passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (400) hide show
  1. passagemath_combinat/__init__.py +3 -0
  2. passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
  3. passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
  4. passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
  5. passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
  6. passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
  7. passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
  8. sage/algebras/affine_nil_temperley_lieb.py +263 -0
  9. sage/algebras/all.py +24 -0
  10. sage/algebras/all__sagemath_combinat.py +35 -0
  11. sage/algebras/askey_wilson.py +935 -0
  12. sage/algebras/associated_graded.py +345 -0
  13. sage/algebras/cellular_basis.py +350 -0
  14. sage/algebras/cluster_algebra.py +2766 -0
  15. sage/algebras/down_up_algebra.py +860 -0
  16. sage/algebras/free_algebra.py +1698 -0
  17. sage/algebras/free_algebra_element.py +345 -0
  18. sage/algebras/free_algebra_quotient.py +405 -0
  19. sage/algebras/free_algebra_quotient_element.py +295 -0
  20. sage/algebras/free_zinbiel_algebra.py +885 -0
  21. sage/algebras/hall_algebra.py +783 -0
  22. sage/algebras/hecke_algebras/all.py +4 -0
  23. sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
  24. sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
  25. sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
  26. sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
  27. sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
  28. sage/algebras/iwahori_hecke_algebra.py +3095 -0
  29. sage/algebras/jordan_algebra.py +1773 -0
  30. sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
  31. sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
  32. sage/algebras/lie_conformal_algebras/all.py +18 -0
  33. sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
  34. sage/algebras/lie_conformal_algebras/examples.py +43 -0
  35. sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
  36. sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
  37. sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
  38. sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
  39. sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
  40. sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
  41. sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
  42. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
  43. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
  44. sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
  45. sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
  46. sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
  47. sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
  48. sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
  49. sage/algebras/nil_coxeter_algebra.py +191 -0
  50. sage/algebras/q_commuting_polynomials.py +673 -0
  51. sage/algebras/q_system.py +608 -0
  52. sage/algebras/quantum_clifford.py +959 -0
  53. sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
  54. sage/algebras/quantum_groups/all.py +9 -0
  55. sage/algebras/quantum_groups/fock_space.py +2219 -0
  56. sage/algebras/quantum_groups/q_numbers.py +207 -0
  57. sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
  58. sage/algebras/quantum_groups/representations.py +591 -0
  59. sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
  60. sage/algebras/quantum_oscillator.py +623 -0
  61. sage/algebras/quaternion_algebra.py +20 -0
  62. sage/algebras/quaternion_algebra_element.py +55 -0
  63. sage/algebras/rational_cherednik_algebra.py +525 -0
  64. sage/algebras/schur_algebra.py +670 -0
  65. sage/algebras/shuffle_algebra.py +1011 -0
  66. sage/algebras/splitting_algebra.py +779 -0
  67. sage/algebras/tensor_algebra.py +709 -0
  68. sage/algebras/yangian.py +1082 -0
  69. sage/algebras/yokonuma_hecke_algebra.py +1018 -0
  70. sage/all__sagemath_combinat.py +35 -0
  71. sage/combinat/SJT.py +255 -0
  72. sage/combinat/affine_permutation.py +2405 -0
  73. sage/combinat/algebraic_combinatorics.py +55 -0
  74. sage/combinat/all.py +53 -0
  75. sage/combinat/all__sagemath_combinat.py +195 -0
  76. sage/combinat/alternating_sign_matrix.py +2063 -0
  77. sage/combinat/baxter_permutations.py +346 -0
  78. sage/combinat/bijectionist.py +3220 -0
  79. sage/combinat/binary_recurrence_sequences.py +1180 -0
  80. sage/combinat/blob_algebra.py +685 -0
  81. sage/combinat/catalog_partitions.py +27 -0
  82. sage/combinat/chas/all.py +23 -0
  83. sage/combinat/chas/fsym.py +1180 -0
  84. sage/combinat/chas/wqsym.py +2601 -0
  85. sage/combinat/cluster_complex.py +326 -0
  86. sage/combinat/colored_permutations.py +2039 -0
  87. sage/combinat/colored_permutations_representations.py +964 -0
  88. sage/combinat/composition_signed.py +142 -0
  89. sage/combinat/composition_tableau.py +855 -0
  90. sage/combinat/constellation.py +1729 -0
  91. sage/combinat/core.py +751 -0
  92. sage/combinat/counting.py +12 -0
  93. sage/combinat/crystals/affine.py +742 -0
  94. sage/combinat/crystals/affine_factorization.py +518 -0
  95. sage/combinat/crystals/affinization.py +331 -0
  96. sage/combinat/crystals/alcove_path.py +2013 -0
  97. sage/combinat/crystals/all.py +22 -0
  98. sage/combinat/crystals/bkk_crystals.py +141 -0
  99. sage/combinat/crystals/catalog.py +115 -0
  100. sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
  101. sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
  102. sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
  103. sage/combinat/crystals/crystals.py +257 -0
  104. sage/combinat/crystals/direct_sum.py +260 -0
  105. sage/combinat/crystals/elementary_crystals.py +1251 -0
  106. sage/combinat/crystals/fast_crystals.py +441 -0
  107. sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
  108. sage/combinat/crystals/generalized_young_walls.py +1076 -0
  109. sage/combinat/crystals/highest_weight_crystals.py +436 -0
  110. sage/combinat/crystals/induced_structure.py +695 -0
  111. sage/combinat/crystals/infinity_crystals.py +730 -0
  112. sage/combinat/crystals/kac_modules.py +863 -0
  113. sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
  114. sage/combinat/crystals/kyoto_path_model.py +497 -0
  115. sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
  116. sage/combinat/crystals/letters.pxd +79 -0
  117. sage/combinat/crystals/letters.pyx +3056 -0
  118. sage/combinat/crystals/littelmann_path.py +1518 -0
  119. sage/combinat/crystals/monomial_crystals.py +1262 -0
  120. sage/combinat/crystals/multisegments.py +462 -0
  121. sage/combinat/crystals/mv_polytopes.py +467 -0
  122. sage/combinat/crystals/pbw_crystal.py +511 -0
  123. sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
  124. sage/combinat/crystals/pbw_datum.pxd +4 -0
  125. sage/combinat/crystals/pbw_datum.pyx +487 -0
  126. sage/combinat/crystals/polyhedral_realization.py +372 -0
  127. sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
  128. sage/combinat/crystals/spins.pxd +21 -0
  129. sage/combinat/crystals/spins.pyx +756 -0
  130. sage/combinat/crystals/star_crystal.py +290 -0
  131. sage/combinat/crystals/subcrystal.py +464 -0
  132. sage/combinat/crystals/tensor_product.py +1177 -0
  133. sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
  134. sage/combinat/crystals/tensor_product_element.pxd +35 -0
  135. sage/combinat/crystals/tensor_product_element.pyx +1870 -0
  136. sage/combinat/crystals/virtual_crystal.py +420 -0
  137. sage/combinat/cyclic_sieving_phenomenon.py +204 -0
  138. sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
  139. sage/combinat/debruijn_sequence.pyx +355 -0
  140. sage/combinat/decorated_permutation.py +270 -0
  141. sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
  142. sage/combinat/degree_sequences.pyx +588 -0
  143. sage/combinat/derangements.py +527 -0
  144. sage/combinat/descent_algebra.py +1008 -0
  145. sage/combinat/diagram.py +1551 -0
  146. sage/combinat/diagram_algebras.py +5886 -0
  147. sage/combinat/dyck_word.py +4349 -0
  148. sage/combinat/e_one_star.py +1623 -0
  149. sage/combinat/enumerated_sets.py +123 -0
  150. sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
  151. sage/combinat/expnums.pyx +148 -0
  152. sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
  153. sage/combinat/fast_vector_partitions.pyx +346 -0
  154. sage/combinat/fqsym.py +1977 -0
  155. sage/combinat/free_dendriform_algebra.py +954 -0
  156. sage/combinat/free_prelie_algebra.py +1141 -0
  157. sage/combinat/fully_commutative_elements.py +1077 -0
  158. sage/combinat/fully_packed_loop.py +1523 -0
  159. sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
  160. sage/combinat/gray_codes.py +311 -0
  161. sage/combinat/grossman_larson_algebras.py +667 -0
  162. sage/combinat/growth.py +4352 -0
  163. sage/combinat/hall_polynomial.py +188 -0
  164. sage/combinat/hillman_grassl.py +866 -0
  165. sage/combinat/integer_matrices.py +329 -0
  166. sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
  167. sage/combinat/k_tableau.py +4564 -0
  168. sage/combinat/kazhdan_lusztig.py +215 -0
  169. sage/combinat/key_polynomial.py +885 -0
  170. sage/combinat/knutson_tao_puzzles.py +2286 -0
  171. sage/combinat/lr_tableau.py +311 -0
  172. sage/combinat/matrices/all.py +24 -0
  173. sage/combinat/matrices/hadamard_matrix.py +3790 -0
  174. sage/combinat/matrices/latin.py +2912 -0
  175. sage/combinat/misc.py +401 -0
  176. sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
  177. sage/combinat/ncsf_qsym/all.py +21 -0
  178. sage/combinat/ncsf_qsym/combinatorics.py +317 -0
  179. sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
  180. sage/combinat/ncsf_qsym/ncsf.py +5637 -0
  181. sage/combinat/ncsf_qsym/qsym.py +4053 -0
  182. sage/combinat/ncsf_qsym/tutorial.py +447 -0
  183. sage/combinat/ncsym/all.py +21 -0
  184. sage/combinat/ncsym/bases.py +855 -0
  185. sage/combinat/ncsym/dual.py +593 -0
  186. sage/combinat/ncsym/ncsym.py +2076 -0
  187. sage/combinat/necklace.py +551 -0
  188. sage/combinat/non_decreasing_parking_function.py +634 -0
  189. sage/combinat/nu_dyck_word.py +1474 -0
  190. sage/combinat/output.py +861 -0
  191. sage/combinat/parallelogram_polyomino.py +4326 -0
  192. sage/combinat/parking_functions.py +1602 -0
  193. sage/combinat/partition_algebra.py +1998 -0
  194. sage/combinat/partition_kleshchev.py +1982 -0
  195. sage/combinat/partition_shifting_algebras.py +584 -0
  196. sage/combinat/partition_tuple.py +3114 -0
  197. sage/combinat/path_tableaux/all.py +13 -0
  198. sage/combinat/path_tableaux/catalog.py +29 -0
  199. sage/combinat/path_tableaux/dyck_path.py +380 -0
  200. sage/combinat/path_tableaux/frieze.py +476 -0
  201. sage/combinat/path_tableaux/path_tableau.py +728 -0
  202. sage/combinat/path_tableaux/semistandard.py +510 -0
  203. sage/combinat/perfect_matching.py +779 -0
  204. sage/combinat/plane_partition.py +3300 -0
  205. sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
  206. sage/combinat/q_bernoulli.pyx +128 -0
  207. sage/combinat/quickref.py +81 -0
  208. sage/combinat/recognizable_series.py +2051 -0
  209. sage/combinat/regular_sequence.py +4316 -0
  210. sage/combinat/regular_sequence_bounded.py +543 -0
  211. sage/combinat/restricted_growth.py +81 -0
  212. sage/combinat/ribbon.py +20 -0
  213. sage/combinat/ribbon_shaped_tableau.py +489 -0
  214. sage/combinat/ribbon_tableau.py +1180 -0
  215. sage/combinat/rigged_configurations/all.py +46 -0
  216. sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
  217. sage/combinat/rigged_configurations/bij_infinity.py +370 -0
  218. sage/combinat/rigged_configurations/bij_type_A.py +163 -0
  219. sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
  220. sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
  221. sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
  222. sage/combinat/rigged_configurations/bij_type_B.py +900 -0
  223. sage/combinat/rigged_configurations/bij_type_C.py +267 -0
  224. sage/combinat/rigged_configurations/bij_type_D.py +771 -0
  225. sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
  226. sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
  227. sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
  228. sage/combinat/rigged_configurations/bijection.py +143 -0
  229. sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
  230. sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
  231. sage/combinat/rigged_configurations/rc_crystal.py +461 -0
  232. sage/combinat/rigged_configurations/rc_infinity.py +540 -0
  233. sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
  234. sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
  235. sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
  236. sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
  237. sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
  238. sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
  239. sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
  240. sage/combinat/rsk.py +3438 -0
  241. sage/combinat/schubert_polynomial.py +508 -0
  242. sage/combinat/set_partition.py +3318 -0
  243. sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
  244. sage/combinat/set_partition_iterator.pyx +136 -0
  245. sage/combinat/set_partition_ordered.py +1590 -0
  246. sage/combinat/sf/abreu_nigro.py +346 -0
  247. sage/combinat/sf/all.py +52 -0
  248. sage/combinat/sf/character.py +576 -0
  249. sage/combinat/sf/classical.py +319 -0
  250. sage/combinat/sf/dual.py +996 -0
  251. sage/combinat/sf/elementary.py +549 -0
  252. sage/combinat/sf/hall_littlewood.py +1028 -0
  253. sage/combinat/sf/hecke.py +336 -0
  254. sage/combinat/sf/homogeneous.py +464 -0
  255. sage/combinat/sf/jack.py +1428 -0
  256. sage/combinat/sf/k_dual.py +1458 -0
  257. sage/combinat/sf/kfpoly.py +447 -0
  258. sage/combinat/sf/llt.py +789 -0
  259. sage/combinat/sf/macdonald.py +2019 -0
  260. sage/combinat/sf/monomial.py +525 -0
  261. sage/combinat/sf/multiplicative.py +113 -0
  262. sage/combinat/sf/new_kschur.py +1786 -0
  263. sage/combinat/sf/ns_macdonald.py +964 -0
  264. sage/combinat/sf/orthogonal.py +246 -0
  265. sage/combinat/sf/orthotriang.py +355 -0
  266. sage/combinat/sf/powersum.py +963 -0
  267. sage/combinat/sf/schur.py +880 -0
  268. sage/combinat/sf/sf.py +1653 -0
  269. sage/combinat/sf/sfa.py +7053 -0
  270. sage/combinat/sf/symplectic.py +253 -0
  271. sage/combinat/sf/witt.py +721 -0
  272. sage/combinat/shifted_primed_tableau.py +2735 -0
  273. sage/combinat/shuffle.py +830 -0
  274. sage/combinat/sidon_sets.py +146 -0
  275. sage/combinat/similarity_class_type.py +1721 -0
  276. sage/combinat/sine_gordon.py +618 -0
  277. sage/combinat/six_vertex_model.py +784 -0
  278. sage/combinat/skew_partition.py +2053 -0
  279. sage/combinat/skew_tableau.py +2989 -0
  280. sage/combinat/sloane_functions.py +8935 -0
  281. sage/combinat/specht_module.py +1403 -0
  282. sage/combinat/species/all.py +48 -0
  283. sage/combinat/species/characteristic_species.py +321 -0
  284. sage/combinat/species/composition_species.py +273 -0
  285. sage/combinat/species/cycle_species.py +284 -0
  286. sage/combinat/species/empty_species.py +155 -0
  287. sage/combinat/species/functorial_composition_species.py +148 -0
  288. sage/combinat/species/generating_series.py +673 -0
  289. sage/combinat/species/library.py +148 -0
  290. sage/combinat/species/linear_order_species.py +169 -0
  291. sage/combinat/species/misc.py +83 -0
  292. sage/combinat/species/partition_species.py +290 -0
  293. sage/combinat/species/permutation_species.py +268 -0
  294. sage/combinat/species/product_species.py +423 -0
  295. sage/combinat/species/recursive_species.py +476 -0
  296. sage/combinat/species/set_species.py +192 -0
  297. sage/combinat/species/species.py +820 -0
  298. sage/combinat/species/structure.py +539 -0
  299. sage/combinat/species/subset_species.py +243 -0
  300. sage/combinat/species/sum_species.py +225 -0
  301. sage/combinat/subword.py +564 -0
  302. sage/combinat/subword_complex.py +2122 -0
  303. sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
  304. sage/combinat/subword_complex_c.pyx +119 -0
  305. sage/combinat/super_tableau.py +821 -0
  306. sage/combinat/superpartition.py +1154 -0
  307. sage/combinat/symmetric_group_algebra.py +3774 -0
  308. sage/combinat/symmetric_group_representations.py +1830 -0
  309. sage/combinat/t_sequences.py +877 -0
  310. sage/combinat/tableau.py +9506 -0
  311. sage/combinat/tableau_residues.py +860 -0
  312. sage/combinat/tableau_tuple.py +5353 -0
  313. sage/combinat/tiling.py +2432 -0
  314. sage/combinat/triangles_FHM.py +777 -0
  315. sage/combinat/tutorial.py +1857 -0
  316. sage/combinat/vector_partition.py +337 -0
  317. sage/combinat/words/abstract_word.py +1722 -0
  318. sage/combinat/words/all.py +59 -0
  319. sage/combinat/words/alphabet.py +268 -0
  320. sage/combinat/words/finite_word.py +7201 -0
  321. sage/combinat/words/infinite_word.py +113 -0
  322. sage/combinat/words/lyndon_word.py +652 -0
  323. sage/combinat/words/morphic.py +351 -0
  324. sage/combinat/words/morphism.py +3878 -0
  325. sage/combinat/words/paths.py +2932 -0
  326. sage/combinat/words/shuffle_product.py +278 -0
  327. sage/combinat/words/suffix_trees.py +1873 -0
  328. sage/combinat/words/word.py +769 -0
  329. sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
  330. sage/combinat/words/word_char.pyx +847 -0
  331. sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
  332. sage/combinat/words/word_datatypes.pxd +4 -0
  333. sage/combinat/words/word_datatypes.pyx +1067 -0
  334. sage/combinat/words/word_generators.py +2026 -0
  335. sage/combinat/words/word_infinite_datatypes.py +1218 -0
  336. sage/combinat/words/word_options.py +99 -0
  337. sage/combinat/words/words.py +2396 -0
  338. sage/data_structures/all__sagemath_combinat.py +1 -0
  339. sage/databases/all__sagemath_combinat.py +13 -0
  340. sage/databases/findstat.py +4897 -0
  341. sage/databases/oeis.py +2058 -0
  342. sage/databases/sloane.py +393 -0
  343. sage/dynamics/all__sagemath_combinat.py +14 -0
  344. sage/dynamics/cellular_automata/all.py +7 -0
  345. sage/dynamics/cellular_automata/catalog.py +34 -0
  346. sage/dynamics/cellular_automata/elementary.py +612 -0
  347. sage/dynamics/cellular_automata/glca.py +477 -0
  348. sage/dynamics/cellular_automata/solitons.py +1463 -0
  349. sage/dynamics/finite_dynamical_system.py +1249 -0
  350. sage/dynamics/finite_dynamical_system_catalog.py +382 -0
  351. sage/games/all.py +7 -0
  352. sage/games/hexad.py +704 -0
  353. sage/games/quantumino.py +591 -0
  354. sage/games/sudoku.py +889 -0
  355. sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
  356. sage/games/sudoku_backtrack.pyx +189 -0
  357. sage/groups/all__sagemath_combinat.py +1 -0
  358. sage/groups/indexed_free_group.py +489 -0
  359. sage/libs/all__sagemath_combinat.py +6 -0
  360. sage/libs/lrcalc/__init__.py +1 -0
  361. sage/libs/lrcalc/lrcalc.py +525 -0
  362. sage/libs/symmetrica/__init__.py +7 -0
  363. sage/libs/symmetrica/all.py +101 -0
  364. sage/libs/symmetrica/kostka.pxi +168 -0
  365. sage/libs/symmetrica/part.pxi +193 -0
  366. sage/libs/symmetrica/plet.pxi +42 -0
  367. sage/libs/symmetrica/sab.pxi +196 -0
  368. sage/libs/symmetrica/sb.pxi +332 -0
  369. sage/libs/symmetrica/sc.pxi +192 -0
  370. sage/libs/symmetrica/schur.pxi +956 -0
  371. sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
  372. sage/libs/symmetrica/symmetrica.pxi +1172 -0
  373. sage/libs/symmetrica/symmetrica.pyx +39 -0
  374. sage/monoids/all.py +13 -0
  375. sage/monoids/automatic_semigroup.py +1054 -0
  376. sage/monoids/free_abelian_monoid.py +315 -0
  377. sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
  378. sage/monoids/free_abelian_monoid_element.pxd +16 -0
  379. sage/monoids/free_abelian_monoid_element.pyx +397 -0
  380. sage/monoids/free_monoid.py +335 -0
  381. sage/monoids/free_monoid_element.py +431 -0
  382. sage/monoids/hecke_monoid.py +65 -0
  383. sage/monoids/string_monoid.py +817 -0
  384. sage/monoids/string_monoid_element.py +547 -0
  385. sage/monoids/string_ops.py +143 -0
  386. sage/monoids/trace_monoid.py +972 -0
  387. sage/rings/all__sagemath_combinat.py +2 -0
  388. sage/sat/all.py +4 -0
  389. sage/sat/boolean_polynomials.py +405 -0
  390. sage/sat/converters/__init__.py +6 -0
  391. sage/sat/converters/anf2cnf.py +14 -0
  392. sage/sat/converters/polybori.py +611 -0
  393. sage/sat/solvers/__init__.py +5 -0
  394. sage/sat/solvers/cryptominisat.py +287 -0
  395. sage/sat/solvers/dimacs.py +783 -0
  396. sage/sat/solvers/picosat.py +228 -0
  397. sage/sat/solvers/sat_lp.py +156 -0
  398. sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
  399. sage/sat/solvers/satsolver.pxd +3 -0
  400. sage/sat/solvers/satsolver.pyx +405 -0
@@ -0,0 +1,135 @@
1
+ # sage_setup: distribution = sagemath-combinat
2
+ # sage.doctest: needs sage.combinat sage.modules
3
+ r"""
4
+ Graded Lie Conformal Algebras
5
+
6
+ A (super) Lie conformal algebra `V` is called `H`-graded if there
7
+ exists a decomposition `V = \oplus_n V_n` such that the `\lambda`-
8
+ bracket is graded of degree `-1`, that is for homogeneous elements
9
+ `a \in V_p`, `b \in V_q` with `\lambda`-brackets:
10
+
11
+ .. MATH::
12
+
13
+ [a_\lambda b] = \sum \frac{\lambda^n}{n!} c_n,
14
+
15
+ we have `c_n \in V_{p+q-n-1}`. This situation arises typically when `V`
16
+ has a vector `L \in V` that generates the Virasoro Lie conformal
17
+ algebra. Such that for every `a \in V` we have
18
+
19
+ .. MATH::
20
+
21
+ [L_\lambda a] = Ta + \lambda \Delta_a a + O(\lambda^2).
22
+
23
+ In this situation `V` is graded by the eigenvalues `\Delta_a` of
24
+ `L_{(1)}`, the `(1)`-th product with `L`. When the higher order terms
25
+ `O(\lambda^2)` vanish we say that `a` is a *primary vector* of
26
+ *conformal weight* or degree `\Delta_a`.
27
+
28
+ .. NOTE::
29
+
30
+ Although arbitrary gradings are allowed, many of the constructions
31
+ we implement in these classes work only for positive rational
32
+ gradings.
33
+
34
+ AUTHORS:
35
+
36
+ - Reimundo Heluani (2019-08-09): Initial implementation.
37
+ """
38
+
39
+
40
+ #******************************************************************************
41
+ # Copyright (C) 2019 Reimundo Heluani <heluani@potuz.net>
42
+ #
43
+ # This program is free software: you can redistribute it and/or modify
44
+ # it under the terms of the GNU General Public License as published by
45
+ # the Free Software Foundation, either version 2 of the License, or
46
+ # (at your option) any later version.
47
+ # http://www.gnu.org/licenses/
48
+ #*****************************************************************************
49
+
50
+
51
+ from sage.categories.lie_conformal_algebras import LieConformalAlgebras
52
+ from .lie_conformal_algebra_with_structure_coefs import \
53
+ LieConformalAlgebraWithStructureCoefficients
54
+
55
+
56
+ class GradedLieConformalAlgebra(LieConformalAlgebraWithStructureCoefficients):
57
+ r"""
58
+ An H-Graded Lie conformal algebra.
59
+
60
+ INPUT:
61
+
62
+ - ``R`` -- a commutative ring (default: ``None``); the base
63
+ ring of this Lie conformal algebra. Behaviour is undefined if
64
+ it is not a field of characteristic zero
65
+
66
+ - ``s_coeff`` -- dictionary (default: ``None``); as in the
67
+ input of :class:`LieConformalAlgebra`
68
+
69
+ - ``names`` -- tuple of strings (default: ``None``); as in the
70
+ input of :class:`LieConformalAlgebra`
71
+
72
+ - ``central_elements`` -- tuple of strings (default: ``None``);
73
+ as in the input of :class:`LieConformalAlgebra`
74
+
75
+ - ``index_set`` -- enumerated set (default: ``None``); as in the
76
+ input of :class:`LieConformalAlgebra`
77
+
78
+ - ``weights`` -- tuple of nonnegative rational numbers
79
+ (default: tuple of ``1``); a list of degrees for this Lie
80
+ conformal algebra.
81
+ This tuple needs to have the same cardinality as
82
+ ``index_set`` or ``names``. Central elements are assumed
83
+ to have weight ``0``.
84
+
85
+ - ``category`` -- the category that this Lie conformal algebra
86
+ belongs to
87
+
88
+ - ``parity`` -- tuple of ``0`` or ``1`` (default: tuple of
89
+ ``0``); a tuple specifying the parity of each non-central
90
+ generator
91
+
92
+ EXAMPLES::
93
+
94
+ sage: bosondict = {('a','a'):{1:{('K',0):1}}}
95
+ sage: R = LieConformalAlgebra(QQ,bosondict,names=('a',),central_elements=('K',), weights=(1,))
96
+ sage: R.inject_variables()
97
+ Defining a, K
98
+ sage: a.T(3).degree()
99
+ 4
100
+ sage: K.degree()
101
+ 0
102
+ sage: R.category()
103
+ Category of H-graded finitely generated Lie conformal algebras with basis over Rational Field
104
+ """
105
+ def __init__(self, R, s_coeff, index_set=None, central_elements=None,
106
+ category=None, prefix=None, names=None, latex_names=None,
107
+ parity=None, weights=None, **kwds):
108
+ """
109
+ Initialize ``self``.
110
+
111
+ TESTS::
112
+
113
+ sage: V = lie_conformal_algebras.Virasoro(QQ)
114
+ sage: TestSuite(V).run()
115
+ """
116
+ is_super = kwds.get('super', None)
117
+ default_category = LieConformalAlgebras(R).WithBasis().FinitelyGenerated().Graded()
118
+ if is_super or parity:
119
+ category = default_category.Super().or_subcategory(category)
120
+ else:
121
+ category = default_category.or_subcategory(category)
122
+
123
+ LieConformalAlgebraWithStructureCoefficients.__init__(self, R,
124
+ s_coeff, index_set=index_set, central_elements=central_elements,
125
+ category=category, prefix=prefix,
126
+ names=names, latex_names=latex_names, parity=parity, **kwds)
127
+
128
+ if weights is None:
129
+ weights = (1,) * (len(self._generators) -
130
+ len(self.central_elements()))
131
+ if len(weights) != (len(self._generators) -
132
+ len(self.central_elements())):
133
+ raise ValueError("weights and (non-central) generator lists "
134
+ "must be of same length")
135
+ self._weights = weights
@@ -0,0 +1,353 @@
1
+ # sage_setup: distribution = sagemath-combinat
2
+ # sage.doctest: needs sage.combinat sage.modules
3
+ r"""
4
+ Lie Conformal Algebra
5
+
6
+ Let `R` be a commutative ring, a *super Lie conformal algebra*
7
+ [Kac1997]_ over `R`
8
+ (also known as a *vertex Lie algebra*) is an `R[T]` super module `L`
9
+ together with a `\mathbb{Z}/2\mathbb{Z}`-graded `R`-bilinear
10
+ operation (called the `\lambda`-bracket)
11
+ `L\otimes L \rightarrow L[\lambda]`
12
+ (polynomials in `\lambda` with
13
+ coefficients in `L`), `a \otimes b \mapsto [a_\lambda b]` satisfying
14
+
15
+ 1. Sesquilinearity:
16
+
17
+ .. MATH::
18
+
19
+ [Ta_\lambda b] = - \lambda [a_\lambda b], \qquad [a_\lambda Tb] =
20
+ (\lambda+ T) [a_\lambda b].
21
+
22
+ 2. Skew-Symmetry:
23
+
24
+ .. MATH::
25
+
26
+ [a_\lambda b] = - (-1)^{p(a)p(b)} [b_{-\lambda - T} a],
27
+
28
+ where `p(a)` is `0` if `a` is *even* and `1` if `a` is *odd*. The
29
+ bracket in the RHS is computed as follows. First we evaluate
30
+ `[b_\mu a]` with the formal
31
+ parameter `\mu` to the *left*, then
32
+ replace each appearance of the formal variable `\mu` by `-\lambda - T`.
33
+ Finally apply `T` to the coefficients in `L`.
34
+
35
+ 3. Jacobi identity:
36
+
37
+ .. MATH::
38
+
39
+ [a_\lambda [b_\mu c]] = [ [a_{\lambda + \mu} b]_\mu c] +
40
+ (-1)^{p(a)p(b)} [b_\mu [a_\lambda c ]],
41
+
42
+ which is understood as an equality in `L[\lambda,\mu]`.
43
+
44
+ `T` is usually called the *translation operation* or the *derivative*.
45
+ For an element `a \in L` we will say that `Ta` is the *derivative of*
46
+ `a`. We define the *`n`-th products* `a_{(n)} b` for `a,b \in L` by
47
+
48
+ .. MATH::
49
+
50
+ [a_\lambda b] = \sum_{n \geq 0} \frac{\lambda^n}{n!} a_{(n)} b.
51
+
52
+ A Lie conformal algebra is called *H-Graded* [DSK2006]_ if there exists
53
+ a decomposition `L = \oplus L_n` such that the
54
+ `\lambda`-bracket becomes graded of degree `-1`, that is:
55
+
56
+ .. MATH::
57
+
58
+ a_{(n)} b \in L_{p + q -n -1} \qquad
59
+ a \in L_p, \: b \in L_q, \: n \geq 0.
60
+
61
+ In particular this implies that the action of `T` increases
62
+ degree by `1`.
63
+
64
+ .. NOTE::
65
+
66
+ In the literature arbitrary gradings are allowed. In this
67
+ implementation we only support nonnegative rational gradings.
68
+
69
+ EXAMPLES:
70
+
71
+ 1. The **Virasoro** Lie conformal algebra `Vir` over a ring `R`
72
+ where `12` is invertible has two generators `L, C` as an `R[T]`-module.
73
+ It is the direct sum of a free module of rank `1` generated by `L`, and
74
+ a free rank one `R` module generated by `C` satisfying `TC = 0`. `C`
75
+ is central (the `\lambda`-bracket of `C` with any other vector
76
+ vanishes). The remaining `\lambda`-bracket is given by
77
+
78
+ .. MATH::
79
+
80
+ [L_\lambda L] = T L + 2 \lambda L + \frac{\lambda^3}{12} C.
81
+
82
+ 2. The **affine** or current Lie conformal algebra `L(\mathfrak{g})`
83
+ associated to a finite dimensional Lie algebra `\mathfrak{g}` with
84
+ non-degenerate, invariant `R`-bilinear form `(,)` is given as a central
85
+ extension of the free
86
+ `R[T]` module generated by `\mathfrak{g}` by a central element `K`. The
87
+ `\lambda`-bracket of generators is given by
88
+
89
+ .. MATH::
90
+
91
+ [a_\lambda b] = [a,b] + \lambda (a,b) K, \qquad a,b \in \mathfrak{g}
92
+
93
+ 3. The **Weyl** Lie conformal algebra, or `\beta-\gamma` system is
94
+ given as the central extension of a free `R[T]` module with two
95
+ generators `\beta` and `\gamma`, by a central element `K`.
96
+ The only non-trivial brackets among generators are
97
+
98
+ .. MATH::
99
+
100
+ [\beta_\lambda \gamma] = - [\gamma_\lambda \beta] = K
101
+
102
+ 4. The **Neveu-Schwarz** super Lie conformal algebra is a super Lie
103
+ conformal algebra which is an extension of the Virasoro Lie conformal
104
+ algebra. It consists of a Virasoro generator `L` as in example 1 above
105
+ and an *odd* generator `G`. The remaining brackets are given by:
106
+
107
+ .. MATH::
108
+
109
+ [L_\lambda G] = \left( T + \frac{3}{2} \lambda \right) G \qquad
110
+ [G_\lambda G] = 2 L + \frac{\lambda^2}{3} C
111
+
112
+ .. SEEALSO::
113
+
114
+ :mod:`sage.algebras.lie_conformal_algebras.examples`
115
+
116
+ The base class for all Lie conformal algebras is
117
+ :class:`LieConformalAlgebra`.
118
+ All subclasses are called through its method ``__classcall_private__``.
119
+ This class provides no functionality besides calling the appropriate
120
+ constructor.
121
+
122
+ We provide some convenience classes to define named Lie conformal
123
+ algebras. See
124
+ :mod:`sage.algebras.lie_conformal_algebras.examples`.
125
+
126
+ EXAMPLES:
127
+
128
+ - We construct the Virasoro Lie conformal algebra, its universal
129
+ enveloping vertex algebra and lift some elements::
130
+
131
+ sage: Vir = lie_conformal_algebras.Virasoro(QQ)
132
+ sage: Vir.inject_variables()
133
+ Defining L, C
134
+ sage: L.bracket(L)
135
+ {0: TL, 1: 2*L, 3: 1/2*C}
136
+
137
+ - We construct the Current algebra for `\mathfrak{sl}_2`::
138
+
139
+ sage: R = lie_conformal_algebras.Affine(QQ, 'A1', names = ('e', 'h', 'f'))
140
+ sage: R.gens()
141
+ (e, h, f, K)
142
+ sage: R.inject_variables()
143
+ Defining e, h, f, K
144
+ sage: e.bracket(f.T())
145
+ {0: Th, 1: h, 2: 2*K}
146
+ sage: e.T(3)
147
+ 6*T^(3)e
148
+
149
+ - We construct the `\beta-\gamma` system by directly giving the
150
+ `\lambda`-brackets of the generators::
151
+
152
+ sage: betagamma_dict = {('b','a'):{0:{('K',0):1}}}
153
+ sage: V = LieConformalAlgebra(QQ, betagamma_dict, names=('a','b'), weights=(1,0), central_elements=('K',))
154
+ sage: V.category()
155
+ Category of H-graded finitely generated Lie conformal algebras with basis over Rational Field
156
+ sage: V.inject_variables()
157
+ Defining a, b, K
158
+ sage: a.bracket(b)
159
+ {0: -K}
160
+
161
+ AUTHORS:
162
+
163
+ - Reimundo Heluani (2019-08-09): Initial implementation.
164
+ """
165
+
166
+
167
+ #******************************************************************************
168
+ # Copyright (C) 2019 Reimundo Heluani <heluani@potuz.net>
169
+ #
170
+ # This program is free software: you can redistribute it and/or modify
171
+ # it under the terms of the GNU General Public License as published by
172
+ # the Free Software Foundation, either version 2 of the License, or
173
+ # (at your option) any later version.
174
+ # http://www.gnu.org/licenses/
175
+ #*****************************************************************************
176
+
177
+ from sage.structure.unique_representation import UniqueRepresentation
178
+ from sage.sets.family import Family
179
+ from sage.categories.commutative_rings import CommutativeRings
180
+ from sage.structure.parent import Parent
181
+
182
+
183
+ class LieConformalAlgebra(UniqueRepresentation, Parent):
184
+ r"""
185
+ Lie Conformal Algebras base class and factory.
186
+
187
+ INPUT:
188
+
189
+ - ``R`` -- a commutative ring (default: ``None``); the base
190
+ ring of this Lie conformal algebra. Behaviour is undefined
191
+ if it is not a field of characteristic zero.
192
+
193
+ - ``arg0`` -- dictionary (default: ``None``);
194
+ a dictionary containing the `\lambda` brackets of the
195
+ generators of this Lie conformal algebra. The keys of this
196
+ dictionary are pairs of either names or indices of the
197
+ generators and the values are themselves dictionaries. For a
198
+ pair of generators ``'a'`` and ``'b'``, the value of
199
+ ``arg0[('a','b')]`` is a dictionary whose keys are positive
200
+ integer numbers and the corresponding value for the
201
+ key ``j`` is a dictionary itself representing the `j`-th product
202
+ `a_{(j)}b`. Thus, for a positive integer number `j`, the
203
+ value of ``arg0[('a','b')][j]`` is a dictionary whose entries
204
+ are pairs ``('c',n)`` where ``'c'`` is the name of a generator
205
+ and ``n`` is a positive number. The value for this key is the
206
+ coefficient of `\frac{T^{n}}{n!} c` in `a_{(j)}b`. For
207
+ example the ``arg0`` for the *Virasoro* Lie conformal algebra
208
+ is::
209
+
210
+ {('L','L'):{0:{('L',1):1}, 1:{('L',0):2}, 3:{('C',0):1/2}}}
211
+
212
+
213
+ Do not include central elements as keys in this dictionary. Also,
214
+ if the key ``('a','b')`` is present, there is no need to include
215
+ ``('b','a')`` as it is defined by skew-symmetry. Any missing
216
+ pair (besides the ones defined by skew-symmetry) is assumed
217
+ to have vanishing `\lambda`-bracket.
218
+
219
+ - ``names`` -- tuple of strings (default: ``None``); the list of
220
+ names for generators of this Lie conformal algebra. Do not
221
+ include central elements in this list.
222
+
223
+ - ``central_elements`` -- tuple of strings (default: ``None``);
224
+ a list of names for central elements of this Lie conformal algebra
225
+
226
+ - ``index_set`` -- enumerated set (default: ``None``); an
227
+ indexing set for the generators of this Lie conformal algebra.
228
+ Do not include central elements in this list.
229
+
230
+ - ``weights`` -- tuple of nonnegative rational numbers
231
+ (default: ``None``); a list of degrees for this Lie
232
+ conformal algebra.
233
+ The returned Lie conformal algebra is H-Graded. This tuple
234
+ needs to have the same cardinality as ``index_set`` or
235
+ ``names``. Central elements are assumed to have weight `0`.
236
+
237
+ - ``parity`` -- tuple of `0` or `1` (default: tuple of `0`);
238
+ if this is a super Lie conformal algebra, this tuple
239
+ specifies the parity of each of the non-central generators of
240
+ this Lie conformal algebra. Central elements are assumed to
241
+ be even. Notice that if this tuple is present, the category
242
+ of this Lie conformal algebra is set to be a subcategory of
243
+ ``LieConformalAlgebras(R).Super()``, even if all generators
244
+ are even.
245
+
246
+ - ``category`` -- the category that this Lie conformal algebra
247
+ belongs to
248
+
249
+ In addition we accept the following keywords:
250
+
251
+ - ``graded`` -- boolean (default: ``False``);
252
+ if ``True``, the returned algebra is H-Graded.
253
+ If ``weights`` is not specified, all non-central generators
254
+ are assigned degree `1`. This keyword is ignored if
255
+ ``weights`` is specified
256
+
257
+ - ``super`` -- boolean (default: ``False``);
258
+ if ``True``, the returned algebra is a super
259
+ Lie conformal algebra even if all generators are even.
260
+ If ``parity`` is not specified, all generators are
261
+ assigned even parity. This keyword is ignored if
262
+ ``parity`` is specified.
263
+
264
+ .. Note::
265
+
266
+ Any remaining keyword is currently passed to
267
+ :class:`CombinatorialFreeModule<sage.combinat.free_module.CombinatorialFreeModule>`.
268
+
269
+ EXAMPLES:
270
+
271
+ We construct the `\beta-\gamma` system or *Weyl* Lie conformal
272
+ algebra::
273
+
274
+ sage: betagamma_dict = {('b','a'):{0:{('K',0):1}}}
275
+ sage: V = LieConformalAlgebra(QQbar, betagamma_dict, names=('a','b'), weights=(1,0), central_elements=('K',))
276
+ sage: V.category()
277
+ Category of H-graded finitely generated Lie conformal algebras with basis over Algebraic Field
278
+ sage: V.inject_variables()
279
+ Defining a, b, K
280
+ sage: a.bracket(b)
281
+ {0: -K}
282
+
283
+ We construct the current algebra for `\mathfrak{sl}_2`::
284
+
285
+ sage: sl2dict = {('e','f'):{0:{('h',0):1}, 1:{('K',0):1}}, ('e','h'):{0:{('e',0):-2}}, ('f','h'):{0:{('f',0):2}}, ('h', 'h'):{1:{('K', 0):2}}}
286
+ sage: V = LieConformalAlgebra(QQ, sl2dict, names=('e', 'h', 'f'), central_elements=('K',), graded=True)
287
+ sage: V.inject_variables()
288
+ Defining e, h, f, K
289
+ sage: e.bracket(f)
290
+ {0: h, 1: K}
291
+ sage: h.bracket(e)
292
+ {0: 2*e}
293
+ sage: e.bracket(f.T())
294
+ {0: Th, 1: h, 2: 2*K}
295
+ sage: V.category()
296
+ Category of H-graded finitely generated Lie conformal algebras with basis over Rational Field
297
+ sage: e.degree()
298
+ 1
299
+
300
+ .. TODO::
301
+
302
+ This class checks that the provided dictionary is consistent
303
+ with skew-symmetry. It does not check that it is consistent
304
+ with the Jacobi identity.
305
+
306
+ .. SEEALSO::
307
+
308
+ :mod:`sage.algebras.lie_conformal_algebras.graded_lie_conformal_algebra`
309
+ """
310
+ @staticmethod
311
+ def __classcall_private__(cls, R=None, arg0=None, index_set=None,
312
+ central_elements=None, category=None,
313
+ prefix=None, names=None, latex_names=None,
314
+ parity=None, weights=None, **kwds):
315
+ """
316
+ Lie conformal algebra factory.
317
+
318
+ EXAMPLES::
319
+
320
+ sage: betagamma_dict = {('b','a'):{0:{('K',0):1}}}
321
+ sage: V = LieConformalAlgebra(QQ, betagamma_dict, names=('a','b'), weights=(1,0), central_elements=('K',))
322
+ sage: type(V)
323
+ <class 'sage.algebras.lie_conformal_algebras.graded_lie_conformal_algebra.GradedLieConformalAlgebra_with_category'>
324
+ """
325
+ if R not in CommutativeRings():
326
+ raise ValueError(f"arg0 must be a commutative ring got {R}")
327
+
328
+ # This is the only exposed class so we clean keywords here
329
+ known_keywords = ['category', 'prefix', 'bracket', 'latex_bracket',
330
+ 'string_quotes', 'sorting_key', 'graded', 'super']
331
+ for key in kwds:
332
+ if key not in known_keywords:
333
+ raise ValueError("got an unexpected keyword argument '%s'" % key)
334
+
335
+ if isinstance(arg0, dict) and arg0:
336
+ graded = kwds.pop("graded", False)
337
+ if weights is not None or graded:
338
+ from .graded_lie_conformal_algebra import \
339
+ GradedLieConformalAlgebra
340
+ return GradedLieConformalAlgebra(R, Family(arg0),
341
+ index_set=index_set, central_elements=central_elements,
342
+ category=category, prefix=prefix, names=names,
343
+ latex_names=latex_names, parity=parity, weights=weights,
344
+ **kwds)
345
+ else:
346
+ from .lie_conformal_algebra_with_structure_coefs import \
347
+ LieConformalAlgebraWithStructureCoefficients
348
+ return LieConformalAlgebraWithStructureCoefficients(R,
349
+ Family(arg0), index_set=index_set,
350
+ central_elements=central_elements, category=category,
351
+ prefix=prefix, names=names, latex_names=latex_names,
352
+ parity=parity, **kwds)
353
+ raise NotImplementedError("not implemented")