]==0)
|
|
2536
|
+
{
|
|
2537
|
+
if (@ish)
|
|
2538
|
+
{
|
|
2539
|
+
"Warning: Dealing with an homogeneous ideal";
|
|
2540
|
+
"mrcgs was not able to summarize all lpp cases into a single segment";
|
|
2541
|
+
"Please send a mail with your Problem to antonio.montes@upc.edu";
|
|
2542
|
+
"You found a counterexample of the complete success of the actual mrcgs algorithm";
|
|
2543
|
+
//"T_"; "f1:"; F; "N1:"; N; "W1:"; W; "f2:"; fj; "N2:"; Nj; "W2:"; Wj;
|
|
2544
|
+
}
|
|
2545
|
+
S3[size(S3)+1]=S1[s];
|
|
2546
|
+
s3[size(s3)+1]=s;
|
|
2547
|
+
tests=0;
|
|
2548
|
+
}
|
|
2549
|
+
else
|
|
2550
|
+
{
|
|
2551
|
+
F=FF;
|
|
2552
|
+
lpj=leadmonom(fj);
|
|
2553
|
+
r=newredspec(N,W,Nj,Wj);
|
|
2554
|
+
N=r[1];
|
|
2555
|
+
W=r[2];
|
|
2556
|
+
}
|
|
2557
|
+
s++;
|
|
2558
|
+
}
|
|
2559
|
+
if (Bi[1]==0){Bi=FF;}
|
|
2560
|
+
else
|
|
2561
|
+
{
|
|
2562
|
+
Bi=Bi+FF;
|
|
2563
|
+
}
|
|
2564
|
+
j++;
|
|
2565
|
+
}
|
|
2566
|
+
if (tests)
|
|
2567
|
+
{
|
|
2568
|
+
B=Bi;
|
|
2569
|
+
lpp=ideal(0);
|
|
2570
|
+
for (u=1;u<=size(B);u++){lpp[u]=leadmonom(B[u]);}
|
|
2571
|
+
}
|
|
2572
|
+
for (s=1;s<=size(T1[i][2]);s++)
|
|
2573
|
+
{
|
|
2574
|
+
if (not(memberpos(s,s3)[1]))
|
|
2575
|
+
{
|
|
2576
|
+
S2[size(S2)+1]=list(S1[s][3],S1[s][4],S1[s][5]);
|
|
2577
|
+
}
|
|
2578
|
+
}
|
|
2579
|
+
TT[i]=list(lpp,B,S2);
|
|
2580
|
+
// for (s=1;s<=size(s3);s++){S1=delete(S1,s);}
|
|
2581
|
+
T1[i][2]=S2;
|
|
2582
|
+
if (size(S3)>0){T1=insert(T1,list(T1[i][1],S3),i);}
|
|
2583
|
+
}
|
|
2584
|
+
i++;
|
|
2585
|
+
}
|
|
2586
|
+
for (i=1;i<=size(TT);i++){TT0[i+1]=TT[i];}
|
|
2587
|
+
return(TT0);
|
|
2588
|
+
}
|
|
2589
|
+
|
|
2590
|
+
//*****************End of Selectcases**************************
|
|
2591
|
+
|
|
2592
|
+
//*****************Begin of CanTree****************************
|
|
2593
|
+
|
|
2594
|
+
// equalideals
|
|
2595
|
+
// input: 2 ideals F and G;
|
|
2596
|
+
// output: 1 if they are identical (the same polynomials in the same order)
|
|
2597
|
+
// 0 else
|
|
2598
|
+
proc equalideals(ideal F, ideal G)
|
|
2599
|
+
{
|
|
2600
|
+
int i=1; int t=1;
|
|
2601
|
+
if (size(F)!=size(G)){return(0);}
|
|
2602
|
+
while ((i<=size(F)) and (t))
|
|
2603
|
+
{
|
|
2604
|
+
if (F[i]!=G[i]){t=0;}
|
|
2605
|
+
i++;
|
|
2606
|
+
}
|
|
2607
|
+
return(t);
|
|
2608
|
+
}
|
|
2609
|
+
|
|
2610
|
+
// delintvec
|
|
2611
|
+
// input: intvec V
|
|
2612
|
+
// int i
|
|
2613
|
+
// output:
|
|
2614
|
+
// intvec W (equal to V but the coordinate i is deleted
|
|
2615
|
+
proc delintvec(intvec V, int i)
|
|
2616
|
+
{
|
|
2617
|
+
int j;
|
|
2618
|
+
intvec W;
|
|
2619
|
+
for (j=1;j<i;j++){W[j]=V[j];}
|
|
2620
|
+
for (j=i+1;j<=size(V);j++){W[j-1]=V[j];}
|
|
2621
|
+
return(W);
|
|
2622
|
+
}
|
|
2623
|
+
|
|
2624
|
+
// redtocanspec
|
|
2625
|
+
// Computes the canonical specification of a redspec (N,W,L).
|
|
2626
|
+
// input:
|
|
2627
|
+
// ideal N (null conditions, must be radical)
|
|
2628
|
+
// ideal W (non-null conditions ideal)
|
|
2629
|
+
// list L must contain the radical decomposition of N.
|
|
2630
|
+
// output:
|
|
2631
|
+
// the list of elements of the (ideal N1,list(ideal M11,..,ideal M1k))
|
|
2632
|
+
// determining the canonical specification of the difference of
|
|
2633
|
+
// V(N) \ V(h), where h=prod(w in W).
|
|
2634
|
+
proc redtocanspec(intvec lab, int child, list rs)
|
|
2635
|
+
{
|
|
2636
|
+
ideal N=rs[1]; ideal W=rs[2]; list L=rs[3];
|
|
2637
|
+
intvec labi; intvec labij;
|
|
2638
|
+
int childi;
|
|
2639
|
+
int i; int j; list L0;
|
|
2640
|
+
L0[1]=list(lab,size(L));
|
|
2641
|
+
if (W[1]==0)
|
|
2642
|
+
{
|
|
2643
|
+
for (i=1;i<=size(L);i++)
|
|
2644
|
+
{
|
|
2645
|
+
labi=lab,child+i;
|
|
2646
|
+
L0[size(L0)+1]=list(labi,1,L[i]);
|
|
2647
|
+
labij=labi,1;
|
|
2648
|
+
L0[size(L0)+1]=list(labij,0,ideal(1));
|
|
2649
|
+
}
|
|
2650
|
+
return(L0);
|
|
2651
|
+
}
|
|
2652
|
+
if (N[1]==1)
|
|
2653
|
+
{
|
|
2654
|
+
L0[1]=list(lab,1);
|
|
2655
|
+
labi=lab,child+1;
|
|
2656
|
+
L0[size(L0)+1]=list(labi,1,ideal(1));
|
|
2657
|
+
labij=labi,1;
|
|
2658
|
+
L0[size(L0)+1]=list(labij,0,ideal(1));
|
|
2659
|
+
}
|
|
2660
|
+
def RR=basering;
|
|
2661
|
+
setring(@P);
|
|
2662
|
+
ideal Np=imap(RR,N);
|
|
2663
|
+
ideal Wp=imap(RR,W);
|
|
2664
|
+
poly h=1;
|
|
2665
|
+
for (i=1;i<=size(Wp);i++){h=h*Wp[i];}
|
|
2666
|
+
list Lp=imap(RR,L);
|
|
2667
|
+
list r; list Ti; list LL;
|
|
2668
|
+
LL[1]=list(lab,size(Lp));
|
|
2669
|
+
for (i=1;i<=size(Lp);i++)
|
|
2670
|
+
{
|
|
2671
|
+
Ti=minAssGTZ(Lp[i]+h);
|
|
2672
|
+
for(j=1;j<=size(Ti);j++)
|
|
2673
|
+
{
|
|
2674
|
+
option(redSB);
|
|
2675
|
+
Ti[j]=groebner(Ti[j]);
|
|
2676
|
+
}
|
|
2677
|
+
labi=lab,child+i;
|
|
2678
|
+
childi=size(Ti);
|
|
2679
|
+
LL[size(LL)+1]=list(labi,childi,Lp[i]);
|
|
2680
|
+
for (j=1;j<=childi;j++)
|
|
2681
|
+
{
|
|
2682
|
+
labij=labi,j;
|
|
2683
|
+
LL[size(LL)+1]=list(labij,0,Ti[j]);
|
|
2684
|
+
}
|
|
2685
|
+
}
|
|
2686
|
+
LL[1]=list(lab,size(Lp));
|
|
2687
|
+
setring(RR);
|
|
2688
|
+
return(imap(@P,LL));
|
|
2689
|
+
}
|
|
2690
|
+
|
|
2691
|
+
// difftocanspec
|
|
2692
|
+
// Computes the canonical specification of a diffspec V(N) \ V(M)
|
|
2693
|
+
// input:
|
|
2694
|
+
// intvec lab: label where to hang the canspec
|
|
2695
|
+
// list N ideal of null conditions.
|
|
2696
|
+
// ideal M ideal of the variety to be substacted
|
|
2697
|
+
// output:
|
|
2698
|
+
// the list of elements determining the canonical specification of
|
|
2699
|
+
// the difference V(N) \ V(M):
|
|
2700
|
+
// ( (intvec(i),children), ...(lab, children, prime ideal),...)
|
|
2701
|
+
proc difftocanspec(intvec lab, int child, ideal N, ideal M)
|
|
2702
|
+
{
|
|
2703
|
+
int i; int j; list LLL;
|
|
2704
|
+
def RR=basering;
|
|
2705
|
+
setring(@P);
|
|
2706
|
+
ideal Np=imap(RR,N);
|
|
2707
|
+
ideal Mp=imap(RR,M);
|
|
2708
|
+
def L=minAssGTZ(Np);
|
|
2709
|
+
for(j=1;j<=size(L);j++)
|
|
2710
|
+
{
|
|
2711
|
+
option(redSB);
|
|
2712
|
+
L[j]=groebner(L[j]);
|
|
2713
|
+
}
|
|
2714
|
+
intvec labi; intvec labij;
|
|
2715
|
+
int childi;
|
|
2716
|
+
list LL;
|
|
2717
|
+
if ((Mp[1]==0) or ((size(L)==1) and (L[1][1]==1)))
|
|
2718
|
+
{
|
|
2719
|
+
//LL[1]=list(lab,1);
|
|
2720
|
+
//labi=lab,1;
|
|
2721
|
+
//LL[2]=list(labi,1,ideal(1));
|
|
2722
|
+
//labij=labi,1;
|
|
2723
|
+
//LL[3]=list(labij,0,ideal(1));
|
|
2724
|
+
setring(RR);
|
|
2725
|
+
return(LLL);
|
|
2726
|
+
}
|
|
2727
|
+
list r; list Ti;
|
|
2728
|
+
def k=0;
|
|
2729
|
+
LL[1]=list(lab,0);
|
|
2730
|
+
for (i=1;i<=size(L);i++)
|
|
2731
|
+
{
|
|
2732
|
+
Ti=minAssGTZ(L[i]+Mp);
|
|
2733
|
+
for(j=1;j<=size(Ti);j++)
|
|
2734
|
+
{
|
|
2735
|
+
option(redSB);
|
|
2736
|
+
Ti[j]=groebner(Ti[j]);
|
|
2737
|
+
}
|
|
2738
|
+
if (not((size(Ti)==1) and (equalideals(L[i],Ti[1]))))
|
|
2739
|
+
{
|
|
2740
|
+
k++;
|
|
2741
|
+
labi=lab,child+k;
|
|
2742
|
+
childi=size(Ti);
|
|
2743
|
+
LL[size(LL)+1]=list(labi,childi,L[i]);
|
|
2744
|
+
for (j=1;j<=childi;j++)
|
|
2745
|
+
{
|
|
2746
|
+
labij=labi,j;
|
|
2747
|
+
LL[size(LL)+1]=list(labij,0,Ti[j]);
|
|
2748
|
+
}
|
|
2749
|
+
}
|
|
2750
|
+
else{setring(RR); return(LLL);}
|
|
2751
|
+
}
|
|
2752
|
+
if (size(LL)>0)
|
|
2753
|
+
{
|
|
2754
|
+
LL[1]=list(lab,k);
|
|
2755
|
+
setring(RR);
|
|
2756
|
+
return(imap(@P,LL));
|
|
2757
|
+
}
|
|
2758
|
+
else {setring(RR); return(LLL);}
|
|
2759
|
+
}
|
|
2760
|
+
|
|
2761
|
+
// tree
|
|
2762
|
+
// purpose: given a label and the list L of vertices of the tree,
|
|
2763
|
+
// whose content
|
|
2764
|
+
// are of the form list(intvec lab, int children, ideal P)
|
|
2765
|
+
// to obtain the vertex and its position
|
|
2766
|
+
// input:
|
|
2767
|
+
// intvec lab: label of the vertex
|
|
2768
|
+
// list: L the list containing the vertices
|
|
2769
|
+
// output:
|
|
2770
|
+
// list V the vertex list(lab, children, P)
|
|
2771
|
+
proc tree(intvec lab,list L)
|
|
2772
|
+
{
|
|
2773
|
+
int i=0; int tt=1; list V; intvec labi;
|
|
2774
|
+
while ((i<size(L)) and (tt))
|
|
2775
|
+
{
|
|
2776
|
+
i++;
|
|
2777
|
+
labi=L[i][1];
|
|
2778
|
+
if (labi==lab)
|
|
2779
|
+
{
|
|
2780
|
+
V=list(L[i],i);
|
|
2781
|
+
tt=0;
|
|
2782
|
+
}
|
|
2783
|
+
}
|
|
2784
|
+
if (tt==0){return(V);}
|
|
2785
|
+
else{return(list(list(intvec(0)),0));}
|
|
2786
|
+
}
|
|
2787
|
+
|
|
2788
|
+
// GCS (generalized canonical specification)
|
|
2789
|
+
// new structure of a GCS
|
|
2790
|
+
|
|
2791
|
+
// L is a list of vertices V of the GCS.
|
|
2792
|
+
// first vertex=list(intvec lab, int children, ideal lpp, ideal B)
|
|
2793
|
+
// other vertices=list(intvec lab, int children, ideal P)
|
|
2794
|
+
// the individual vertices can be accessed with the function tree
|
|
2795
|
+
// by the call V=tree(lab,L), that outputs the vertex if it exists
|
|
2796
|
+
// and its position in L, or nothing if it does not exist.
|
|
2797
|
+
// The first element of the list must be the root of the tree and has
|
|
2798
|
+
// label lab=i, and other information.
|
|
2799
|
+
|
|
2800
|
+
// example:
|
|
2801
|
+
// the canonical specification
|
|
2802
|
+
// V(a^2-ac-ba+c-abc) \ (union( V(b,a), V(c,a), V(b,a-c), V(c,a-b)))
|
|
2803
|
+
// is represented by the list
|
|
2804
|
+
// L=((intvec(i),children=1,lpp,B),(intvec(i,1),4,ideal(a^2-ac-ba+c-abc)),
|
|
2805
|
+
// (intvec(i,1,1),0,ideal(b,a)), (intvec(i,1,2),0,ideal(c,a)),
|
|
2806
|
+
// (intvec(i,1,3),0,ideal(b,a-c)), (intvec(i,1,4),0,ideal(c,a-b))
|
|
2807
|
+
// )
|
|
2808
|
+
// example:
|
|
2809
|
+
// the canonical specification
|
|
2810
|
+
// (V(a)\(union(V(c,a),V(b+c,a),V(b,a)))) union
|
|
2811
|
+
// (V(b)\(union(V(b,a),V(b,a-c)))) union
|
|
2812
|
+
// (V(c)\(union(V(c,a),V(c,a-b))))
|
|
2813
|
+
// is represented by the list
|
|
2814
|
+
// L=((i,children=3,lpp,B),
|
|
2815
|
+
// (intvec(i,1),3,ideal(a)),
|
|
2816
|
+
// (intvec(i,1,1),0,(c,a)),(intvec(i,1,2),0,(b+c,a)),(intvec(i,1,3),0,(b,a)),
|
|
2817
|
+
// (intvec(i,2),2,ideal(b)),
|
|
2818
|
+
// (intvec(i,2,1),0,(b,a)),(intvec(i,2,2),0,(b,a-c)),
|
|
2819
|
+
// (intvec(i,3),2,ideal(c)),
|
|
2820
|
+
// (intvec(i,3,1),0,(c,a)),(intvec(i,3,2),0,(c,a-b))
|
|
2821
|
+
// )
|
|
2822
|
+
// If L is the list in the last example, the call
|
|
2823
|
+
// tree(intvec(i,2,1),L) will output ((intvec(i,2,1),0,(b,a)),7)
|
|
2824
|
+
|
|
2825
|
+
// GCS
|
|
2826
|
+
// input: list T is supposed to be an element L[i] of selectcases:
|
|
2827
|
+
// T= list( ideal lpp, ideal B, list(N,W,L),.., list(N,W,L))
|
|
2828
|
+
// output: the list L of vertices being the GCS of the addition of
|
|
2829
|
+
// all the segments in T.
|
|
2830
|
+
// list(list(intvec lab, int children, ideal lpp, ideal B),
|
|
2831
|
+
// list(intvec lab, int children, ideal P),..
|
|
2832
|
+
// )
|
|
2833
|
+
proc GCS(intvec lab, list case)
|
|
2834
|
+
{
|
|
2835
|
+
int i; int ii; int t;
|
|
2836
|
+
list @L;
|
|
2837
|
+
@L[1]=list(lab,0,case[1],case[2]);
|
|
2838
|
+
exportto(Top,@L);
|
|
2839
|
+
int j;
|
|
2840
|
+
list u; intvec labu; int childu;
|
|
2841
|
+
list v; intvec labv; int childv;
|
|
2842
|
+
list T=case[3];
|
|
2843
|
+
for (j=1;j<=size(T);j++)
|
|
2844
|
+
{
|
|
2845
|
+
t=addcase(lab,T[j]);
|
|
2846
|
+
deletebrotherscontaining(lab);
|
|
2847
|
+
}
|
|
2848
|
+
relabelingindices(lab,lab);
|
|
2849
|
+
list L=@L;
|
|
2850
|
+
kill @L;
|
|
2851
|
+
return(L);
|
|
2852
|
+
}
|
|
2853
|
+
|
|
2854
|
+
// sorbylab:
|
|
2855
|
+
// purpose: given the list of mrcgs to order it by increasing label
|
|
2856
|
+
proc sortbylab(list L)
|
|
2857
|
+
{
|
|
2858
|
+
int n=L[1][2];
|
|
2859
|
+
int i; int j;
|
|
2860
|
+
list H=L;
|
|
2861
|
+
list LL;
|
|
2862
|
+
list L1;
|
|
2863
|
+
//LL[1]=L[1];
|
|
2864
|
+
//H=delete(H,1);
|
|
2865
|
+
while (size(H)!=0)
|
|
2866
|
+
{
|
|
2867
|
+
j=1;
|
|
2868
|
+
L1=H[1];
|
|
2869
|
+
for (i=1;i<=size(H);i++)
|
|
2870
|
+
{
|
|
2871
|
+
if(lesslab(H[i],L1)){j=i;L1=H[j];}
|
|
2872
|
+
}
|
|
2873
|
+
LL[size(LL)+1]=L1;
|
|
2874
|
+
H=delete(H,j);
|
|
2875
|
+
}
|
|
2876
|
+
return(LL);
|
|
2877
|
+
}
|
|
2878
|
+
|
|
2879
|
+
// lesslab
|
|
2880
|
+
// purpose: given two elements of the list of mrcgs it
|
|
2881
|
+
// returns 1 if the label of the first is less than that of the second
|
|
2882
|
+
proc lesslab(list l1, list l2)
|
|
2883
|
+
{
|
|
2884
|
+
intvec lab1=l1[1];
|
|
2885
|
+
intvec lab2=l2[1];
|
|
2886
|
+
int n1=size(lab1);
|
|
2887
|
+
int n2=size(lab2);
|
|
2888
|
+
int n=n1;
|
|
2889
|
+
if (n2<n1){n=n2;}
|
|
2890
|
+
int tt=0;
|
|
2891
|
+
int j=1;
|
|
2892
|
+
while ((lab1[j]==lab2[j]) and (j<n)){j++;}
|
|
2893
|
+
if (lab1[j]<lab2[j]){tt=1;}
|
|
2894
|
+
if ((j==n) and (lab1[j]==lab2[j]) and (n2>n1)){tt=1;}
|
|
2895
|
+
return(tt);
|
|
2896
|
+
}
|
|
2897
|
+
|
|
2898
|
+
// cantree
|
|
2899
|
+
// input: the list provided by selectcases
|
|
2900
|
+
// output: the list providing the canonicaltree
|
|
2901
|
+
proc cantree(list S)
|
|
2902
|
+
{
|
|
2903
|
+
string method=" ";
|
|
2904
|
+
list T0=S[1];
|
|
2905
|
+
// first element of the list of selectcases
|
|
2906
|
+
int i; int j;
|
|
2907
|
+
list L;
|
|
2908
|
+
list T;
|
|
2909
|
+
L[1]=list(intvec(0),size(S)-1,T0[1],T0[2],T0[3][1],method);
|
|
2910
|
+
for (i=2;i<=size(S);i++)
|
|
2911
|
+
{
|
|
2912
|
+
T=GCS(intvec(i-1),S[i]);
|
|
2913
|
+
T=sortbylab(T);
|
|
2914
|
+
for (j=1;j<=size(T);j++)
|
|
2915
|
+
{L[size(L)+1]=T[j];}
|
|
2916
|
+
}
|
|
2917
|
+
return(L);
|
|
2918
|
+
}
|
|
2919
|
+
|
|
2920
|
+
// addcase
|
|
2921
|
+
// recursive routine that adds to the list @L, (an already GCS)
|
|
2922
|
+
// a new redspec rs=(N,W,L);
|
|
2923
|
+
// and returns the test t whose value is
|
|
2924
|
+
// 0 if the new canspec is not to be hung to the fathers vertex,
|
|
2925
|
+
// 1 if yes.
|
|
2926
|
+
proc addcase(intvec labu, list rs)
|
|
2927
|
+
{
|
|
2928
|
+
int i; int j; int childu; ideal Pu;
|
|
2929
|
+
list T; int nchildu;
|
|
2930
|
+
def N=rs[1]; def W=rs[2]; def PN=rs[3];
|
|
2931
|
+
ideal NN; ideal MM;
|
|
2932
|
+
int tt=1;
|
|
2933
|
+
poly h=1; for (i=1;i<=size(W);i++){h=h*W[i];}
|
|
2934
|
+
list u=tree(labu,@L); childu=u[1][2];
|
|
2935
|
+
list v; intvec labv; int childv; list w; intvec labw;
|
|
2936
|
+
if (childu>0)
|
|
2937
|
+
{
|
|
2938
|
+
v=firstchild(u[1][1]);
|
|
2939
|
+
while(v[2][1]!=0)
|
|
2940
|
+
{
|
|
2941
|
+
labv=v[1][1];
|
|
2942
|
+
w=firstchild(labv);
|
|
2943
|
+
while(w[2][1]!=0)
|
|
2944
|
+
{
|
|
2945
|
+
labw=w[1][1];
|
|
2946
|
+
if(addcase(labw,rs)==0)
|
|
2947
|
+
{tt=0;}
|
|
2948
|
+
w=nextbrother(labw);
|
|
2949
|
+
}
|
|
2950
|
+
u=tree(labu,@L);
|
|
2951
|
+
childu=u[1][2];
|
|
2952
|
+
v=nextbrother(v[1][1]);
|
|
2953
|
+
}
|
|
2954
|
+
deletebrotherscontaining(labu);
|
|
2955
|
+
relabelingindices(labu,labu);
|
|
2956
|
+
}
|
|
2957
|
+
if (tt==1)
|
|
2958
|
+
{
|
|
2959
|
+
u=tree(labu,@L);
|
|
2960
|
+
nchildu=lastchildrenindex(labu);
|
|
2961
|
+
if (size(labu)==1)
|
|
2962
|
+
{
|
|
2963
|
+
T=redtocanspec(labu,nchildu,rs);
|
|
2964
|
+
tt=0;
|
|
2965
|
+
}
|
|
2966
|
+
else
|
|
2967
|
+
{
|
|
2968
|
+
NN=N;
|
|
2969
|
+
if (containedP(u[1][3],N)){tt=0;}
|
|
2970
|
+
for (i=1;i<=size(u[1][3]);i++)
|
|
2971
|
+
{
|
|
2972
|
+
NN[size(NN)+1]=u[1][3][i];
|
|
2973
|
+
}
|
|
2974
|
+
MM=NN;
|
|
2975
|
+
MM[size(MM)+1]=h;
|
|
2976
|
+
T=difftocanspec(labu,nchildu,NN,MM);
|
|
2977
|
+
}
|
|
2978
|
+
if (size(T)>0)
|
|
2979
|
+
{
|
|
2980
|
+
@L[u[2]][2]=@L[u[2]][2]+T[1][2];
|
|
2981
|
+
for (i=2;i<=size(T);i++){@L[size(@L)+1]=T[i];}
|
|
2982
|
+
if (size(labu)>1)
|
|
2983
|
+
{
|
|
2984
|
+
simplifynewadded(labu);
|
|
2985
|
+
}
|
|
2986
|
+
}
|
|
2987
|
+
else{tt=1;}
|
|
2988
|
+
}
|
|
2989
|
+
return(tt);
|
|
2990
|
+
}
|
|
2991
|
+
|
|
2992
|
+
// reduceR
|
|
2993
|
+
// reduces the polynomial f w.r.t. N, in the ring @P
|
|
2994
|
+
proc reduceR(poly f, ideal N)
|
|
2995
|
+
{
|
|
2996
|
+
def RR=basering;
|
|
2997
|
+
setring(@P);
|
|
2998
|
+
def fP=imap(RR,f);
|
|
2999
|
+
def NP=imap(RR,N);
|
|
3000
|
+
attrib(NP,"isSB",1);
|
|
3001
|
+
def rp=reduce(fP,NP);
|
|
3002
|
+
setring(RR);
|
|
3003
|
+
return(imap(@P,rp));
|
|
3004
|
+
}
|
|
3005
|
+
|
|
3006
|
+
// containedP
|
|
3007
|
+
// returns 1 if ideal Pu is contained in ideal Pv
|
|
3008
|
+
// returns 0 if not
|
|
3009
|
+
// in ring @P
|
|
3010
|
+
proc containedP(ideal Pu,ideal Pv)
|
|
3011
|
+
{
|
|
3012
|
+
int t=1;
|
|
3013
|
+
int n=size(Pu);
|
|
3014
|
+
int i=0;
|
|
3015
|
+
poly r=0;
|
|
3016
|
+
while ((t) and (i<n))
|
|
3017
|
+
{
|
|
3018
|
+
i++;
|
|
3019
|
+
r=reduceR(Pu[i],Pv);
|
|
3020
|
+
if (r!=0){t=0;}
|
|
3021
|
+
}
|
|
3022
|
+
return(t);
|
|
3023
|
+
}
|
|
3024
|
+
|
|
3025
|
+
// simplifynewadded
|
|
3026
|
+
// auxiliary routine of addcase
|
|
3027
|
+
// when a new redspec is added to a non terminal vertex,
|
|
3028
|
+
// it is applied to simplify the addition.
|
|
3029
|
+
// When Pu==Pv, the children of w are hung from u fathers
|
|
3030
|
+
// and deleted the whole new addition.
|
|
3031
|
+
// Finally, deletebrotherscontaining is applied to u fathers
|
|
3032
|
+
// in order to eliminate branches contained.
|
|
3033
|
+
proc simplifynewadded(intvec labu)
|
|
3034
|
+
{
|
|
3035
|
+
int t; int ii; int k; int kk; int j;
|
|
3036
|
+
intvec labfu=delintvec(labu,size(labu)); list fu; int childfu;
|
|
3037
|
+
list u=tree(labu,@L); int childu=u[1][2]; ideal Pu=u[1][3];
|
|
3038
|
+
list v; intvec labv; int childv; ideal Pv;
|
|
3039
|
+
list w; intvec labw; intvec nlab; list ww;
|
|
3040
|
+
if (childu>0)
|
|
3041
|
+
{
|
|
3042
|
+
v=firstchild(u[1][1]); labv=v[1][1]; childv=v[1][2]; Pv=v[1][3];
|
|
3043
|
+
ii=0;
|
|
3044
|
+
t=0;
|
|
3045
|
+
while ((not(t)) and (ii<childu))
|
|
3046
|
+
{
|
|
3047
|
+
ii++;
|
|
3048
|
+
if (equalideals(Pu,Pv))
|
|
3049
|
+
{
|
|
3050
|
+
fu=tree(labfu,@L);
|
|
3051
|
+
childfu=fu[1][2];
|
|
3052
|
+
j=lastchildrenindex(fu[1][1])+1;
|
|
3053
|
+
k=0;
|
|
3054
|
+
w=firstchild(v[1][1]);
|
|
3055
|
+
childv=v[1][2];
|
|
3056
|
+
for (kk=1;kk<=childv;kk++)
|
|
3057
|
+
{
|
|
3058
|
+
if (kk<childv){ww=nextbrother(w[1][1]);}
|
|
3059
|
+
nlab=labfu,j;
|
|
3060
|
+
@L[w[2]][1]=nlab;
|
|
3061
|
+
j++;
|
|
3062
|
+
if (kk<childv){w=ww;}
|
|
3063
|
+
}
|
|
3064
|
+
childfu=fu[1][2]+childv-1;
|
|
3065
|
+
@L[fu[2]][2]=childfu;
|
|
3066
|
+
@L[v[2]][2]=0;
|
|
3067
|
+
t=1;
|
|
3068
|
+
deleteverts(labu);
|
|
3069
|
+
}
|
|
3070
|
+
}
|
|
3071
|
+
}
|
|
3072
|
+
deletebrotherscontaining(labfu);
|
|
3073
|
+
}
|
|
3074
|
+
|
|
3075
|
+
// given the label labfu of the vertex fu it returns the last
|
|
3076
|
+
// int of the label of the last existing children.
|
|
3077
|
+
// if no child exists, then it outputs 0.
|
|
3078
|
+
proc lastchildrenindex(intvec labfu)
|
|
3079
|
+
{
|
|
3080
|
+
int i;
|
|
3081
|
+
int lastlabi; intvec labi; intvec labfi;
|
|
3082
|
+
int lastlab=0;
|
|
3083
|
+
for (i=1;i<=size(@L);i++)
|
|
3084
|
+
{
|
|
3085
|
+
labi=@L[i][1];
|
|
3086
|
+
if (size(labi)>1)
|
|
3087
|
+
{
|
|
3088
|
+
labfi=delintvec(labi,size(labi));
|
|
3089
|
+
if (labfu==labfi)
|
|
3090
|
+
{
|
|
3091
|
+
lastlabi=labi[size(labi)];
|
|
3092
|
+
if (lastlab<lastlabi)
|
|
3093
|
+
{
|
|
3094
|
+
lastlab=lastlabi;
|
|
3095
|
+
}
|
|
3096
|
+
}
|
|
3097
|
+
}
|
|
3098
|
+
}
|
|
3099
|
+
return(lastlab);
|
|
3100
|
+
}
|
|
3101
|
+
|
|
3102
|
+
// given the vertex u it provides the next brother of u.
|
|
3103
|
+
// if it does not exist, then it outputs v=list(list(intvec(0)),0)
|
|
3104
|
+
proc nextbrother(intvec labu)
|
|
3105
|
+
{
|
|
3106
|
+
list L; int i; int j; list next;
|
|
3107
|
+
int lastlabu=labu[size(labu)];
|
|
3108
|
+
intvec labfu=delintvec(labu,size(labu));
|
|
3109
|
+
int lastlabi; intvec labi; intvec labfi;
|
|
3110
|
+
for (i=1;i<=size(@L);i++)
|
|
3111
|
+
{
|
|
3112
|
+
labi=@L[i][1];
|
|
3113
|
+
if (size(labi)>1)
|
|
3114
|
+
{
|
|
3115
|
+
labfi=delintvec(labi,size(labi));
|
|
3116
|
+
if (labfu==labfi)
|
|
3117
|
+
{
|
|
3118
|
+
lastlabi=labi[size(labi)];
|
|
3119
|
+
if (lastlabu<lastlabi)
|
|
3120
|
+
{L[size(L)+1]=list(lastlabi,list(@L[i],i));}
|
|
3121
|
+
}
|
|
3122
|
+
}
|
|
3123
|
+
}
|
|
3124
|
+
if (size(L)==0){return(list(intvec(0),0));}
|
|
3125
|
+
next=L[1];
|
|
3126
|
+
for (i=2;i<=size(L);i++)
|
|
3127
|
+
{
|
|
3128
|
+
if (L[i][1]<next[1]){next=L[i];}
|
|
3129
|
+
}
|
|
3130
|
+
return(next[2]);
|
|
3131
|
+
}
|
|
3132
|
+
|
|
3133
|
+
// gives the first child of vertex fu
|
|
3134
|
+
proc firstchild(def labfu)
|
|
3135
|
+
{
|
|
3136
|
+
intvec labfu0=labfu;
|
|
3137
|
+
labfu0[size(labfu0)+1]=0;
|
|
3138
|
+
return(nextbrother(labfu0));
|
|
3139
|
+
}
|
|
3140
|
+
|
|
3141
|
+
// purpose: eliminate the children vertices of fu and all its descendents
|
|
3142
|
+
// whose prime ideal Pu contains a prime ideal Pv of some brother vertex w.
|
|
3143
|
+
proc deletebrotherscontaining(intvec labfu)
|
|
3144
|
+
{
|
|
3145
|
+
int i; int t;
|
|
3146
|
+
list fu=tree(labfu,@L);
|
|
3147
|
+
int childfu=fu[1][2];
|
|
3148
|
+
list u; intvec labu; ideal Pu;
|
|
3149
|
+
list v; intvec labv; ideal Pv;
|
|
3150
|
+
u=firstchild(labfu);
|
|
3151
|
+
for (i=1;i<=childfu;i++)
|
|
3152
|
+
{
|
|
3153
|
+
labu=u[1][1];
|
|
3154
|
+
Pu=u[1][3];
|
|
3155
|
+
v=firstchild(fu[1][1]);
|
|
3156
|
+
t=1;
|
|
3157
|
+
while ((t) and (v[2]!=0))
|
|
3158
|
+
{
|
|
3159
|
+
labv=v[1][1];
|
|
3160
|
+
Pv=v[1][3];
|
|
3161
|
+
if (labu!=labv)
|
|
3162
|
+
{
|
|
3163
|
+
if (containedP(Pv,Pu))
|
|
3164
|
+
{
|
|
3165
|
+
deleteverts(labu);
|
|
3166
|
+
fu=tree(labfu,@L);
|
|
3167
|
+
@L[fu[2]][2]=fu[1][2]-1;
|
|
3168
|
+
t=0;
|
|
3169
|
+
}
|
|
3170
|
+
}
|
|
3171
|
+
if (t!=0)
|
|
3172
|
+
{
|
|
3173
|
+
v=nextbrother(v[1][1]);
|
|
3174
|
+
}
|
|
3175
|
+
}
|
|
3176
|
+
if (i<childfu)
|
|
3177
|
+
{
|
|
3178
|
+
u=nextbrother(u[1][1]);
|
|
3179
|
+
}
|
|
3180
|
+
}
|
|
3181
|
+
}
|
|
3182
|
+
|
|
3183
|
+
// purpose: delete all descendent vertices from u included u
|
|
3184
|
+
// from the list @L.
|
|
3185
|
+
// It must be noted that after the operation, the number of children
|
|
3186
|
+
// in fathers vertex must be decreased in 1 unitity. This operation is not
|
|
3187
|
+
// performed inside this recursive routine.
|
|
3188
|
+
proc deleteverts(intvec labu)
|
|
3189
|
+
{
|
|
3190
|
+
int i; int ii; list v; intvec labv;
|
|
3191
|
+
list u=tree(labu,@L);
|
|
3192
|
+
int childu=u[1][2];
|
|
3193
|
+
@L=delete(@L,u[2]);
|
|
3194
|
+
if (childu>0)
|
|
3195
|
+
{
|
|
3196
|
+
v=firstchild(labu);
|
|
3197
|
+
labv=v[1][1];
|
|
3198
|
+
for (ii=1;ii<=childu;ii++)
|
|
3199
|
+
{
|
|
3200
|
+
deleteverts(labv);
|
|
3201
|
+
if (ii<childu)
|
|
3202
|
+
{
|
|
3203
|
+
v=nextbrother(v[1][1]);
|
|
3204
|
+
labv=v[1][1];
|
|
3205
|
+
}
|
|
3206
|
+
}
|
|
3207
|
+
}
|
|
3208
|
+
}
|
|
3209
|
+
|
|
3210
|
+
// purpose: starting from vertex olab (initially nlab=olab)
|
|
3211
|
+
// relabels the vertices of @L to be consecutive
|
|
3212
|
+
proc relabelingindices(intvec olab, intvec nlab)
|
|
3213
|
+
{
|
|
3214
|
+
int i;
|
|
3215
|
+
intvec nlabi; intvec labv;
|
|
3216
|
+
list u=tree(olab,@L);
|
|
3217
|
+
int childu=u[1][2];
|
|
3218
|
+
list v;
|
|
3219
|
+
if (childu==0){@L[u[2]][1]=nlab;}
|
|
3220
|
+
else
|
|
3221
|
+
{
|
|
3222
|
+
v=firstchild(u[1][1]);
|
|
3223
|
+
@L[u[2]][1]=nlab;
|
|
3224
|
+
i=1;
|
|
3225
|
+
while(v[2]!=0)
|
|
3226
|
+
{
|
|
3227
|
+
labv=v[1][1];
|
|
3228
|
+
nlabi=nlab,i;
|
|
3229
|
+
relabelingindices(labv,nlabi);
|
|
3230
|
+
v=nextbrother(labv);
|
|
3231
|
+
i++;
|
|
3232
|
+
}
|
|
3233
|
+
}
|
|
3234
|
+
}
|
|
3235
|
+
|
|
3236
|
+
// mrcgs
|
|
3237
|
+
// fundamental routine giving the
|
|
3238
|
+
// "Minimal Reduced Comprehensive Groebner System"
|
|
3239
|
+
// input: F = ideal in ring R=K[a][x]
|
|
3240
|
+
// output: a list L representing the tree of the mrcgs.
|
|
3241
|
+
proc mrcgs(ideal F, list #)
|
|
3242
|
+
"USAGE: mrcgs(F);
|
|
3243
|
+
F is the ideal from which to obtain the Minimal Reduced CGS.
|
|
3244
|
+
Alternatively, as option:
|
|
3245
|
+
mrcgs(F,L);
|
|
3246
|
+
where L is a list of the null conditions ideal N, and W the set of
|
|
3247
|
+
non-null polynomials (ideal). If this option is set, the ideals N and W
|
|
3248
|
+
must depend only on the parameters and the parameter space is
|
|
3249
|
+
reduced to V(N) \ V(h), where h=prod(w), for w in W.
|
|
3250
|
+
A reduced specification of (N,W) will be computed and used to
|
|
3251
|
+
restrict the parameter-space. The output will omit the known restrictions
|
|
3252
|
+
given as option.
|
|
3253
|
+
RETURN: The list representing the Minimal Reduced CGS.
|
|
3254
|
+
The description given here is identical for rcgs and crcgs.
|
|
3255
|
+
The elements of the list T computed by mrcgs are lists representing
|
|
3256
|
+
a rooted tree.
|
|
3257
|
+
Each element has as the two first entries with the following content:@*
|
|
3258
|
+
[1]: The label (intvec) representing the position in the rooted
|
|
3259
|
+
tree: 0 for the root (and this is a special element)
|
|
3260
|
+
i for the root of the segment i
|
|
3261
|
+
(i,...) for the children of the segment i
|
|
3262
|
+
[2]: the number of children (int) of the vertex.
|
|
3263
|
+
There thus three kind of vertices:
|
|
3264
|
+
1) the root (first element labelled 0),
|
|
3265
|
+
2) the vertices labelled with a single integer i,
|
|
3266
|
+
3) the rest of vertices labelled with more indices.
|
|
3267
|
+
Description of the root. Vertex type 1)
|
|
3268
|
+
There is a special vertex (the first one) whose content is
|
|
3269
|
+
the following:
|
|
3270
|
+
[3] lpp of the given ideal
|
|
3271
|
+
[4] the given ideal
|
|
3272
|
+
[5] the red-spec of the (optional) given null and non-null conditions
|
|
3273
|
+
(see redspec for the description)
|
|
3274
|
+
[6] MRCGS (to remember which algorithm has been used). If the
|
|
3275
|
+
algorithm used is rcgs of crcgs then this will be stated
|
|
3276
|
+
at this vertex (RCGS or CRCGS).
|
|
3277
|
+
Description of vertices type 2). These are the vertices that
|
|
3278
|
+
initiate a segment, and are labelled with a single integer.
|
|
3279
|
+
[3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
|
|
3280
|
+
will correspond to a sheaf.
|
|
3281
|
+
[4] the reduced basis (ideal) of the segment.
|
|
3282
|
+
Description of vertices type 3). These vertices have as first
|
|
3283
|
+
label i and descend form vertex i in the position of the label
|
|
3284
|
+
(i,...). They contain moreover a unique prime ideal in the parameters
|
|
3285
|
+
and form ascending chains of ideals.
|
|
3286
|
+
How is to be read the mrcgs tree? The vertices with an even number of
|
|
3287
|
+
integers in the label are to be considered as additive and those
|
|
3288
|
+
with an odd number of integers in the label are to be considered as
|
|
3289
|
+
subtraction. As an example consider the following vertices:
|
|
3290
|
+
v1=((i),2,lpp,B),
|
|
3291
|
+
v2=((i,1),2,P_{(i,1)}),
|
|
3292
|
+
v3=((i,1,1),2,P_{(i,1,1)},
|
|
3293
|
+
v4=((i,1,1,1),1,P_{(i,1,1,1)},
|
|
3294
|
+
v5=((i,1,1,1,1),0,P_{(i,1,1,1,1)},
|
|
3295
|
+
v6=((i,1,1,2),1,P_{(i,1,1,2)},
|
|
3296
|
+
v7=((i,1,1,2,1),0,P_{(i,1,1,2,1)},
|
|
3297
|
+
v8=((i,1,2),0,P_{(i,1,2)},
|
|
3298
|
+
v9=((i,2),1,P_{(i,2)},
|
|
3299
|
+
v10=((i,2,1),0,P_{(i,2,1)},
|
|
3300
|
+
They represent the segment:
|
|
3301
|
+
(V(i,1)\(((V(i,1,1) \ ((V(i,1,1,1) \ V(i,1,1,1,1)) u (V(i,1,1,2) \ V(i,1,1,2,1)))))
|
|
3302
|
+
u V(i,1,2)) u (V(i,2) \ V(i,2,1))
|
|
3303
|
+
and can also be represented by
|
|
3304
|
+
(V(i,1) \ (V(i,1,1) u V(i,1,2))) u
|
|
3305
|
+
(V(i,1,1,1) \ V(i,1,1,1)) u
|
|
3306
|
+
(V(i,1,1,2) \ V(i,1,1,2,1)) u
|
|
3307
|
+
(V(i,2) \ V(i,2,1))
|
|
3308
|
+
where V(i,j,..) = V(P_{(i,j,..)}
|
|
3309
|
+
NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
|
|
3310
|
+
mrcgs (Minimal Reduced CGS) is an algorithm that packs so much as it
|
|
3311
|
+
is able to do (using algorithms adhoc) the segments with the same lpp,
|
|
3312
|
+
obtaining the minimal number of segments. The hypothesis is that this
|
|
3313
|
+
is also canonical, but for the moment there is no proof of the uniqueness
|
|
3314
|
+
of that minimal packing. Moreover, the segments that are obtained are not
|
|
3315
|
+
locally closed, i.e. there are not always the difference of two varieties,
|
|
3316
|
+
but can be a union of differences.
|
|
3317
|
+
The output can be visualized using cantreetoMaple, that will
|
|
3318
|
+
write a file with the content of mrcgs that can be read in Maple
|
|
3319
|
+
and plotted using the Maple plotcantree routine of the Monte's dpgb library
|
|
3320
|
+
You can also try the routine cantodiffcgs when the segments are all
|
|
3321
|
+
difference of two varieties to have a simpler view of the output.
|
|
3322
|
+
But it will give an error if the output is not locally closed.
|
|
3323
|
+
KEYWORDS: rcgs, crcgs, buildtree, cantreetoMaple, cantodiffcgs
|
|
3324
|
+
EXAMPLE: mrcgs; shows an example"
|
|
3325
|
+
{
|
|
3326
|
+
int i=1;
|
|
3327
|
+
int @ish=1;
|
|
3328
|
+
exportto(Top,@ish);
|
|
3329
|
+
while((@ish) and (i<=size(F)))
|
|
3330
|
+
{
|
|
3331
|
+
@ish=ishomog(F[i]);
|
|
3332
|
+
i++;
|
|
3333
|
+
}
|
|
3334
|
+
list L=buildtree(F, #);
|
|
3335
|
+
list S=selectcases(L);
|
|
3336
|
+
list T=cantree(S);
|
|
3337
|
+
T[1][6]="MRCGS";
|
|
3338
|
+
T[1][4]=F;
|
|
3339
|
+
for (i=1;i<=size(F);i++)
|
|
3340
|
+
{
|
|
3341
|
+
T[1][3][i]=leadmonom(F[i]);
|
|
3342
|
+
}
|
|
3343
|
+
if (size(#)>0)
|
|
3344
|
+
{
|
|
3345
|
+
ideal N=#[1];
|
|
3346
|
+
ideal W=#[2];
|
|
3347
|
+
T=reduceconds(T,N,W);
|
|
3348
|
+
}
|
|
3349
|
+
kill @ish;
|
|
3350
|
+
return(T);
|
|
3351
|
+
}
|
|
3352
|
+
example
|
|
3353
|
+
{ "EXAMPLE:"; echo = 2;
|
|
3354
|
+
ring R=(0,b,c,d,e,f),(x,y),dp;
|
|
3355
|
+
ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
|
|
3356
|
+
def T=mrcgs(F);
|
|
3357
|
+
T;
|
|
3358
|
+
cantreetoMaple(T,"Tm","Tm.txt");
|
|
3359
|
+
//cantodiffcgs(T); // has non locally closed segments
|
|
3360
|
+
ring R=(0,a1,a2,a3,a4),(x1,x2,x3,x4),dp;
|
|
3361
|
+
ideal F2=x4-a4+a2, x1+x2+x3+x4-a1-a3-a4, x1*x3*x4-a1*a3*a4, x1*x3+x1*x4+x2*x3+x3*x4-a1*a4-a1*a3-a3*a4;
|
|
3362
|
+
def T2=mrcgs(F2);
|
|
3363
|
+
T2;
|
|
3364
|
+
cantreetoMaple(T2,"T2m","T2m.txt");
|
|
3365
|
+
cantodiffcgs(T2);
|
|
3366
|
+
}
|
|
3367
|
+
|
|
3368
|
+
// reduceconds: when null and nonnull conditions are specified it
|
|
3369
|
+
// takes the output of cantree and reduces the tree
|
|
3370
|
+
// assuming the null and nonnull conditions
|
|
3371
|
+
// input: list T (the output of cantree computed with null and nonull conditions
|
|
3372
|
+
// ideal N: null conditions
|
|
3373
|
+
// ideal W: non-null conditions
|
|
3374
|
+
// output: the list T assuming the null and non-null conditions
|
|
3375
|
+
proc reduceconds(list T,ideal N,ideal W)
|
|
3376
|
+
{
|
|
3377
|
+
int i; intvec lab; intvec labfu; list fu; int j; int t;
|
|
3378
|
+
list @L=T;
|
|
3379
|
+
exportto(Top,@L);
|
|
3380
|
+
int n=size(W);
|
|
3381
|
+
for (i=2;i<=size(@L);i++)
|
|
3382
|
+
{
|
|
3383
|
+
t=0; j=0;
|
|
3384
|
+
while ((not(t)) and (j<n))
|
|
3385
|
+
{
|
|
3386
|
+
j++;
|
|
3387
|
+
if (size(@L[i][1])>1)
|
|
3388
|
+
{
|
|
3389
|
+
if (memberpos(W[j],@L[i][3])[1])
|
|
3390
|
+
{
|
|
3391
|
+
t=1;
|
|
3392
|
+
@L[i][3]=ideal(1);
|
|
3393
|
+
}
|
|
3394
|
+
}
|
|
3395
|
+
}
|
|
3396
|
+
}
|
|
3397
|
+
for (i=2;i<=size(@L);i++)
|
|
3398
|
+
{
|
|
3399
|
+
if (size(@L[i][1])>1)
|
|
3400
|
+
{
|
|
3401
|
+
@L[i][3]=delidfromid(N,@L[i][3]);
|
|
3402
|
+
}
|
|
3403
|
+
}
|
|
3404
|
+
for (i=2;i<=size(@L);i++)
|
|
3405
|
+
{
|
|
3406
|
+
if ((size(@L[i][1])>1) and (size(@L[i][1]) mod 2==1) and (equalideals(@L[i][3],ideal(0))))
|
|
3407
|
+
{
|
|
3408
|
+
lab=@L[i][1];
|
|
3409
|
+
labfu=delintvec(lab,size(lab));
|
|
3410
|
+
fu=tree(labfu,@L);
|
|
3411
|
+
@L[fu[2]][2]=@L[fu[2]][2]-1;
|
|
3412
|
+
deleteverts(lab);
|
|
3413
|
+
}
|
|
3414
|
+
}
|
|
3415
|
+
for (j=2; j<=size(@L); j++)
|
|
3416
|
+
{
|
|
3417
|
+
if (@L[j][2]>0)
|
|
3418
|
+
{
|
|
3419
|
+
deletebrotherscontaining(@L[j][1]);
|
|
3420
|
+
}
|
|
3421
|
+
}
|
|
3422
|
+
for (i=1;i<=@L[1][2];i++)
|
|
3423
|
+
{
|
|
3424
|
+
relabelingindices(intvec(i),intvec(i));
|
|
3425
|
+
}
|
|
3426
|
+
list TT=@L;
|
|
3427
|
+
kill @L;
|
|
3428
|
+
return(TT);
|
|
3429
|
+
}
|
|
3430
|
+
|
|
3431
|
+
//**************End of cantree******************************
|
|
3432
|
+
|
|
3433
|
+
//**************Begin of CanTreeTo Maple********************
|
|
3434
|
+
|
|
3435
|
+
// cantreetoMaple
|
|
3436
|
+
// input: list L: the output of cantree
|
|
3437
|
+
// string T: the name of the table of Maple that represents L
|
|
3438
|
+
// in Maple
|
|
3439
|
+
// string writefile: the name of the file where the table T
|
|
3440
|
+
// is written
|
|
3441
|
+
proc cantreetoMaple(list L, string T, string writefile)
|
|
3442
|
+
"USAGE: cantreetoMaple(T, TM, writefile);
|
|
3443
|
+
T: is the list provided by mrcgs or crcgs or crcgs,
|
|
3444
|
+
TM: is the name (string) of the table variable in Maple that will represent
|
|
3445
|
+
the output of the fundamental routines,
|
|
3446
|
+
writefile: is the name (string) of the file where to write the content.
|
|
3447
|
+
RETURN: writes the list provided by mrcgs or crcgs or crcgs to a file
|
|
3448
|
+
containing the table representing it in Maple.
|
|
3449
|
+
NOTE: It can be called from the output of mrcgs or rcgs of crcgs
|
|
3450
|
+
KEYWORDS: mrcgs, rcgs, crcgs, Maple
|
|
3451
|
+
EXAMPLE: cantreetoMaple; shows an example"
|
|
3452
|
+
{
|
|
3453
|
+
short=0;
|
|
3454
|
+
int i;
|
|
3455
|
+
list L0=L[1];
|
|
3456
|
+
int numcases=L0[2];
|
|
3457
|
+
link LLw=":w "+writefile;
|
|
3458
|
+
string La=string("table(",T,");");
|
|
3459
|
+
write(LLw, La);
|
|
3460
|
+
close(LLw);
|
|
3461
|
+
link LLa=":a "+writefile;
|
|
3462
|
+
def RL=ringlist(@R);
|
|
3463
|
+
list p=RL[1][2];
|
|
3464
|
+
string param=string(p[1]);
|
|
3465
|
+
if (size(p)>1)
|
|
3466
|
+
{
|
|
3467
|
+
for(i=2;i<=size(p);i++){param=string(param,",",p[i]);}
|
|
3468
|
+
}
|
|
3469
|
+
list v=RL[2];
|
|
3470
|
+
string vars=string(v[1]);
|
|
3471
|
+
if (size(v)>1)
|
|
3472
|
+
{
|
|
3473
|
+
for(i=2;i<=size(v);i++){vars=string(vars,",",v[i]);}
|
|
3474
|
+
}
|
|
3475
|
+
list xord;
|
|
3476
|
+
list pord;
|
|
3477
|
+
if (RL[1][3][1][1]=="dp"){pord=string("tdeg(",param);}
|
|
3478
|
+
else
|
|
3479
|
+
{
|
|
3480
|
+
if (RL[1][3][1][1]=="lp"){pord=string("plex(",param);}
|
|
3481
|
+
}
|
|
3482
|
+
if (RL[3][1][1]=="dp"){xord=string("tdeg(",vars);}
|
|
3483
|
+
else
|
|
3484
|
+
{
|
|
3485
|
+
if (RL[3][1][1]=="lp"){xord=string("plex(",vars);}
|
|
3486
|
+
}
|
|
3487
|
+
write(LLa,string(T,"[[___xord]]:=",xord,");"));
|
|
3488
|
+
write(LLa,string(T,"[[___pord]]:=",pord,");"));
|
|
3489
|
+
//write(LLa,string(T,"[[11]]:=true; "));
|
|
3490
|
+
list S;
|
|
3491
|
+
S=string(T,"[[0]]:=",numcases,";");
|
|
3492
|
+
write(LLa,S);
|
|
3493
|
+
S=string(T,"[[___method]]:=",L[1][6],";");
|
|
3494
|
+
// Method L[1][6];
|
|
3495
|
+
write(LLa,S);
|
|
3496
|
+
S=string(T,"[[___basis]]:=[",L0[4],"];");
|
|
3497
|
+
write(LLa,S);
|
|
3498
|
+
S=string(T,"[[___nullcond]]:=[",L0[5][1],"];");
|
|
3499
|
+
write(LLa,S);
|
|
3500
|
+
S=string(T,"[[___notnullcond]]:={",L0[5][2],"};");
|
|
3501
|
+
write(LLa,S);
|
|
3502
|
+
for (i=1;i<=numcases;i++)
|
|
3503
|
+
{
|
|
3504
|
+
S=ctlppbasis(T,L,intvec(i));
|
|
3505
|
+
write(LLa,S[1]);
|
|
3506
|
+
write(LLa,S[2]);
|
|
3507
|
+
write(LLa,S[3]);
|
|
3508
|
+
//write(LLa,S[4]);
|
|
3509
|
+
ctrecwrite(LLa, L, T, intvec(i),S[4]);
|
|
3510
|
+
}
|
|
3511
|
+
close(LLa);
|
|
3512
|
+
}
|
|
3513
|
+
example
|
|
3514
|
+
{ "EXAMPLE:"; echo = 2;
|
|
3515
|
+
ring R=(0,b,c,d,e,f),(x,y),dp;
|
|
3516
|
+
ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
|
|
3517
|
+
def T=mrcgs(F);
|
|
3518
|
+
T;
|
|
3519
|
+
cantreetoMaple(T,"Tm","Tm.txt");
|
|
3520
|
+
}
|
|
3521
|
+
|
|
3522
|
+
// ctlppbasis: auxiliary cantreetoMaple routine
|
|
3523
|
+
// input:
|
|
3524
|
+
// string T: the name of the table in Maple
|
|
3525
|
+
// intvec lab: the label of the case
|
|
3526
|
+
// ideal B: the basis of the case
|
|
3527
|
+
// output:
|
|
3528
|
+
// the string of T[[lab]] (basis); in Maple
|
|
3529
|
+
proc ctlppbasis(string T, list L, intvec lab)
|
|
3530
|
+
{
|
|
3531
|
+
list u;
|
|
3532
|
+
intvec lab0=lab,0;
|
|
3533
|
+
u=tree(lab,L);
|
|
3534
|
+
list Li;
|
|
3535
|
+
Li[1]=string(T,"[[",lab,",___lpp]]:=[",u[1][3],"]; ");
|
|
3536
|
+
Li[2]=string(T,"[[",lab,"]]:=[",u[1][4],"]; ");
|
|
3537
|
+
Li[3]=string(T,"[[",lab0,"]]:=",u[1][2],"; ");
|
|
3538
|
+
Li[4]=u[1][2];
|
|
3539
|
+
return(Li);
|
|
3540
|
+
}
|
|
3541
|
+
|
|
3542
|
+
// ctlppbasis: auxiliary cantreetoMaple routine
|
|
3543
|
+
// recursive routine to write all elements
|
|
3544
|
+
proc ctrecwrite(LLa, list L, string T, intvec lab, int n)
|
|
3545
|
+
{
|
|
3546
|
+
int i;
|
|
3547
|
+
intvec labi; intvec labi0;
|
|
3548
|
+
string S;
|
|
3549
|
+
list u;
|
|
3550
|
+
for (i=1;i<=n;i++)
|
|
3551
|
+
{
|
|
3552
|
+
labi=lab,i;
|
|
3553
|
+
u=tree(labi,L);
|
|
3554
|
+
S=string(T,"[[",labi,"]]:=[",u[1][3],"];");
|
|
3555
|
+
write(LLa,S);
|
|
3556
|
+
labi0=labi,0;
|
|
3557
|
+
S=string(T,"[[",labi0,"]]:=",u[1][2],";");
|
|
3558
|
+
write(LLa,S);
|
|
3559
|
+
ctrecwrite(LLa, L, T, labi, u[1][2]);
|
|
3560
|
+
}
|
|
3561
|
+
}
|
|
3562
|
+
|
|
3563
|
+
//**************End of CanTreeTo Maple********************
|
|
3564
|
+
|
|
3565
|
+
//**************Begin homogenizing************************
|
|
3566
|
+
|
|
3567
|
+
// ishomog:
|
|
3568
|
+
// Purpose: test if a polynomial is homogeneous in the variables or not
|
|
3569
|
+
// input: poly f
|
|
3570
|
+
// output 1 if f is homogeneous, 0 if not
|
|
3571
|
+
proc ishomog(def f)
|
|
3572
|
+
{
|
|
3573
|
+
int i; poly r; int d; int dr;
|
|
3574
|
+
if (f==0){return(1);}
|
|
3575
|
+
d=deg(f); dr=d; r=f;
|
|
3576
|
+
while ((d==dr) and (r!=0))
|
|
3577
|
+
{
|
|
3578
|
+
r=r-lead(r);
|
|
3579
|
+
dr=deg(r);
|
|
3580
|
+
}
|
|
3581
|
+
if (r==0){return(1);}
|
|
3582
|
+
else{return(0);}
|
|
3583
|
+
}
|
|
3584
|
+
|
|
3585
|
+
proc rcgs(ideal F, list #)
|
|
3586
|
+
"USAGE: rcgs(F);
|
|
3587
|
+
F is the ideal from which to obtain the Reduced CGS.
|
|
3588
|
+
rcgs(F,L);
|
|
3589
|
+
where L is a list of the null conditions ideal N, and W the set of
|
|
3590
|
+
non-null polynomials (ideal). If this option is set, the ideals N and W
|
|
3591
|
+
must depend only on the parameters and the parameter space is
|
|
3592
|
+
reduced to V(N) \ V(h), where h=prod(w), for w in W.
|
|
3593
|
+
A reduced specification of (N,W) will be computed and used to
|
|
3594
|
+
restrict the parameter-space. The output will omit the known restrictions
|
|
3595
|
+
given as option.
|
|
3596
|
+
RETURN: The list representing the Reduced CGS.
|
|
3597
|
+
The description given here is analogous as for mrcgs and crcgs.
|
|
3598
|
+
The elements of the list T computed by rcgs are lists representing
|
|
3599
|
+
a rooted tree.
|
|
3600
|
+
Each element has as the two first entries with the following content:@*
|
|
3601
|
+
[1]: The label (intvec) representing the position in the rooted
|
|
3602
|
+
tree: 0 for the root (and this is a special element)
|
|
3603
|
+
i for the root of the segment i
|
|
3604
|
+
(i,...) for the children of the segment i
|
|
3605
|
+
[2]: the number of children (int) of the vertex.
|
|
3606
|
+
There thus three kind of vertices:
|
|
3607
|
+
1) the root (first element labelled 0),
|
|
3608
|
+
2) the vertices labelled with a single integer i,
|
|
3609
|
+
3) the rest of vertices labelled with more indices.
|
|
3610
|
+
Description of the root. Vertex type 1)
|
|
3611
|
+
There is a special vertex (the first one) whose content is
|
|
3612
|
+
the following:
|
|
3613
|
+
[3] lpp of the given ideal
|
|
3614
|
+
[4] the given ideal
|
|
3615
|
+
[5] the red-spec of the (optional) given null and non-null conditions
|
|
3616
|
+
(see redspec for the description)
|
|
3617
|
+
[6] RCGS (to remember which algorithm has been used). If the
|
|
3618
|
+
algorithm used is mrcgs or crcgs then this will be stated
|
|
3619
|
+
at this vertex (mrcgs or CRCGS).
|
|
3620
|
+
Description of vertices type 2). These are the vertices that
|
|
3621
|
+
initiate a segment, and are labelled with a single integer.
|
|
3622
|
+
[3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
|
|
3623
|
+
will correspond to a sheaf.
|
|
3624
|
+
[4] the reduced basis (ideal) of the segment.
|
|
3625
|
+
Description of vertices type 3). These vertices have as first
|
|
3626
|
+
label i and descend form vertex i in the position of the label
|
|
3627
|
+
(i,...). They contain moreover a unique prime ideal in the parameters
|
|
3628
|
+
and form ascending chains of ideals.
|
|
3629
|
+
How is to be read the rcgs tree? The vertices with an even number of
|
|
3630
|
+
integers in the label are to be considered as additive and those
|
|
3631
|
+
with an odd number of integers in the label are to be considered as
|
|
3632
|
+
subtraction. As an example consider the following vertices:
|
|
3633
|
+
v1=((i),2,lpp,B),
|
|
3634
|
+
v2=((i,1),2,P_{(i,1)}),
|
|
3635
|
+
v3=((i,1,1),0,P_{(i,1,1)}, v4=((i,1,2),0,P_{(i,1,1)}),
|
|
3636
|
+
v5=((i,2),2,P_{(i,2)},
|
|
3637
|
+
v6=((i,2,1),0,P_{(i,2,1)}, v7=((i,2,2),0,P_{(i,2,2)}
|
|
3638
|
+
They represent the segment:
|
|
3639
|
+
(V(i,1)\(V(i,1,1) u V(i,1,2))) u
|
|
3640
|
+
(V(i,2)\(V(i,2,1) u V(i,2,2)))
|
|
3641
|
+
where V(i,j,..) = V(P_{(i,j,..)}
|
|
3642
|
+
NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
|
|
3643
|
+
rcgs (Reduced CGS) is an algorithm that first homogenizes the
|
|
3644
|
+
basis of the given ideal then applies mrcgs and finally de-homogenizes
|
|
3645
|
+
and reduces the resulting bases. (See the note of mrcgs).
|
|
3646
|
+
As a result of Wibmer's Theorem, the resulting segments are
|
|
3647
|
+
locally closed (i.e. difference of varieties). Nevertheless, the
|
|
3648
|
+
output is not completely canonical as the homogeneous ideal considered
|
|
3649
|
+
is not the homogenized ideal of the given ideal but only the ideal
|
|
3650
|
+
obtained by homogenizing the given basis.
|
|
3651
|
+
|
|
3652
|
+
The output can be visualized using cantreetoMaple, that will
|
|
3653
|
+
write a file with the content of mrcgs that can be read in Maple
|
|
3654
|
+
and plotted using the Maple plotcantree routine of the Monte's dpgb library
|
|
3655
|
+
You can also use the routine cantodiffcgs as the segments are all
|
|
3656
|
+
difference of two varieties to have a simpler view of the output.
|
|
3657
|
+
KEYWORDS: rcgs, crcgs, buildtree, cantreetoMaple, cantodiffcgs
|
|
3658
|
+
EXAMPLE: rcgs; shows an example"
|
|
3659
|
+
{
|
|
3660
|
+
ideal N;
|
|
3661
|
+
ideal W;
|
|
3662
|
+
int j; int i;
|
|
3663
|
+
poly f;
|
|
3664
|
+
if (size(#)==2)
|
|
3665
|
+
{
|
|
3666
|
+
N=#[1];
|
|
3667
|
+
W=#[2];
|
|
3668
|
+
}
|
|
3669
|
+
i=1; int postred=0;
|
|
3670
|
+
int ish=1;
|
|
3671
|
+
while ((ish) and (i<=size(F)))
|
|
3672
|
+
{
|
|
3673
|
+
ish=ishomog(F[i]);
|
|
3674
|
+
i++;
|
|
3675
|
+
}
|
|
3676
|
+
if (ish){return(mrcgs(F, #));}
|
|
3677
|
+
def RR=basering;
|
|
3678
|
+
list RRL=ringlist(RR);
|
|
3679
|
+
if (RRL[3][1][1]!="dp"){ERROR("the order must be dp");}
|
|
3680
|
+
poly @t;
|
|
3681
|
+
ring H=0,@t,dp;
|
|
3682
|
+
def RH=RR+H;
|
|
3683
|
+
setring(RH);
|
|
3684
|
+
setglobalrings();
|
|
3685
|
+
def FH=imap(RR,F);
|
|
3686
|
+
list u; ideal B; ideal lpp; intvec lab;
|
|
3687
|
+
FH=homog(FH,@t);
|
|
3688
|
+
def Nh=imap(RR,N);
|
|
3689
|
+
def Wh=imap(RR,W);
|
|
3690
|
+
list L;
|
|
3691
|
+
if ((size(Nh)>0) or (size(Wh)>0))
|
|
3692
|
+
{
|
|
3693
|
+
L=mrcgs(FH,list(Nh,Wh));
|
|
3694
|
+
}
|
|
3695
|
+
else
|
|
3696
|
+
{
|
|
3697
|
+
L=mrcgs(FH);
|
|
3698
|
+
}
|
|
3699
|
+
L[1][3]=subst(L[1][3],@t,1);
|
|
3700
|
+
L[1][4]=subst(L[1][4],@t,1);
|
|
3701
|
+
for (i=1; i<=L[1][2]; i++)
|
|
3702
|
+
{
|
|
3703
|
+
lab=intvec(i);
|
|
3704
|
+
u=tree(lab,L);
|
|
3705
|
+
postred=difflpp(u[1][3]);
|
|
3706
|
+
B=sortideal(subst(L[u[2]][4],@t,1));
|
|
3707
|
+
lpp=sortideal(subst(L[u[2]][3],@t,1));
|
|
3708
|
+
if (memberpos(1,B)[1]){B=ideal(1); lpp=ideal(1);}
|
|
3709
|
+
if (postred)
|
|
3710
|
+
{
|
|
3711
|
+
lpp=ideal(0);
|
|
3712
|
+
B=postredgb(mingb(B));
|
|
3713
|
+
for (j=1;j<=size(B);j++){lpp[j]=leadmonom(B[j]);}
|
|
3714
|
+
}
|
|
3715
|
+
else{"Sheaves present, not reduced bases in the case with:";lpp;}
|
|
3716
|
+
L[u[2]][4]=B;
|
|
3717
|
+
L[u[2]][3]=lpp;
|
|
3718
|
+
}
|
|
3719
|
+
setring(RR);
|
|
3720
|
+
setglobalrings();
|
|
3721
|
+
list LL=imap(RH,L);
|
|
3722
|
+
LL[1][6]="RCGS";
|
|
3723
|
+
return(LL);
|
|
3724
|
+
}
|
|
3725
|
+
example
|
|
3726
|
+
{ "EXAMPLE:"; echo = 2;
|
|
3727
|
+
ring R=(0,b,c,d,e,f),(x,y),dp;
|
|
3728
|
+
ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
|
|
3729
|
+
def T=rcgs(F);
|
|
3730
|
+
T;
|
|
3731
|
+
cantreetoMaple(T,"Tr","Tr.txt");
|
|
3732
|
+
cantodiffcgs(T);
|
|
3733
|
+
}
|
|
3734
|
+
|
|
3735
|
+
proc difflpp(ideal lpp)
|
|
3736
|
+
{
|
|
3737
|
+
int t=1; int i;
|
|
3738
|
+
poly lp1=lpp[1];
|
|
3739
|
+
poly lp;
|
|
3740
|
+
i=2;
|
|
3741
|
+
while ((i<=size(lpp)) and (t))
|
|
3742
|
+
{
|
|
3743
|
+
lp=lpp[i];
|
|
3744
|
+
if (lp==lp1){t=0;}
|
|
3745
|
+
lp1=lp;
|
|
3746
|
+
i++;
|
|
3747
|
+
}
|
|
3748
|
+
return(t);
|
|
3749
|
+
}
|
|
3750
|
+
|
|
3751
|
+
// redgb: given a minimal bases (gb reducing) it
|
|
3752
|
+
// reduces each polynomial w.r.t. to the others
|
|
3753
|
+
proc postredgb(ideal F)
|
|
3754
|
+
{
|
|
3755
|
+
ideal G;
|
|
3756
|
+
ideal H;
|
|
3757
|
+
int i;
|
|
3758
|
+
if (size(F)==0){return(ideal(0));}
|
|
3759
|
+
for (i=1;i<=size(F);i++)
|
|
3760
|
+
{
|
|
3761
|
+
H=delfromideal(F,i);
|
|
3762
|
+
G[i]=pdivi2(F[i],H)[1];
|
|
3763
|
+
}
|
|
3764
|
+
return(G);
|
|
3765
|
+
}
|
|
3766
|
+
|
|
3767
|
+
proc crcgs(ideal F, list #)
|
|
3768
|
+
"USAGE: crcgs(F);
|
|
3769
|
+
F is the ideal from which to obtain the Canonical Reduced CGS.
|
|
3770
|
+
crcgs(F,L);
|
|
3771
|
+
where L is a list of the null conditions ideal N, and W the set of
|
|
3772
|
+
non-null polynomials (ideal). If this option is set, the ideals N and W
|
|
3773
|
+
must depend only on the parameters and the parameter space is
|
|
3774
|
+
reduced to V(N) \ V(h), where h=prod(w), for w in W.
|
|
3775
|
+
A reduced specification of (N,W) will be computed and used to
|
|
3776
|
+
restrict the parameter-space. The output will omit the known restrictions
|
|
3777
|
+
given as option.
|
|
3778
|
+
RETURN: The list representing the Canonical Reduced CGS.
|
|
3779
|
+
The description given here is identical for mrcgs and rcgs.
|
|
3780
|
+
The elements of the list T computed by crcgs are lists representing
|
|
3781
|
+
a rooted tree.
|
|
3782
|
+
Each element has as the two first entries with the following content:@*
|
|
3783
|
+
[1]: The label (intvec) representing the position in the rooted
|
|
3784
|
+
tree: 0 for the root (and this is a special element)
|
|
3785
|
+
i for the root of the segment i
|
|
3786
|
+
(i,...) for the children of the segment i
|
|
3787
|
+
[2]: the number of children (int) of the vertex.
|
|
3788
|
+
There thus three kind of vertices:
|
|
3789
|
+
1) the root (first element labelled 0),
|
|
3790
|
+
2) the vertices labelled with a single integer i,
|
|
3791
|
+
3) the rest of vertices labelled with more indices.
|
|
3792
|
+
Description of the root. Vertex type 1)
|
|
3793
|
+
There is a special vertex (the first one) whose content is
|
|
3794
|
+
the following:
|
|
3795
|
+
[3] lpp of the given ideal
|
|
3796
|
+
[4] the given ideal
|
|
3797
|
+
[5] the red-spec of the (optional) given null and non-null conditions
|
|
3798
|
+
(see redspec for the description)
|
|
3799
|
+
[6] mrcgs (to remember which algorithm has been used). If the
|
|
3800
|
+
algorithm used is rcgs of crcgs then this will be stated
|
|
3801
|
+
at this vertex (RCGS or CRCGS).
|
|
3802
|
+
Description of vertices type 2). These are the vertices that
|
|
3803
|
+
initiate a segment, and are labelled with a single integer.
|
|
3804
|
+
[3] lpp (ideal) of the reduced basis. If they are repeated lpp's this
|
|
3805
|
+
will correspond to a sheaf.
|
|
3806
|
+
[4] the reduced basis (ideal) of the segment.
|
|
3807
|
+
Description of vertices type 3). These vertices have as first
|
|
3808
|
+
label i and descend form vertex i in the position of the label
|
|
3809
|
+
(i,...). They contain moreover a unique prime ideal in the parameters
|
|
3810
|
+
and form ascending chains of ideals.
|
|
3811
|
+
How is to be read the mrcgs tree? The vertices with an even number of
|
|
3812
|
+
integers in the label are to be considered as additive and those
|
|
3813
|
+
with an odd number of integers in the label are to be considered as
|
|
3814
|
+
subtraction. As an example consider the following vertices:
|
|
3815
|
+
v1=((i),2,lpp,B),
|
|
3816
|
+
v2=((i,1),2,P_{(i,1)}),
|
|
3817
|
+
v3=((i,1,1),0,P_{(i,1,1)}, v4=((i,1,2),0,P_{(i,1,1)}),
|
|
3818
|
+
v5=((i,2),2,P_{(i,2)},
|
|
3819
|
+
v6=((i,2,1),0,P_{(i,2,1)}, v7=((i,2,2),0,P_{(i,2,2)}
|
|
3820
|
+
They represent the segment:
|
|
3821
|
+
(V(i,1)\(V(i,1,1) u V(i,1,2))) u
|
|
3822
|
+
(V(i,2)\(V(i,2,1) u V(i,2,2)))
|
|
3823
|
+
where V(i,j,..) = V(P_{(i,j,..)}
|
|
3824
|
+
NOTE: There are three fundamental routines in the library: mrcgs, rcgs and crcgs.
|
|
3825
|
+
crcgs (Canonical Reduced CGS) is an algorithm that first homogenizes the
|
|
3826
|
+
the given ideal then applies mrcgs and finally de-homogenizes
|
|
3827
|
+
and reduces the resulting bases. (See the note of mrcgs).
|
|
3828
|
+
As a result of Wibmer's Theorem, the resulting segments are
|
|
3829
|
+
locally closed (i.e. difference of varieties) and the partition is
|
|
3830
|
+
canonical as the homogenized ideal is uniquely associated to the given
|
|
3831
|
+
ideal not depending of the given basis.
|
|
3832
|
+
|
|
3833
|
+
Nevertheless the computations to do are usually more time consuming
|
|
3834
|
+
and so it is preferable to compute first the rcgs and only if
|
|
3835
|
+
it success you can try crcgs.
|
|
3836
|
+
|
|
3837
|
+
The output can be visualized using cantreetoMaple, that will
|
|
3838
|
+
write a file with the content of crcgs that can be read in Maple
|
|
3839
|
+
and plotted using the Maple plotcantree routine of the Monte's dpgb library
|
|
3840
|
+
You can also use the routine cantodiffcgs as the segments are all
|
|
3841
|
+
difference of two varieties to have a simpler view of the output.
|
|
3842
|
+
KEYWORDS: mrcgs, rcgs, buildtree, cantreetoMaple, cantodiffcgs
|
|
3843
|
+
EXAMPLE: mrcgs; shows an example"
|
|
3844
|
+
{
|
|
3845
|
+
int ish=1; int i=1;
|
|
3846
|
+
while ((ish) and (i<=size(F)))
|
|
3847
|
+
{
|
|
3848
|
+
ish=ishomog(F[i]);
|
|
3849
|
+
i++;
|
|
3850
|
+
}
|
|
3851
|
+
if (ish){return(mrcgs(F, #));}
|
|
3852
|
+
list L;
|
|
3853
|
+
def RR=basering;
|
|
3854
|
+
setglobalrings();
|
|
3855
|
+
setring(@RP);
|
|
3856
|
+
ideal FP=imap(RR,F);
|
|
3857
|
+
option(redSB);
|
|
3858
|
+
def G=groebner(FP);
|
|
3859
|
+
setring(RR);
|
|
3860
|
+
def GR=imap(@RP,G);
|
|
3861
|
+
kill @RP;
|
|
3862
|
+
kill @P;
|
|
3863
|
+
L=rcgs(GR, #);
|
|
3864
|
+
L[1][6]="CRCGS";
|
|
3865
|
+
return(L);
|
|
3866
|
+
}
|
|
3867
|
+
example
|
|
3868
|
+
{ "EXAMPLE:"; echo = 2;
|
|
3869
|
+
ring R=(0,b,c,d,e,f),(x,y),dp;
|
|
3870
|
+
ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
|
|
3871
|
+
def T=crcgs(F);
|
|
3872
|
+
T;
|
|
3873
|
+
cantreetoMaple(T,"Tc","Tc.txt");
|
|
3874
|
+
cantodiffcgs(T);
|
|
3875
|
+
}
|
|
3876
|
+
|
|
3877
|
+
//purpose ideal intersection called in @R and computed in @P
|
|
3878
|
+
proc idintR(ideal N, ideal M)
|
|
3879
|
+
{
|
|
3880
|
+
def RR=basering;
|
|
3881
|
+
setring(@P);
|
|
3882
|
+
def Np=imap(RR,N);
|
|
3883
|
+
def Mp=imap(RR,M);
|
|
3884
|
+
def Jp=idint(Np,Mp);
|
|
3885
|
+
setring(RR);
|
|
3886
|
+
return(imap(@P,Jp));
|
|
3887
|
+
}
|
|
3888
|
+
|
|
3889
|
+
//purpose reduced groebner basis called in @R and computed in @P
|
|
3890
|
+
proc gbR(ideal N)
|
|
3891
|
+
{
|
|
3892
|
+
def RR=basering;
|
|
3893
|
+
setring(@P);
|
|
3894
|
+
def Np=imap(RR,N);
|
|
3895
|
+
option(redSB);
|
|
3896
|
+
Np=groebner(Np);
|
|
3897
|
+
setring(RR);
|
|
3898
|
+
return(imap(@P,Np));
|
|
3899
|
+
}
|
|
3900
|
+
|
|
3901
|
+
// purpose: given the output of a locally closed CGS (i.e. from rcgs or crcgs)
|
|
3902
|
+
// it returns the segments as difference of varieties.
|
|
3903
|
+
proc cantodiffcgs(list L)
|
|
3904
|
+
"USAGE: canttodiffcgs(T);
|
|
3905
|
+
T: is the list provided by mrcgs or crcgs or crcgs,
|
|
3906
|
+
RETURN: The list transforming the content of these routines to a simpler
|
|
3907
|
+
output where each segment corresponds to a single element of the list
|
|
3908
|
+
that is described as difference of two varieties.
|
|
3909
|
+
|
|
3910
|
+
The first element of the list is identical to the first element
|
|
3911
|
+
of the list provided by the corresponding cgs algorithm, and
|
|
3912
|
+
contains general information on the call (see mrcgs).
|
|
3913
|
+
The remaining elements are lists of 4 elements,
|
|
3914
|
+
representing segments. These elements are
|
|
3915
|
+
[1]: the lpp of the segment
|
|
3916
|
+
[2]: the basis of the segment
|
|
3917
|
+
[3]; the ideal of the first variety (radical)
|
|
3918
|
+
[4]; the ideal of the second variety (radical)
|
|
3919
|
+
The segment is V([3]) \ V([4]).
|
|
3920
|
+
|
|
3921
|
+
NOTE: It can be called from the output of mrcgs or rcgs of crcgs
|
|
3922
|
+
KEYWORDS: mrcgs, rcgs, crcgs, Maple
|
|
3923
|
+
EXAMPLE: cantodiffcgs; shows an example"
|
|
3924
|
+
{
|
|
3925
|
+
int i; int j; int k; int depth; list LL; list u; list v; list w;
|
|
3926
|
+
ideal N; ideal Nn; ideal M; ideal Mn; ideal N0; ideal W0;
|
|
3927
|
+
LL[1]=L[1];
|
|
3928
|
+
N0=L[1][5][1];
|
|
3929
|
+
W0=L[1][5][2];
|
|
3930
|
+
def RR=basering;
|
|
3931
|
+
setring(@P);
|
|
3932
|
+
def N0P=imap(RR,N0);
|
|
3933
|
+
def W0P=imap(RR,N0);
|
|
3934
|
+
ideal NP;
|
|
3935
|
+
ideal MP;
|
|
3936
|
+
setring(RR);
|
|
3937
|
+
for (i=2;i<=size(L);i++)
|
|
3938
|
+
{
|
|
3939
|
+
depth=size(L[i][1]);
|
|
3940
|
+
if (depth>3){ERROR("the given CGS has non locally closed segments");}
|
|
3941
|
+
}
|
|
3942
|
+
for (i=1;i<=L[1][2];i++)
|
|
3943
|
+
{
|
|
3944
|
+
N=ideal(1);
|
|
3945
|
+
M=ideal(1);
|
|
3946
|
+
u=tree(intvec(i),L);
|
|
3947
|
+
for (j=1;j<=u[1][2];j++)
|
|
3948
|
+
{
|
|
3949
|
+
v=tree(intvec(i,j),L);
|
|
3950
|
+
Nn=v[1][3];
|
|
3951
|
+
N=idintR(N,Nn);
|
|
3952
|
+
for (k=1;k<=v[1][2];k++)
|
|
3953
|
+
{
|
|
3954
|
+
w=tree(intvec(i,j,k),L);
|
|
3955
|
+
Mn=w[1][3];
|
|
3956
|
+
M=idintR(M,Mn);
|
|
3957
|
+
}
|
|
3958
|
+
}
|
|
3959
|
+
setring(@P);
|
|
3960
|
+
def NP=imap(RR,N);
|
|
3961
|
+
def MP=imap(RR,M);
|
|
3962
|
+
MP=MP+N0P;
|
|
3963
|
+
for (j=1;j<=size(W0P);j++){MP=MP+ideal(W0P[j]);}
|
|
3964
|
+
NP=NP+N0P;
|
|
3965
|
+
NP=gbR(NP);
|
|
3966
|
+
MP=gbR(MP);
|
|
3967
|
+
setring(RR);
|
|
3968
|
+
N=imap(@P,NP);
|
|
3969
|
+
M=imap(@P,MP);
|
|
3970
|
+
LL[i+1]=list(u[1][3],u[1][4],N,M);
|
|
3971
|
+
}
|
|
3972
|
+
return(LL);
|
|
3973
|
+
}
|
|
3974
|
+
example
|
|
3975
|
+
{ "EXAMPLE:"; echo = 2;
|
|
3976
|
+
ring R=(0,b,c,d,e,f),(x,y),dp;
|
|
3977
|
+
ideal F=x^2+b*y^2+2*c*x*y+2*d*x+2*e*y+f, 2*x+2*c*y+2*d, 2*b*y+2*c*x+2*e;
|
|
3978
|
+
def T=crcgs(F);
|
|
3979
|
+
T;
|
|
3980
|
+
cantreetoMaple(T,"Tc","Tc.txt");
|
|
3981
|
+
cantodiffcgs(T);
|
|
3982
|
+
}
|
|
3983
|
+
|
|
3984
|
+
//**************End homogenizing************************
|