passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Crystals
|
|
4
|
+
|
|
5
|
+
- :ref:`sage.combinat.crystals.crystals`
|
|
6
|
+
- The `Lie Methods and Related Combinatorics <../../../../../thematic_tutorials/lie.html>`_ thematic tutorial
|
|
7
|
+
- :ref:`sage.combinat.crystals.catalog`
|
|
8
|
+
|
|
9
|
+
See also the categories for crystals: :class:`Crystals`,
|
|
10
|
+
:class:`HighestWeightCrystals`, :class:`FiniteCrystals`,
|
|
11
|
+
:class:`ClassicalCrystals`, :class:`RegularCrystals`,
|
|
12
|
+
:class:`~sage.categories.regular_supercrystals.RegularSuperCrystals`
|
|
13
|
+
"""
|
|
14
|
+
# install the docstring of this module to the containing package
|
|
15
|
+
from sage.misc.namespace_package import install_doc
|
|
16
|
+
install_doc(__package__, __doc__)
|
|
17
|
+
|
|
18
|
+
from sage.misc.lazy_import import lazy_import
|
|
19
|
+
|
|
20
|
+
lazy_import('sage.combinat.crystals', 'catalog', 'crystals')
|
|
21
|
+
del lazy_import
|
|
22
|
+
del install_doc
|
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Benkart-Kang-Kashiwara crystals for the general-linear Lie superalgebra
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# ****************************************************************************
|
|
8
|
+
# Copyright (C) 2017 Franco Saliola <saliola@gmail.com>
|
|
9
|
+
# 2017 Travis Scrimshaw <tcscrims at gmail.com>
|
|
10
|
+
# 2017 Anne Schilling <anne@math.ucdavis.edu>
|
|
11
|
+
#
|
|
12
|
+
# This program is free software: you can redistribute it and/or modify
|
|
13
|
+
# it under the terms of the GNU General Public License as published by
|
|
14
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
15
|
+
# (at your option) any later version.
|
|
16
|
+
# https://www.gnu.org/licenses/
|
|
17
|
+
# ****************************************************************************
|
|
18
|
+
|
|
19
|
+
from sage.structure.parent import Parent
|
|
20
|
+
from sage.categories.regular_supercrystals import RegularSuperCrystals
|
|
21
|
+
from sage.combinat.partition import _Partitions
|
|
22
|
+
from sage.combinat.root_system.cartan_type import CartanType
|
|
23
|
+
from sage.combinat.crystals.letters import CrystalOfBKKLetters
|
|
24
|
+
from sage.combinat.crystals.tensor_product import CrystalOfWords
|
|
25
|
+
from sage.combinat.crystals.tensor_product_element import CrystalOfBKKTableauxElement
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class CrystalOfBKKTableaux(CrystalOfWords):
|
|
29
|
+
r"""
|
|
30
|
+
Crystal of tableaux for type `A(m|n)`.
|
|
31
|
+
|
|
32
|
+
This is an implementation of the tableaux model of the
|
|
33
|
+
Benkart-Kang-Kashiwara crystal [BKK2000]_ for the Lie
|
|
34
|
+
superalgebra `\mathfrak{gl}(m+1,n+1)`.
|
|
35
|
+
|
|
36
|
+
INPUT:
|
|
37
|
+
|
|
38
|
+
- ``ct`` -- a super Lie Cartan type of type `A(m|n)`
|
|
39
|
+
- ``shape`` -- shape specifying the highest weight; this should be
|
|
40
|
+
a partition contained in a hook of height `n+1` and width `m+1`
|
|
41
|
+
|
|
42
|
+
EXAMPLES::
|
|
43
|
+
|
|
44
|
+
sage: T = crystals.Tableaux(['A', [1,1]], shape = [2,1])
|
|
45
|
+
sage: T.cardinality()
|
|
46
|
+
20
|
|
47
|
+
"""
|
|
48
|
+
@staticmethod
|
|
49
|
+
def __classcall_private__(cls, ct, shape):
|
|
50
|
+
"""
|
|
51
|
+
Normalize input to ensure a unique representation.
|
|
52
|
+
|
|
53
|
+
TESTS::
|
|
54
|
+
|
|
55
|
+
sage: crystals.Tableaux(['A', [1, 2]], shape=[2,1])
|
|
56
|
+
Crystal of BKK tableaux of shape [2, 1] of gl(2|3)
|
|
57
|
+
sage: crystals.Tableaux(['A', [1, 1]], shape=[3,3,3])
|
|
58
|
+
Traceback (most recent call last):
|
|
59
|
+
...
|
|
60
|
+
ValueError: invalid hook shape
|
|
61
|
+
"""
|
|
62
|
+
ct = CartanType(ct)
|
|
63
|
+
shape = _Partitions(shape)
|
|
64
|
+
if len(shape) > ct.m + 1 and shape[ct.m + 1] > ct.n + 1:
|
|
65
|
+
raise ValueError("invalid hook shape")
|
|
66
|
+
return super().__classcall__(cls, ct, shape)
|
|
67
|
+
|
|
68
|
+
def __init__(self, ct, shape):
|
|
69
|
+
r"""
|
|
70
|
+
Initialize ``self``.
|
|
71
|
+
|
|
72
|
+
TESTS::
|
|
73
|
+
|
|
74
|
+
sage: T = crystals.Tableaux(['A', [1,1]], shape = [2,1]); T
|
|
75
|
+
Crystal of BKK tableaux of shape [2, 1] of gl(2|2)
|
|
76
|
+
sage: TestSuite(T).run()
|
|
77
|
+
"""
|
|
78
|
+
self._shape = shape
|
|
79
|
+
self._cartan_type = ct
|
|
80
|
+
m = ct.m + 1
|
|
81
|
+
C = CrystalOfBKKLetters(ct)
|
|
82
|
+
tr = shape.conjugate()
|
|
83
|
+
mg = []
|
|
84
|
+
for i, col_len in enumerate(tr, start=1):
|
|
85
|
+
mg.extend(C(i) for j in range(col_len - m))
|
|
86
|
+
mg.extend(C(-j - 1) for j in range(max(0, m - col_len), m))
|
|
87
|
+
mg = list(reversed(mg))
|
|
88
|
+
Parent.__init__(self, category=RegularSuperCrystals())
|
|
89
|
+
self.module_generators = (self.element_class(self, mg),)
|
|
90
|
+
|
|
91
|
+
def _repr_(self) -> str:
|
|
92
|
+
"""
|
|
93
|
+
Return a string representation of ``self``.
|
|
94
|
+
|
|
95
|
+
TESTS::
|
|
96
|
+
|
|
97
|
+
sage: crystals.Tableaux(['A', [1, 2]], shape=[2,1])
|
|
98
|
+
Crystal of BKK tableaux of shape [2, 1] of gl(2|3)
|
|
99
|
+
"""
|
|
100
|
+
m = self._cartan_type.m + 1
|
|
101
|
+
n = self._cartan_type.n + 1
|
|
102
|
+
return "Crystal of BKK tableaux of shape {} of gl({}|{})".format(self.shape(), m, n)
|
|
103
|
+
|
|
104
|
+
def shape(self):
|
|
105
|
+
r"""
|
|
106
|
+
Return the shape of ``self``.
|
|
107
|
+
|
|
108
|
+
EXAMPLES::
|
|
109
|
+
|
|
110
|
+
sage: T = crystals.Tableaux(['A', [1, 2]], shape=[2,1])
|
|
111
|
+
sage: T.shape()
|
|
112
|
+
[2, 1]
|
|
113
|
+
"""
|
|
114
|
+
return self._shape
|
|
115
|
+
|
|
116
|
+
def genuine_highest_weight_vectors(self, index_set=None):
|
|
117
|
+
"""
|
|
118
|
+
Return a tuple of genuine highest weight elements.
|
|
119
|
+
|
|
120
|
+
A *fake highest weight vector* is one which is annihilated by
|
|
121
|
+
`e_i` for all `i` in the index set, but whose weight is not
|
|
122
|
+
bigger in dominance order than all other elements in the
|
|
123
|
+
crystal. A *genuine highest weight vector* is a highest
|
|
124
|
+
weight element that is not fake.
|
|
125
|
+
|
|
126
|
+
EXAMPLES::
|
|
127
|
+
|
|
128
|
+
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
|
|
129
|
+
sage: B.genuine_highest_weight_vectors()
|
|
130
|
+
([[-2, -2, -2], [-1, -1], [1]],)
|
|
131
|
+
sage: B.highest_weight_vectors()
|
|
132
|
+
([[-2, -2, -2], [-1, -1], [1]],
|
|
133
|
+
[[-2, -2, -2], [-1, 2], [1]],
|
|
134
|
+
[[-2, -2, 2], [-1, -1], [1]])
|
|
135
|
+
"""
|
|
136
|
+
if index_set is None or index_set == self.index_set():
|
|
137
|
+
return self.module_generators
|
|
138
|
+
return super().genuine_highest_weight_vectors(index_set)
|
|
139
|
+
|
|
140
|
+
class Element(CrystalOfBKKTableauxElement):
|
|
141
|
+
pass
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Catalog of crystals
|
|
4
|
+
|
|
5
|
+
Let `I` be an index set and let `(A,\Pi,\Pi^\vee,P,P^\vee)` be a Cartan datum
|
|
6
|
+
associated with generalized Cartan matrix `A = (a_{ij})_{i,j\in I}`. An
|
|
7
|
+
*abstract crystal* associated to this Cartan datum is a set `B` together with
|
|
8
|
+
maps
|
|
9
|
+
|
|
10
|
+
.. MATH::
|
|
11
|
+
|
|
12
|
+
e_i,f_i \colon B \to B \cup \{0\}, \qquad
|
|
13
|
+
\varepsilon_i,\varphi_i\colon B \to \ZZ \cup \{-\infty\}, \qquad
|
|
14
|
+
\mathrm{wt}\colon B \to P,
|
|
15
|
+
|
|
16
|
+
subject to the following conditions:
|
|
17
|
+
|
|
18
|
+
1. `\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \mathrm{wt}(b) \rangle` for all `b \in B` and `i \in I`;
|
|
19
|
+
2. `\mathrm{wt}(e_ib) = \mathrm{wt}(b) + \alpha_i` if `e_ib \in B`;
|
|
20
|
+
3. `\mathrm{wt}(f_ib) = \mathrm{wt}(b) - \alpha_i` if `f_ib \in B`;
|
|
21
|
+
4. `\varepsilon_i(e_ib) = \varepsilon_i(b) - 1`, `\varphi_i(e_ib) = \varphi_i(b) + 1` if `e_ib \in B`;
|
|
22
|
+
5. `\varepsilon_i(f_ib) = \varepsilon_i(b) + 1`, `\varphi_i(f_ib) = \varphi_i(b) - 1` if `f_ib \in B`;
|
|
23
|
+
6. `f_ib = b'` if and only if `b = e_ib'` for `b,b' \in B` and `i\in I`;
|
|
24
|
+
7. if `\varphi_i(b) = -\infty` for `b\in B`, then `e_ib = f_ib = 0`.
|
|
25
|
+
|
|
26
|
+
.. SEEALSO::
|
|
27
|
+
|
|
28
|
+
- :mod:`sage.categories.crystals`
|
|
29
|
+
- :mod:`sage.combinat.crystals.crystals`
|
|
30
|
+
|
|
31
|
+
Catalog
|
|
32
|
+
-------
|
|
33
|
+
|
|
34
|
+
This is a catalog of crystals that are currently implemented in Sage:
|
|
35
|
+
|
|
36
|
+
* :class:`~sage.combinat.crystals.affine.AffineCrystalFromClassical`
|
|
37
|
+
* :class:`~sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion`
|
|
38
|
+
* :class:`AffineFactorization <sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal>`
|
|
39
|
+
* :class:`AffinizationOf <sage.combinat.crystals.affinization.AffinizationOfCrystal>`
|
|
40
|
+
* :class:`AlcovePaths <sage.combinat.crystals.alcove_path.CrystalOfAlcovePaths>`
|
|
41
|
+
* :class:`FastRankTwo <sage.combinat.crystals.fast_crystals.FastCrystal>`
|
|
42
|
+
* :class:`FullyCommutativeStableGrothendieck
|
|
43
|
+
<sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal>`
|
|
44
|
+
* :class:`GeneralizedYoungWalls
|
|
45
|
+
<sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWalls>`
|
|
46
|
+
* :func:`HighestWeight <sage.combinat.crystals.highest_weight_crystals.HighestWeightCrystal>`
|
|
47
|
+
* :class:`Induced <sage.combinat.crystals.induced_structure.InducedCrystal>`
|
|
48
|
+
* :class:`KacModule <sage.combinat.crystals.kac_modules.CrystalOfKacModule>`
|
|
49
|
+
* :func:`KirillovReshetikhin <sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystal>`
|
|
50
|
+
* :class:`KleshchevPartitions <sage.combinat.partition_kleshchev.KleshchevPartitions_all>`
|
|
51
|
+
* :class:`KyotoPathModel <sage.combinat.crystals.kyoto_path_model.KyotoPathModel>`
|
|
52
|
+
* :class:`Letters <sage.combinat.crystals.letters.CrystalOfLetters>`
|
|
53
|
+
* :class:`LSPaths <sage.combinat.crystals.littelmann_path.CrystalOfLSPaths>`
|
|
54
|
+
* :class:`Minimaj <sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal>`
|
|
55
|
+
* :class:`NakajimaMonomials <sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials>`
|
|
56
|
+
* :class:`OddNegativeRoots <sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots>`
|
|
57
|
+
* :class:`ProjectedLevelZeroLSPaths
|
|
58
|
+
<sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths>`
|
|
59
|
+
* :class:`RiggedConfigurations
|
|
60
|
+
<sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations>`
|
|
61
|
+
* :class:`ShiftedPrimedTableaux
|
|
62
|
+
<sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_shape>`
|
|
63
|
+
* :class:`Spins <sage.combinat.crystals.spins.CrystalOfSpins>`
|
|
64
|
+
* :class:`SpinsPlus <sage.combinat.crystals.spins.CrystalOfSpinsPlus>`
|
|
65
|
+
* :class:`SpinsMinus <sage.combinat.crystals.spins.CrystalOfSpinsMinus>`
|
|
66
|
+
* :class:`Tableaux <sage.combinat.crystals.tensor_product.CrystalOfTableaux>`
|
|
67
|
+
|
|
68
|
+
Subcatalogs:
|
|
69
|
+
|
|
70
|
+
* :ref:`sage.combinat.crystals.catalog_infinity_crystals`
|
|
71
|
+
* :ref:`sage.combinat.crystals.catalog_elementary_crystals`
|
|
72
|
+
* :ref:`sage.combinat.crystals.catalog_kirillov_reshetikhin`
|
|
73
|
+
|
|
74
|
+
Functorial constructions:
|
|
75
|
+
|
|
76
|
+
* :class:`DirectSum <sage.combinat.crystals.direct_sum.DirectSumOfCrystals>`
|
|
77
|
+
* :class:`TensorProduct <sage.combinat.crystals.tensor_product.TensorProductOfCrystals>`
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
from .letters import CrystalOfLetters as Letters
|
|
81
|
+
from .spins import CrystalOfSpins as Spins
|
|
82
|
+
from .spins import CrystalOfSpinsPlus as SpinsPlus
|
|
83
|
+
from .spins import CrystalOfSpinsMinus as SpinsMinus
|
|
84
|
+
from .tensor_product import CrystalOfTableaux as Tableaux
|
|
85
|
+
from .fast_crystals import FastCrystal as FastRankTwo
|
|
86
|
+
from .affine import AffineCrystalFromClassical as AffineFromClassical
|
|
87
|
+
from .affine import AffineCrystalFromClassicalAndPromotion as AffineFromClassicalAndPromotion
|
|
88
|
+
from .affine_factorization import AffineFactorizationCrystal as AffineFactorization
|
|
89
|
+
from .fully_commutative_stable_grothendieck import FullyCommutativeStableGrothendieckCrystal as FullyCommutativeStableGrothendieck
|
|
90
|
+
from sage.combinat.crystals.affinization import AffinizationOfCrystal as AffinizationOf
|
|
91
|
+
from .highest_weight_crystals import HighestWeightCrystal as HighestWeight
|
|
92
|
+
from .alcove_path import CrystalOfAlcovePaths as AlcovePaths
|
|
93
|
+
from .littelmann_path import CrystalOfLSPaths as LSPaths
|
|
94
|
+
from .littelmann_path import CrystalOfProjectedLevelZeroLSPaths as ProjectedLevelZeroLSPaths
|
|
95
|
+
from .kyoto_path_model import KyotoPathModel
|
|
96
|
+
from .generalized_young_walls import CrystalOfGeneralizedYoungWalls as GeneralizedYoungWalls
|
|
97
|
+
from .monomial_crystals import CrystalOfNakajimaMonomials as NakajimaMonomials
|
|
98
|
+
from sage.combinat.rigged_configurations.tensor_product_kr_tableaux import TensorProductOfKirillovReshetikhinTableaux
|
|
99
|
+
from sage.combinat.crystals.kirillov_reshetikhin import KirillovReshetikhinCrystal as KirillovReshetikhin
|
|
100
|
+
from sage.combinat.rigged_configurations.rc_crystal import CrystalOfRiggedConfigurations as RiggedConfigurations
|
|
101
|
+
from sage.combinat.shifted_primed_tableau import ShiftedPrimedTableaux_shape as ShiftedPrimedTableaux
|
|
102
|
+
from sage.combinat.partition_kleshchev import KleshchevPartitions
|
|
103
|
+
from sage.combinat.multiset_partition_into_sets_ordered import MinimajCrystal as Minimaj
|
|
104
|
+
|
|
105
|
+
from sage.combinat.crystals.induced_structure import InducedCrystal as Induced
|
|
106
|
+
|
|
107
|
+
from sage.combinat.crystals.kac_modules import CrystalOfKacModule as KacModule
|
|
108
|
+
from sage.combinat.crystals.kac_modules import CrystalOfOddNegativeRoots as OddNegativeRoots
|
|
109
|
+
|
|
110
|
+
from .tensor_product import TensorProductOfCrystals as TensorProduct
|
|
111
|
+
from .direct_sum import DirectSumOfCrystals as DirectSum
|
|
112
|
+
|
|
113
|
+
from . import catalog_kirillov_reshetikhin as kirillov_reshetikhin
|
|
114
|
+
from . import catalog_infinity_crystals as infinity
|
|
115
|
+
from . import catalog_elementary_crystals as elementary
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
"""
|
|
3
|
+
Catalog of elementary crystals
|
|
4
|
+
|
|
5
|
+
See :mod:`~sage.combinat.crystals.elementary_crystals`.
|
|
6
|
+
|
|
7
|
+
* :class:`Component <sage.combinat.crystals.elementary_crystals.ComponentCrystal>`
|
|
8
|
+
* :class:`Elementary <sage.combinat.crystals.elementary_crystals.ElementaryCrystal>`
|
|
9
|
+
or :class:`B <sage.combinat.crystals.elementary_crystals.ElementaryCrystal>`
|
|
10
|
+
* :class:`R <sage.combinat.crystals.elementary_crystals.RCrystal>`
|
|
11
|
+
* :class:`T <sage.combinat.crystals.elementary_crystals.TCrystal>`
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
from .elementary_crystals import TCrystal as T
|
|
15
|
+
from .elementary_crystals import RCrystal as R
|
|
16
|
+
from .elementary_crystals import ElementaryCrystal as Elementary
|
|
17
|
+
from .elementary_crystals import ElementaryCrystal as B
|
|
18
|
+
from .elementary_crystals import ComponentCrystal as Component
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
r"""
|
|
3
|
+
Catalog of crystal models For `B(\infty)`
|
|
4
|
+
|
|
5
|
+
We currently have the following models:
|
|
6
|
+
|
|
7
|
+
* :class:`AlcovePaths
|
|
8
|
+
<sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths>`
|
|
9
|
+
* :class:`GeneralizedYoungWalls
|
|
10
|
+
<sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls>`
|
|
11
|
+
* :class:`LSPaths <sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths>`
|
|
12
|
+
* :class:`Multisegments <sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments>`
|
|
13
|
+
* :class:`MVPolytopes <sage.combinat.crystals.mv_polytopes.MVPolytopes>`
|
|
14
|
+
* :class:`NakajimaMonomials <sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials>`
|
|
15
|
+
* :class:`PBW <sage.combinat.crystals.pbw_crystal.PBWCrystal>`
|
|
16
|
+
* :class:`PolyhedralRealization <sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization>`
|
|
17
|
+
* :class:`RiggedConfigurations
|
|
18
|
+
<sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations>`
|
|
19
|
+
* :class:`Star <sage.combinat.crystals.star_crystal.StarCrystal>`
|
|
20
|
+
* :class:`Tableaux <sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux>`
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
from .generalized_young_walls import InfinityCrystalOfGeneralizedYoungWalls as GeneralizedYoungWalls
|
|
24
|
+
from .multisegments import InfinityCrystalOfMultisegments as Multisegments
|
|
25
|
+
from .monomial_crystals import InfinityCrystalOfNakajimaMonomials as NakajimaMonomials
|
|
26
|
+
from sage.combinat.rigged_configurations.rc_infinity import InfinityCrystalOfRiggedConfigurations as RiggedConfigurations
|
|
27
|
+
from .infinity_crystals import InfinityCrystalOfTableaux as Tableaux
|
|
28
|
+
from sage.combinat.crystals.polyhedral_realization import InfinityCrystalAsPolyhedralRealization as PolyhedralRealization
|
|
29
|
+
from sage.combinat.crystals.pbw_crystal import PBWCrystal as PBW
|
|
30
|
+
from sage.combinat.crystals.mv_polytopes import MVPolytopes
|
|
31
|
+
from sage.combinat.crystals.star_crystal import StarCrystal as Star
|
|
32
|
+
from sage.combinat.crystals.littelmann_path import InfinityCrystalOfLSPaths as LSPaths
|
|
33
|
+
from sage.combinat.crystals.alcove_path import InfinityCrystalOfAlcovePaths as AlcovePaths
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
"""
|
|
3
|
+
Catalog of crystal models for Kirillov-Reshetikhin crystals
|
|
4
|
+
|
|
5
|
+
We currently have the following models:
|
|
6
|
+
|
|
7
|
+
* :func:`KashiwaraNakashimaTableaux
|
|
8
|
+
<sage.combinat.crystals.kirillov_reshetikhin.KashiwaraNakashimaTableaux>`
|
|
9
|
+
* :class:`~sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux`
|
|
10
|
+
* :func:`LSPaths <sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromLSPaths>`
|
|
11
|
+
* :func:`RiggedConfigurations
|
|
12
|
+
<sage.combinat.rigged_configurations.rigged_configurations.KirillovReshetikhinCrystal>`
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
from .kirillov_reshetikhin import KashiwaraNakashimaTableaux
|
|
16
|
+
from .kirillov_reshetikhin import KirillovReshetikhinCrystalFromLSPaths as LSPaths
|
|
17
|
+
from sage.combinat.rigged_configurations.kr_tableaux import KirillovReshetikhinTableaux
|
|
18
|
+
from sage.combinat.rigged_configurations.rigged_configurations import KirillovReshetikhinCrystal as RiggedConfigurations
|
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
An introduction to crystals
|
|
5
|
+
===========================
|
|
6
|
+
|
|
7
|
+
Informally, a crystal `\mathcal{B}` is an oriented graph with edges
|
|
8
|
+
colored in some set `I` such that, for each `i\in I`, each node `x`
|
|
9
|
+
has:
|
|
10
|
+
|
|
11
|
+
- at most one `i`-successor, denoted `f_i x`;
|
|
12
|
+
|
|
13
|
+
- at most one `i`-predecessor, denoted `e_i x`.
|
|
14
|
+
|
|
15
|
+
By convention, one writes `f_i x=\emptyset` and `e_i x=\emptyset` when
|
|
16
|
+
`x` has no successor resp. predecessor.
|
|
17
|
+
|
|
18
|
+
One may think of `\mathcal{B}` as essentially a deterministic
|
|
19
|
+
automaton whose dual is also deterministic; in this context, the
|
|
20
|
+
`f_i`'s and `e_i`'s are respectively the transition functions of the
|
|
21
|
+
automaton and of its dual, and `\emptyset` is the sink.
|
|
22
|
+
|
|
23
|
+
A crystal comes further endowed with a weight function
|
|
24
|
+
`\operatorname{wt} : \mathcal{B} \to L` which satisfies
|
|
25
|
+
appropriate conditions.
|
|
26
|
+
|
|
27
|
+
In combinatorial representation theory, crystals are used as
|
|
28
|
+
combinatorial data to model representations of Lie algebra.
|
|
29
|
+
|
|
30
|
+
Axiomatic definition
|
|
31
|
+
--------------------
|
|
32
|
+
|
|
33
|
+
Let `C` be a Cartan type (:class:`CartanType`) with index set `I`,
|
|
34
|
+
and `L` be a realization of the weight lattice of the type `C`.
|
|
35
|
+
Let `\alpha_i` and `\alpha^{\vee}_i` denote the simple roots and
|
|
36
|
+
coroots respectively.
|
|
37
|
+
|
|
38
|
+
A type `C` crystal is a non-empty set `\mathcal{B}` endowed with maps
|
|
39
|
+
`\operatorname{wt} : \mathcal{B} \to L`,
|
|
40
|
+
`e_i, f_i : \mathcal{B} \to \mathcal{B} \cup \{\emptyset\}`, and
|
|
41
|
+
`\varepsilon_i, \varphi_i : \mathcal{B} \to \ZZ \cup \{-\infty\}`
|
|
42
|
+
for `i \in I` satisfying the following properties for all `i \in I`:
|
|
43
|
+
|
|
44
|
+
- for `b, b^{\prime} \in \mathcal{B}`, we have
|
|
45
|
+
`f_i b^{\prime} = b` if and only if `e_i b = b^{\prime}`;
|
|
46
|
+
|
|
47
|
+
- if `e_i b \in \mathcal{B}`, then:
|
|
48
|
+
|
|
49
|
+
* `\operatorname{wt}(e_i b) = \operatorname{wt}(b) + \alpha_i`,
|
|
50
|
+
* `\varepsilon_i(e_i b) = \varepsilon_i(b) - 1`,
|
|
51
|
+
* `\varphi_i(e_i b) = \varphi_i(b) + 1`;
|
|
52
|
+
|
|
53
|
+
- if `f_i b \in \mathcal{B}`, then:
|
|
54
|
+
|
|
55
|
+
* `\operatorname{wt}(f_i b) = \operatorname{wt}(b) - \alpha_i`,
|
|
56
|
+
* `\varepsilon_i(f_i b) = \varepsilon_i(b) + 1`,
|
|
57
|
+
* `\varphi_i(f_i b) = \varphi_i(b) - 1`;
|
|
58
|
+
|
|
59
|
+
- `\varphi_i(b) = \varepsilon_i(b) + \langle \alpha^{\vee}_i,
|
|
60
|
+
\operatorname{wt}(b) \rangle`,
|
|
61
|
+
|
|
62
|
+
- if `\varphi_i(b) = -\infty` for `b \in \mathcal{B}`,
|
|
63
|
+
then `e_i b = f_i b = \emptyset`.
|
|
64
|
+
|
|
65
|
+
Some further conditions are required to guarantee that this data
|
|
66
|
+
indeed models a representation of a Lie algebra. For finite simply
|
|
67
|
+
laced types a complete characterization is given by Stembridge's local
|
|
68
|
+
axioms [Ste2003]_.
|
|
69
|
+
|
|
70
|
+
EXAMPLES:
|
|
71
|
+
|
|
72
|
+
We construct the type `A_5` crystal on letters (or in representation
|
|
73
|
+
theoretic terms, the highest weight crystal of type `A_5`
|
|
74
|
+
corresponding to the highest weight `\Lambda_1`)::
|
|
75
|
+
|
|
76
|
+
sage: C = crystals.Letters(['A',5]); C
|
|
77
|
+
The crystal of letters for type ['A', 5]
|
|
78
|
+
|
|
79
|
+
It has a single highest weight element::
|
|
80
|
+
|
|
81
|
+
sage: C.highest_weight_vectors()
|
|
82
|
+
(1,)
|
|
83
|
+
|
|
84
|
+
A crystal is an enumerated set (see :class:`EnumeratedSets`); and we
|
|
85
|
+
can count and list its elements in the usual way::
|
|
86
|
+
|
|
87
|
+
sage: C.cardinality()
|
|
88
|
+
6
|
|
89
|
+
sage: C.list()
|
|
90
|
+
[1, 2, 3, 4, 5, 6]
|
|
91
|
+
|
|
92
|
+
as well as use it in for loops::
|
|
93
|
+
|
|
94
|
+
sage: [x for x in C]
|
|
95
|
+
[1, 2, 3, 4, 5, 6]
|
|
96
|
+
|
|
97
|
+
Here are some more elaborate crystals (see their respective
|
|
98
|
+
documentations)::
|
|
99
|
+
|
|
100
|
+
sage: Tens = crystals.TensorProduct(C, C)
|
|
101
|
+
sage: Spin = crystals.Spins(['B', 3])
|
|
102
|
+
sage: Tab = crystals.Tableaux(['A', 3], shape = [2,1,1])
|
|
103
|
+
sage: Fast = crystals.FastRankTwo(['B', 2], shape = [3/2, 1/2])
|
|
104
|
+
sage: KR = crystals.KirillovReshetikhin(['A',2,1],1,1)
|
|
105
|
+
|
|
106
|
+
One can get (currently) crude plotting via::
|
|
107
|
+
|
|
108
|
+
sage: Tab.plot() # needs sage.plot
|
|
109
|
+
Graphics object consisting of 52 graphics primitives
|
|
110
|
+
|
|
111
|
+
If dot2tex is installed, one can obtain nice latex pictures via::
|
|
112
|
+
|
|
113
|
+
sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1)
|
|
114
|
+
sage: view(K, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external window)
|
|
115
|
+
|
|
116
|
+
or with colored edges::
|
|
117
|
+
|
|
118
|
+
sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1)
|
|
119
|
+
sage: G = K.digraph()
|
|
120
|
+
sage: G.set_latex_options(color_by_label={0:"black", 1:"red", 2:"blue", 3:"green"})
|
|
121
|
+
sage: view(G, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external window)
|
|
122
|
+
|
|
123
|
+
For rank two crystals, there is an alternative method of getting
|
|
124
|
+
metapost pictures. For more information see ``C.metapost?``.
|
|
125
|
+
|
|
126
|
+
.. SEEALSO:: :ref:`The overview of crystal features in Sage<sage.combinat.crystals.all>`
|
|
127
|
+
|
|
128
|
+
.. TODO::
|
|
129
|
+
|
|
130
|
+
- Vocabulary and conventions:
|
|
131
|
+
|
|
132
|
+
- For a classical crystal: connected / highest weight /
|
|
133
|
+
irreducible
|
|
134
|
+
|
|
135
|
+
- ...
|
|
136
|
+
|
|
137
|
+
- Layout instructions for plot() for rank 2 types
|
|
138
|
+
|
|
139
|
+
- RestrictionOfCrystal
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
The crystals library in Sage grew up from an initial implementation in
|
|
143
|
+
MuPAD-Combinat (see <MuPAD-Combinat>/lib/COMBINAT/crystals.mu).
|
|
144
|
+
"""
|
|
145
|
+
|
|
146
|
+
#*****************************************************************************
|
|
147
|
+
# Copyright (C) 2007 Anne Schilling <anne at math.ucdavis.edu>
|
|
148
|
+
# Nicolas Thiery <nthiery at users.sf.net>
|
|
149
|
+
#
|
|
150
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
151
|
+
#
|
|
152
|
+
# This code is distributed in the hope that it will be useful,
|
|
153
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
154
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
155
|
+
# General Public License for more details.
|
|
156
|
+
#
|
|
157
|
+
# The full text of the GPL is available at:
|
|
158
|
+
#
|
|
159
|
+
# http://www.gnu.org/licenses/
|
|
160
|
+
# ***************************************************************************
|
|
161
|
+
# Acknowledgment: most of the design and implementation of this
|
|
162
|
+
# library is heavily inspired from MuPAD-Combinat.
|
|
163
|
+
# ***************************************************************************
|
|
164
|
+
|
|
165
|
+
from sage.combinat.backtrack import GenericBacktracker
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
class CrystalBacktracker(GenericBacktracker):
|
|
169
|
+
def __init__(self, crystal, index_set=None):
|
|
170
|
+
r"""
|
|
171
|
+
Time complexity: `O(nF)` amortized for each produced
|
|
172
|
+
element, where `n` is the size of the index set, and `F` is
|
|
173
|
+
the cost of computing `e` and `f` operators.
|
|
174
|
+
|
|
175
|
+
Memory complexity: `O(D)` where `D` is the depth of the crystal.
|
|
176
|
+
|
|
177
|
+
Principle of the algorithm:
|
|
178
|
+
|
|
179
|
+
Let `C` be a classical crystal. It's an acyclic graph where each
|
|
180
|
+
connected component has a unique element without predecessors (the
|
|
181
|
+
highest weight element for this component). Let's assume for
|
|
182
|
+
simplicity that `C` is irreducible (i.e. connected) with highest
|
|
183
|
+
weight element `u`.
|
|
184
|
+
|
|
185
|
+
One can define a natural spanning tree of `C` by taking
|
|
186
|
+
`u` as the root of the tree, and for any other element
|
|
187
|
+
`y` taking as ancestor the element `x` such that
|
|
188
|
+
there is an `i`-arrow from `x` to `y` with
|
|
189
|
+
`i` minimal. Then, a path from `u` to `y`
|
|
190
|
+
describes the lexicographically smallest sequence
|
|
191
|
+
`i_1,\dots,i_k` such that
|
|
192
|
+
`(f_{i_k} \circ f_{i_1})(u)=y`.
|
|
193
|
+
|
|
194
|
+
Morally, the iterator implemented below just does a depth first
|
|
195
|
+
search walk through this spanning tree. In practice, this can be
|
|
196
|
+
achieved recursively as follows: take an element `x`, and
|
|
197
|
+
consider in turn each successor `y = f_i(x)`, ignoring
|
|
198
|
+
those such that `y = f_j(x^{\prime})` for some `x^{\prime}` and
|
|
199
|
+
`j<i` (this can be tested by computing `e_j(y)`
|
|
200
|
+
for `j<i`).
|
|
201
|
+
|
|
202
|
+
EXAMPLES::
|
|
203
|
+
|
|
204
|
+
sage: from sage.combinat.crystals.crystals import CrystalBacktracker
|
|
205
|
+
sage: C = crystals.Tableaux(['B',3],shape=[3,2,1])
|
|
206
|
+
sage: CB = CrystalBacktracker(C)
|
|
207
|
+
sage: len(list(CB))
|
|
208
|
+
1617
|
|
209
|
+
sage: CB = CrystalBacktracker(C, [1,2])
|
|
210
|
+
sage: len(list(CB))
|
|
211
|
+
8
|
|
212
|
+
"""
|
|
213
|
+
GenericBacktracker.__init__(self, None, None)
|
|
214
|
+
self._crystal = crystal
|
|
215
|
+
if index_set is None:
|
|
216
|
+
self._index_set = crystal.index_set()
|
|
217
|
+
else:
|
|
218
|
+
self._index_set = index_set
|
|
219
|
+
|
|
220
|
+
def _rec(self, x, state):
|
|
221
|
+
"""
|
|
222
|
+
Return an iterator for the (immediate) children of ``x`` in the search
|
|
223
|
+
tree.
|
|
224
|
+
|
|
225
|
+
EXAMPLES::
|
|
226
|
+
|
|
227
|
+
sage: from sage.combinat.crystals.crystals import CrystalBacktracker
|
|
228
|
+
sage: C = crystals.Letters(['A', 5])
|
|
229
|
+
sage: CB = CrystalBacktracker(C)
|
|
230
|
+
sage: list(CB._rec(C(1), 'n/a'))
|
|
231
|
+
[(2, 'n/a', True)]
|
|
232
|
+
"""
|
|
233
|
+
#We will signal the initial case by having a object and state
|
|
234
|
+
#of None and consider it separately.
|
|
235
|
+
if x is None and state is None:
|
|
236
|
+
for gen in self._crystal.highest_weight_vectors():
|
|
237
|
+
yield gen, "n/a", True
|
|
238
|
+
return
|
|
239
|
+
|
|
240
|
+
# Run through the children y of x
|
|
241
|
+
for i in self._index_set:
|
|
242
|
+
y = x.f(i)
|
|
243
|
+
if y is None:
|
|
244
|
+
continue
|
|
245
|
+
# Ignore those which can be reached by an arrow with smaller label
|
|
246
|
+
hasParent = False
|
|
247
|
+
for j in self._index_set:
|
|
248
|
+
if j == i:
|
|
249
|
+
break
|
|
250
|
+
if y.e(j) is not None:
|
|
251
|
+
hasParent = True
|
|
252
|
+
break
|
|
253
|
+
if hasParent:
|
|
254
|
+
continue
|
|
255
|
+
|
|
256
|
+
# yield y and all elements further below
|
|
257
|
+
yield y, "n/a", True
|