passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,623 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Quantum Oscillator Algebras
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2023-12): initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
#*****************************************************************************
|
|
12
|
+
# Copyright (C) 2023 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
#*****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
from sage.misc.misc_c import prod
|
|
23
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
24
|
+
from sage.rings.integer_ring import ZZ
|
|
25
|
+
from sage.categories.algebras import Algebras
|
|
26
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
27
|
+
from sage.categories.cartesian_product import cartesian_product
|
|
28
|
+
from sage.sets.family import Family
|
|
29
|
+
from sage.sets.non_negative_integers import NonNegativeIntegers
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class QuantumOscillatorAlgebra(CombinatorialFreeModule):
|
|
33
|
+
r"""
|
|
34
|
+
The quantum oscillator algebra.
|
|
35
|
+
|
|
36
|
+
Let `R` be a commutative algebra and `q \in R` be a unit.
|
|
37
|
+
The *quantum oscillator algebra*, or `q`-oscillator algebra,
|
|
38
|
+
is the unital associative `R`-algebra with generators `a^+`,
|
|
39
|
+
`a^-` and `k^{\pm 1}` satisfying the following relations:
|
|
40
|
+
|
|
41
|
+
.. MATH::
|
|
42
|
+
|
|
43
|
+
k a^{\pm} = q^{\pm 1} a^{\pm} k, \qquad
|
|
44
|
+
a^- a^+ = 1 - q^2 k^2, \qquad
|
|
45
|
+
a^+ a^- = 1 - k^2.
|
|
46
|
+
|
|
47
|
+
INPUT:
|
|
48
|
+
|
|
49
|
+
- ``q`` -- (optional) the parameter `q`
|
|
50
|
+
- ``R`` -- (default: `\QQ(q)`) the base ring that contains ``q``
|
|
51
|
+
|
|
52
|
+
EXAMPLES:
|
|
53
|
+
|
|
54
|
+
We construct the algebra and perform some basic computations::
|
|
55
|
+
|
|
56
|
+
sage: O = algebras.QuantumOscillator()
|
|
57
|
+
sage: ap, am, k, ki = O.algebra_generators()
|
|
58
|
+
sage: q = O.q()
|
|
59
|
+
sage: k^-3 * ap * ki * am^2 * k - q^3 * ap * k^3
|
|
60
|
+
q^5*a-*k^-3 - q^3*a-*k^-1 - q^3*a+*k^3
|
|
61
|
+
|
|
62
|
+
We construct representations of the type `A_1` quantum coordinate ring
|
|
63
|
+
using the quantum oscillator algebra and verify the quantum determinant::
|
|
64
|
+
|
|
65
|
+
sage: pi = matrix([[am, k], [-q*k, ap]]); pi
|
|
66
|
+
[ a- k]
|
|
67
|
+
[-q*k a+]
|
|
68
|
+
sage: pi[0,0] * pi[1,1] - q * pi[0,1] * pi[1,0]
|
|
69
|
+
1
|
|
70
|
+
|
|
71
|
+
Next, we use this to build representations for type `A_2`::
|
|
72
|
+
|
|
73
|
+
sage: def quantum_det(M):
|
|
74
|
+
....: n = M.nrows()
|
|
75
|
+
....: return sum((-q)**sigma.length()
|
|
76
|
+
....: * prod(M[i,sigma[i]-1] for i in range(n))
|
|
77
|
+
....: for sigma in Permutations(n))
|
|
78
|
+
sage: def build_repr(wd, gens):
|
|
79
|
+
....: n = gens[0].nrows()
|
|
80
|
+
....: ret = gens[wd[0]-1]
|
|
81
|
+
....: for ind in wd[1:]:
|
|
82
|
+
....: g = gens[ind-1]
|
|
83
|
+
....: temp = [[None]*n for _ in range(n)]
|
|
84
|
+
....: for i in range(n):
|
|
85
|
+
....: for j in range(n):
|
|
86
|
+
....: temp[i][j] = sum(tensor([ret[i,k], g[k,j]]) for k in range(n))
|
|
87
|
+
....: ret = matrix(temp)
|
|
88
|
+
....: return ret
|
|
89
|
+
sage: pi1 = matrix.block_diagonal(pi, matrix.identity(1)); pi1
|
|
90
|
+
[ a- k| 0]
|
|
91
|
+
[-q*k a+| 0]
|
|
92
|
+
[---------+----]
|
|
93
|
+
[ 0 0| 1]
|
|
94
|
+
sage: pi2 = matrix.block_diagonal(matrix.identity(1), pi); pi2
|
|
95
|
+
[ 1| 0 0]
|
|
96
|
+
[----+---------]
|
|
97
|
+
[ 0| a- k]
|
|
98
|
+
[ 0|-q*k a+]
|
|
99
|
+
sage: quantum_det(pi1) == 1
|
|
100
|
+
True
|
|
101
|
+
sage: quantum_det(pi2) == 1
|
|
102
|
+
True
|
|
103
|
+
sage: pi12 = build_repr([1,2], [pi1, pi2]); pi12
|
|
104
|
+
[ a- # 1 k # a- k # k]
|
|
105
|
+
[-q*k # 1 a+ # a- a+ # k]
|
|
106
|
+
[ 0 -q*1 # k 1 # a+]
|
|
107
|
+
sage: quantum_det(pi12)
|
|
108
|
+
1 # 1
|
|
109
|
+
sage: pi121 = build_repr([1,2,1], [pi1, pi2]); pi121
|
|
110
|
+
[ a- # 1 # a- - q*k # a- # k a- # 1 # k + k # a- # a+ k # k # 1]
|
|
111
|
+
[-q*k # 1 # a- - q*a+ # a- # k -q*k # 1 # k + a+ # a- # a+ a+ # k # 1]
|
|
112
|
+
[ q^2*1 # k # k -q*1 # k # a+ 1 # a+ # 1]
|
|
113
|
+
sage: quantum_det(pi121)
|
|
114
|
+
1 # 1 # 1
|
|
115
|
+
sage: pi212 = build_repr([2,1,2], [pi1, pi2]); pi212
|
|
116
|
+
[ 1 # a- # 1 1 # k # a- 1 # k # k]
|
|
117
|
+
[ -q*a- # k # 1 a- # a+ # a- - q*k # 1 # k a- # a+ # k + k # 1 # a+]
|
|
118
|
+
[ q^2*k # k # 1 -q*k # a+ # a- - q*a+ # 1 # k -q*k # a+ # k + a+ # 1 # a+]
|
|
119
|
+
sage: quantum_det(pi212)
|
|
120
|
+
1 # 1 # 1
|
|
121
|
+
|
|
122
|
+
REFERENCES:
|
|
123
|
+
|
|
124
|
+
- [Kuniba2022]_ Section 3.2
|
|
125
|
+
"""
|
|
126
|
+
@staticmethod
|
|
127
|
+
def __classcall_private__(cls, q=None, R=None):
|
|
128
|
+
r"""
|
|
129
|
+
Standardize input to ensure a unique representation.
|
|
130
|
+
|
|
131
|
+
TESTS::
|
|
132
|
+
|
|
133
|
+
sage: O1 = algebras.QuantumOscillator()
|
|
134
|
+
sage: q = PolynomialRing(ZZ, 'q').fraction_field().gen()
|
|
135
|
+
sage: O2 = algebras.QuantumOscillator(q=q)
|
|
136
|
+
sage: O3 = algebras.QuantumOscillator(q, q.parent())
|
|
137
|
+
sage: O1 is O2 and O2 is O3
|
|
138
|
+
True
|
|
139
|
+
"""
|
|
140
|
+
if q is None:
|
|
141
|
+
q = PolynomialRing(ZZ, 'q').fraction_field().gen()
|
|
142
|
+
if R is None:
|
|
143
|
+
R = q.parent()
|
|
144
|
+
q = R(q)
|
|
145
|
+
|
|
146
|
+
return super().__classcall__(cls, q, R)
|
|
147
|
+
|
|
148
|
+
def __init__(self, q, R):
|
|
149
|
+
r"""
|
|
150
|
+
Initialize ``self``.
|
|
151
|
+
|
|
152
|
+
EXAMPLES::
|
|
153
|
+
|
|
154
|
+
sage: O = algebras.QuantumOscillator()
|
|
155
|
+
sage: TestSuite(O).run()
|
|
156
|
+
"""
|
|
157
|
+
self._q = q
|
|
158
|
+
self._k_poly = PolynomialRing(R, 'k')
|
|
159
|
+
indices = cartesian_product([ZZ, ZZ])
|
|
160
|
+
|
|
161
|
+
cat = Algebras(R).WithBasis()
|
|
162
|
+
CombinatorialFreeModule.__init__(self, R, indices, category=cat)
|
|
163
|
+
self._assign_names(('ap', 'am', 'k', 'ki'))
|
|
164
|
+
|
|
165
|
+
def _repr_(self) -> str:
|
|
166
|
+
r"""
|
|
167
|
+
Return a string representation of ``self``.
|
|
168
|
+
|
|
169
|
+
EXAMPLES::
|
|
170
|
+
|
|
171
|
+
sage: algebras.QuantumOscillator()
|
|
172
|
+
Quantum oscillator algebra with q=q over
|
|
173
|
+
Fraction Field of Univariate Polynomial Ring in q over Integer Ring
|
|
174
|
+
"""
|
|
175
|
+
return "Quantum oscillator algebra with q={} over {}".format(
|
|
176
|
+
self._q, self.base_ring())
|
|
177
|
+
|
|
178
|
+
def _latex_(self):
|
|
179
|
+
r"""
|
|
180
|
+
Return a latex representation of ``self``.
|
|
181
|
+
|
|
182
|
+
EXAMPLES::
|
|
183
|
+
|
|
184
|
+
sage: O = algebras.QuantumOscillator()
|
|
185
|
+
sage: latex(O)
|
|
186
|
+
\operatorname{Osc}_{q}
|
|
187
|
+
"""
|
|
188
|
+
return "\\operatorname{Osc}_{%s}" % self._q
|
|
189
|
+
|
|
190
|
+
def q(self):
|
|
191
|
+
r"""
|
|
192
|
+
Return the `q` of ``self``.
|
|
193
|
+
|
|
194
|
+
EXAMPLES::
|
|
195
|
+
|
|
196
|
+
sage: O = algebras.QuantumOscillator()
|
|
197
|
+
sage: O.q()
|
|
198
|
+
q
|
|
199
|
+
sage: O = algebras.QuantumOscillator(q=QQ(-5))
|
|
200
|
+
sage: O.q()
|
|
201
|
+
-5
|
|
202
|
+
"""
|
|
203
|
+
return self._q
|
|
204
|
+
|
|
205
|
+
@cached_method
|
|
206
|
+
def algebra_generators(self):
|
|
207
|
+
r"""
|
|
208
|
+
Return the algebra generators of ``self``.
|
|
209
|
+
|
|
210
|
+
EXAMPLES::
|
|
211
|
+
|
|
212
|
+
sage: O = algebras.QuantumOscillator()
|
|
213
|
+
sage: O.algebra_generators()
|
|
214
|
+
Finite family {'am': a-, 'ap': a+, 'k': k, 'ki': k^-1}
|
|
215
|
+
"""
|
|
216
|
+
d = {'ap': self.monomial((ZZ.one(), ZZ.zero())),
|
|
217
|
+
'am': self.monomial((-ZZ.one(), ZZ.zero())),
|
|
218
|
+
'k': self.monomial((ZZ.zero(), ZZ.one())),
|
|
219
|
+
'ki': self.monomial((ZZ.zero(), -ZZ.one()))}
|
|
220
|
+
return Family(d)
|
|
221
|
+
|
|
222
|
+
@cached_method
|
|
223
|
+
def gens(self) -> tuple:
|
|
224
|
+
r"""
|
|
225
|
+
Return the generators of ``self``.
|
|
226
|
+
|
|
227
|
+
EXAMPLES::
|
|
228
|
+
|
|
229
|
+
sage: O = algebras.QuantumOscillator()
|
|
230
|
+
sage: O.gens()
|
|
231
|
+
(a+, a-, k, k^-1)
|
|
232
|
+
"""
|
|
233
|
+
return tuple(self.algebra_generators())
|
|
234
|
+
|
|
235
|
+
@cached_method
|
|
236
|
+
def one_basis(self) -> tuple:
|
|
237
|
+
r"""
|
|
238
|
+
Return the index of the basis element of `1`.
|
|
239
|
+
|
|
240
|
+
EXAMPLES::
|
|
241
|
+
|
|
242
|
+
sage: O = algebras.QuantumOscillator()
|
|
243
|
+
sage: O.one_basis()
|
|
244
|
+
(0, 0)
|
|
245
|
+
"""
|
|
246
|
+
return (ZZ.zero(), ZZ.zero())
|
|
247
|
+
|
|
248
|
+
def some_elements(self) -> tuple:
|
|
249
|
+
r"""
|
|
250
|
+
Return some elements of ``self``.
|
|
251
|
+
|
|
252
|
+
EXAMPLES::
|
|
253
|
+
|
|
254
|
+
sage: O = algebras.QuantumOscillator()
|
|
255
|
+
sage: O.some_elements()
|
|
256
|
+
(a+, a-, k, k^-1, 1, a+^3, a-^4, k^2, k^-5, a+*k,
|
|
257
|
+
a-^4*k^-3, 1 + 3*k + 2*a+ + a+*k)
|
|
258
|
+
"""
|
|
259
|
+
ap, am, k, ki = self.gens()
|
|
260
|
+
return (ap, am, k, ki, self.one(),
|
|
261
|
+
ap**3, am**4, k**2, ki**5, ap*k, am**4*ki**3,
|
|
262
|
+
self.an_element())
|
|
263
|
+
|
|
264
|
+
def fock_space_representation(self):
|
|
265
|
+
r"""
|
|
266
|
+
Return the Fock space representation of ``self``.
|
|
267
|
+
|
|
268
|
+
.. SEEALSO::
|
|
269
|
+
|
|
270
|
+
:class:`~sage.algebras.quantum_oscillator.FockSpaceRepresentation`
|
|
271
|
+
|
|
272
|
+
EXAMPLES::
|
|
273
|
+
|
|
274
|
+
sage: O = algebras.QuantumOscillator()
|
|
275
|
+
sage: O.fock_space_representation()
|
|
276
|
+
Fock space representation of Quantum oscillator algebra with q=q
|
|
277
|
+
over Fraction Field of Univariate Polynomial Ring in q over Integer Ring
|
|
278
|
+
"""
|
|
279
|
+
return FockSpaceRepresentation(self)
|
|
280
|
+
|
|
281
|
+
def _repr_term(self, m) -> str:
|
|
282
|
+
r"""
|
|
283
|
+
Return a string representation of the basis element indexed by ``m``.
|
|
284
|
+
|
|
285
|
+
EXAMPLES::
|
|
286
|
+
|
|
287
|
+
sage: O = algebras.QuantumOscillator()
|
|
288
|
+
sage: O._repr_term((1, 3))
|
|
289
|
+
'a+*k^3'
|
|
290
|
+
sage: O._repr_term((-1, 1))
|
|
291
|
+
'a-*k'
|
|
292
|
+
sage: O._repr_term((5, 0))
|
|
293
|
+
'a+^5'
|
|
294
|
+
sage: O._repr_term((-4, -2))
|
|
295
|
+
'a-^4*k^-2'
|
|
296
|
+
sage: O._repr_term((0, -4))
|
|
297
|
+
'k^-4'
|
|
298
|
+
sage: O._repr_term((0, 0))
|
|
299
|
+
'1'
|
|
300
|
+
|
|
301
|
+
sage: O(5)
|
|
302
|
+
5
|
|
303
|
+
"""
|
|
304
|
+
a, k = m
|
|
305
|
+
|
|
306
|
+
astr = ''
|
|
307
|
+
if a == 1:
|
|
308
|
+
astr = 'a+'
|
|
309
|
+
elif a > 1:
|
|
310
|
+
astr = 'a+^{}'.format(a)
|
|
311
|
+
elif a == -1:
|
|
312
|
+
astr = 'a-'
|
|
313
|
+
elif a < -1:
|
|
314
|
+
astr = 'a-^{}'.format(-a)
|
|
315
|
+
|
|
316
|
+
kstr = ''
|
|
317
|
+
if k == 1:
|
|
318
|
+
kstr = 'k'
|
|
319
|
+
elif k != 0:
|
|
320
|
+
kstr = 'k^{}'.format(k)
|
|
321
|
+
|
|
322
|
+
if astr:
|
|
323
|
+
if kstr:
|
|
324
|
+
return astr + '*' + kstr
|
|
325
|
+
return astr
|
|
326
|
+
if kstr:
|
|
327
|
+
return kstr
|
|
328
|
+
return '1'
|
|
329
|
+
|
|
330
|
+
def _latex_term(self, m):
|
|
331
|
+
r"""
|
|
332
|
+
Return a latex representation for the basis element indexed by ``m``.
|
|
333
|
+
|
|
334
|
+
EXAMPLES::
|
|
335
|
+
|
|
336
|
+
sage: O = algebras.QuantumOscillator()
|
|
337
|
+
sage: O._latex_term((1, 3))
|
|
338
|
+
'a^+ k^{3}'
|
|
339
|
+
sage: O._latex_term((-1, 1))
|
|
340
|
+
'a^- k'
|
|
341
|
+
sage: O._latex_term((5, 0))
|
|
342
|
+
'(a^+)^{5}'
|
|
343
|
+
sage: O._latex_term((-4, -2))
|
|
344
|
+
'(a^-)^{4} k^{-2}'
|
|
345
|
+
sage: O._latex_term((0, -4))
|
|
346
|
+
'k^{-4}'
|
|
347
|
+
sage: O._latex_term((0, 0))
|
|
348
|
+
'1'
|
|
349
|
+
|
|
350
|
+
sage: latex(O(5))
|
|
351
|
+
5
|
|
352
|
+
"""
|
|
353
|
+
a, k = m
|
|
354
|
+
|
|
355
|
+
astr = ''
|
|
356
|
+
if a == 1:
|
|
357
|
+
astr = 'a^+'
|
|
358
|
+
elif a > 1:
|
|
359
|
+
astr = '(a^+)^{{{}}}'.format(a)
|
|
360
|
+
elif a == -1:
|
|
361
|
+
astr = 'a^-'
|
|
362
|
+
elif a < -1:
|
|
363
|
+
astr = '(a^-)^{{{}}}'.format(-a)
|
|
364
|
+
|
|
365
|
+
kstr = ''
|
|
366
|
+
if k == 1:
|
|
367
|
+
kstr = 'k'
|
|
368
|
+
elif k != 0:
|
|
369
|
+
kstr = 'k^{{{}}}'.format(k)
|
|
370
|
+
|
|
371
|
+
if astr:
|
|
372
|
+
if kstr:
|
|
373
|
+
return astr + ' ' + kstr
|
|
374
|
+
return astr
|
|
375
|
+
if kstr:
|
|
376
|
+
return kstr
|
|
377
|
+
return '1'
|
|
378
|
+
|
|
379
|
+
@cached_method
|
|
380
|
+
def product_on_basis(self, ml, mr):
|
|
381
|
+
r"""
|
|
382
|
+
Return the product of the basis elements indexed by ``ml`` and ``mr``.
|
|
383
|
+
|
|
384
|
+
EXAMPLES::
|
|
385
|
+
|
|
386
|
+
sage: O = algebras.QuantumOscillator()
|
|
387
|
+
sage: ap, am, k, ki = O.algebra_generators()
|
|
388
|
+
sage: O.product_on_basis((-2, 3), (-4, 5))
|
|
389
|
+
1/q^12*a-^6*k^8
|
|
390
|
+
sage: O.product_on_basis((2, 3), (4, -5))
|
|
391
|
+
q^12*a+^6*k^-2
|
|
392
|
+
sage: O.product_on_basis((2, 3), (0, -3))
|
|
393
|
+
a+^2
|
|
394
|
+
sage: k^5 * ki^10
|
|
395
|
+
k^-5
|
|
396
|
+
sage: k^10 * ki^5
|
|
397
|
+
k^5
|
|
398
|
+
sage: ap^3 * k^5
|
|
399
|
+
a+^3*k^5
|
|
400
|
+
sage: am^3 * k^5
|
|
401
|
+
a-^3*k^5
|
|
402
|
+
sage: k^5 * ap^3
|
|
403
|
+
q^15*a+^3*k^5
|
|
404
|
+
sage: k^5 * am^3
|
|
405
|
+
1/q^15*a-^3*k^5
|
|
406
|
+
sage: ki^5 * ap^3
|
|
407
|
+
1/q^15*a+^3*k^-5
|
|
408
|
+
sage: ki^5 * am^3
|
|
409
|
+
q^15*a-^3*k^-5
|
|
410
|
+
sage: ap * am
|
|
411
|
+
1 - k^2
|
|
412
|
+
sage: am * ap
|
|
413
|
+
1 - q^2*k^2
|
|
414
|
+
|
|
415
|
+
sage: (ap + am + k + ki)^2
|
|
416
|
+
a-^2 + (q+1)*a-*k^-1 + ((q+1)/q)*a-*k + k^-2 + 4 - q^2*k^2
|
|
417
|
+
+ ((q+1)/q)*a+*k^-1 + (q+1)*a+*k + a+^2
|
|
418
|
+
|
|
419
|
+
sage: (ap)^3 * (am)^5
|
|
420
|
+
a-^2 + ((-q^4-q^2-1)/q^8)*a-^2*k^2 + ((q^4+q^2+1)/q^14)*a-^2*k^4 - 1/q^18*a-^2*k^6
|
|
421
|
+
sage: (ap)^5 * (am)^3
|
|
422
|
+
a+^2 + ((-q^4-q^2-1)/q^4)*a+^2*k^2 + ((q^4+q^2+1)/q^6)*a+^2*k^4 - 1/q^6*a+^2*k^6
|
|
423
|
+
sage: (am)^3 * (ap)^5
|
|
424
|
+
a+^2 + (-q^10-q^8-q^6)*a+^2*k^2 + (q^18+q^16+q^14)*a+^2*k^4 - q^24*a+^2*k^6
|
|
425
|
+
sage: (am)^5 * (ap)^3
|
|
426
|
+
a-^2 + (-q^6-q^4-q^2)*a-^2*k^2 + (q^10+q^8+q^6)*a-^2*k^4 - q^12*a-^2*k^6
|
|
427
|
+
"""
|
|
428
|
+
q = self._q
|
|
429
|
+
k = self._k_poly.gen()
|
|
430
|
+
al, kl = ml
|
|
431
|
+
ar, kr = mr
|
|
432
|
+
coeff = q ** (kl * ar)
|
|
433
|
+
if (al <= 0 and ar <= 0) or (al >= 0 and ar >= 0):
|
|
434
|
+
return self.element_class(self, {(al + ar, kl + kr): coeff})
|
|
435
|
+
# now al and ar have different signs
|
|
436
|
+
if al < 0: # a^- * a^+ case
|
|
437
|
+
kp = self._k_poly.prod(1 - q**(2*(ar-i)) * k**2 for i in range(min(-al,ar)))
|
|
438
|
+
else: # a^+ * a^- case
|
|
439
|
+
kp = self._k_poly.prod(1 - q**(2*(ar+i)) * k**2 for i in range(1,min(al,-ar)+1))
|
|
440
|
+
a = al + ar
|
|
441
|
+
return self.element_class(self, {(a, kl+kr+i): c * coeff for i, c in enumerate(kp) if c})
|
|
442
|
+
|
|
443
|
+
class Element(CombinatorialFreeModule.Element):
|
|
444
|
+
def __invert__(self):
|
|
445
|
+
r"""
|
|
446
|
+
Return the inverse if ``self`` is a basis element.
|
|
447
|
+
|
|
448
|
+
EXAMPLES::
|
|
449
|
+
|
|
450
|
+
sage: O = algebras.QuantumOscillator()
|
|
451
|
+
sage: ap, am, k, ki = O.algebra_generators()
|
|
452
|
+
sage: k.inverse()
|
|
453
|
+
k^-1
|
|
454
|
+
sage: ~k^5
|
|
455
|
+
k^-5
|
|
456
|
+
sage: ~ki^2
|
|
457
|
+
k^2
|
|
458
|
+
sage: O.zero().inverse()
|
|
459
|
+
Traceback (most recent call last):
|
|
460
|
+
...
|
|
461
|
+
ZeroDivisionError
|
|
462
|
+
sage: ~ap
|
|
463
|
+
Traceback (most recent call last):
|
|
464
|
+
...
|
|
465
|
+
NotImplementedError: only implemented for monomials in k
|
|
466
|
+
sage: ~(k + ki)
|
|
467
|
+
Traceback (most recent call last):
|
|
468
|
+
...
|
|
469
|
+
NotImplementedError: only implemented for monomials in k
|
|
470
|
+
"""
|
|
471
|
+
if not self:
|
|
472
|
+
raise ZeroDivisionError
|
|
473
|
+
if len(self) != 1 or self.leading_support()[0] != 0:
|
|
474
|
+
raise NotImplementedError("only implemented for monomials in k")
|
|
475
|
+
|
|
476
|
+
((a, k), coeff), = list(self._monomial_coefficients.items())
|
|
477
|
+
O = self.parent()
|
|
478
|
+
return O.element_class(O, {(a, -k): coeff.inverse_of_unit()})
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
class FockSpaceRepresentation(CombinatorialFreeModule):
|
|
482
|
+
r"""
|
|
483
|
+
The unique Fock space representation of the
|
|
484
|
+
:class:`~sage.algebras.quantum_oscillator.QuantumOscillatorAlgebra`.
|
|
485
|
+
"""
|
|
486
|
+
def __init__(self, oscillator_algebra):
|
|
487
|
+
r"""
|
|
488
|
+
Initialize ``self``.
|
|
489
|
+
|
|
490
|
+
EXAMPLES::
|
|
491
|
+
|
|
492
|
+
sage: O = algebras.QuantumOscillator()
|
|
493
|
+
sage: F = O.fock_space_representation()
|
|
494
|
+
sage: TestSuite(F).run()
|
|
495
|
+
"""
|
|
496
|
+
self._O = oscillator_algebra
|
|
497
|
+
ind = NonNegativeIntegers()
|
|
498
|
+
CombinatorialFreeModule.__init__(self, oscillator_algebra.base_ring(), ind, prefix='', bracket=['|', '>'],
|
|
499
|
+
latex_bracket=[r'\lvert', r'\rangle'])
|
|
500
|
+
|
|
501
|
+
def _test_representation(self, **options):
|
|
502
|
+
r"""
|
|
503
|
+
Test that ``self`` is a representation of the quantum
|
|
504
|
+
oscillator algebra.
|
|
505
|
+
|
|
506
|
+
EXAMPLES::
|
|
507
|
+
|
|
508
|
+
sage: O = algebras.QuantumOscillator(q=GF(7)(3))
|
|
509
|
+
sage: F = O.fock_space_representation()
|
|
510
|
+
sage: F._test_representation()
|
|
511
|
+
"""
|
|
512
|
+
tester = self._tester(**options)
|
|
513
|
+
S = self._O.some_elements()
|
|
514
|
+
num_trials = 0
|
|
515
|
+
from itertools import product
|
|
516
|
+
for a, b in product(S, repeat=2):
|
|
517
|
+
for elt in tester.some_elements():
|
|
518
|
+
num_trials += 1
|
|
519
|
+
if num_trials > tester._max_runs:
|
|
520
|
+
return
|
|
521
|
+
tester.assertEqual((a*b)*elt, a*(b*elt))
|
|
522
|
+
|
|
523
|
+
def _repr_(self) -> str:
|
|
524
|
+
r"""
|
|
525
|
+
Return a string representation of ``self``.
|
|
526
|
+
|
|
527
|
+
EXAMPLES::
|
|
528
|
+
|
|
529
|
+
sage: O = algebras.QuantumOscillator(q=GF(5)(2))
|
|
530
|
+
sage: O.fock_space_representation()
|
|
531
|
+
Fock space representation of Quantum oscillator algebra
|
|
532
|
+
with q=2 over Finite Field of size 5
|
|
533
|
+
"""
|
|
534
|
+
return "Fock space representation of {}".format(self._O)
|
|
535
|
+
|
|
536
|
+
def _latex_(self):
|
|
537
|
+
r"""
|
|
538
|
+
Return a latex representation of ``self``.
|
|
539
|
+
|
|
540
|
+
EXAMPLES::
|
|
541
|
+
|
|
542
|
+
sage: O = algebras.QuantumOscillator()
|
|
543
|
+
sage: F = O.fock_space_representation()
|
|
544
|
+
sage: latex(F)
|
|
545
|
+
\mathfrak{F}_{q}
|
|
546
|
+
"""
|
|
547
|
+
return r"\mathfrak{{F}}_{{{}}}".format(self._O._q)
|
|
548
|
+
|
|
549
|
+
def vacuum(self):
|
|
550
|
+
r"""
|
|
551
|
+
Return the vacuum element `|0\rangle` of ``self``.
|
|
552
|
+
|
|
553
|
+
EXAMPLES::
|
|
554
|
+
|
|
555
|
+
sage: O = algebras.QuantumOscillator()
|
|
556
|
+
sage: F = O.fock_space_representation()
|
|
557
|
+
sage: F.vacuum()
|
|
558
|
+
|0>
|
|
559
|
+
"""
|
|
560
|
+
return self.basis()[0]
|
|
561
|
+
|
|
562
|
+
def some_elements(self):
|
|
563
|
+
r"""
|
|
564
|
+
Return some elements of ``self``.
|
|
565
|
+
|
|
566
|
+
EXAMPLES::
|
|
567
|
+
|
|
568
|
+
sage: O = algebras.QuantumOscillator()
|
|
569
|
+
sage: F = O.fock_space_representation()
|
|
570
|
+
sage: F.some_elements()
|
|
571
|
+
(|0>, |1>, |52>, |0> + 2*|1> + 3*|2> + |42>)
|
|
572
|
+
"""
|
|
573
|
+
B = self.basis()
|
|
574
|
+
return (B[0], B[1], B[52], self.an_element())
|
|
575
|
+
|
|
576
|
+
class Element(CombinatorialFreeModule.Element):
|
|
577
|
+
def _acted_upon_(self, scalar, self_on_left=True):
|
|
578
|
+
r"""
|
|
579
|
+
Return the action of ``scalar`` on ``self``.
|
|
580
|
+
|
|
581
|
+
EXAMPLES::
|
|
582
|
+
|
|
583
|
+
sage: O = algebras.QuantumOscillator()
|
|
584
|
+
sage: ap, am, k, ki = O.gens()
|
|
585
|
+
sage: F = O.fock_space_representation()
|
|
586
|
+
sage: B = F.basis()
|
|
587
|
+
sage: [ap * B[i] for i in range(3)]
|
|
588
|
+
[|1>, |2>, |3>]
|
|
589
|
+
sage: [am * B[i] for i in range(3)]
|
|
590
|
+
[0, (-q^2+1)*|0>, (-q^4+1)*|1>]
|
|
591
|
+
sage: [k * B[i] for i in range(3)]
|
|
592
|
+
[|0>, q*|1>, q^2*|2>]
|
|
593
|
+
sage: [ki * B[i] for i in range(3)]
|
|
594
|
+
[|0>, 1/q*|1>, 1/q^2*|2>]
|
|
595
|
+
sage: (am)^3 * B[5]
|
|
596
|
+
(-q^24+q^18+q^16+q^14-q^10-q^8-q^6+1)*|2>
|
|
597
|
+
sage: (7*k^3 + am) * (B[0] + B[1] + B[2])
|
|
598
|
+
(-q^2+8)*|0> + (-q^4+7*q^3+1)*|1> + 7*q^6*|2>
|
|
599
|
+
sage: 5 * (B[2] + B[3])
|
|
600
|
+
5*|2> + 5*|3>
|
|
601
|
+
"""
|
|
602
|
+
# Check for scalars first
|
|
603
|
+
ret = super()._acted_upon_(scalar, self_on_left)
|
|
604
|
+
if ret is not None:
|
|
605
|
+
return ret
|
|
606
|
+
P = self.parent()
|
|
607
|
+
if self_on_left or scalar not in P._O: # needs to be a left Osc-action
|
|
608
|
+
return None
|
|
609
|
+
scalar = P._O(scalar)
|
|
610
|
+
q = P._O._q
|
|
611
|
+
|
|
612
|
+
ret = []
|
|
613
|
+
for om, oc in scalar:
|
|
614
|
+
a, k = om
|
|
615
|
+
for fm, fc in self:
|
|
616
|
+
if fm < -a: # the result will be 0
|
|
617
|
+
continue
|
|
618
|
+
c = q ** (fm*k)
|
|
619
|
+
if a < 0:
|
|
620
|
+
c *= prod(1 - q**(2*(fm-i)) for i in range(-a))
|
|
621
|
+
if c:
|
|
622
|
+
ret.append((fm+a, oc * fc * c))
|
|
623
|
+
return P.sum_of_terms(ret)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.libs.singular sage.modules
|
|
3
|
+
|
|
4
|
+
############################################################
|
|
5
|
+
# Backwards compatible unpickling
|
|
6
|
+
############################################################
|
|
7
|
+
|
|
8
|
+
def unpickle_QuaternionAlgebra_v0(*key):
|
|
9
|
+
"""
|
|
10
|
+
The `0`-th version of pickling for quaternion algebras.
|
|
11
|
+
|
|
12
|
+
EXAMPLES::
|
|
13
|
+
|
|
14
|
+
sage: t = (QQ, -5, -19, ('i', 'j', 'k'))
|
|
15
|
+
sage: import sage.algebras.quaternion_algebra
|
|
16
|
+
sage: sage.algebras.quaternion_algebra.unpickle_QuaternionAlgebra_v0(*t)
|
|
17
|
+
Quaternion Algebra (-5, -19) with base ring Rational Field
|
|
18
|
+
"""
|
|
19
|
+
from .quatalg.quaternion_algebra import QuaternionAlgebra
|
|
20
|
+
return QuaternionAlgebra(*key)
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.libs.singular sage.modules
|
|
3
|
+
|
|
4
|
+
#######################################################################
|
|
5
|
+
# Backward compatible unpickle functions
|
|
6
|
+
#######################################################################
|
|
7
|
+
|
|
8
|
+
from .quatalg.quaternion_algebra_element import (QuaternionAlgebraElement_generic,
|
|
9
|
+
QuaternionAlgebraElement_rational_field,
|
|
10
|
+
QuaternionAlgebraElement_number_field)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def unpickle_QuaternionAlgebraElement_generic_v0(*args):
|
|
14
|
+
"""
|
|
15
|
+
EXAMPLES::
|
|
16
|
+
|
|
17
|
+
sage: K.<X> = QQ[]
|
|
18
|
+
sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K), -5,-19); z = 2/3 + i*X - X^2*j + X^3*k
|
|
19
|
+
sage: f, t = z.__reduce__()
|
|
20
|
+
sage: import sage.algebras.quaternion_algebra_element
|
|
21
|
+
sage: sage.algebras.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t)
|
|
22
|
+
2/3 + X*i + (-X^2)*j + X^3*k
|
|
23
|
+
sage: sage.algebras.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) == z
|
|
24
|
+
True
|
|
25
|
+
"""
|
|
26
|
+
return QuaternionAlgebraElement_generic(*args)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def unpickle_QuaternionAlgebraElement_rational_field_v0(*args):
|
|
30
|
+
"""
|
|
31
|
+
EXAMPLES::
|
|
32
|
+
|
|
33
|
+
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19); a = 2/3 + i*5/7 - j*2/5 +19/2
|
|
34
|
+
sage: f, t = a.__reduce__()
|
|
35
|
+
sage: import sage.algebras.quaternion_algebra_element
|
|
36
|
+
sage: sage.algebras.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*t)
|
|
37
|
+
61/6 + 5/7*i - 2/5*j
|
|
38
|
+
"""
|
|
39
|
+
return QuaternionAlgebraElement_rational_field(*args)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def unpickle_QuaternionAlgebraElement_number_field_v0(*args):
|
|
43
|
+
"""
|
|
44
|
+
EXAMPLES::
|
|
45
|
+
|
|
46
|
+
sage: # needs sage.symbolic
|
|
47
|
+
sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K, -3, a); z = i + j
|
|
48
|
+
sage: f, t = z.__reduce__()
|
|
49
|
+
sage: import sage.algebras.quaternion_algebra_element
|
|
50
|
+
sage: sage.algebras.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t)
|
|
51
|
+
i + j
|
|
52
|
+
sage: sage.algebras.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) == z
|
|
53
|
+
True
|
|
54
|
+
"""
|
|
55
|
+
return QuaternionAlgebraElement_number_field(*args)
|