passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Abreu-Nigro symmetric functions
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2025 Travis Scrimshaw <tcscrims at gmail.com>
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
#
|
|
11
|
+
# This code is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
14
|
+
# General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# The full text of the GPL is available at:
|
|
17
|
+
#
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
|
|
23
|
+
from . import multiplicative
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class SymmetricFunctionAlgebra_AbreuNigro(multiplicative.SymmetricFunctionAlgebra_multiplicative):
|
|
27
|
+
r"""
|
|
28
|
+
The Abreu-Nigro (symmetric function) basis.
|
|
29
|
+
|
|
30
|
+
The Abreu-Nigro basis `\{\rho_{\lambda}(x; q)\}_{\lambda}` is the
|
|
31
|
+
multiplicative basis defined by
|
|
32
|
+
|
|
33
|
+
.. MATH::
|
|
34
|
+
|
|
35
|
+
[n]_q h_n(x) = \sum_{i=1}^n h_{n-i}(x) \rho_i(x; q),
|
|
36
|
+
\qquad\qquad
|
|
37
|
+
\rho_{\lambda}(x; q) = \rho_{\lambda_1}(x; q) \rho_{\lambda_2}(x; q)
|
|
38
|
+
\cdots \rho_{\lambda_{\ell}}(x; q).
|
|
39
|
+
|
|
40
|
+
Here `[n]_q = 1 + q + \cdots + q^{n-1}` is a `q`-integer.
|
|
41
|
+
An alternative definition is given by
|
|
42
|
+
`\rho_n = q^{n-1} P_n(x; q^{-1})`, where `P_n(x; q)` is the
|
|
43
|
+
Hall-Littlewood `P` function for the one-row partition `n`.
|
|
44
|
+
|
|
45
|
+
INPUT:
|
|
46
|
+
|
|
47
|
+
- ``Sym`` -- the ring of the symmetric functions
|
|
48
|
+
- ``q`` -- the parameter `q`
|
|
49
|
+
|
|
50
|
+
REFERENCES:
|
|
51
|
+
|
|
52
|
+
- [AN2021]_
|
|
53
|
+
- [AN2021II]_
|
|
54
|
+
- [AN2023]_
|
|
55
|
+
|
|
56
|
+
EXAMPLES:
|
|
57
|
+
|
|
58
|
+
We verify the change of basis formula for the first few `n`::
|
|
59
|
+
|
|
60
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
61
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
62
|
+
sage: an = Sym.abreu_nigro(q)
|
|
63
|
+
sage: h = Sym.h()
|
|
64
|
+
sage: from sage.combinat.q_analogues import q_int, q_factorial
|
|
65
|
+
sage: all(q_int(n, q) * h[n] == sum(h[n-i] * an[i] for i in range(1,n+1))
|
|
66
|
+
....: for n in range(1, 5))
|
|
67
|
+
True
|
|
68
|
+
|
|
69
|
+
sage: P = Sym.hall_littlewood(q).P()
|
|
70
|
+
sage: all(h(P[n]).map_coefficients(lambda c: q^(n-1) * c(q=~q)) == h(an[n])
|
|
71
|
+
....: for n in range(1, 6))
|
|
72
|
+
True
|
|
73
|
+
|
|
74
|
+
Next, we give the expansion in a few other bases::
|
|
75
|
+
|
|
76
|
+
sage: p = Sym.p()
|
|
77
|
+
sage: s = Sym.s()
|
|
78
|
+
sage: m = Sym.m()
|
|
79
|
+
sage: e = Sym.e()
|
|
80
|
+
|
|
81
|
+
sage: p(an([1]))
|
|
82
|
+
p[1]
|
|
83
|
+
sage: m(an([1]))
|
|
84
|
+
m[1]
|
|
85
|
+
sage: e(an([1]))
|
|
86
|
+
e[1]
|
|
87
|
+
sage: h(an([1]))
|
|
88
|
+
h[1]
|
|
89
|
+
sage: s(an([1]))
|
|
90
|
+
s[1]
|
|
91
|
+
|
|
92
|
+
sage: p(an([2]))
|
|
93
|
+
((q-1)/2)*p[1, 1] + ((q+1)/2)*p[2]
|
|
94
|
+
sage: m(an([2]))
|
|
95
|
+
(q-1)*m[1, 1] + q*m[2]
|
|
96
|
+
sage: e(an([2]))
|
|
97
|
+
q*e[1, 1] + (-q-1)*e[2]
|
|
98
|
+
sage: h(an([2]))
|
|
99
|
+
-h[1, 1] + (q+1)*h[2]
|
|
100
|
+
sage: s(an([2]))
|
|
101
|
+
-s[1, 1] + q*s[2]
|
|
102
|
+
|
|
103
|
+
sage: p(an([3]))
|
|
104
|
+
((q^2-2*q+1)/6)*p[1, 1, 1] + ((q^2-1)/2)*p[2, 1] + ((q^2+q+1)/3)*p[3]
|
|
105
|
+
sage: m(an([3]))
|
|
106
|
+
(q^2-2*q+1)*m[1, 1, 1] + (q^2-q)*m[2, 1] + q^2*m[3]
|
|
107
|
+
sage: e(an([3]))
|
|
108
|
+
q^2*e[1, 1, 1] + (-2*q^2-q)*e[2, 1] + (q^2+q+1)*e[3]
|
|
109
|
+
sage: h(an([3]))
|
|
110
|
+
h[1, 1, 1] + (-q-2)*h[2, 1] + (q^2+q+1)*h[3]
|
|
111
|
+
sage: s(an([3]))
|
|
112
|
+
s[1, 1, 1] - q*s[2, 1] + q^2*s[3]
|
|
113
|
+
|
|
114
|
+
Some examples of conversions the other way::
|
|
115
|
+
|
|
116
|
+
sage: q_int(3, q) * an(h[3])
|
|
117
|
+
(1/(q+1))*an[1, 1, 1] + ((q+2)/(q+1))*an[2, 1] + an[3]
|
|
118
|
+
sage: q_int(3, q) * an(e[3])
|
|
119
|
+
(q^3/(q+1))*an[1, 1, 1] + ((-2*q^2-q)/(q+1))*an[2, 1] + an[3]
|
|
120
|
+
sage: q_int(3, q) * an(m[2,1])
|
|
121
|
+
((-2*q^3+q^2+q)/(q+1))*an[1, 1, 1] + ((5*q^2+2*q-1)/(q+1))*an[2, 1] - 3*an[3]
|
|
122
|
+
sage: q_int(3, q) * an(p[3])
|
|
123
|
+
(q^2-2*q+1)*an[1, 1, 1] + (-3*q+3)*an[2, 1] + 3*an[3]
|
|
124
|
+
|
|
125
|
+
We verify the determinant formulas of [AN2021II]_ Proposition 2.1, but
|
|
126
|
+
correcting a parity issue with (3)::
|
|
127
|
+
|
|
128
|
+
sage: def h_det(n):
|
|
129
|
+
....: ret = matrix.zero(an, n)
|
|
130
|
+
....: for i in range(n):
|
|
131
|
+
....: if i != 0:
|
|
132
|
+
....: ret[i,i-1] = -q_int(i)
|
|
133
|
+
....: for j in range(i, n):
|
|
134
|
+
....: ret[i,j] = an[j-i+1]
|
|
135
|
+
....: return ret.det()
|
|
136
|
+
sage: all(q_factorial(n, q) * h[n] == h(h_det(n)) for n in range(6))
|
|
137
|
+
True
|
|
138
|
+
sage: all(q_factorial(n, q) * an(h[n]) == h_det(n) for n in range(6))
|
|
139
|
+
True
|
|
140
|
+
|
|
141
|
+
sage: def rho_det(n):
|
|
142
|
+
....: ret = matrix.zero(h, n)
|
|
143
|
+
....: for i in range(n):
|
|
144
|
+
....: if i == 0:
|
|
145
|
+
....: for j in range(n):
|
|
146
|
+
....: ret[0,j] = q_int(j+1, q) * h[j+1]
|
|
147
|
+
....: else:
|
|
148
|
+
....: for j in range(i-1, n):
|
|
149
|
+
....: ret[i,j] = h[j-i+1]
|
|
150
|
+
....: return ret.det()
|
|
151
|
+
sage: all((-1)^(n+1) * an[n] == an(rho_det(n)) for n in range(1, 6))
|
|
152
|
+
True
|
|
153
|
+
sage: all((-1)^(n+1) * h(an[n]) == rho_det(n) for n in range(1, 6))
|
|
154
|
+
True
|
|
155
|
+
|
|
156
|
+
Antipodes::
|
|
157
|
+
|
|
158
|
+
sage: an([1]).antipode()
|
|
159
|
+
-an[1]
|
|
160
|
+
sage: an([2]).antipode()
|
|
161
|
+
(q-1)*an[1, 1] - an[2]
|
|
162
|
+
sage: an([3]).antipode()
|
|
163
|
+
(-q^2+2*q-1)*an[1, 1, 1] + (2*q-2)*an[2, 1] - an[3]
|
|
164
|
+
|
|
165
|
+
For single row partitions, the antipode is given by the formula
|
|
166
|
+
`S(\rho_n(x; q)) = -P_n(x; q)`, where `P_n`
|
|
167
|
+
is the Hall-Littlewood P-function::
|
|
168
|
+
|
|
169
|
+
sage: P = Sym.hall_littlewood(q).P()
|
|
170
|
+
sage: all(P(an[n].antipode()) == -P[n] for n in range(1, 6))
|
|
171
|
+
True
|
|
172
|
+
"""
|
|
173
|
+
@staticmethod
|
|
174
|
+
def __classcall_private__(cls, Sym, q='q'):
|
|
175
|
+
"""
|
|
176
|
+
Normalize input to ensure a unique representation.
|
|
177
|
+
|
|
178
|
+
EXAMPLES::
|
|
179
|
+
|
|
180
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
181
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
182
|
+
sage: Sym.abreu_nigro(q) is Sym.abreu_nigro('q')
|
|
183
|
+
True
|
|
184
|
+
"""
|
|
185
|
+
q = Sym.base_ring()(q)
|
|
186
|
+
return super().__classcall__(cls, Sym, q)
|
|
187
|
+
|
|
188
|
+
def __init__(self, Sym, q):
|
|
189
|
+
r"""
|
|
190
|
+
Initialize ``self``.
|
|
191
|
+
|
|
192
|
+
TESTS::
|
|
193
|
+
|
|
194
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
195
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
196
|
+
sage: an = Sym.abreu_nigro(q)
|
|
197
|
+
sage: TestSuite(an).run(skip=['_test_associativity', '_test_distributivity', '_test_prod'])
|
|
198
|
+
sage: TestSuite(an).run(elements=[an[1,1]+an[2], an[1]+2*an[1,1]])
|
|
199
|
+
sage: latex(an[2,1])
|
|
200
|
+
\rho_{2,1}
|
|
201
|
+
"""
|
|
202
|
+
self._q = q
|
|
203
|
+
multiplicative.SymmetricFunctionAlgebra_multiplicative.__init__(self, Sym, "Abreu-Nigro", 'an')
|
|
204
|
+
self._print_options['latex_prefix'] = "\\rho"
|
|
205
|
+
|
|
206
|
+
self._h = Sym.h()
|
|
207
|
+
self.register_coercion(self._h._module_morphism(self._h_to_an_on_basis, codomain=self))
|
|
208
|
+
self._h.register_coercion(self._module_morphism(self._an_to_h_on_basis, codomain=self._h))
|
|
209
|
+
|
|
210
|
+
@cached_method
|
|
211
|
+
def _h_to_an_on_basis(self, lam):
|
|
212
|
+
r"""
|
|
213
|
+
Return the complete homogeneous symmetric function ``h[lam]``
|
|
214
|
+
expanded in the Abreu-Nigro basis.
|
|
215
|
+
|
|
216
|
+
INPUT:
|
|
217
|
+
|
|
218
|
+
- ``lam`` -- a partition
|
|
219
|
+
|
|
220
|
+
EXAMPLES::
|
|
221
|
+
|
|
222
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
223
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
224
|
+
sage: an = Sym.abreu_nigro(q)
|
|
225
|
+
sage: h = Sym.homogeneous()
|
|
226
|
+
sage: an._h_to_an_on_basis(Partition([]))
|
|
227
|
+
an[]
|
|
228
|
+
sage: from sage.combinat.q_analogues import q_factorial as qfact
|
|
229
|
+
sage: qfact(4, q) * qfact(2, q) * an._h_to_an_on_basis(Partition([4,2,1]))
|
|
230
|
+
an[1, 1, 1, 1, 1, 1, 1] + (q^2+2*q+4)*an[2, 1, 1, 1, 1, 1]
|
|
231
|
+
+ (2*q^2+3*q+4)*an[2, 2, 1, 1, 1] + (q^2+q+1)*an[2, 2, 2, 1]
|
|
232
|
+
+ (q^3+2*q^2+3*q+2)*an[3, 1, 1, 1, 1] + (q^3+2*q^2+3*q+2)*an[3, 2, 1, 1]
|
|
233
|
+
+ (q^3+2*q^2+2*q+1)*an[4, 1, 1, 1] + (q^3+2*q^2+2*q+1)*an[4, 2, 1]
|
|
234
|
+
sage: h(an._h_to_an_on_basis(Partition([3,1]))) == h[3,1]
|
|
235
|
+
True
|
|
236
|
+
|
|
237
|
+
sage: all(an(h(an[n])) == an[n] for n in range(10))
|
|
238
|
+
True
|
|
239
|
+
"""
|
|
240
|
+
if not lam:
|
|
241
|
+
return self.one()
|
|
242
|
+
P = self._indices
|
|
243
|
+
if len(lam) == 1:
|
|
244
|
+
R = self.base_ring()
|
|
245
|
+
q = self._q
|
|
246
|
+
B = self.basis()
|
|
247
|
+
n = lam[0]
|
|
248
|
+
return (self.sum(self._h_to_an_on_basis(P([n-i])) * B[P([i])]
|
|
249
|
+
for i in range(1, n+1)) / R.sum(q**k for k in range(n)))
|
|
250
|
+
# Multiply by the smallest part to minimize the number of products
|
|
251
|
+
return self._h_to_an_on_basis(P(lam[:-1])) * self._h_to_an_on_basis(P([lam[-1]]))
|
|
252
|
+
|
|
253
|
+
@cached_method
|
|
254
|
+
def _an_to_h_on_basis(self, lam):
|
|
255
|
+
r"""
|
|
256
|
+
Return the Abreu-Nigro symmetric function ``an[lam]`` expanded in the
|
|
257
|
+
complete homogeneous basis.
|
|
258
|
+
|
|
259
|
+
INPUT:
|
|
260
|
+
|
|
261
|
+
- ``lam`` -- a partition
|
|
262
|
+
|
|
263
|
+
EXAMPLES::
|
|
264
|
+
|
|
265
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
266
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
267
|
+
sage: an = Sym.abreu_nigro(q)
|
|
268
|
+
sage: h = Sym.homogeneous()
|
|
269
|
+
sage: an._an_to_h_on_basis(Partition([]))
|
|
270
|
+
h[]
|
|
271
|
+
sage: an._an_to_h_on_basis(Partition([4,2,1]))
|
|
272
|
+
h[1, 1, 1, 1, 1, 1, 1] + (-2*q-4)*h[2, 1, 1, 1, 1, 1]
|
|
273
|
+
+ (q^2+5*q+4)*h[2, 2, 1, 1, 1] + (-q^2-2*q-1)*h[2, 2, 2, 1]
|
|
274
|
+
+ (q^2+q+2)*h[3, 1, 1, 1, 1] + (-q^3-2*q^2-3*q-2)*h[3, 2, 1, 1]
|
|
275
|
+
+ (-q^3-q^2-q-1)*h[4, 1, 1, 1] + (q^4+2*q^3+2*q^2+2*q+1)*h[4, 2, 1]
|
|
276
|
+
sage: an(an._an_to_h_on_basis(Partition([3,1]))) == an[3,1]
|
|
277
|
+
True
|
|
278
|
+
|
|
279
|
+
sage: all(h(an(h[n])) == h[n] for n in range(10))
|
|
280
|
+
True
|
|
281
|
+
"""
|
|
282
|
+
if not lam:
|
|
283
|
+
return self._h.one()
|
|
284
|
+
P = self._indices
|
|
285
|
+
if len(lam) == 1:
|
|
286
|
+
R = self.base_ring()
|
|
287
|
+
q = self._q
|
|
288
|
+
B = self._h.basis()
|
|
289
|
+
n = lam[0]
|
|
290
|
+
return (R.sum(q**k for k in range(n)) * self._h[n]
|
|
291
|
+
- self._h.sum(B[P([n-i])] * self._an_to_h_on_basis(P([i])) for i in range(1, n)))
|
|
292
|
+
# Multiply by the smallest part to minimize the number of products
|
|
293
|
+
return self._an_to_h_on_basis(P(lam[:-1])) * self._an_to_h_on_basis(P([lam[-1]]))
|
|
294
|
+
|
|
295
|
+
def coproduct_on_generators(self, n):
|
|
296
|
+
r"""
|
|
297
|
+
Return the coproduct on the ``n``-th generator of ``self``.
|
|
298
|
+
|
|
299
|
+
For any `n \geq 1`, we have
|
|
300
|
+
|
|
301
|
+
.. MATH::
|
|
302
|
+
|
|
303
|
+
\Delta(\rho_n) = \rho_0 \otimes \rho_n
|
|
304
|
+
+ (q-1) \sum_{k=1}^{n-1} \rho_k \otimes \rho_{n-k}
|
|
305
|
+
+ \rho_n \otimes \rho_0.
|
|
306
|
+
|
|
307
|
+
INPUT:
|
|
308
|
+
|
|
309
|
+
- ``n`` -- a nonnegative integer
|
|
310
|
+
|
|
311
|
+
OUTPUT:
|
|
312
|
+
|
|
313
|
+
an element of the tensor squared of the basis ``self``
|
|
314
|
+
|
|
315
|
+
EXAMPLES::
|
|
316
|
+
|
|
317
|
+
sage: q = ZZ['q'].fraction_field().gen()
|
|
318
|
+
sage: Sym = SymmetricFunctions(q.parent())
|
|
319
|
+
sage: h = Sym.h()
|
|
320
|
+
sage: an = Sym.abreu_nigro(q)
|
|
321
|
+
sage: an.coproduct_on_generators(2)
|
|
322
|
+
an[] # an[2] + (q-1)*an[1] # an[1] + an[2] # an[]
|
|
323
|
+
sage: an[2].coproduct()
|
|
324
|
+
an[] # an[2] + (q-1)*an[1] # an[1] + an[2] # an[]
|
|
325
|
+
sage: an.coproduct(an[2])
|
|
326
|
+
an[] # an[2] + (q-1)*an[1] # an[1] + an[2] # an[]
|
|
327
|
+
sage: an.tensor_square()(h(an[5]).coproduct()) == an[5].coproduct()
|
|
328
|
+
True
|
|
329
|
+
sage: an[2,1].coproduct()
|
|
330
|
+
an[] # an[2, 1] + (q-1)*an[1] # an[1, 1] + an[1] # an[2]
|
|
331
|
+
+ (q-1)*an[1, 1] # an[1] + an[2] # an[1] + an[2, 1] # an[]
|
|
332
|
+
sage: an.tensor_square()(h(an[2,1]).coproduct())
|
|
333
|
+
an[] # an[2, 1] + (q-1)*an[1] # an[1, 1] + an[1] # an[2]
|
|
334
|
+
+ (q-1)*an[1, 1] # an[1] + an[2] # an[1] + an[2, 1] # an[]
|
|
335
|
+
"""
|
|
336
|
+
TS = self.tensor_square()
|
|
337
|
+
if not n:
|
|
338
|
+
return TS.one()
|
|
339
|
+
P = self._indices
|
|
340
|
+
one = self.base_ring().one()
|
|
341
|
+
d = {(P([n]), P([])): one, (P([]), P([n])): one}
|
|
342
|
+
coeff = self._q - one
|
|
343
|
+
if coeff:
|
|
344
|
+
for k in range(1, n):
|
|
345
|
+
d[P([k]), P([n-k])] = coeff
|
|
346
|
+
return TS.element_class(TS, d)
|
sage/combinat/sf/all.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Symmetric functions
|
|
4
|
+
|
|
5
|
+
- :class:`Introduction to symmetric functions <sage.combinat.sf.sf.SymmetricFunctions>`
|
|
6
|
+
|
|
7
|
+
- :ref:`sage.combinat.sf.sfa`
|
|
8
|
+
- :ref:`sage.combinat.sf.sf`
|
|
9
|
+
- :ref:`sage.combinat.sf.classical`
|
|
10
|
+
- :ref:`sage.combinat.sf.schur`
|
|
11
|
+
- :ref:`sage.combinat.sf.monomial`
|
|
12
|
+
- :ref:`sage.combinat.sf.multiplicative`
|
|
13
|
+
- :ref:`sage.combinat.sf.elementary`
|
|
14
|
+
- :ref:`sage.combinat.sf.homogeneous`
|
|
15
|
+
- :ref:`sage.combinat.sf.powersum`
|
|
16
|
+
- :ref:`sage.combinat.sf.character`
|
|
17
|
+
- :ref:`sage.combinat.sf.orthogonal`
|
|
18
|
+
- :ref:`sage.combinat.sf.symplectic`
|
|
19
|
+
- :ref:`sage.combinat.sf.dual`
|
|
20
|
+
- :ref:`sage.combinat.sf.orthotriang`
|
|
21
|
+
- :ref:`sage.combinat.sf.kfpoly`
|
|
22
|
+
- :ref:`sage.combinat.sf.hall_littlewood`
|
|
23
|
+
- :ref:`sage.combinat.sf.hecke`
|
|
24
|
+
- :ref:`sage.combinat.sf.jack`
|
|
25
|
+
- :ref:`k-Schur Functions <sage.combinat.sf.new_kschur>`
|
|
26
|
+
- :ref:`sage.combinat.sf.k_dual`
|
|
27
|
+
- :ref:`sage.combinat.sf.llt`
|
|
28
|
+
- :ref:`sage.combinat.sf.macdonald`
|
|
29
|
+
- :ref:`sage.combinat.sf.ns_macdonald`
|
|
30
|
+
- :ref:`sage.combinat.sf.witt`
|
|
31
|
+
- :ref:`sage.combinat.sf.abreu_nigro`
|
|
32
|
+
"""
|
|
33
|
+
# install the docstring of this module to the containing package
|
|
34
|
+
from sage.misc.namespace_package import install_doc
|
|
35
|
+
|
|
36
|
+
install_doc(__package__, __doc__)
|
|
37
|
+
|
|
38
|
+
from sage.misc.lazy_import import lazy_import
|
|
39
|
+
|
|
40
|
+
# In the long run, this will be the single entry point
|
|
41
|
+
# Nothing else will be exported
|
|
42
|
+
lazy_import('sage.combinat.sf.sf', 'SymmetricFunctions')
|
|
43
|
+
|
|
44
|
+
# Advanced stuff:
|
|
45
|
+
|
|
46
|
+
lazy_import('sage.combinat.sf.kfpoly', 'KostkaFoulkesPolynomial')
|
|
47
|
+
|
|
48
|
+
lazy_import('sage.combinat.sf.ns_macdonald', ['NonattackingFillings',
|
|
49
|
+
'AugmentedLatticeDiagramFilling',
|
|
50
|
+
'LatticeDiagram'])
|
|
51
|
+
del lazy_import
|
|
52
|
+
del install_doc
|