passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,863 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Crystals of Kac modules of the general-linear Lie superalgebra
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
#*****************************************************************************
|
|
8
|
+
# Copyright (C) 2017 Travis Scrimshaw <tcscrims at gmail.com>
|
|
9
|
+
#
|
|
10
|
+
# This program is free software: you can redistribute it and/or modify
|
|
11
|
+
# it under the terms of the GNU General Public License as published by
|
|
12
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
13
|
+
# (at your option) any later version.
|
|
14
|
+
# http://www.gnu.org/licenses/
|
|
15
|
+
#*****************************************************************************
|
|
16
|
+
|
|
17
|
+
from sage.structure.parent import Parent
|
|
18
|
+
from sage.structure.element_wrapper import ElementWrapper
|
|
19
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
|
20
|
+
from sage.rings.integer_ring import ZZ
|
|
21
|
+
|
|
22
|
+
from sage.categories.regular_supercrystals import RegularSuperCrystals
|
|
23
|
+
from sage.combinat.crystals.tensor_product import CrystalOfTableaux
|
|
24
|
+
from sage.combinat.root_system.cartan_type import CartanType
|
|
25
|
+
from sage.combinat.partition import _Partitions
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class CrystalOfOddNegativeRoots(UniqueRepresentation, Parent):
|
|
29
|
+
r"""
|
|
30
|
+
Crystal of the set of odd negative roots.
|
|
31
|
+
|
|
32
|
+
Let `\mathfrak{g}` be the general-linear Lie superalgebra
|
|
33
|
+
`\mathfrak{gl}(m|n)`. This is the crystal structure on the set of
|
|
34
|
+
negative roots as given by [Kwon2012]_.
|
|
35
|
+
|
|
36
|
+
More specifically, this is the crystal basis of the subalgebra
|
|
37
|
+
of `U_q^-(\mathfrak{g})` generated by `f_{\alpha}`, where `\alpha`
|
|
38
|
+
ranges over all odd positive roots. As `\QQ(q)`-modules, we have
|
|
39
|
+
|
|
40
|
+
.. MATH::
|
|
41
|
+
|
|
42
|
+
U_q^-(\mathfrak{g}) \cong
|
|
43
|
+
K \otimes U^-_q(\mathfrak{gl}_m \oplus \mathfrak{gl}_n).
|
|
44
|
+
|
|
45
|
+
EXAMPLES::
|
|
46
|
+
|
|
47
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
48
|
+
sage: mg = S.module_generator(); mg
|
|
49
|
+
{}
|
|
50
|
+
sage: mg.f(0)
|
|
51
|
+
{-e[-1]+e[1]}
|
|
52
|
+
sage: mg.f_string([0,-1,0,1,2,1,0])
|
|
53
|
+
{-e[-2]+e[3], -e[-1]+e[1], -e[-1]+e[2]}
|
|
54
|
+
"""
|
|
55
|
+
@staticmethod
|
|
56
|
+
def __classcall_private__(cls, cartan_type):
|
|
57
|
+
"""
|
|
58
|
+
Normalize input to ensure a unique representation.
|
|
59
|
+
|
|
60
|
+
TESTS::
|
|
61
|
+
|
|
62
|
+
sage: S1 = crystals.OddNegativeRoots(['A', [2,1]])
|
|
63
|
+
sage: S2 = crystals.OddNegativeRoots(CartanType(['A', [2,1]]))
|
|
64
|
+
sage: S1 is S2
|
|
65
|
+
True
|
|
66
|
+
"""
|
|
67
|
+
return super().__classcall__(cls, CartanType(cartan_type))
|
|
68
|
+
|
|
69
|
+
def __init__(self, cartan_type):
|
|
70
|
+
"""
|
|
71
|
+
Initialize ``self``.
|
|
72
|
+
|
|
73
|
+
TESTS::
|
|
74
|
+
|
|
75
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
76
|
+
sage: TestSuite(S).run()
|
|
77
|
+
"""
|
|
78
|
+
self._cartan_type = cartan_type
|
|
79
|
+
Parent.__init__(self, category=RegularSuperCrystals())
|
|
80
|
+
self.module_generators = (self.element_class(self, frozenset()),)
|
|
81
|
+
|
|
82
|
+
def _repr_(self):
|
|
83
|
+
"""
|
|
84
|
+
Return a string representation of ``self``.
|
|
85
|
+
|
|
86
|
+
EXAMPLES::
|
|
87
|
+
|
|
88
|
+
sage: crystals.OddNegativeRoots(['A', [2,1]])
|
|
89
|
+
Crystal of odd negative roots of type ['A', [2, 1]]
|
|
90
|
+
"""
|
|
91
|
+
return "Crystal of odd negative roots of type {}".format(self._cartan_type)
|
|
92
|
+
|
|
93
|
+
def module_generator(self):
|
|
94
|
+
"""
|
|
95
|
+
Return the module generator of ``self``.
|
|
96
|
+
|
|
97
|
+
EXAMPLES::
|
|
98
|
+
|
|
99
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
100
|
+
sage: S.module_generator()
|
|
101
|
+
{}
|
|
102
|
+
"""
|
|
103
|
+
return self.module_generators[0]
|
|
104
|
+
|
|
105
|
+
class Element(ElementWrapper):
|
|
106
|
+
"""
|
|
107
|
+
An element of the crystal of odd negative roots.
|
|
108
|
+
|
|
109
|
+
TESTS:
|
|
110
|
+
|
|
111
|
+
Check that `e_i` and `f_i` are psuedo-inverses::
|
|
112
|
+
|
|
113
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
114
|
+
sage: for x in S:
|
|
115
|
+
....: for i in S.index_set():
|
|
116
|
+
....: y = x.f(i)
|
|
117
|
+
....: assert y is None or y.e(i) == x
|
|
118
|
+
|
|
119
|
+
Check that we obtain the entire powerset of negative odd roots::
|
|
120
|
+
|
|
121
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,3]])
|
|
122
|
+
sage: S.cardinality()
|
|
123
|
+
4096
|
|
124
|
+
sage: 2^len(S.weight_lattice_realization().positive_odd_roots())
|
|
125
|
+
4096
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
def _repr_(self):
|
|
129
|
+
r"""
|
|
130
|
+
Return a string representation of ``self``.
|
|
131
|
+
|
|
132
|
+
EXAMPLES::
|
|
133
|
+
|
|
134
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
135
|
+
sage: mg = S.module_generator(); mg
|
|
136
|
+
{}
|
|
137
|
+
sage: mg.f(0)
|
|
138
|
+
{-e[-1]+e[1]}
|
|
139
|
+
sage: mg.f_string([0,-1,0])
|
|
140
|
+
{-e[-2]+e[1], -e[-1]+e[1]}
|
|
141
|
+
"""
|
|
142
|
+
return ('{'
|
|
143
|
+
+ ", ".join("-e[{}]+e[{}]".format(*i)
|
|
144
|
+
for i in sorted(self.value))
|
|
145
|
+
+ '}')
|
|
146
|
+
|
|
147
|
+
def _latex_(self):
|
|
148
|
+
r"""
|
|
149
|
+
Return a latex representation of ``self``.
|
|
150
|
+
|
|
151
|
+
EXAMPLES::
|
|
152
|
+
|
|
153
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
154
|
+
sage: mg = S.module_generator()
|
|
155
|
+
sage: latex(mg)
|
|
156
|
+
\{\}
|
|
157
|
+
sage: latex(mg.f(0))
|
|
158
|
+
\{-e_{-1}+e_{1}\}
|
|
159
|
+
sage: latex(mg.f_string([0,-1,0]))
|
|
160
|
+
\{-e_{-2}+e_{1}, -e_{-1}+e_{1}\}
|
|
161
|
+
"""
|
|
162
|
+
return (r'\{'
|
|
163
|
+
+ ", ".join("-e_{{{}}}+e_{{{}}}".format(*i)
|
|
164
|
+
for i in sorted(self.value))
|
|
165
|
+
+ r'\}')
|
|
166
|
+
|
|
167
|
+
def e(self, i):
|
|
168
|
+
r"""
|
|
169
|
+
Return the action of the crystal operator `e_i` on ``self``.
|
|
170
|
+
|
|
171
|
+
EXAMPLES::
|
|
172
|
+
|
|
173
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
174
|
+
sage: mg = S.module_generator()
|
|
175
|
+
sage: mg.e(0)
|
|
176
|
+
sage: mg.e(1)
|
|
177
|
+
sage: b = mg.f_string([0,1,2,-1,0])
|
|
178
|
+
sage: b.e(-1)
|
|
179
|
+
sage: b.e(0)
|
|
180
|
+
{-e[-2]+e[3]}
|
|
181
|
+
sage: b.e(1)
|
|
182
|
+
sage: b.e(2)
|
|
183
|
+
{-e[-2]+e[2], -e[-1]+e[1]}
|
|
184
|
+
sage: b.e_string([2,1,0,-1,0])
|
|
185
|
+
{}
|
|
186
|
+
"""
|
|
187
|
+
if i == 0:
|
|
188
|
+
if (-1,1) not in self.value:
|
|
189
|
+
return None
|
|
190
|
+
return type(self)(self.parent(), self.value.difference([(-1,1)]))
|
|
191
|
+
|
|
192
|
+
count = 0
|
|
193
|
+
act_val = None
|
|
194
|
+
if i < 0:
|
|
195
|
+
lst = sorted(self.value, key=lambda x: (x[1], -x[0]))
|
|
196
|
+
for val in lst:
|
|
197
|
+
# We don't have to check val[1] because this is an odd root
|
|
198
|
+
if val[0] == i - 1:
|
|
199
|
+
if count == 0:
|
|
200
|
+
act_val = val
|
|
201
|
+
else:
|
|
202
|
+
count -= 1
|
|
203
|
+
elif val[0] == i:
|
|
204
|
+
count += 1
|
|
205
|
+
if act_val is None:
|
|
206
|
+
return None
|
|
207
|
+
ret = self.value.difference([act_val]).union([(i, act_val[1])])
|
|
208
|
+
return type(self)(self.parent(), ret)
|
|
209
|
+
|
|
210
|
+
# else i > 0
|
|
211
|
+
lst = sorted(self.value, key=lambda x: (-x[0], -x[1]))
|
|
212
|
+
for val in reversed(lst):
|
|
213
|
+
# We don't have to check val[0] because this is an odd root
|
|
214
|
+
if val[1] == i + 1:
|
|
215
|
+
if count == 0:
|
|
216
|
+
act_val = val
|
|
217
|
+
else:
|
|
218
|
+
count -= 1
|
|
219
|
+
elif val[1] == i:
|
|
220
|
+
count += 1
|
|
221
|
+
if act_val is None:
|
|
222
|
+
return None
|
|
223
|
+
ret = self.value.difference([act_val]).union([(act_val[0], i)])
|
|
224
|
+
return type(self)(self.parent(), ret)
|
|
225
|
+
|
|
226
|
+
def f(self, i):
|
|
227
|
+
r"""
|
|
228
|
+
Return the action of the crystal operator `f_i` on ``self``.
|
|
229
|
+
|
|
230
|
+
EXAMPLES::
|
|
231
|
+
|
|
232
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
233
|
+
sage: mg = S.module_generator()
|
|
234
|
+
sage: mg.f(0)
|
|
235
|
+
{-e[-1]+e[1]}
|
|
236
|
+
sage: mg.f(1)
|
|
237
|
+
sage: b = mg.f_string([0,1,2,-1,0]); b
|
|
238
|
+
{-e[-2]+e[3], -e[-1]+e[1]}
|
|
239
|
+
sage: b.f(-2)
|
|
240
|
+
{-e[-3]+e[3], -e[-1]+e[1]}
|
|
241
|
+
sage: b.f(-1)
|
|
242
|
+
sage: b.f(0)
|
|
243
|
+
sage: b.f(1)
|
|
244
|
+
{-e[-2]+e[3], -e[-1]+e[2]}
|
|
245
|
+
"""
|
|
246
|
+
if i == 0:
|
|
247
|
+
if (-1,1) in self.value:
|
|
248
|
+
return None
|
|
249
|
+
return type(self)(self.parent(), self.value.union([(-1,1)]))
|
|
250
|
+
|
|
251
|
+
count = 0
|
|
252
|
+
act_val = None
|
|
253
|
+
if i < 0:
|
|
254
|
+
lst = sorted(self.value, key=lambda x: (x[1], -x[0]))
|
|
255
|
+
for val in reversed(lst):
|
|
256
|
+
# We don't have to check val[1] because this is an odd root
|
|
257
|
+
if val[0] == i:
|
|
258
|
+
if count == 0:
|
|
259
|
+
act_val = val
|
|
260
|
+
else:
|
|
261
|
+
count -= 1
|
|
262
|
+
elif val[0] == i - 1:
|
|
263
|
+
count += 1
|
|
264
|
+
if act_val is None:
|
|
265
|
+
return None
|
|
266
|
+
ret = self.value.difference([act_val]).union([(i-1, act_val[1])])
|
|
267
|
+
return type(self)(self.parent(), ret)
|
|
268
|
+
|
|
269
|
+
# else i > 0
|
|
270
|
+
lst = sorted(self.value, key=lambda x: (-x[0], -x[1]))
|
|
271
|
+
for val in lst:
|
|
272
|
+
# We don't have to check val[0] because this is an odd root
|
|
273
|
+
if val[1] == i:
|
|
274
|
+
if count == 0:
|
|
275
|
+
act_val = val
|
|
276
|
+
else:
|
|
277
|
+
count -= 1
|
|
278
|
+
elif val[1] == i + 1:
|
|
279
|
+
count += 1
|
|
280
|
+
if act_val is None:
|
|
281
|
+
return None
|
|
282
|
+
ret = self.value.difference([act_val]).union([(act_val[0], i+1)])
|
|
283
|
+
return type(self)(self.parent(), ret)
|
|
284
|
+
|
|
285
|
+
def epsilon(self, i):
|
|
286
|
+
r"""
|
|
287
|
+
Return `\varepsilon_i` of ``self``.
|
|
288
|
+
|
|
289
|
+
EXAMPLES::
|
|
290
|
+
|
|
291
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
292
|
+
sage: mg = S.module_generator()
|
|
293
|
+
sage: [mg.epsilon(i) for i in S.index_set()]
|
|
294
|
+
[0, 0, 0, 0, 0]
|
|
295
|
+
sage: b = mg.f_string([0,1,0,-1,0,-1,-2,-2]); b
|
|
296
|
+
{-e[-3]+e[1], -e[-3]+e[2], -e[-1]+e[1]}
|
|
297
|
+
sage: [b.epsilon(i) for i in S.index_set()]
|
|
298
|
+
[2, 0, 1, 0, 0]
|
|
299
|
+
sage: b = mg.f_string([0,1,0,-1,0,-1,-2,-2,2,-1,0]); b
|
|
300
|
+
{-e[-3]+e[1], -e[-3]+e[3], -e[-2]+e[1], -e[-1]+e[1]}
|
|
301
|
+
sage: [b.epsilon(i) for i in S.index_set()]
|
|
302
|
+
[1, 0, 1, 0, 1]
|
|
303
|
+
|
|
304
|
+
TESTS::
|
|
305
|
+
|
|
306
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
307
|
+
sage: def count_e(x, i):
|
|
308
|
+
....: ret = -1
|
|
309
|
+
....: while x is not None:
|
|
310
|
+
....: x = x.e(i)
|
|
311
|
+
....: ret += 1
|
|
312
|
+
....: return ret
|
|
313
|
+
sage: for x in S:
|
|
314
|
+
....: for i in S.index_set():
|
|
315
|
+
....: assert x.epsilon(i) == count_e(x, i)
|
|
316
|
+
"""
|
|
317
|
+
if i == 0:
|
|
318
|
+
return ZZ.one() if (-1,1) in self.value else ZZ.zero()
|
|
319
|
+
|
|
320
|
+
count = 0
|
|
321
|
+
ret = 0
|
|
322
|
+
if i < 0:
|
|
323
|
+
lst = sorted(self.value, key=lambda x: (x[1], -x[0]))
|
|
324
|
+
for val in lst:
|
|
325
|
+
# We don't have to check val[1] because this is an odd root
|
|
326
|
+
if val[0] == i - 1:
|
|
327
|
+
if count == 0:
|
|
328
|
+
ret += 1
|
|
329
|
+
else:
|
|
330
|
+
count -= 1
|
|
331
|
+
elif val[0] == i:
|
|
332
|
+
count += 1
|
|
333
|
+
|
|
334
|
+
else: # i > 0
|
|
335
|
+
lst = sorted(self.value, key=lambda x: (-x[0], -x[1]))
|
|
336
|
+
for val in reversed(lst):
|
|
337
|
+
# We don't have to check val[0] because this is an odd root
|
|
338
|
+
if val[1] == i + 1:
|
|
339
|
+
if count == 0:
|
|
340
|
+
ret += 1
|
|
341
|
+
else:
|
|
342
|
+
count -= 1
|
|
343
|
+
elif val[1] == i:
|
|
344
|
+
count += 1
|
|
345
|
+
return ret
|
|
346
|
+
|
|
347
|
+
def phi(self, i):
|
|
348
|
+
r"""
|
|
349
|
+
Return `\varphi_i` of ``self``.
|
|
350
|
+
|
|
351
|
+
EXAMPLES::
|
|
352
|
+
|
|
353
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
354
|
+
sage: mg = S.module_generator()
|
|
355
|
+
sage: [mg.phi(i) for i in S.index_set()]
|
|
356
|
+
[0, 0, 1, 0, 0]
|
|
357
|
+
sage: b = mg.f(0)
|
|
358
|
+
sage: [b.phi(i) for i in S.index_set()]
|
|
359
|
+
[0, 1, 0, 1, 0]
|
|
360
|
+
sage: b = mg.f_string([0,1,0,-1,0,-1]); b
|
|
361
|
+
{-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1]}
|
|
362
|
+
sage: [b.phi(i) for i in S.index_set()]
|
|
363
|
+
[2, 0, 0, 1, 1]
|
|
364
|
+
|
|
365
|
+
TESTS::
|
|
366
|
+
|
|
367
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
368
|
+
sage: def count_f(x, i):
|
|
369
|
+
....: ret = -1
|
|
370
|
+
....: while x is not None:
|
|
371
|
+
....: x = x.f(i)
|
|
372
|
+
....: ret += 1
|
|
373
|
+
....: return ret
|
|
374
|
+
sage: for x in S:
|
|
375
|
+
....: for i in S.index_set():
|
|
376
|
+
....: assert x.phi(i) == count_f(x, i)
|
|
377
|
+
"""
|
|
378
|
+
if i == 0:
|
|
379
|
+
return ZZ.zero() if (-1,1) in self.value else ZZ.one()
|
|
380
|
+
|
|
381
|
+
count = 0
|
|
382
|
+
ret = 0
|
|
383
|
+
if i < 0:
|
|
384
|
+
lst = sorted(self.value, key=lambda x: (x[1], -x[0]))
|
|
385
|
+
for val in reversed(lst):
|
|
386
|
+
# We don't have to check val[1] because this is an odd root
|
|
387
|
+
if val[0] == i:
|
|
388
|
+
if count == 0:
|
|
389
|
+
ret += 1
|
|
390
|
+
else:
|
|
391
|
+
count -= 1
|
|
392
|
+
elif val[0] == i - 1:
|
|
393
|
+
count += 1
|
|
394
|
+
|
|
395
|
+
else: # i > 0
|
|
396
|
+
lst = sorted(self.value, key=lambda x: (-x[0], -x[1]))
|
|
397
|
+
for val in lst:
|
|
398
|
+
# We don't have to check val[0] because this is an odd root
|
|
399
|
+
if val[1] == i:
|
|
400
|
+
if count == 0:
|
|
401
|
+
ret += 1
|
|
402
|
+
else:
|
|
403
|
+
count -= 1
|
|
404
|
+
elif val[1] == i + 1:
|
|
405
|
+
count += 1
|
|
406
|
+
return ret
|
|
407
|
+
|
|
408
|
+
def weight(self):
|
|
409
|
+
r"""
|
|
410
|
+
Return the weight of ``self``.
|
|
411
|
+
|
|
412
|
+
EXAMPLES::
|
|
413
|
+
|
|
414
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,2]])
|
|
415
|
+
sage: mg = S.module_generator()
|
|
416
|
+
sage: mg.weight()
|
|
417
|
+
(0, 0, 0, 0, 0, 0)
|
|
418
|
+
sage: mg.f_string([0,1,2,-1,-2]).weight()
|
|
419
|
+
(-1, 0, 0, 0, 0, 1)
|
|
420
|
+
sage: mg.f_string([0,1,2,-1,-2,0,1,0,2]).weight()
|
|
421
|
+
(-1, 0, -2, 1, 0, 2)
|
|
422
|
+
|
|
423
|
+
TESTS::
|
|
424
|
+
|
|
425
|
+
sage: S = crystals.OddNegativeRoots(['A', [2,1]])
|
|
426
|
+
sage: al = S.weight_lattice_realization().simple_roots()
|
|
427
|
+
sage: for x in S:
|
|
428
|
+
....: for i in S.index_set():
|
|
429
|
+
....: y = x.f(i)
|
|
430
|
+
....: assert y is None or x.weight() - al[i] == y.weight()
|
|
431
|
+
"""
|
|
432
|
+
WLR = self.parent().weight_lattice_realization()
|
|
433
|
+
e = WLR.basis()
|
|
434
|
+
return WLR.sum(-e[i]+e[j] for (i,j) in self.value)
|
|
435
|
+
|
|
436
|
+
|
|
437
|
+
class CrystalOfKacModule(UniqueRepresentation, Parent):
|
|
438
|
+
r"""
|
|
439
|
+
Crystal of a Kac module.
|
|
440
|
+
|
|
441
|
+
Let `\mathfrak{g}` be the general linear Lie superalgebra
|
|
442
|
+
`\mathfrak{gl}(m|n)`. Let `\lambda` and `\mu` be dominant weights
|
|
443
|
+
for `\mathfrak{gl}_m` and `\mathfrak{gl}_n`, respectively.
|
|
444
|
+
Let `K` be the module `K = \langle f_{\alpha} \rangle`,
|
|
445
|
+
where `\alpha` ranges over all odd positive roots. A *Kac module*
|
|
446
|
+
is the `U_q(\mathfrak{g})`-module constructed from the highest
|
|
447
|
+
weight `U_q(\mathfrak{gl}_m \oplus \mathfrak{gl}_n)`-module
|
|
448
|
+
`V(\lambda, \mu)` (induced to a `U_q(\mathfrak{g})`-module in
|
|
449
|
+
the natural way) by
|
|
450
|
+
|
|
451
|
+
.. MATH::
|
|
452
|
+
|
|
453
|
+
K(\lambda, \mu) := K \otimes_L V(\lambda, \mu),
|
|
454
|
+
|
|
455
|
+
where `L` is the subalgebra generated by `e_0` and
|
|
456
|
+
`U_q(\mathfrak{gl}_m \oplus \mathfrak{gl}_n)`.
|
|
457
|
+
|
|
458
|
+
The Kac module admits a `U_q(\mathfrak{g})`-crystal structure
|
|
459
|
+
by taking the crystal structure of `K` as given by
|
|
460
|
+
:class:`~sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots`
|
|
461
|
+
and the crystal `B(\lambda, \mu)` (the natural crystal structure
|
|
462
|
+
of `V(\lambda, \mu)`).
|
|
463
|
+
|
|
464
|
+
.. NOTE::
|
|
465
|
+
|
|
466
|
+
Our notation differs slightly from [Kwon2012]_ in that our
|
|
467
|
+
last tableau is transposed.
|
|
468
|
+
|
|
469
|
+
EXAMPLES::
|
|
470
|
+
|
|
471
|
+
sage: K = crystals.KacModule(['A', [1,2]], [2], [1,1])
|
|
472
|
+
sage: K.cardinality()
|
|
473
|
+
576
|
|
474
|
+
sage: K.cardinality().factor()
|
|
475
|
+
2^6 * 3^2
|
|
476
|
+
sage: len(K.cartan_type().root_system().ambient_space().positive_odd_roots())
|
|
477
|
+
6
|
|
478
|
+
sage: mg = K.module_generator()
|
|
479
|
+
sage: mg
|
|
480
|
+
({}, [[-2, -2]], [[1], [2]])
|
|
481
|
+
sage: mg.weight()
|
|
482
|
+
(2, 0, 1, 1, 0)
|
|
483
|
+
sage: mg.f(-1)
|
|
484
|
+
({}, [[-2, -1]], [[1], [2]])
|
|
485
|
+
sage: mg.f(0)
|
|
486
|
+
({-e[-1]+e[1]}, [[-2, -2]], [[1], [2]])
|
|
487
|
+
sage: mg.f(1)
|
|
488
|
+
sage: mg.f(2)
|
|
489
|
+
({}, [[-2, -2]], [[1], [3]])
|
|
490
|
+
|
|
491
|
+
sage: sorted(K.highest_weight_vectors(), key=str)
|
|
492
|
+
[({-e[-1]+e[3]}, [[-2, -1]], [[1], [2]]),
|
|
493
|
+
({-e[-1]+e[3]}, [[-2, -2]], [[1], [2]]),
|
|
494
|
+
({}, [[-2, -2]], [[1], [2]])]
|
|
495
|
+
|
|
496
|
+
::
|
|
497
|
+
|
|
498
|
+
sage: K = crystals.KacModule(['A', [1,1]], [2], [1])
|
|
499
|
+
sage: K.cardinality()
|
|
500
|
+
96
|
|
501
|
+
sage: K.cardinality().factor()
|
|
502
|
+
2^5 * 3
|
|
503
|
+
sage: len(K.cartan_type().root_system().ambient_space().positive_odd_roots())
|
|
504
|
+
4
|
|
505
|
+
|
|
506
|
+
sage: sorted(K.highest_weight_vectors(), key=str)
|
|
507
|
+
[({-e[-1]+e[2]}, [[-2, -1]], [[1]]),
|
|
508
|
+
({-e[-1]+e[2]}, [[-2, -2]], [[1]]),
|
|
509
|
+
({}, [[-2, -2]], [[1]])]
|
|
510
|
+
sage: K.genuine_lowest_weight_vectors()
|
|
511
|
+
(({-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),)
|
|
512
|
+
sage: sorted(K.lowest_weight_vectors(), key=str)
|
|
513
|
+
[({-e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),
|
|
514
|
+
({-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),
|
|
515
|
+
({-e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[1]]),
|
|
516
|
+
({-e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]])]
|
|
517
|
+
|
|
518
|
+
REFERENCES:
|
|
519
|
+
|
|
520
|
+
- [Kwon2012]_
|
|
521
|
+
"""
|
|
522
|
+
@staticmethod
|
|
523
|
+
def __classcall_private__(cls, cartan_type, la, mu):
|
|
524
|
+
"""
|
|
525
|
+
Normalize input to ensure a unique representation.
|
|
526
|
+
|
|
527
|
+
TESTS::
|
|
528
|
+
|
|
529
|
+
sage: K1 = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
530
|
+
sage: K2 = crystals.KacModule(CartanType(['A', [2,1]]), (2,1), (1,))
|
|
531
|
+
sage: K1 is K2
|
|
532
|
+
True
|
|
533
|
+
"""
|
|
534
|
+
cartan_type = CartanType(cartan_type)
|
|
535
|
+
la = _Partitions(la)
|
|
536
|
+
mu = _Partitions(mu)
|
|
537
|
+
return super().__classcall__(cls, cartan_type, la, mu)
|
|
538
|
+
|
|
539
|
+
def __init__(self, cartan_type, la, mu):
|
|
540
|
+
"""
|
|
541
|
+
Initialize ``self``.
|
|
542
|
+
|
|
543
|
+
TESTS::
|
|
544
|
+
|
|
545
|
+
sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
546
|
+
sage: TestSuite(K).run()
|
|
547
|
+
"""
|
|
548
|
+
self._cartan_type = cartan_type
|
|
549
|
+
self._la = la
|
|
550
|
+
self._mu = mu
|
|
551
|
+
Parent.__init__(self, category=RegularSuperCrystals())
|
|
552
|
+
self._S = CrystalOfOddNegativeRoots(self._cartan_type)
|
|
553
|
+
self._dual = CrystalOfTableaux(['A', self._cartan_type.m], shape=la)
|
|
554
|
+
self._reg = CrystalOfTableaux(['A', self._cartan_type.n], shape=mu)
|
|
555
|
+
data = (self._S.module_generators[0],
|
|
556
|
+
self._dual.module_generators[0],
|
|
557
|
+
self._reg.module_generators[0])
|
|
558
|
+
self.module_generators = (self.element_class(self, data),)
|
|
559
|
+
|
|
560
|
+
def _repr_(self):
|
|
561
|
+
r"""
|
|
562
|
+
Return a string representation of ``self``.
|
|
563
|
+
|
|
564
|
+
EXAMPLES::
|
|
565
|
+
|
|
566
|
+
sage: crystals.KacModule(['A', [2,1]], [3,1], [1])
|
|
567
|
+
Crystal of Kac module K([3, 1], [1]) of type ['A', [2, 1]]
|
|
568
|
+
"""
|
|
569
|
+
return "Crystal of Kac module K({}, {}) of type {}".format(
|
|
570
|
+
self._la, self._mu, self._cartan_type)
|
|
571
|
+
|
|
572
|
+
def module_generator(self):
|
|
573
|
+
"""
|
|
574
|
+
Return the module generator of ``self``.
|
|
575
|
+
|
|
576
|
+
EXAMPLES::
|
|
577
|
+
|
|
578
|
+
sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
579
|
+
sage: K.module_generator()
|
|
580
|
+
({}, [[-3, -3], [-2]], [[1]])
|
|
581
|
+
"""
|
|
582
|
+
return self.module_generators[0]
|
|
583
|
+
|
|
584
|
+
class Element(ElementWrapper):
|
|
585
|
+
r"""
|
|
586
|
+
An element of a Kac module crystal.
|
|
587
|
+
|
|
588
|
+
TESTS:
|
|
589
|
+
|
|
590
|
+
Check that `e_i` and `f_i` are psuedo-inverses::
|
|
591
|
+
|
|
592
|
+
sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
593
|
+
sage: for x in K:
|
|
594
|
+
....: for i in K.index_set():
|
|
595
|
+
....: y = x.f(i)
|
|
596
|
+
....: assert y is None or y.e(i) == x
|
|
597
|
+
"""
|
|
598
|
+
|
|
599
|
+
def _repr_(self):
|
|
600
|
+
"""
|
|
601
|
+
Return a string representation of ``self``.
|
|
602
|
+
|
|
603
|
+
EXAMPLES::
|
|
604
|
+
|
|
605
|
+
sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
606
|
+
sage: mg = K.module_generator(); mg
|
|
607
|
+
({}, [[-3, -3], [-2]], [[1]])
|
|
608
|
+
sage: mg.f_string([0,1,-2,1,-1,0,-1,-1,1,-2,-2])
|
|
609
|
+
({-e[-3]+e[2], -e[-1]+e[2]}, [[-2, -1], [-1]], [[2]])
|
|
610
|
+
"""
|
|
611
|
+
return repr((self.value[0], to_dual_tableau(self.value[1]), self.value[2]))
|
|
612
|
+
|
|
613
|
+
def _latex_(self):
|
|
614
|
+
r"""
|
|
615
|
+
Return a string representation of ``self``.
|
|
616
|
+
|
|
617
|
+
EXAMPLES::
|
|
618
|
+
|
|
619
|
+
sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
|
|
620
|
+
sage: mg = K.module_generator()
|
|
621
|
+
sage: latex(mg)
|
|
622
|
+
\{\}
|
|
623
|
+
\otimes {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
624
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2}
|
|
625
|
+
\lr{\overline{3}}&\lr{\overline{3}}\\\cline{1-2}
|
|
626
|
+
\lr{\overline{2}}\\\cline{1-1}
|
|
627
|
+
\end{array}$}
|
|
628
|
+
} \otimes {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
629
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{1}c}\cline{1-1}
|
|
630
|
+
\lr{1}\\\cline{1-1}
|
|
631
|
+
\end{array}$}
|
|
632
|
+
}
|
|
633
|
+
sage: latex(mg.f_string([0,1,-2,1,-1,0,-1,-1,1,-2,-2]))
|
|
634
|
+
\{-e_{-3}+e_{2}, -e_{-1}+e_{2}\}
|
|
635
|
+
\otimes {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
636
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2}
|
|
637
|
+
\lr{\overline{2}}&\lr{\overline{1}}\\\cline{1-2}
|
|
638
|
+
\lr{\overline{1}}\\\cline{1-1}
|
|
639
|
+
\end{array}$}
|
|
640
|
+
} \otimes {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
641
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{1}c}\cline{1-1}
|
|
642
|
+
\lr{2}\\\cline{1-1}
|
|
643
|
+
\end{array}$}
|
|
644
|
+
}
|
|
645
|
+
"""
|
|
646
|
+
from sage.misc.latex import latex
|
|
647
|
+
return r" \otimes ".join([latex(self.value[0]),
|
|
648
|
+
latex_dual(self.value[1]),
|
|
649
|
+
latex(self.value[2])])
|
|
650
|
+
|
|
651
|
+
def e(self, i):
|
|
652
|
+
r"""
|
|
653
|
+
Return the action of the crystal operator `e_i` on ``self``.
|
|
654
|
+
|
|
655
|
+
EXAMPLES::
|
|
656
|
+
|
|
657
|
+
sage: K = crystals.KacModule(['A', [2,2]], [2,1], [1])
|
|
658
|
+
sage: mg = K.module_generator()
|
|
659
|
+
sage: mg.e(0)
|
|
660
|
+
sage: mg.e(1)
|
|
661
|
+
sage: mg.e(-1)
|
|
662
|
+
sage: b = mg.f_string([1,0,1,-1,-2,0,1,2,0,-2,-1,-1,-1]); b
|
|
663
|
+
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[3]])
|
|
664
|
+
sage: b.e(-2)
|
|
665
|
+
sage: b.e(-1)
|
|
666
|
+
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -2], [-2]], [[3]])
|
|
667
|
+
sage: b.e(0)
|
|
668
|
+
sage: b.e(1)
|
|
669
|
+
({-e[-3]+e[1], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[3]])
|
|
670
|
+
sage: b.e(2)
|
|
671
|
+
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[2]])
|
|
672
|
+
"""
|
|
673
|
+
if i == 0:
|
|
674
|
+
x = self.value[0].e(i)
|
|
675
|
+
if x is None:
|
|
676
|
+
return None
|
|
677
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
678
|
+
if i > 0:
|
|
679
|
+
if self.value[0].epsilon(i) > self.value[2].phi(i):
|
|
680
|
+
x = self.value[0].e(i)
|
|
681
|
+
if x is None:
|
|
682
|
+
return None
|
|
683
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
684
|
+
else:
|
|
685
|
+
x = self.value[2].e(i)
|
|
686
|
+
if x is None:
|
|
687
|
+
return None
|
|
688
|
+
return type(self)(self.parent(), (self.value[0], self.value[1], x))
|
|
689
|
+
# else i < 0
|
|
690
|
+
M = self.parent()._cartan_type.m + 1
|
|
691
|
+
if self.value[0].phi(i) < self.value[1].epsilon(M+i):
|
|
692
|
+
x = self.value[1].e(M+i)
|
|
693
|
+
if x is None:
|
|
694
|
+
return None
|
|
695
|
+
return type(self)(self.parent(), (self.value[0], x, self.value[2]))
|
|
696
|
+
else:
|
|
697
|
+
x = self.value[0].e(i)
|
|
698
|
+
if x is None:
|
|
699
|
+
return None
|
|
700
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
701
|
+
|
|
702
|
+
def f(self, i):
|
|
703
|
+
r"""
|
|
704
|
+
Return the action of the crystal operator `f_i` on ``self``.
|
|
705
|
+
|
|
706
|
+
EXAMPLES::
|
|
707
|
+
|
|
708
|
+
sage: K = crystals.KacModule(['A', [2,2]], [2,1], [1])
|
|
709
|
+
sage: mg = K.module_generator()
|
|
710
|
+
sage: mg.f(-2)
|
|
711
|
+
({}, [[-3, -2], [-2]], [[1]])
|
|
712
|
+
sage: mg.f(-1)
|
|
713
|
+
({}, [[-3, -3], [-1]], [[1]])
|
|
714
|
+
sage: mg.f(0)
|
|
715
|
+
({-e[-1]+e[1]}, [[-3, -3], [-2]], [[1]])
|
|
716
|
+
sage: mg.f(1)
|
|
717
|
+
({}, [[-3, -3], [-2]], [[2]])
|
|
718
|
+
sage: mg.f(2)
|
|
719
|
+
sage: b = mg.f_string([1,0,1,-1,-2,0,1,2,0,-2,-1,2,0]); b
|
|
720
|
+
({-e[-3]+e[3], -e[-2]+e[1], -e[-1]+e[1], -e[-1]+e[2]},
|
|
721
|
+
[[-3, -2], [-2]], [[3]])
|
|
722
|
+
"""
|
|
723
|
+
if i == 0:
|
|
724
|
+
x = self.value[0].f(i)
|
|
725
|
+
if x is None:
|
|
726
|
+
return None
|
|
727
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
728
|
+
if i > 0:
|
|
729
|
+
if self.value[0].epsilon(i) < self.value[2].phi(i):
|
|
730
|
+
x = self.value[2].f(i)
|
|
731
|
+
if x is None:
|
|
732
|
+
return None
|
|
733
|
+
return type(self)(self.parent(), (self.value[0], self.value[1], x))
|
|
734
|
+
else:
|
|
735
|
+
x = self.value[0].f(i)
|
|
736
|
+
if x is None:
|
|
737
|
+
return None
|
|
738
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
739
|
+
# else i < 0
|
|
740
|
+
M = self.parent()._cartan_type.m + 1
|
|
741
|
+
if self.value[0].phi(i) > self.value[1].epsilon(M+i):
|
|
742
|
+
x = self.value[0].f(i)
|
|
743
|
+
if x is None:
|
|
744
|
+
return None
|
|
745
|
+
return type(self)(self.parent(), (x, self.value[1], self.value[2]))
|
|
746
|
+
else:
|
|
747
|
+
x = self.value[1].f(M+i)
|
|
748
|
+
if x is None:
|
|
749
|
+
return None
|
|
750
|
+
return type(self)(self.parent(), (self.value[0], x, self.value[2]))
|
|
751
|
+
|
|
752
|
+
def weight(self):
|
|
753
|
+
r"""
|
|
754
|
+
Return weight of ``self``.
|
|
755
|
+
|
|
756
|
+
EXAMPLES::
|
|
757
|
+
|
|
758
|
+
sage: K = crystals.KacModule(['A', [3,2]], [2,1], [5,1])
|
|
759
|
+
sage: mg = K.module_generator()
|
|
760
|
+
sage: mg.weight()
|
|
761
|
+
(2, 1, 0, 0, 5, 1, 0)
|
|
762
|
+
sage: mg.weight().is_dominant()
|
|
763
|
+
True
|
|
764
|
+
sage: mg.f(0).weight()
|
|
765
|
+
(2, 1, 0, -1, 6, 1, 0)
|
|
766
|
+
sage: b = mg.f_string([2,1,-3,-2,-1,1,1,0,-2,-1,2,1,1,1,0,2,-3,-2,-1])
|
|
767
|
+
sage: b.weight()
|
|
768
|
+
(0, 0, 0, 1, 1, 4, 3)
|
|
769
|
+
"""
|
|
770
|
+
e = self.parent().weight_lattice_realization().basis()
|
|
771
|
+
M = self.parent()._cartan_type.m + 1
|
|
772
|
+
wt = self.value[0].weight()
|
|
773
|
+
wt += sum(c*e[i-M] for i,c in self.value[1].weight())
|
|
774
|
+
wt += sum(c*e[i+1] for i,c in self.value[2].weight())
|
|
775
|
+
return wt
|
|
776
|
+
|
|
777
|
+
#####################################################################
|
|
778
|
+
## Helper functions
|
|
779
|
+
|
|
780
|
+
|
|
781
|
+
def to_dual_tableau(elt):
|
|
782
|
+
r"""
|
|
783
|
+
Return a type `A_n` crystal tableau ``elt`` as a tableau expressed
|
|
784
|
+
in terms of dual letters.
|
|
785
|
+
|
|
786
|
+
The dual letter of `k` is expressed as `\overline{n+2-k}` represented
|
|
787
|
+
as `-(n+2-k)`.
|
|
788
|
+
|
|
789
|
+
EXAMPLES::
|
|
790
|
+
|
|
791
|
+
sage: from sage.combinat.crystals.kac_modules import to_dual_tableau
|
|
792
|
+
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
|
|
793
|
+
sage: ascii_art([to_dual_tableau(t) for t in T])
|
|
794
|
+
[ -3 -3 -3 -2 -3 -1 -3 -1 -2 -1 -3 -3 -3 -2 -2 -2 ]
|
|
795
|
+
[ -2 , -2 , -2 , -1 , -1 , -1 , -1 , -1 ]
|
|
796
|
+
|
|
797
|
+
TESTS:
|
|
798
|
+
|
|
799
|
+
Check that :issue:`23935` is fixed::
|
|
800
|
+
|
|
801
|
+
sage: from sage.combinat.crystals.kac_modules import to_dual_tableau
|
|
802
|
+
sage: T = crystals.Tableaux(['A',2], shape=[])
|
|
803
|
+
sage: to_dual_tableau(T[0])
|
|
804
|
+
[]
|
|
805
|
+
|
|
806
|
+
sage: Ktriv = crystals.KacModule(['A',[1,1]], [], [])
|
|
807
|
+
sage: Ktriv.module_generator()
|
|
808
|
+
({}, [], [])
|
|
809
|
+
"""
|
|
810
|
+
from sage.combinat.tableau import Tableau
|
|
811
|
+
M = elt.parent().cartan_type().rank() + 2
|
|
812
|
+
if not elt:
|
|
813
|
+
return Tableau([])
|
|
814
|
+
tab = [ [elt[0].value-M] ]
|
|
815
|
+
for i in range(1, len(elt)):
|
|
816
|
+
if elt[i-1] < elt[i] or (elt[i-1].value != 0 and elt[i-1] == elt[i]):
|
|
817
|
+
tab.append([elt[i].value-M])
|
|
818
|
+
else:
|
|
819
|
+
tab[len(tab)-1].append(elt[i].value-M)
|
|
820
|
+
for x in tab:
|
|
821
|
+
x.reverse()
|
|
822
|
+
return Tableau(tab).conjugate()
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
def latex_dual(elt):
|
|
826
|
+
r"""
|
|
827
|
+
Return a latex representation of a type `A_n` crystal tableau ``elt``
|
|
828
|
+
expressed in terms of dual letters.
|
|
829
|
+
|
|
830
|
+
The dual letter of `k` is expressed as `\overline{n+2-k}`.
|
|
831
|
+
|
|
832
|
+
EXAMPLES::
|
|
833
|
+
|
|
834
|
+
sage: from sage.combinat.crystals.kac_modules import latex_dual
|
|
835
|
+
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
|
|
836
|
+
sage: print(latex_dual(T[0]))
|
|
837
|
+
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}}
|
|
838
|
+
\raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2}
|
|
839
|
+
\lr{\overline{3}}&\lr{\overline{3}}\\\cline{1-2}
|
|
840
|
+
\lr{\overline{2}}\\\cline{1-1}
|
|
841
|
+
\end{array}$}
|
|
842
|
+
}
|
|
843
|
+
"""
|
|
844
|
+
M = elt.parent().cartan_type().rank() + 2
|
|
845
|
+
from sage.combinat.tableau import Tableau
|
|
846
|
+
from sage.combinat.output import tex_from_array
|
|
847
|
+
# Modified version of to_tableau() to have the entries be letters
|
|
848
|
+
# rather than their values
|
|
849
|
+
if not elt:
|
|
850
|
+
return "{\\emptyset}"
|
|
851
|
+
|
|
852
|
+
tab = [ ["\\overline{{{}}}".format(M-elt[0].value)] ]
|
|
853
|
+
for i in range(1, len(elt)):
|
|
854
|
+
if elt[i-1] < elt[i] or (elt[i-1].value != 0 and elt[i-1] == elt[i]):
|
|
855
|
+
tab.append(["\\overline{{{}}}".format(M-elt[i].value)])
|
|
856
|
+
else:
|
|
857
|
+
l = len(tab)-1
|
|
858
|
+
tab[l].append("\\overline{{{}}}".format(M-elt[i].value))
|
|
859
|
+
for x in tab:
|
|
860
|
+
x.reverse()
|
|
861
|
+
|
|
862
|
+
T = Tableau(tab).conjugate()
|
|
863
|
+
return tex_from_array([list(row) for row in T])
|