passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,693 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Alternating Central Extension Quantum Onsager Algebra
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2021-03): Initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
# ****************************************************************************
|
|
12
|
+
# Copyright (C) 2021 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
23
|
+
from sage.categories.algebras import Algebras
|
|
24
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
25
|
+
from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid
|
|
26
|
+
from sage.sets.positive_integers import PositiveIntegers
|
|
27
|
+
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
|
|
28
|
+
from sage.sets.family import Family
|
|
29
|
+
from sage.rings.integer_ring import ZZ
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class ACEQuantumOnsagerAlgebra(CombinatorialFreeModule):
|
|
33
|
+
r"""
|
|
34
|
+
The alternating central extension of the `q`-Onsager algebra.
|
|
35
|
+
|
|
36
|
+
The *alternating central extension* `\mathcal{A}_q` of the `q`-Onsager
|
|
37
|
+
algebra `O_q` is a current algebra of `O_q` introduced by Baseilhac
|
|
38
|
+
and Koizumi [BK2005]_. A presentation was given by Baseilhac
|
|
39
|
+
and Shigechi [BS2010]_, which was then reformulated in terms of currents
|
|
40
|
+
in [Ter2021]_ and then used to prove that the generators form a PBW basis.
|
|
41
|
+
|
|
42
|
+
.. NOTE::
|
|
43
|
+
|
|
44
|
+
This is only for the `q`-Onsager algebra with parameter
|
|
45
|
+
`c = q^{-1} (q - q^{-1})^2`.
|
|
46
|
+
|
|
47
|
+
EXAMPLES::
|
|
48
|
+
|
|
49
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
50
|
+
sage: AG = A.algebra_generators()
|
|
51
|
+
|
|
52
|
+
We construct the generators `\mathcal{G}_3`, `\mathcal{W}_{-5}`,
|
|
53
|
+
`\mathcal{W}_2`, and `\widetilde{\mathcal{G}}_{4}` and perform
|
|
54
|
+
some computations::
|
|
55
|
+
|
|
56
|
+
sage: G3 = AG[0,3]
|
|
57
|
+
sage: Wm5 = AG[1,-5]
|
|
58
|
+
sage: W2 = AG[1,2]
|
|
59
|
+
sage: Gt4 = AG[2,4]
|
|
60
|
+
sage: [G3, Wm5, W2, Gt4]
|
|
61
|
+
[G[3], W[-5], W[2], Gt[4]]
|
|
62
|
+
sage: Gt4 * G3
|
|
63
|
+
G[3]*Gt[4] + ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-6]*W[1]
|
|
64
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-5]*W[2]
|
|
65
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[-4]*W[1]
|
|
66
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-4]*W[3]
|
|
67
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-3]*W[-2]
|
|
68
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[-3]*W[2]
|
|
69
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[-2]*W[5]
|
|
70
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-1]*W[4]
|
|
71
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[-1]*W[6]
|
|
72
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[0]*W[5]
|
|
73
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[0]*W[7]
|
|
74
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[3]*W[4]
|
|
75
|
+
sage: Wm5 * G3
|
|
76
|
+
((q^2-1)/q^2)*G[1]*W[-7] + ((-q^2+1)/q^2)*G[1]*W[7]
|
|
77
|
+
+ ((q^2-1)/q^2)*G[2]*W[-6] + ((-q^2+1)/q^2)*G[2]*W[6] + G[3]*W[-5]
|
|
78
|
+
+ ((-q^2+1)/q^2)*G[6]*W[-2] + ((q^2-1)/q^2)*G[6]*W[2]
|
|
79
|
+
+ ((-q^2+1)/q^2)*G[7]*W[-1] + ((q^2-1)/q^2)*G[7]*W[1]
|
|
80
|
+
+ ((-q^2+1)/q^2)*G[8]*W[0] + ((-q^8+2*q^4-1)/q^5)*W[-8]
|
|
81
|
+
+ ((q^8-2*q^4+1)/q^5)*W[8]
|
|
82
|
+
sage: W2 * G3
|
|
83
|
+
(q^2-1)*G[1]*W[-2] + (-q^2+1)*G[1]*W[4] + (-q^2+1)*G[3]*W[0]
|
|
84
|
+
+ q^2*G[3]*W[2] + (q^2-1)*G[4]*W[1] + ((-q^8+2*q^4-1)/q^3)*W[-3]
|
|
85
|
+
+ ((q^8-2*q^4+1)/q^3)*W[5]
|
|
86
|
+
sage: W2 * Wm5
|
|
87
|
+
(q^4/(q^8+2*q^6-2*q^2-1))*G[1]*Gt[6] + (-q^4/(q^8+2*q^6-2*q^2-1))*G[6]*Gt[1]
|
|
88
|
+
+ W[-5]*W[2] + (q/(q^2+1))*G[7] + (-q/(q^2+1))*Gt[7]
|
|
89
|
+
sage: Gt4 * Wm5
|
|
90
|
+
((q^2-1)/q^2)*W[-8]*Gt[1] + ((q^2-1)/q^2)*W[-7]*Gt[2]
|
|
91
|
+
+ ((q^2-1)/q^2)*W[-6]*Gt[3] + W[-5]*Gt[4] + ((-q^2+1)/q^2)*W[-3]*Gt[6]
|
|
92
|
+
+ ((-q^2+1)/q^2)*W[-2]*Gt[7] + ((-q^2+1)/q^2)*W[-1]*Gt[8]
|
|
93
|
+
+ ((-q^2+1)/q^2)*W[0]*Gt[9] + ((q^2-1)/q^2)*W[1]*Gt[8]
|
|
94
|
+
+ ((q^2-1)/q^2)*W[2]*Gt[7] + ((q^2-1)/q^2)*W[3]*Gt[6]
|
|
95
|
+
+ ((-q^2+1)/q^2)*W[6]*Gt[3] + ((-q^2+1)/q^2)*W[7]*Gt[2]
|
|
96
|
+
+ ((-q^2+1)/q^2)*W[8]*Gt[1] + ((-q^8+2*q^4-1)/q^5)*W[-9]
|
|
97
|
+
+ ((q^8-2*q^4+1)/q^5)*W[9]
|
|
98
|
+
sage: Gt4 * W2
|
|
99
|
+
(q^2-1)*W[-3]*Gt[1] + (-q^2+1)*W[0]*Gt[4] + (q^2-1)*W[1]*Gt[5]
|
|
100
|
+
+ q^2*W[2]*Gt[4] + (-q^2+1)*W[5]*Gt[1] + ((-q^8+2*q^4-1)/q^3)*W[-4]
|
|
101
|
+
+ ((q^8-2*q^4+1)/q^3)*W[6]
|
|
102
|
+
|
|
103
|
+
REFERENCES:
|
|
104
|
+
|
|
105
|
+
- [BK2005]_
|
|
106
|
+
- [BS2010]_
|
|
107
|
+
- [Ter2021]_
|
|
108
|
+
"""
|
|
109
|
+
@staticmethod
|
|
110
|
+
def __classcall_private__(cls, R=None, q=None):
|
|
111
|
+
"""
|
|
112
|
+
Normalize input to ensure a unique representation.
|
|
113
|
+
|
|
114
|
+
TESTS::
|
|
115
|
+
|
|
116
|
+
sage: A1 = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
117
|
+
sage: R.<q> = QQ[]
|
|
118
|
+
sage: q = R.gen()
|
|
119
|
+
sage: A2 = algebras.AlternatingCentralExtensionQuantumOnsager(R.fraction_field(), q)
|
|
120
|
+
sage: A1 is A2
|
|
121
|
+
True
|
|
122
|
+
sage: A2.q().parent() is R.fraction_field()
|
|
123
|
+
True
|
|
124
|
+
sage: q = R.fraction_field().gen()
|
|
125
|
+
sage: A3 = algebras.AlternatingCentralExtensionQuantumOnsager(q=q)
|
|
126
|
+
sage: A1 is A3
|
|
127
|
+
True
|
|
128
|
+
"""
|
|
129
|
+
if q is None:
|
|
130
|
+
if R is None:
|
|
131
|
+
raise ValueError("either base ring or q must be specified")
|
|
132
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
133
|
+
q = PolynomialRing(R, 'q').fraction_field().gen()
|
|
134
|
+
R = q.parent()
|
|
135
|
+
else:
|
|
136
|
+
if R is None:
|
|
137
|
+
R = q.parent()
|
|
138
|
+
else:
|
|
139
|
+
q = R(q)
|
|
140
|
+
return super().__classcall__(cls, R, q)
|
|
141
|
+
|
|
142
|
+
def __init__(self, R, q):
|
|
143
|
+
r"""
|
|
144
|
+
Initialize ``self``.
|
|
145
|
+
|
|
146
|
+
TESTS::
|
|
147
|
+
|
|
148
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
149
|
+
sage: TestSuite(A).run() # long time
|
|
150
|
+
"""
|
|
151
|
+
I = DisjointUnionEnumeratedSets([PositiveIntegers(), ZZ, PositiveIntegers()],
|
|
152
|
+
keepkey=True, facade=True)
|
|
153
|
+
monomials = IndexedFreeAbelianMonoid(I, prefix='A', bracket=False)
|
|
154
|
+
self._q = q
|
|
155
|
+
CombinatorialFreeModule.__init__(self, R, monomials,
|
|
156
|
+
prefix='', bracket=False, latex_bracket=False,
|
|
157
|
+
sorting_key=self._monomial_key,
|
|
158
|
+
category=Algebras(R).WithBasis().Filtered())
|
|
159
|
+
|
|
160
|
+
def _monomial_key(self, x):
|
|
161
|
+
r"""
|
|
162
|
+
Compute the key for ``x`` so that the comparison is done by
|
|
163
|
+
reverse degree lexicographic order.
|
|
164
|
+
|
|
165
|
+
EXAMPLES::
|
|
166
|
+
|
|
167
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
168
|
+
sage: AG = A.algebra_generators()
|
|
169
|
+
sage: AG[1,1] * AG[1,0] * AG[0,1] # indirect doctest
|
|
170
|
+
G[1]*W[0]*W[1] + (q/(q^2+1))*G[1]^2 + (-q/(q^2+1))*G[1]*Gt[1]
|
|
171
|
+
+ ((-q^8+2*q^4-1)/q^5)*W[-1]*W[1] + ((-q^8+2*q^4-1)/q^5)*W[0]^2
|
|
172
|
+
+ ((q^8-2*q^4+1)/q^5)*W[0]*W[2] + ((q^8-2*q^4+1)/q^5)*W[1]^2
|
|
173
|
+
"""
|
|
174
|
+
return (-len(x), x.to_word_list())
|
|
175
|
+
|
|
176
|
+
def _repr_(self):
|
|
177
|
+
r"""
|
|
178
|
+
Return a string representation of ``self``.
|
|
179
|
+
|
|
180
|
+
EXAMPLES::
|
|
181
|
+
|
|
182
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
183
|
+
sage: A
|
|
184
|
+
Alternating Central Extension of q-Onsager algebra over Fraction
|
|
185
|
+
Field of Univariate Polynomial Ring in q over Rational Field
|
|
186
|
+
"""
|
|
187
|
+
return "Alternating Central Extension of {}-Onsager algebra over {}".format(
|
|
188
|
+
self._q, self.base_ring())
|
|
189
|
+
|
|
190
|
+
def _latex_(self):
|
|
191
|
+
r"""
|
|
192
|
+
Return a latex representation of ``self``.
|
|
193
|
+
|
|
194
|
+
EXAMPLES::
|
|
195
|
+
|
|
196
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
197
|
+
sage: latex(A)
|
|
198
|
+
\mathcal{A}_{q,\mathrm{Frac}(\Bold{Q}[q])}
|
|
199
|
+
"""
|
|
200
|
+
from sage.misc.latex import latex
|
|
201
|
+
return "\\mathcal{{A}}_{{{},{}}}".format(latex(self._q),
|
|
202
|
+
latex(self.base_ring()))
|
|
203
|
+
|
|
204
|
+
def _repr_term(self, m):
|
|
205
|
+
r"""
|
|
206
|
+
Return a string representation of the term indexed by ``m``.
|
|
207
|
+
|
|
208
|
+
EXAMPLES::
|
|
209
|
+
|
|
210
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
211
|
+
sage: I = A._indices.gens()
|
|
212
|
+
sage: A._repr_term(I[0,3])
|
|
213
|
+
'G[3]'
|
|
214
|
+
sage: A._repr_term(I[1,-2])
|
|
215
|
+
'W[-2]'
|
|
216
|
+
sage: A._repr_term(I[1,3])
|
|
217
|
+
'W[3]'
|
|
218
|
+
sage: A._repr_term(I[2,5])
|
|
219
|
+
'Gt[5]'
|
|
220
|
+
sage: A._repr_term(I[0,1]^2 * I[1,0] * I[1,3]^13 * I[2,3])
|
|
221
|
+
'G[1]^2*W[0]*W[3]^13*Gt[3]'
|
|
222
|
+
"""
|
|
223
|
+
def to_str(x):
|
|
224
|
+
k, e = x
|
|
225
|
+
if k[0] == 0:
|
|
226
|
+
ret = "G[{}]".format(k[1])
|
|
227
|
+
elif k[0] == 1:
|
|
228
|
+
ret = "W[{}]".format(k[1])
|
|
229
|
+
elif k[0] == 2:
|
|
230
|
+
ret = "Gt[{}]".format(k[1])
|
|
231
|
+
if e > 1:
|
|
232
|
+
ret = ret + "^{}".format(e)
|
|
233
|
+
return ret
|
|
234
|
+
return '*'.join(to_str(x) for x in m._sorted_items())
|
|
235
|
+
|
|
236
|
+
def _latex_term(self, m):
|
|
237
|
+
r"""
|
|
238
|
+
Return a latex representation of the term indexed by ``m``.
|
|
239
|
+
|
|
240
|
+
EXAMPLES::
|
|
241
|
+
|
|
242
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
243
|
+
sage: I = A._indices.gens()
|
|
244
|
+
sage: A._latex_term(I[0,3])
|
|
245
|
+
'\\mathcal{G}_{3}'
|
|
246
|
+
sage: A._latex_term(I[1,-2])
|
|
247
|
+
'\\mathcal{W}_{-2}'
|
|
248
|
+
sage: A._latex_term(I[1,3])
|
|
249
|
+
'\\mathcal{W}_{3}'
|
|
250
|
+
sage: A._latex_term(I[2,5])
|
|
251
|
+
'\\widetilde{\\mathcal{G}}_{5}'
|
|
252
|
+
sage: A._latex_term(I[0,1]^2 * I[1,0] * I[1,3]^13 * I[2,3])
|
|
253
|
+
'\\mathcal{G}_{1}^{2} \\mathcal{W}_{0} \\mathcal{W}_{3}^{13} \\widetilde{\\mathcal{G}}_{3}'
|
|
254
|
+
"""
|
|
255
|
+
def to_str(x):
|
|
256
|
+
k, e = x
|
|
257
|
+
if k[0] == 0:
|
|
258
|
+
ret = "\\mathcal{{G}}_{{{}}}".format(k[1])
|
|
259
|
+
elif k[0] == 1:
|
|
260
|
+
ret = "\\mathcal{{W}}_{{{}}}".format(k[1])
|
|
261
|
+
elif k[0] == 2:
|
|
262
|
+
ret = "\\widetilde{{\\mathcal{{G}}}}_{{{}}}".format(k[1])
|
|
263
|
+
if e > 1:
|
|
264
|
+
ret = ret + '^{{{}}}'.format(e)
|
|
265
|
+
return ret
|
|
266
|
+
return ' '.join(to_str(x) for x in m._sorted_items())
|
|
267
|
+
|
|
268
|
+
@cached_method
|
|
269
|
+
def algebra_generators(self):
|
|
270
|
+
r"""
|
|
271
|
+
Return the algebra generators of ``self``.
|
|
272
|
+
|
|
273
|
+
EXAMPLES::
|
|
274
|
+
|
|
275
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
276
|
+
sage: A.algebra_generators()
|
|
277
|
+
Lazy family (generator map(i))_{i in Disjoint union of
|
|
278
|
+
Family (Positive integers, Integer Ring, Positive integers)}
|
|
279
|
+
"""
|
|
280
|
+
G = self._indices.gens()
|
|
281
|
+
q = self._q
|
|
282
|
+
|
|
283
|
+
def monomial_map(x):
|
|
284
|
+
if x[0] != 1 and x[1] == 0:
|
|
285
|
+
return self.term(self.one_basis(), -(q-~q)*(q+~q)**2)
|
|
286
|
+
return self.monomial(G[x])
|
|
287
|
+
return Family(self._indices._indices, monomial_map,
|
|
288
|
+
name="generator map")
|
|
289
|
+
|
|
290
|
+
gens = algebra_generators
|
|
291
|
+
|
|
292
|
+
def q(self):
|
|
293
|
+
r"""
|
|
294
|
+
Return the parameter `q` of ``self``.
|
|
295
|
+
|
|
296
|
+
EXAMPLES::
|
|
297
|
+
|
|
298
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
299
|
+
sage: A.q()
|
|
300
|
+
q
|
|
301
|
+
"""
|
|
302
|
+
return self._q
|
|
303
|
+
|
|
304
|
+
@cached_method
|
|
305
|
+
def one_basis(self):
|
|
306
|
+
r"""
|
|
307
|
+
Return the basis element indexing `1`.
|
|
308
|
+
|
|
309
|
+
EXAMPLES::
|
|
310
|
+
|
|
311
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
312
|
+
sage: ob = A.one_basis(); ob
|
|
313
|
+
1
|
|
314
|
+
sage: ob.parent()
|
|
315
|
+
Free abelian monoid indexed by Disjoint union of
|
|
316
|
+
Family (Positive integers, Integer Ring, Positive integers)
|
|
317
|
+
"""
|
|
318
|
+
return self._indices.one()
|
|
319
|
+
|
|
320
|
+
def _an_element_(self):
|
|
321
|
+
r"""
|
|
322
|
+
Return an element of ``self``.
|
|
323
|
+
|
|
324
|
+
EXAMPLES::
|
|
325
|
+
|
|
326
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
327
|
+
sage: A.an_element()
|
|
328
|
+
q*G[2] - 2*W[-3] + W[2] - q*Gt[1]
|
|
329
|
+
"""
|
|
330
|
+
G = self.algebra_generators()
|
|
331
|
+
return G[1,2] - 2*G[1,-3] + self.base_ring().an_element()*(G[0,2] - G[2,1])
|
|
332
|
+
|
|
333
|
+
def some_elements(self):
|
|
334
|
+
r"""
|
|
335
|
+
Return some elements of ``self``.
|
|
336
|
+
|
|
337
|
+
EXAMPLES::
|
|
338
|
+
|
|
339
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
340
|
+
sage: A.some_elements()
|
|
341
|
+
[W[0], W[3], W[-1], W[1], W[-2], G[1], G[2], Gt[1], Gt[2]]
|
|
342
|
+
"""
|
|
343
|
+
G = self.algebra_generators()
|
|
344
|
+
return [G[1,0], G[1,3], G[1,-1], G[1,1], G[1,-2], G[0,1], G[0,2], G[2,1], G[2,2]]
|
|
345
|
+
|
|
346
|
+
def degree_on_basis(self, m):
|
|
347
|
+
r"""
|
|
348
|
+
Return the degree of the basis element indexed by ``m``.
|
|
349
|
+
|
|
350
|
+
EXAMPLES::
|
|
351
|
+
|
|
352
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
353
|
+
sage: G = A.algebra_generators()
|
|
354
|
+
sage: A.degree_on_basis(G[0,1].leading_support())
|
|
355
|
+
2
|
|
356
|
+
sage: A.degree_on_basis(G[0,2].leading_support())
|
|
357
|
+
4
|
|
358
|
+
sage: A.degree_on_basis(G[1,-1].leading_support())
|
|
359
|
+
3
|
|
360
|
+
sage: A.degree_on_basis(G[1,0].leading_support())
|
|
361
|
+
1
|
|
362
|
+
sage: A.degree_on_basis(G[1,1].leading_support())
|
|
363
|
+
1
|
|
364
|
+
sage: A.degree_on_basis(G[2,1].leading_support())
|
|
365
|
+
2
|
|
366
|
+
sage: A.degree_on_basis(G[2,2].leading_support())
|
|
367
|
+
4
|
|
368
|
+
sage: [x.degree() for x in A.some_elements()]
|
|
369
|
+
[1, 5, 3, 1, 5, 2, 4, 2, 4]
|
|
370
|
+
"""
|
|
371
|
+
def deg(k):
|
|
372
|
+
if k[0] != 1:
|
|
373
|
+
return 2*k[1]
|
|
374
|
+
return -2*k[1]+1 if k[1] <= 0 else 2*k[1] - 1
|
|
375
|
+
return ZZ.sum(deg(k) * c for k, c in m._monomial.items())
|
|
376
|
+
|
|
377
|
+
@cached_method
|
|
378
|
+
def quantum_onsager_pbw_generator(self, i):
|
|
379
|
+
r"""
|
|
380
|
+
Return the image of the PBW generator of the `q`-Onsager algebra
|
|
381
|
+
in ``self``.
|
|
382
|
+
|
|
383
|
+
INPUT:
|
|
384
|
+
|
|
385
|
+
- ``i`` -- a pair ``(k, m)`` such that
|
|
386
|
+
|
|
387
|
+
* ``k=0`` and ``m`` is an integer
|
|
388
|
+
* ``k=1`` and ``m`` is a positive integer
|
|
389
|
+
|
|
390
|
+
EXAMPLES::
|
|
391
|
+
|
|
392
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
393
|
+
sage: A.quantum_onsager_pbw_generator((0,0))
|
|
394
|
+
W[1]
|
|
395
|
+
sage: A.quantum_onsager_pbw_generator((0,1))
|
|
396
|
+
(q^3/(q^4-1))*W[1]*Gt[1] - q^2*W[0] + (q^2+1)*W[2]
|
|
397
|
+
sage: A.quantum_onsager_pbw_generator((0,2))
|
|
398
|
+
(q^6/(q^8-2*q^4+1))*W[1]*Gt[1]^2 + (-q^5/(q^4-1))*W[0]*Gt[1]
|
|
399
|
+
+ (q^3/(q^2-1))*W[1]*Gt[2] + (q^3/(q^2-1))*W[2]*Gt[1]
|
|
400
|
+
+ (-q^4-q^2)*W[-1] - q^2*W[1] + (q^4+2*q^2+1)*W[3]
|
|
401
|
+
sage: A.quantum_onsager_pbw_generator((0,-1))
|
|
402
|
+
W[0]
|
|
403
|
+
sage: A.quantum_onsager_pbw_generator((0,-2))
|
|
404
|
+
(q/(q^4-1))*W[0]*Gt[1] + ((q^2+1)/q^2)*W[-1] - 1/q^2*W[1]
|
|
405
|
+
sage: A.quantum_onsager_pbw_generator((0,-3))
|
|
406
|
+
(q^2/(q^8-2*q^4+1))*W[0]*Gt[1]^2 + (1/(q^3-q))*W[-1]*Gt[1]
|
|
407
|
+
+ (1/(q^3-q))*W[0]*Gt[2] - (1/(q^5-q))*W[1]*Gt[1]
|
|
408
|
+
+ ((q^4+2*q^2+1)/q^4)*W[-2] - 1/q^2*W[0] + ((-q^2-1)/q^4)*W[2]
|
|
409
|
+
sage: A.quantum_onsager_pbw_generator((1,1))
|
|
410
|
+
((-q^2+1)/q^2)*W[0]*W[1] + (1/(q^3+q))*G[1] - (1/(q^3+q))*Gt[1]
|
|
411
|
+
sage: A.quantum_onsager_pbw_generator((1,2))
|
|
412
|
+
-1/q*W[0]*W[1]*Gt[1] + (1/(q^6+q^4-q^2-1))*G[1]*Gt[1]
|
|
413
|
+
+ ((-q^4+1)/q^4)*W[-1]*W[1] + (q^2-1)*W[0]^2
|
|
414
|
+
+ ((-q^4+1)/q^2)*W[0]*W[2] + ((q^2-1)/q^4)*W[1]^2
|
|
415
|
+
- (1/(q^6+q^4-q^2-1))*Gt[1]^2 + 1/q^3*G[2] - 1/q^3*Gt[2]
|
|
416
|
+
"""
|
|
417
|
+
W0 = self.algebra_generators()[1,0]
|
|
418
|
+
W1 = self.algebra_generators()[1,1]
|
|
419
|
+
q = self._q
|
|
420
|
+
if i[0] == 0:
|
|
421
|
+
if i[1] < 0:
|
|
422
|
+
if i[1] == -1:
|
|
423
|
+
return W0
|
|
424
|
+
Bd = self.quantum_onsager_pbw_generator((1, 1))
|
|
425
|
+
Bm1 = self.quantum_onsager_pbw_generator((0, i[1]+1))
|
|
426
|
+
Bm2 = self.quantum_onsager_pbw_generator((0, i[1]+2))
|
|
427
|
+
return Bm2 + q/(q**-3-~q-q+q**3) * (Bd * Bm1 - Bm1 * Bd)
|
|
428
|
+
else:
|
|
429
|
+
if i[1] == 0:
|
|
430
|
+
return W1
|
|
431
|
+
Bd = self.quantum_onsager_pbw_generator((1, 1))
|
|
432
|
+
Bm1 = self.quantum_onsager_pbw_generator((0, i[1]-1))
|
|
433
|
+
Bm2 = self.quantum_onsager_pbw_generator((0, i[1]-2))
|
|
434
|
+
return Bm2 - q/(q**-3-~q-q+q**3) * (Bd * Bm1 - Bm1 * Bd)
|
|
435
|
+
elif i[0] == 1:
|
|
436
|
+
if i[1] == 1:
|
|
437
|
+
return q**-2 * W1 * W0 - W0 * W1
|
|
438
|
+
if i[1] <= 0:
|
|
439
|
+
raise ValueError("not an index of a PBW basis element")
|
|
440
|
+
B = self.quantum_onsager_pbw_generator
|
|
441
|
+
n = i[1]
|
|
442
|
+
Bm1 = self.quantum_onsager_pbw_generator((0, n-1))
|
|
443
|
+
return (q**-2 * Bm1 * W0 - W0 * Bm1
|
|
444
|
+
+ (q**-2 - 1) * sum(B((0,ell)) * B((0,n-ell-2))
|
|
445
|
+
for ell in range(n-1)))
|
|
446
|
+
raise ValueError("not an index of a PBW basis element")
|
|
447
|
+
|
|
448
|
+
@cached_method
|
|
449
|
+
def product_on_basis(self, lhs, rhs):
|
|
450
|
+
r"""
|
|
451
|
+
Return the product of the two basis elements ``lhs`` and ``rhs``.
|
|
452
|
+
|
|
453
|
+
EXAMPLES::
|
|
454
|
+
|
|
455
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
456
|
+
sage: G = A.algebra_generators()
|
|
457
|
+
sage: q = A.q()
|
|
458
|
+
sage: rho = -(q^2 - q^-2)^2
|
|
459
|
+
|
|
460
|
+
We verify the PBW ordering::
|
|
461
|
+
|
|
462
|
+
sage: G[0,1] * G[1,1] # indirect doctest
|
|
463
|
+
G[1]*W[1]
|
|
464
|
+
sage: G[1,1] * G[0,1]
|
|
465
|
+
q^2*G[1]*W[1] + ((-q^8+2*q^4-1)/q^3)*W[0] + ((q^8-2*q^4+1)/q^3)*W[2]
|
|
466
|
+
sage: G[1,-1] * G[1,1]
|
|
467
|
+
W[-1]*W[1]
|
|
468
|
+
sage: G[1,1] * G[1,-1]
|
|
469
|
+
W[-1]*W[1] + (q/(q^2+1))*G[2] + (-q/(q^2+1))*Gt[2]
|
|
470
|
+
sage: G[1,1] * G[2,1]
|
|
471
|
+
W[1]*Gt[1]
|
|
472
|
+
sage: G[2,1] * G[1,1]
|
|
473
|
+
q^2*W[1]*Gt[1] + ((-q^8+2*q^4-1)/q^3)*W[0] + ((q^8-2*q^4+1)/q^3)*W[2]
|
|
474
|
+
sage: G[0,1] * G[2,1]
|
|
475
|
+
G[1]*Gt[1]
|
|
476
|
+
sage: G[2,1] * G[0,1]
|
|
477
|
+
G[1]*Gt[1] + ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-1]*W[1]
|
|
478
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[0]^2
|
|
479
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[0]*W[2]
|
|
480
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[1]^2
|
|
481
|
+
|
|
482
|
+
We verify some of the defining relations (see Equations (3-14)
|
|
483
|
+
in [Ter2021]_), which are used to construct the PBW basis::
|
|
484
|
+
|
|
485
|
+
sage: G[0,1] * G[0,2] == G[0,2] * G[0,1]
|
|
486
|
+
True
|
|
487
|
+
sage: G[1,-1] * G[1,-2] == G[1,-2] * G[1,-1]
|
|
488
|
+
True
|
|
489
|
+
sage: G[1,1] * G[1,2] == G[1,2] * G[1,1]
|
|
490
|
+
True
|
|
491
|
+
sage: G[2,1] * G[2,2] == G[2,2] * G[2,1]
|
|
492
|
+
True
|
|
493
|
+
sage: G[1,0] * G[1,2] - G[1,2] * G[1,0] == G[1,-1] * G[1,1] - G[1,1] * G[1,-1]
|
|
494
|
+
True
|
|
495
|
+
sage: G[1,0] * G[1,2] - G[1,2] * G[1,0] == (G[2,2] - G[0,2]) / (q + ~q)
|
|
496
|
+
True
|
|
497
|
+
sage: q * G[1,0] * G[0,2] - ~q * G[0,2] * G[1,0] == q * G[2,2] * G[1,0] - ~q * G[1,0] * G[2,2]
|
|
498
|
+
True
|
|
499
|
+
sage: q * G[1,0] * G[0,2] - ~q * G[0,2] * G[1,0] == rho * G[1,-2] - rho * G[1,2]
|
|
500
|
+
True
|
|
501
|
+
sage: q * G[0,2] * G[1,1] - ~q * G[1,1] * G[0,2] == q * G[1,1] * G[2,2] - ~q * G[2,2] * G[1,1]
|
|
502
|
+
True
|
|
503
|
+
sage: q * G[0,2] * G[1,1] - ~q * G[1,1] * G[0,2] == rho * G[1,3] - rho * G[1,-1]
|
|
504
|
+
True
|
|
505
|
+
sage: G[1,-2] * G[1,2] - G[1,2] * G[1,-2] == G[1,-1] * G[1,3] - G[1,3] * G[1,-1]
|
|
506
|
+
True
|
|
507
|
+
sage: G[1,-2] * G[0,2] - G[0,2] * G[1,-2] == G[1,-1] * G[0,3] - G[0,3] * G[1,-1]
|
|
508
|
+
True
|
|
509
|
+
sage: G[1,1] * G[0,2] - G[0,2] * G[1,1] == G[1,2] * G[0,1] - G[0,1] * G[1,2]
|
|
510
|
+
True
|
|
511
|
+
sage: G[1,-2] * G[2,2] - G[2,2] * G[1,-2] == G[1,-1] * G[2,3] - G[2,3] * G[1,-1]
|
|
512
|
+
True
|
|
513
|
+
sage: G[1,1] * G[2,2] - G[2,2] * G[1,1] == G[1,2] * G[2,1] - G[2,1] * G[1,2]
|
|
514
|
+
True
|
|
515
|
+
sage: G[0,1] * G[2,2] - G[2,2] * G[0,1] == G[0,2] * G[2,1] - G[2,1] * G[0,2]
|
|
516
|
+
True
|
|
517
|
+
"""
|
|
518
|
+
# Some trivial base cases
|
|
519
|
+
if lhs == self.one_basis():
|
|
520
|
+
return self.monomial(rhs)
|
|
521
|
+
if rhs == self.one_basis():
|
|
522
|
+
return self.monomial(lhs)
|
|
523
|
+
|
|
524
|
+
I = self._indices
|
|
525
|
+
B = I.gens()
|
|
526
|
+
q = self._q
|
|
527
|
+
kl = lhs.trailing_support()
|
|
528
|
+
kr = rhs.leading_support()
|
|
529
|
+
if kl <= kr:
|
|
530
|
+
return self.monomial(lhs * rhs)
|
|
531
|
+
|
|
532
|
+
A = self.algebra_generators()
|
|
533
|
+
|
|
534
|
+
# Create the commutator
|
|
535
|
+
# We have xy - yx = [x, y] -> xy = yx + LOT for x > y
|
|
536
|
+
if kl[0] == kr[0]:
|
|
537
|
+
# Commuting elements
|
|
538
|
+
if kl[0] != 1 or (kl[1] > 0 and kr[1] > 0) or (kl[1] <= 0 and kr[1] <= 0):
|
|
539
|
+
return self.monomial(lhs * B[kr]) * self.monomial(rhs // B[kr])
|
|
540
|
+
|
|
541
|
+
# relation (ii)
|
|
542
|
+
i = kl[1] - 1
|
|
543
|
+
j = -kr[1]
|
|
544
|
+
denom = (q**2 - q**-2) * (q + q**-1)**2
|
|
545
|
+
terms = A[1,-j]*A[1,i+1] + self.sum(A[0,ell]*A[2,i+j+1-ell] - A[0,i+j+1-ell]*A[2,ell] for ell in range(min(i,j)+1)) / denom
|
|
546
|
+
elif kl[0] == 2 and kr[0] == 0:
|
|
547
|
+
# relation (iii)
|
|
548
|
+
i = kl[1] - 1
|
|
549
|
+
j = kr[1] - 1
|
|
550
|
+
coeff = (q**2 - q**-2)**3
|
|
551
|
+
terms = (A[0,j+1]*A[2,i+1] - coeff * A[1,-i]*A[1,-j] + coeff * A[1,i+1]*A[1,j+1]
|
|
552
|
+
+ coeff * sum(A[1,-ell]*A[1,i+j+2-ell] - A[1,ell-1-i-j]*A[1,ell+1] for ell in range(min(i,j)+1))
|
|
553
|
+
- coeff * sum(A[1,1-ell]*A[1,i+j+1-ell] - A[1,ell-i-j]*A[1,ell] for ell in range(1, min(i,j)+1)))
|
|
554
|
+
elif kl[0] == 1 and kr[0] == 0:
|
|
555
|
+
if kl[1] > 0:
|
|
556
|
+
# relation (vi)
|
|
557
|
+
i = kl[1] - 1
|
|
558
|
+
j = kr[1] - 1
|
|
559
|
+
coeff = q * (q - ~q)
|
|
560
|
+
terms = (A[0,j+1]*A[1,i+1] + coeff * sum(A[0,ell]*A[1,ell-i-j] for ell in range(min(i,j)+1))
|
|
561
|
+
+ coeff * sum(A[0,i+j+1-ell]*A[1,ell+1] - A[0,ell]*A[1,i+j+2-ell] for ell in range(min(i,j)+1))
|
|
562
|
+
- coeff * sum(A[0,i+j+1-ell]*A[1,1-ell] for ell in range(1, min(i,j)+1)))
|
|
563
|
+
else:
|
|
564
|
+
# relation (v)
|
|
565
|
+
i = -kl[1]
|
|
566
|
+
j = kr[1] - 1
|
|
567
|
+
coeff = ~q * (q - ~q)
|
|
568
|
+
terms = (A[0,j+1]*A[1,-i] - coeff * sum(A[0,ell]*A[1,i+j+1-ell] for ell in range(min(i,j)+1))
|
|
569
|
+
+ coeff * sum(A[0,ell]*A[1,ell-1-i-j] - A[0,i+j+1-ell]*A[1,-ell] for ell in range(min(i,j)+1))
|
|
570
|
+
+ coeff * sum(A[0,i+j+1-ell]*A[1,ell] for ell in range(1, min(i,j)+1)))
|
|
571
|
+
elif kl[0] == 2 and kr[0] == 1:
|
|
572
|
+
if kr[1] > 0:
|
|
573
|
+
# relation (vi)
|
|
574
|
+
i = kl[1] - 1
|
|
575
|
+
j = kr[1] - 1
|
|
576
|
+
coeff = q * (q - ~q)
|
|
577
|
+
terms = (A[1,j+1]*A[2,i+1] + coeff * sum(A[1,ell-i-j]*A[2,ell] for ell in range(min(i,j)+1))
|
|
578
|
+
+ coeff * sum(A[1,ell+1]*A[2,i+j+1-ell] - A[1,i+j+2-ell]*A[2,ell] for ell in range(min(i,j)+1))
|
|
579
|
+
- coeff * sum(A[1,1-ell]*A[2,i+j+1-ell] for ell in range(1, min(i,j)+1)))
|
|
580
|
+
else:
|
|
581
|
+
# relation (vii)
|
|
582
|
+
i = kl[1] - 1
|
|
583
|
+
j = -kr[1]
|
|
584
|
+
coeff = ~q * (q - ~q)
|
|
585
|
+
terms = (A[1,-j]*A[2,i+1] - coeff * sum(A[1,i+j+1-ell]*A[2,ell] for ell in range(min(i,j)+1))
|
|
586
|
+
+ coeff * sum(A[1,ell-1-i-j]*A[2,ell] - A[1,-ell]*A[2,i+j+1-ell] for ell in range(min(i,j)+1))
|
|
587
|
+
+ coeff * sum(A[1,ell]*A[2,i+j+1-ell] for ell in range(1, min(i,j)+1)))
|
|
588
|
+
|
|
589
|
+
return self.monomial(lhs // B[kl]) * terms * self.monomial(rhs // B[kr])
|
|
590
|
+
|
|
591
|
+
def _sigma_on_basis(self, x):
|
|
592
|
+
r"""
|
|
593
|
+
Return the action of the `\sigma` automorphism on the basis element
|
|
594
|
+
indexed by ``x``.
|
|
595
|
+
|
|
596
|
+
EXAMPLES::
|
|
597
|
+
|
|
598
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
599
|
+
sage: I = A._indices.monoid_generators()
|
|
600
|
+
sage: A._sigma_on_basis(I[1,-1] * I[1,1])
|
|
601
|
+
W[0]*W[2] + (q/(q^2+1))*G[2] + (-q/(q^2+1))*Gt[2]
|
|
602
|
+
sage: A._sigma_on_basis(I[0,1] * I[2,1])
|
|
603
|
+
G[1]*Gt[1] + ((-q^12+3*q^8-3*q^4+1)/q^6)*W[-1]*W[1]
|
|
604
|
+
+ ((-q^12+3*q^8-3*q^4+1)/q^6)*W[0]^2
|
|
605
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[0]*W[2]
|
|
606
|
+
+ ((q^12-3*q^8+3*q^4-1)/q^6)*W[1]^2
|
|
607
|
+
sage: [(x, A.sigma(x)) for x in A.some_elements()]
|
|
608
|
+
[(W[0], W[1]), (W[3], W[-2]), (W[-1], W[2]), (W[1], W[0]),
|
|
609
|
+
(W[-2], W[3]), (G[1], Gt[1]), (G[2], Gt[2]), (Gt[1], G[1]),
|
|
610
|
+
(Gt[2], G[2])]
|
|
611
|
+
"""
|
|
612
|
+
def tw(m):
|
|
613
|
+
if m[0] == 0:
|
|
614
|
+
return (2, m[1])
|
|
615
|
+
if m[0] == 1:
|
|
616
|
+
return (1, -m[1]+1)
|
|
617
|
+
if m[0] == 2:
|
|
618
|
+
return (0, m[1])
|
|
619
|
+
A = self.algebra_generators()
|
|
620
|
+
return self.prod(A[tw(m)]**e for m,e in x._sorted_items())
|
|
621
|
+
|
|
622
|
+
def _dagger_on_basis(self, x):
|
|
623
|
+
r"""
|
|
624
|
+
Return the action of the `\dagger` antiautomorphism on the basis element
|
|
625
|
+
indexed by ``x``.
|
|
626
|
+
|
|
627
|
+
EXAMPLES::
|
|
628
|
+
|
|
629
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
630
|
+
sage: I = A._indices.monoid_generators()
|
|
631
|
+
sage: A._dagger_on_basis(I[0,1] * I[1,-1] * I[2,1])
|
|
632
|
+
G[1]*W[-1]*Gt[1]
|
|
633
|
+
sage: A._dagger_on_basis(I[1,-1] * I[1,1])
|
|
634
|
+
W[-1]*W[1] + (q/(q^2+1))*G[2] + (-q/(q^2+1))*Gt[2]
|
|
635
|
+
sage: A._dagger_on_basis(I[0,1] * I[1,-1] * I[1,2] * I[2,1])
|
|
636
|
+
(q^4/(q^8+2*q^6-2*q^2-1))*G[1]^2*Gt[1]*Gt[2]
|
|
637
|
+
+ (-q^4/(q^8+2*q^6-2*q^2-1))*G[1]*G[2]*Gt[1]^2
|
|
638
|
+
+ G[1]*W[-1]*W[2]*Gt[1] + (q/(q^2+1))*G[1]*G[3]*Gt[1]
|
|
639
|
+
+ (-q/(q^2+1))*G[1]*Gt[1]*Gt[3]
|
|
640
|
+
sage: [(x, A.dagger(x)) for x in A.some_elements()]
|
|
641
|
+
[(W[0], W[0]), (W[3], W[3]), (W[-1], W[-1]), (W[1], W[1]),
|
|
642
|
+
(W[-2], W[-2]), (G[1], Gt[1]), (G[2], Gt[2]), (Gt[1], G[1]),
|
|
643
|
+
(Gt[2], G[2])]
|
|
644
|
+
"""
|
|
645
|
+
def tw(m):
|
|
646
|
+
if m[0] == 0:
|
|
647
|
+
return (2, m[1])
|
|
648
|
+
if m[0] == 1:
|
|
649
|
+
return (1, m[1])
|
|
650
|
+
if m[0] == 2:
|
|
651
|
+
return (0, m[1])
|
|
652
|
+
A = self.algebra_generators()
|
|
653
|
+
return self.prod(A[tw(m)]**e for m,e in reversed(x._sorted_items()))
|
|
654
|
+
|
|
655
|
+
@lazy_attribute
|
|
656
|
+
def sigma(self):
|
|
657
|
+
r"""
|
|
658
|
+
The automorphism `\sigma`.
|
|
659
|
+
|
|
660
|
+
EXAMPLES::
|
|
661
|
+
|
|
662
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
663
|
+
sage: G = A.algebra_generators()
|
|
664
|
+
sage: x = A.an_element()^2
|
|
665
|
+
sage: A.sigma(A.sigma(x)) == x
|
|
666
|
+
True
|
|
667
|
+
sage: A.sigma(G[1,-1] * G[1,1]) == A.sigma(G[1,-1]) * A.sigma(G[1,1])
|
|
668
|
+
True
|
|
669
|
+
sage: A.sigma(G[0,2] * G[1,3]) == A.sigma(G[0,2]) * A.sigma(G[1,3])
|
|
670
|
+
True
|
|
671
|
+
"""
|
|
672
|
+
return self.module_morphism(self._sigma_on_basis, codomain=self, category=self.category())
|
|
673
|
+
|
|
674
|
+
@lazy_attribute
|
|
675
|
+
def dagger(self):
|
|
676
|
+
r"""
|
|
677
|
+
The antiautomorphism `\dagger`.
|
|
678
|
+
|
|
679
|
+
EXAMPLES::
|
|
680
|
+
|
|
681
|
+
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
|
|
682
|
+
sage: G = A.algebra_generators()
|
|
683
|
+
sage: x = A.an_element()^2
|
|
684
|
+
sage: A.dagger(A.dagger(x)) == x
|
|
685
|
+
True
|
|
686
|
+
sage: A.dagger(G[1,-1] * G[1,1]) == A.dagger(G[1,1]) * A.dagger(G[1,-1])
|
|
687
|
+
True
|
|
688
|
+
sage: A.dagger(G[0,2] * G[1,3]) == A.dagger(G[1,3]) * A.dagger(G[0,2])
|
|
689
|
+
True
|
|
690
|
+
sage: A.dagger(G[2,2] * G[1,3]) == A.dagger(G[1,3]) * A.dagger(G[2,2])
|
|
691
|
+
True
|
|
692
|
+
"""
|
|
693
|
+
return self.module_morphism(self._dagger_on_basis, codomain=self)
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
"""
|
|
3
|
+
Quantum Groups
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from sage.misc.lazy_import import lazy_import
|
|
7
|
+
lazy_import('sage.algebras.quantum_groups.fock_space', 'FockSpace')
|
|
8
|
+
lazy_import('sage.algebras.quantum_groups.quantum_group_gap', 'QuantumGroup')
|
|
9
|
+
del lazy_import
|