passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,935 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.modules
|
|
3
|
+
"""
|
|
4
|
+
Askey-Wilson Algebras
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2018-08): initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
# ****************************************************************************
|
|
12
|
+
# Copyright (C) 2018 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
from sage.categories.algebras import Algebras
|
|
23
|
+
from sage.categories.cartesian_product import cartesian_product
|
|
24
|
+
from sage.categories.rings import Rings
|
|
25
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
26
|
+
from sage.modules.with_basis.morphism import ModuleMorphismByLinearity
|
|
27
|
+
from sage.sets.family import Family
|
|
28
|
+
from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
|
|
29
|
+
from sage.sets.non_negative_integers import NonNegativeIntegers
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class AskeyWilsonAlgebra(CombinatorialFreeModule):
|
|
33
|
+
r"""
|
|
34
|
+
The (universal) Askey-Wilson algebra.
|
|
35
|
+
|
|
36
|
+
Let `R` be a commutative ring. The *universal Askey-Wilson* algebra
|
|
37
|
+
is an associative unital algebra `\Delta_q` over `R[q,q^-1]` given
|
|
38
|
+
by the generators `A, B, C, \alpha, \beta, \gamma` that satisfy the
|
|
39
|
+
following relations:
|
|
40
|
+
|
|
41
|
+
.. MATH::
|
|
42
|
+
|
|
43
|
+
\begin{aligned}
|
|
44
|
+
(q-q^{-1}) \alpha &= (q^2-q^{-2}) A + qBC - q^{-1}CB, \\
|
|
45
|
+
(q-q^{-1}) \beta &= (q^2-q^{-2}) B + qCA - q^{-1}AC, \\
|
|
46
|
+
(q-q^{-1}) \gamma &= (q^2-q^{-2}) C + qAB - q^{-1}BA.
|
|
47
|
+
\end{aligned}
|
|
48
|
+
|
|
49
|
+
The universal Askey-Wilson contains a
|
|
50
|
+
:meth:`Casimir element <casimir_element>` `\Omega`, and the elements
|
|
51
|
+
`\alpha`, `\beta`, `\gamma`, `\Omega` generate the center of `\Delta_q`,
|
|
52
|
+
which is isomorphic to the polynomial ring
|
|
53
|
+
`(R[q,q^-1])[\alpha,\beta,\gamma,\Omega]` (assuming `q` is not a root
|
|
54
|
+
of unity). Furthermore, the relations imply that `\Delta_q` has a basis
|
|
55
|
+
given by monomials `A^i B^j C^k \alpha^r \beta^s \gamma^t`, where
|
|
56
|
+
`i, j, k, r, s, t \in \ZZ_{\geq 0}`.
|
|
57
|
+
|
|
58
|
+
The universal Askey-Wilson algebra also admits a faithful action
|
|
59
|
+
of `PSL_2(\ZZ)` given by the automorphisms `\rho`
|
|
60
|
+
(:meth:`permutation_automorphism`):
|
|
61
|
+
|
|
62
|
+
.. MATH::
|
|
63
|
+
|
|
64
|
+
A \mapsto B \mapsto C \mapsto A,
|
|
65
|
+
\qquad
|
|
66
|
+
\alpha \mapsto \beta \mapsto \gamma \mapsto \alpha.
|
|
67
|
+
|
|
68
|
+
and `\sigma` (:meth:`reflection_automorphism`):
|
|
69
|
+
|
|
70
|
+
.. MATH::
|
|
71
|
+
|
|
72
|
+
A \mapsto B \mapsto A,
|
|
73
|
+
C \mapsto C + \frac{AB - BA}{q-q^{-1}},
|
|
74
|
+
\qquad
|
|
75
|
+
\alpha \mapsto \beta \mapsto \alpha,
|
|
76
|
+
\gamma \mapsto \gamma.
|
|
77
|
+
|
|
78
|
+
Note that `\rho^3 = \sigma^2 = 1` and
|
|
79
|
+
|
|
80
|
+
.. MATH::
|
|
81
|
+
|
|
82
|
+
\sigma(C) = C - q AB - (1+q^2) C + q \gamma
|
|
83
|
+
= C - q AB - q^2 C + q \gamma.
|
|
84
|
+
|
|
85
|
+
The Askey-Wilson `AW_q(a,b,c)` algebra is a specialization of the
|
|
86
|
+
universal Askey-Wilson algebra by `\alpha = a`, \beta = b`,
|
|
87
|
+
`\gamma = c`, where `a,b,c \in R`. `AW_q(a,b,c)` was first introduced
|
|
88
|
+
by [Zhedanov1991]_ to describe the Askey-Wilson polynomials. The
|
|
89
|
+
Askey-Wilson algebra has a central extension of `\Delta_q`.
|
|
90
|
+
|
|
91
|
+
INPUT:
|
|
92
|
+
|
|
93
|
+
- ``R`` -- a commutative ring
|
|
94
|
+
- ``q`` -- (optional) the parameter `q`; must be invertible in ``R``
|
|
95
|
+
|
|
96
|
+
If ``q`` is not specified, then ``R`` is taken to be the base
|
|
97
|
+
ring of a Laurent polynomial ring with variable `q`. Otherwise
|
|
98
|
+
the element ``q`` must be an element of ``R``.
|
|
99
|
+
|
|
100
|
+
.. NOTE::
|
|
101
|
+
|
|
102
|
+
No check is performed to ensure ``q`` is not a root of unity,
|
|
103
|
+
which may lead to violations of the results in [Terwilliger2011]_.
|
|
104
|
+
|
|
105
|
+
EXAMPLES:
|
|
106
|
+
|
|
107
|
+
We create the universal Askey-Wilson algebra and check
|
|
108
|
+
the defining relations::
|
|
109
|
+
|
|
110
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
111
|
+
sage: AW.inject_variables()
|
|
112
|
+
Defining A, B, C, a, b, g
|
|
113
|
+
sage: q = AW.q()
|
|
114
|
+
sage: (q^2-q^-2)*A + q*B*C - q^-1*C*B == (q-q^-1)*a
|
|
115
|
+
True
|
|
116
|
+
sage: (q^2-q^-2)*B + q*C*A - q^-1*A*C == (q-q^-1)*b
|
|
117
|
+
True
|
|
118
|
+
sage: (q^2-q^-2)*C + q*A*B - q^-1*B*A == (q-q^-1)*g
|
|
119
|
+
True
|
|
120
|
+
|
|
121
|
+
Next, we perform some computations::
|
|
122
|
+
|
|
123
|
+
sage: C * A
|
|
124
|
+
(q^-2)*A*C + (q^-3-q)*B - (q^-2-1)*b
|
|
125
|
+
sage: B^2 * g^2 * A
|
|
126
|
+
q^4*A*B^2*g^2 - (q^-1-q^7)*B*C*g^2 + (1-q^4)*B*g^3
|
|
127
|
+
+ (1-2*q^4+q^8)*A*g^2 - (q-q^3-q^5+q^7)*a*g^2
|
|
128
|
+
sage: (B^3 - A) * (C^2 + q*A*B)
|
|
129
|
+
q^7*A*B^4 + B^3*C^2 - (q^2-q^14)*B^3*C + (q-q^7)*B^3*g - q*A^2*B
|
|
130
|
+
+ (3*q^3-4*q^7+q^19)*A*B^2 - A*C^2 - (1-q^6-q^8+q^14)*B^2*a
|
|
131
|
+
- (q^-2-3*q^6+3*q^14-q^22)*B*C
|
|
132
|
+
+ (q^-1+q-3*q^3-q^5+2*q^7-q^9+q^13+q^15-q^19)*B*g
|
|
133
|
+
+ (2*q^-1-6*q^3+5*q^7-2*q^19+q^23)*A
|
|
134
|
+
- (2-2*q^2-4*q^4+4*q^6+q^8-q^10+q^12-q^14+q^16-q^18-q^20+q^22)*a
|
|
135
|
+
|
|
136
|
+
We check the elements `\alpha`, `\beta`, and `\gamma`
|
|
137
|
+
are in the center::
|
|
138
|
+
|
|
139
|
+
sage: all(x * gen == gen * x for gen in AW.algebra_generators() for x in [a,b,g])
|
|
140
|
+
True
|
|
141
|
+
|
|
142
|
+
We verify that the :meth:`Casimir element <casimir_element>`
|
|
143
|
+
is in the center::
|
|
144
|
+
|
|
145
|
+
sage: Omega = AW.casimir_element()
|
|
146
|
+
sage: all(x * Omega == Omega * x for x in [A,B,C])
|
|
147
|
+
True
|
|
148
|
+
|
|
149
|
+
sage: x = AW.an_element()
|
|
150
|
+
sage: O2 = Omega^2
|
|
151
|
+
sage: x * O2 == O2 * x
|
|
152
|
+
True
|
|
153
|
+
|
|
154
|
+
We prove Lemma 2.1 in [Terwilliger2011]_::
|
|
155
|
+
|
|
156
|
+
sage: (q^2-q^-2) * C == (q-q^-1) * g - (q*A*B - q^-1*B*A)
|
|
157
|
+
True
|
|
158
|
+
sage: (q-q^-1) * (q^2-q^-2) * a == (B^2*A - (q^2+q^-2)*B*A*B + A*B^2
|
|
159
|
+
....: + (q^2-q^-2)^2*A + (q-q^-1)^2*B*g)
|
|
160
|
+
True
|
|
161
|
+
sage: (q-q^-1) * (q^2-q^-2) * b == (A^2*B - (q^2+q^-2)*A*B*A + B*A^2
|
|
162
|
+
....: + (q^2-q^-2)^2*B + (q-q^-1)^2*A*g)
|
|
163
|
+
True
|
|
164
|
+
|
|
165
|
+
We prove Theorem 2.2 in [Terwilliger2011]_::
|
|
166
|
+
|
|
167
|
+
sage: q3 = q^-2 + 1 + q^2
|
|
168
|
+
sage: A^3*B - q3*A^2*B*A + q3*A*B*A^2 - B*A^3 == -(q^2-q^-2)^2 * (A*B - B*A)
|
|
169
|
+
True
|
|
170
|
+
sage: B^3*A - q3*B^2*A*B + q3*B*A*B^2 - A*B^3 == -(q^2-q^-2)^2 * (B*A - A*B)
|
|
171
|
+
True
|
|
172
|
+
sage: (A^2*B^2 - B^2*A^2 + (q^2+q^-2)*(B*A*B*A-A*B*A*B)
|
|
173
|
+
....: == -(q^1-q^-1)^2 * (A*B - B*A) * g)
|
|
174
|
+
True
|
|
175
|
+
|
|
176
|
+
We construct an Askey-Wilson algebra over `\GF{5}` at `q=2`::
|
|
177
|
+
|
|
178
|
+
sage: AW = algebras.AskeyWilson(GF(5), q=2)
|
|
179
|
+
sage: A,B,C,a,b,g = AW.algebra_generators()
|
|
180
|
+
sage: q = AW.q()
|
|
181
|
+
sage: Omega = AW.casimir_element()
|
|
182
|
+
|
|
183
|
+
sage: B * A
|
|
184
|
+
4*A*B + 2*g
|
|
185
|
+
sage: C * A
|
|
186
|
+
4*A*C + 2*b
|
|
187
|
+
sage: C * B
|
|
188
|
+
4*B*C + 2*a
|
|
189
|
+
sage: Omega^2
|
|
190
|
+
A^2*B^2*C^2 + A^3*B*C + A*B^3*C + A*B*C^3 + A^4 + 4*A^3*a
|
|
191
|
+
+ 2*A^2*B^2 + A^2*B*b + 2*A^2*C^2 + 4*A^2*C*g + 4*A^2*a^2
|
|
192
|
+
+ 4*A*B^2*a + 4*A*C^2*a + B^4 + B^3*b + 2*B^2*C^2 + 4*B^2*C*g
|
|
193
|
+
+ 4*B^2*b^2 + B*C^2*b + C^4 + 4*C^3*g + 4*C^2*g^2 + 2*a*b*g
|
|
194
|
+
|
|
195
|
+
sage: (q^2-q^-2)*A + q*B*C - q^-1*C*B == (q-q^-1)*a
|
|
196
|
+
True
|
|
197
|
+
sage: (q^2-q^-2)*B + q*C*A - q^-1*A*C == (q-q^-1)*b
|
|
198
|
+
True
|
|
199
|
+
sage: (q^2-q^-2)*C + q*A*B - q^-1*B*A == (q-q^-1)*g
|
|
200
|
+
True
|
|
201
|
+
sage: all(x * Omega == Omega * x for x in [A,B,C])
|
|
202
|
+
True
|
|
203
|
+
|
|
204
|
+
REFERENCES:
|
|
205
|
+
|
|
206
|
+
- [Terwilliger2011]_
|
|
207
|
+
"""
|
|
208
|
+
@staticmethod
|
|
209
|
+
def __classcall_private__(cls, R, q=None):
|
|
210
|
+
r"""
|
|
211
|
+
Normalize input to ensure a unique representation.
|
|
212
|
+
|
|
213
|
+
TESTS::
|
|
214
|
+
|
|
215
|
+
sage: R.<q> = LaurentPolynomialRing(QQ)
|
|
216
|
+
sage: AW1 = algebras.AskeyWilson(QQ)
|
|
217
|
+
sage: AW2 = algebras.AskeyWilson(R, q)
|
|
218
|
+
sage: AW1 is AW2
|
|
219
|
+
True
|
|
220
|
+
|
|
221
|
+
sage: AW = algebras.AskeyWilson(ZZ, 0)
|
|
222
|
+
Traceback (most recent call last):
|
|
223
|
+
...
|
|
224
|
+
ValueError: q cannot be 0
|
|
225
|
+
|
|
226
|
+
sage: AW = algebras.AskeyWilson(ZZ, 3)
|
|
227
|
+
Traceback (most recent call last):
|
|
228
|
+
...
|
|
229
|
+
ValueError: q=3 is not invertible in Integer Ring
|
|
230
|
+
"""
|
|
231
|
+
if q is None:
|
|
232
|
+
R = LaurentPolynomialRing(R, 'q')
|
|
233
|
+
q = R.gen()
|
|
234
|
+
else:
|
|
235
|
+
q = R(q)
|
|
236
|
+
if q == 0:
|
|
237
|
+
raise ValueError("q cannot be 0")
|
|
238
|
+
if 1 / q not in R:
|
|
239
|
+
raise ValueError("q={} is not invertible in {}".format(q, R))
|
|
240
|
+
if R not in Rings().Commutative():
|
|
241
|
+
raise ValueError("{} is not a commutative ring".format(R))
|
|
242
|
+
return super().__classcall__(cls, R, q)
|
|
243
|
+
|
|
244
|
+
def __init__(self, R, q) -> None:
|
|
245
|
+
r"""
|
|
246
|
+
Initialize ``self``.
|
|
247
|
+
|
|
248
|
+
EXAMPLES::
|
|
249
|
+
|
|
250
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
251
|
+
sage: TestSuite(AW).run() # long time
|
|
252
|
+
"""
|
|
253
|
+
self._q = q
|
|
254
|
+
cat = Algebras(Rings().Commutative()).WithBasis()
|
|
255
|
+
indices = cartesian_product([NonNegativeIntegers()]*6)
|
|
256
|
+
CombinatorialFreeModule.__init__(self, R, indices, prefix='AW',
|
|
257
|
+
sorting_key=_basis_key,
|
|
258
|
+
sorting_reverse=True,
|
|
259
|
+
category=cat)
|
|
260
|
+
self._assign_names('A,B,C,a,b,g')
|
|
261
|
+
|
|
262
|
+
def _repr_term(self, t) -> str:
|
|
263
|
+
r"""
|
|
264
|
+
Return a string representation of the basis element indexed by ``t``.
|
|
265
|
+
|
|
266
|
+
EXAMPLES::
|
|
267
|
+
|
|
268
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
269
|
+
sage: AW._repr_term((0,0,0,0,0,0))
|
|
270
|
+
'1'
|
|
271
|
+
sage: AW._repr_term((5,1,2,3,7,2))
|
|
272
|
+
'A^5*B*C^2*a^3*b^7*g^2'
|
|
273
|
+
sage: AW._repr_term((0,1,0,3,7,2))
|
|
274
|
+
'B*a^3*b^7*g^2'
|
|
275
|
+
"""
|
|
276
|
+
def exp(l, e):
|
|
277
|
+
if e == 0:
|
|
278
|
+
return ''
|
|
279
|
+
if e == 1:
|
|
280
|
+
return '*' + l
|
|
281
|
+
return '*' + l + '^{}'.format(e)
|
|
282
|
+
ret = ''.join(exp(l, e) for l, e in zip('ABCabg', t))
|
|
283
|
+
if not ret:
|
|
284
|
+
return '1'
|
|
285
|
+
if ret[0] == '*':
|
|
286
|
+
ret = ret[1:]
|
|
287
|
+
return ret
|
|
288
|
+
|
|
289
|
+
def _latex_term(self, t) -> str:
|
|
290
|
+
r"""
|
|
291
|
+
Return a latex representation of the basis element indexed by ``t``.
|
|
292
|
+
|
|
293
|
+
EXAMPLES::
|
|
294
|
+
|
|
295
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
296
|
+
sage: AW._latex_term((0,0,0,0,0,0))
|
|
297
|
+
'1'
|
|
298
|
+
sage: AW._latex_term((5,1,2,3,7,2))
|
|
299
|
+
'A^{5}BC^{2}\\alpha^{3}\\beta^{7}\\gamma^{2}'
|
|
300
|
+
sage: AW._latex_term((0,1,0,3,7,2))
|
|
301
|
+
'B\\alpha^{3}\\beta^{7}\\gamma^{2}'
|
|
302
|
+
"""
|
|
303
|
+
if sum(t) == 0:
|
|
304
|
+
return '1'
|
|
305
|
+
|
|
306
|
+
def exp(l, e):
|
|
307
|
+
if e == 0:
|
|
308
|
+
return ''
|
|
309
|
+
if e == 1:
|
|
310
|
+
return l
|
|
311
|
+
return l + '^{{{}}}'.format(e)
|
|
312
|
+
var_names = ['A', 'B', 'C', '\\alpha', '\\beta', '\\gamma']
|
|
313
|
+
return ''.join(exp(l, e) for l, e in zip(var_names, t))
|
|
314
|
+
|
|
315
|
+
def _repr_(self):
|
|
316
|
+
r"""
|
|
317
|
+
Return a string representation of ``self``.
|
|
318
|
+
|
|
319
|
+
EXAMPLES::
|
|
320
|
+
|
|
321
|
+
sage: algebras.AskeyWilson(QQ)
|
|
322
|
+
Askey-Wilon algebra with q=q over
|
|
323
|
+
Univariate Laurent Polynomial Ring in q over Rational Field
|
|
324
|
+
"""
|
|
325
|
+
return "Askey-Wilon algebra with q={} over {}".format(self._q, self.base_ring())
|
|
326
|
+
|
|
327
|
+
@cached_method
|
|
328
|
+
def algebra_generators(self):
|
|
329
|
+
r"""
|
|
330
|
+
Return the algebra generators of ``self``.
|
|
331
|
+
|
|
332
|
+
EXAMPLES::
|
|
333
|
+
|
|
334
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
335
|
+
sage: G = AW.algebra_generators()
|
|
336
|
+
sage: G['A']
|
|
337
|
+
A
|
|
338
|
+
sage: G['a']
|
|
339
|
+
a
|
|
340
|
+
sage: list(G)
|
|
341
|
+
[A, B, C, a, b, g]
|
|
342
|
+
"""
|
|
343
|
+
A = self.variable_names()
|
|
344
|
+
|
|
345
|
+
def build_monomial(g):
|
|
346
|
+
exp = [0] * 6
|
|
347
|
+
exp[A.index(g)] = 1
|
|
348
|
+
return self.monomial(self._indices(exp))
|
|
349
|
+
return Family(A, build_monomial)
|
|
350
|
+
|
|
351
|
+
@cached_method
|
|
352
|
+
def gens(self) -> tuple:
|
|
353
|
+
r"""
|
|
354
|
+
Return the generators of ``self``.
|
|
355
|
+
|
|
356
|
+
EXAMPLES::
|
|
357
|
+
|
|
358
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
359
|
+
sage: AW.gens()
|
|
360
|
+
(A, B, C, a, b, g)
|
|
361
|
+
"""
|
|
362
|
+
return tuple(self.algebra_generators())
|
|
363
|
+
|
|
364
|
+
@cached_method
|
|
365
|
+
def one_basis(self):
|
|
366
|
+
r"""
|
|
367
|
+
Return the index of the basis element `1` of ``self``.
|
|
368
|
+
|
|
369
|
+
EXAMPLES::
|
|
370
|
+
|
|
371
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
372
|
+
sage: AW.one_basis()
|
|
373
|
+
(0, 0, 0, 0, 0, 0)
|
|
374
|
+
"""
|
|
375
|
+
return self._indices([0]*6)
|
|
376
|
+
|
|
377
|
+
def q(self):
|
|
378
|
+
r"""
|
|
379
|
+
Return the parameter `q` of ``self``.
|
|
380
|
+
|
|
381
|
+
EXAMPLES::
|
|
382
|
+
|
|
383
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
384
|
+
sage: q = AW.q()
|
|
385
|
+
sage: q
|
|
386
|
+
q
|
|
387
|
+
sage: q.parent()
|
|
388
|
+
Univariate Laurent Polynomial Ring in q over Rational Field
|
|
389
|
+
"""
|
|
390
|
+
return self._q
|
|
391
|
+
|
|
392
|
+
@cached_method
|
|
393
|
+
def _an_element_(self):
|
|
394
|
+
r"""
|
|
395
|
+
Return an element of ``self``.
|
|
396
|
+
|
|
397
|
+
EXAMPLES::
|
|
398
|
+
|
|
399
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
400
|
+
sage: AW.an_element()
|
|
401
|
+
(q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
|
|
402
|
+
"""
|
|
403
|
+
q = self._q
|
|
404
|
+
I = self._indices
|
|
405
|
+
R = self.base_ring()
|
|
406
|
+
elt = {I((1,0,0,0,0,0)): R(1),
|
|
407
|
+
I((1,0,2,0,1,0)): R.an_element(),
|
|
408
|
+
I((0,1,0,2,0,1)): q**2 * R(3),
|
|
409
|
+
I((0,0,0,1,1,3)): q**-3 + R(3) + R(2)*q + q**2}
|
|
410
|
+
return self.element_class(self, elt)
|
|
411
|
+
|
|
412
|
+
def some_elements(self):
|
|
413
|
+
r"""
|
|
414
|
+
Return some elements of ``self``.
|
|
415
|
+
|
|
416
|
+
EXAMPLES::
|
|
417
|
+
|
|
418
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
419
|
+
sage: AW.some_elements()
|
|
420
|
+
(A, B, C, a, b, g, 1,
|
|
421
|
+
(q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A,
|
|
422
|
+
q*A*B*C + q^2*A^2 - q*A*a + (q^-2)*B^2 - (q^-1)*B*b + q^2*C^2 - q*C*g)
|
|
423
|
+
"""
|
|
424
|
+
return self.gens() + (self.one(), self.an_element(), self.casimir_element())
|
|
425
|
+
|
|
426
|
+
@cached_method
|
|
427
|
+
def casimir_element(self):
|
|
428
|
+
r"""
|
|
429
|
+
Return the Casimir element of ``self``.
|
|
430
|
+
|
|
431
|
+
The Casimir element of the Askey-Wilson algebra `\Delta_q` is
|
|
432
|
+
|
|
433
|
+
.. MATH::
|
|
434
|
+
|
|
435
|
+
\Omega = q ABC + q^2 A^2 + q^{-2} B^2 + q^2 C^2
|
|
436
|
+
- q A\alpha - q^{-1} B\beta - q C\gamma.
|
|
437
|
+
|
|
438
|
+
The center `Z(\Delta_q)` is generated by `\alpha`, `\beta`,
|
|
439
|
+
`\gamma`, and `\Omega`.
|
|
440
|
+
|
|
441
|
+
EXAMPLES::
|
|
442
|
+
|
|
443
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
444
|
+
sage: AW.casimir_element()
|
|
445
|
+
q*A*B*C + q^2*A^2 - q*A*a + (q^-2)*B^2 - (q^-1)*B*b + q^2*C^2 - q*C*g
|
|
446
|
+
|
|
447
|
+
We check that the Casimir element is in the center::
|
|
448
|
+
|
|
449
|
+
sage: Omega = AW.casimir_element()
|
|
450
|
+
sage: all(Omega * gen == gen * Omega for gen in AW.algebra_generators())
|
|
451
|
+
True
|
|
452
|
+
"""
|
|
453
|
+
q = self._q
|
|
454
|
+
I = self._indices
|
|
455
|
+
d = {I((1, 1, 1, 0, 0, 0)): q, # q ABC
|
|
456
|
+
I((2, 0, 0, 0, 0, 0)): q**2, # q^2 A^2
|
|
457
|
+
I((0, 2, 0, 0, 0, 0)): q**-2, # q^-2 B^2
|
|
458
|
+
I((0, 0, 2, 0, 0, 0)): q**2, # q^2 C^2
|
|
459
|
+
I((1, 0, 0, 1, 0, 0)): -q, # -q A\alpha
|
|
460
|
+
I((0, 1, 0, 0, 1, 0)): -q**-1, # -q^-1 B\beta
|
|
461
|
+
I((0, 0, 1, 0, 0, 1)): -q} # -q C\gamma
|
|
462
|
+
return self.element_class(self, d)
|
|
463
|
+
|
|
464
|
+
@cached_method
|
|
465
|
+
def product_on_basis(self, x, y):
|
|
466
|
+
"""
|
|
467
|
+
Return the product of the basis elements indexed by ``x`` and ``y``.
|
|
468
|
+
|
|
469
|
+
INPUT:
|
|
470
|
+
|
|
471
|
+
- ``x``, ``y`` -- tuple of length 6
|
|
472
|
+
|
|
473
|
+
EXAMPLES::
|
|
474
|
+
|
|
475
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
476
|
+
sage: AW.product_on_basis((0,0,0,0,0,0), (3,5,2,0,12,3))
|
|
477
|
+
A^3*B^5*C^2*b^12*g^3
|
|
478
|
+
sage: AW.product_on_basis((0,0,0,5,3,5), (3,5,2,0,12,3))
|
|
479
|
+
A^3*B^5*C^2*a^5*b^15*g^8
|
|
480
|
+
sage: AW.product_on_basis((7,0,0,5,3,5), (0,5,2,0,12,3))
|
|
481
|
+
A^7*B^5*C^2*a^5*b^15*g^8
|
|
482
|
+
sage: AW.product_on_basis((7,3,0,5,3,5), (0,2,2,0,12,3))
|
|
483
|
+
A^7*B^5*C^2*a^5*b^15*g^8
|
|
484
|
+
sage: AW.product_on_basis((0,1,0,5,3,5), (2,0,0,0,5,3))
|
|
485
|
+
q^4*A^2*B*a^5*b^8*g^8 - (q^-3-q^5)*A*C*a^5*b^8*g^8
|
|
486
|
+
+ (1-q^4)*A*a^5*b^8*g^9 - (q^-4-2+q^4)*B*a^5*b^8*g^8
|
|
487
|
+
+ (q^-3-q^-1-q+q^3)*a^5*b^9*g^8
|
|
488
|
+
sage: AW.product_on_basis((0,2,1,0,2,0), (1,1,0,2,1,0))
|
|
489
|
+
q^4*A*B^3*C*a^2*b^3 - (q^5-q^9)*A^2*B^2*a^2*b^3
|
|
490
|
+
+ (q^2-q^4)*A*B^2*a^3*b^3 + (q^-3-q)*B^4*a^2*b^3
|
|
491
|
+
- (q^-2-1)*B^3*a^2*b^4 - (q-q^9)*B^2*C^2*a^2*b^3
|
|
492
|
+
+ (1-q^4)*B^2*C*a^2*b^3*g + (q^-4+2-5*q^4+2*q^12)*A*B*C*a^2*b^3
|
|
493
|
+
- (q^-1+q-2*q^3-2*q^5+q^7+q^9)*A*B*a^2*b^3*g
|
|
494
|
+
- (q^-3-q^3-2*q^5+q^7+q^9)*B*C*a^3*b^3
|
|
495
|
+
+ (q^-2-1-q^2+q^4)*B*a^3*b^3*g
|
|
496
|
+
- (q^-3-2*q+2*q^9-q^13)*A^2*a^2*b^3
|
|
497
|
+
+ (2*q^-2-2-3*q^2+3*q^4+q^10-q^12)*A*a^3*b^3
|
|
498
|
+
+ (q^-7-2*q^-3+2*q^5-q^9)*B^2*a^2*b^3
|
|
499
|
+
- (q^-6-q^-4-q^-2+1-q^2+q^4+q^6-q^8)*B*a^2*b^4
|
|
500
|
+
- (q^-7-q^-3-2*q+2*q^5+q^9-q^13)*C^2*a^2*b^3
|
|
501
|
+
+ (q^-6-3-2*q^2+5*q^4-q^8+q^10-q^12)*C*a^2*b^3*g
|
|
502
|
+
- (q^-1-2*q+2*q^5-q^7)*a^4*b^3
|
|
503
|
+
- (q^-3-q^-1-2*q+2*q^3+q^5-q^7)*a^2*b^3*g^2
|
|
504
|
+
"""
|
|
505
|
+
I = self._indices
|
|
506
|
+
# Commute the central parts to the right
|
|
507
|
+
lhs = list(x[:3])
|
|
508
|
+
rhs = list(y)
|
|
509
|
+
for i in range(3, 6):
|
|
510
|
+
rhs[i] += x[i]
|
|
511
|
+
|
|
512
|
+
# No ABC variables on the RHS to move past
|
|
513
|
+
if sum(rhs[:3]) == 0:
|
|
514
|
+
return self.monomial(I(lhs + rhs[3:]))
|
|
515
|
+
|
|
516
|
+
# We recurse using the PBW-type basis property:
|
|
517
|
+
# that YX = XY + lower order terms (see Theorem 4.1 in Terwilliger).
|
|
518
|
+
q = self._q
|
|
519
|
+
if lhs[2] > 0: # lhs has a C
|
|
520
|
+
if rhs[0] > 0: # rhs has an A to commute with C
|
|
521
|
+
lhs[2] -= 1
|
|
522
|
+
rhs[0] -= 1
|
|
523
|
+
rel = {I((1, 0, 1, 0, 0, 0)): q**-2, # q^2 AC
|
|
524
|
+
I((0, 1, 0, 0, 0, 0)): q**-3 - q**1, # q^-1(q^-2-q^2) B
|
|
525
|
+
I((0, 0, 0, 0, 1, 0)): 1 - q**-2} # -q^-1(q^-1-q) b
|
|
526
|
+
rel = self.element_class(self, rel)
|
|
527
|
+
return self.monomial(I(lhs+[0]*3)) * (rel * self.monomial(I(rhs)))
|
|
528
|
+
elif rhs[1] > 0: # rhs has a B to commute with C
|
|
529
|
+
lhs[2] -= 1
|
|
530
|
+
rhs[1] -= 1
|
|
531
|
+
rel = {I((0, 1, 1, 0, 0, 0)): q**2, # q^2 BC
|
|
532
|
+
I((1, 0, 0, 0, 0, 0)): q**3 - q**-1, # q(q^2-q^-2) A
|
|
533
|
+
I((0, 0, 0, 1, 0, 0)): -q**2 + 1} # -q(q-q^-1) a
|
|
534
|
+
rel = self.element_class(self, rel)
|
|
535
|
+
return self.monomial(I(lhs+[0]*3)) * (rel * self.monomial(I(rhs)))
|
|
536
|
+
else: # nothing to commute as rhs has no A nor B
|
|
537
|
+
rhs[2] += lhs[2]
|
|
538
|
+
rhs[1] = lhs[1]
|
|
539
|
+
rhs[0] = lhs[0]
|
|
540
|
+
return self.monomial(I(rhs))
|
|
541
|
+
|
|
542
|
+
elif lhs[1] > 0: # lhs has a B
|
|
543
|
+
if rhs[0] > 0: # rhs has an A to commute with B
|
|
544
|
+
lhs[1] -= 1
|
|
545
|
+
rhs[0] -= 1
|
|
546
|
+
rel = {I((1, 1, 0, 0, 0, 0)): q**2, # q^2 AB
|
|
547
|
+
I((0, 0, 1, 0, 0, 0)): q**3 - q**-1, # q(q^2-q^-2) C
|
|
548
|
+
I((0, 0, 0, 0, 0, 1)): -q**2 + 1} # -q(q-q^-1) g
|
|
549
|
+
rel = self.element_class(self, rel)
|
|
550
|
+
return self.monomial(I(lhs+[0]*3)) * (rel * self.monomial(I(rhs)))
|
|
551
|
+
else: # nothing to commute as rhs has no A
|
|
552
|
+
rhs[1] += lhs[1]
|
|
553
|
+
rhs[0] = lhs[0]
|
|
554
|
+
return self.monomial(I(rhs))
|
|
555
|
+
|
|
556
|
+
elif lhs[0] > 0: # lhs has an A
|
|
557
|
+
rhs[0] += lhs[0]
|
|
558
|
+
return self.monomial(I(rhs))
|
|
559
|
+
|
|
560
|
+
# otherwise, lhs is just 1
|
|
561
|
+
return self.monomial(I(rhs))
|
|
562
|
+
|
|
563
|
+
def permutation_automorphism(self):
|
|
564
|
+
r"""
|
|
565
|
+
Return the permutation automorphism `\rho` of ``self``.
|
|
566
|
+
|
|
567
|
+
We define the automorphism `\rho` by
|
|
568
|
+
|
|
569
|
+
.. MATH::
|
|
570
|
+
|
|
571
|
+
A \mapsto B \mapsto C \mapsto A,
|
|
572
|
+
\qquad
|
|
573
|
+
\alpha \mapsto \beta \mapsto \gamma \mapsto \alpha.
|
|
574
|
+
|
|
575
|
+
EXAMPLES::
|
|
576
|
+
|
|
577
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
578
|
+
sage: rho = AW.permutation_automorphism()
|
|
579
|
+
sage: [rho(gen) for gen in AW.algebra_generators()]
|
|
580
|
+
[B, C, A, b, g, a]
|
|
581
|
+
|
|
582
|
+
sage: AW.an_element()
|
|
583
|
+
(q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
|
|
584
|
+
sage: rho(AW.an_element())
|
|
585
|
+
(q^-3+3+2*q+q^2)*a^3*b*g + q^5*A^2*B*g + 3*q^2*C*a*b^2
|
|
586
|
+
- (q^-2-q^6)*A*C*g + (q-q^5)*A*g^2 - (q^-3-2*q+q^5)*B*g
|
|
587
|
+
+ (q^-2-1-q^2+q^4)*b*g + B
|
|
588
|
+
|
|
589
|
+
sage: r3 = rho * rho * rho
|
|
590
|
+
sage: [r3(gen) for gen in AW.algebra_generators()]
|
|
591
|
+
[A, B, C, a, b, g]
|
|
592
|
+
sage: r3(AW.an_element()) == AW.an_element()
|
|
593
|
+
True
|
|
594
|
+
"""
|
|
595
|
+
A,B,C,a,b,g = self.gens()
|
|
596
|
+
return AlgebraMorphism(self, [B,C,A,b,g,a], codomain=self)
|
|
597
|
+
|
|
598
|
+
rho = permutation_automorphism
|
|
599
|
+
|
|
600
|
+
def reflection_automorphism(self):
|
|
601
|
+
r"""
|
|
602
|
+
Return the reflection automorphism `\sigma` of ``self``.
|
|
603
|
+
|
|
604
|
+
We define the automorphism `\sigma` by
|
|
605
|
+
|
|
606
|
+
.. MATH::
|
|
607
|
+
|
|
608
|
+
A \mapsto B \mapsto A,
|
|
609
|
+
\qquad
|
|
610
|
+
C \mapsto C + \frac{AB - BA}{q-q^{-1}}
|
|
611
|
+
= C - qAB - (1+q^2) C + q \gamma,
|
|
612
|
+
|
|
613
|
+
.. MATH::
|
|
614
|
+
|
|
615
|
+
\alpha \mapsto \beta \mapsto \alpha,
|
|
616
|
+
\gamma \mapsto \gamma.
|
|
617
|
+
|
|
618
|
+
EXAMPLES::
|
|
619
|
+
|
|
620
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
621
|
+
sage: sigma = AW.reflection_automorphism()
|
|
622
|
+
sage: [sigma(gen) for gen in AW.algebra_generators()]
|
|
623
|
+
[B, A, -q*A*B - q^2*C + q*g, b, a, g]
|
|
624
|
+
|
|
625
|
+
sage: AW.an_element()
|
|
626
|
+
(q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
|
|
627
|
+
sage: sigma(AW.an_element())
|
|
628
|
+
q^9*A^2*B^3*a + (q^10+q^14)*A*B^2*C*a - (q^7+q^9)*A*B^2*a*g
|
|
629
|
+
+ (q^-3+3+2*q+q^2)*a*b*g^3 + (q-3*q^9+q^13+q^17)*A^2*B*a
|
|
630
|
+
- (q^2-q^6-q^8+q^14)*A*B*a^2 + 3*q^2*A*b^2*g + (q^5-q^9)*B^3*a
|
|
631
|
+
- (q^6-q^8)*B^2*a*b + q^13*B*C^2*a - 2*q^10*B*C*a*g + q^7*B*a*g^2
|
|
632
|
+
+ (q^2-2*q^10+q^18)*A*C*a - (q-q^7-2*q^9+2*q^11-q^15+q^17)*A*a*g
|
|
633
|
+
- (q^3-q^7-q^9+q^13)*C*a^2 + (q^2-q^6-2*q^8+2*q^10)*a^2*g
|
|
634
|
+
+ (q-3*q^5+3*q^9-q^13)*B*a - (q^2-q^4-2*q^6+2*q^8+q^10-q^12)*a*b + B
|
|
635
|
+
|
|
636
|
+
sage: s2 = sigma * sigma
|
|
637
|
+
sage: [s2(gen) for gen in AW.algebra_generators()]
|
|
638
|
+
[A, B, C, a, b, g]
|
|
639
|
+
sage: s2(AW.an_element()) == AW.an_element()
|
|
640
|
+
True
|
|
641
|
+
"""
|
|
642
|
+
A,B,C,a,b,g = self.gens()
|
|
643
|
+
q = self._q
|
|
644
|
+
# Note that sage: (A*B-B*A) / (q-q^-1) == -q*A*B - (1+q^2)*C + q*g
|
|
645
|
+
Cp = C - q*A*B - (1+q**2)*C + q*g
|
|
646
|
+
return AlgebraMorphism(self, [B,A,Cp,b,a,g], codomain=self)
|
|
647
|
+
|
|
648
|
+
sigma = reflection_automorphism
|
|
649
|
+
|
|
650
|
+
def loop_representation(self):
|
|
651
|
+
r"""
|
|
652
|
+
Return the map `\pi` from ``self`` to `2 \times 2` matrices
|
|
653
|
+
over `R[\lambda,\lambda^{-1}]`, where `F` is the fraction field
|
|
654
|
+
of the base ring of ``self``.
|
|
655
|
+
|
|
656
|
+
Let `AW` be the Askey-Wilson algebra over `R`, and let `F` be
|
|
657
|
+
the fraction field of `R`. Let `M` be the space of `2 \times 2`
|
|
658
|
+
matrices over `F[\lambda, \lambda^{-1}]`. Consider the following
|
|
659
|
+
elements of `M`:
|
|
660
|
+
|
|
661
|
+
.. MATH::
|
|
662
|
+
|
|
663
|
+
\mathcal{A} = \begin{pmatrix}
|
|
664
|
+
\lambda & 1 - \lambda^{-1} \\ 0 & \lambda^{-1}
|
|
665
|
+
\end{pmatrix},
|
|
666
|
+
\qquad
|
|
667
|
+
\mathcal{B} = \begin{pmatrix}
|
|
668
|
+
\lambda^{-1} & 0 \\ \lambda - 1 & \lambda
|
|
669
|
+
\end{pmatrix},
|
|
670
|
+
\qquad
|
|
671
|
+
\mathcal{C} = \begin{pmatrix}
|
|
672
|
+
1 & \lambda - 1 \\ 1 - \lambda^{-1} & \lambda + \lambda^{-1} - 1
|
|
673
|
+
\end{pmatrix}.
|
|
674
|
+
|
|
675
|
+
From Lemma 3.11 of [Terwilliger2011]_, we define a
|
|
676
|
+
representation `\pi: AW \to M` by
|
|
677
|
+
|
|
678
|
+
.. MATH::
|
|
679
|
+
|
|
680
|
+
A \mapsto q \mathcal{A} + q^{-1} \mathcal{A}^{-1},
|
|
681
|
+
\qquad
|
|
682
|
+
B \mapsto q \mathcal{B} + q^{-1} \mathcal{B}^{-1},
|
|
683
|
+
\qquad
|
|
684
|
+
C \mapsto q \mathcal{C} + q^{-1} \mathcal{C}^{-1},
|
|
685
|
+
|
|
686
|
+
.. MATH::
|
|
687
|
+
|
|
688
|
+
\alpha, \beta, \gamma \mapsto \nu I,
|
|
689
|
+
|
|
690
|
+
where `\nu = (q^2 + q^-2)(\lambda + \lambda^{-1})
|
|
691
|
+
+ (\lambda + \lambda^{-1})^2`.
|
|
692
|
+
|
|
693
|
+
We call this representation the *loop representation* as
|
|
694
|
+
it is a representation using the loop group
|
|
695
|
+
`SL_2(F[\lambda,\lambda^{-1}])`.
|
|
696
|
+
|
|
697
|
+
EXAMPLES::
|
|
698
|
+
|
|
699
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
700
|
+
sage: q = AW.q()
|
|
701
|
+
sage: pi = AW.loop_representation()
|
|
702
|
+
sage: A,B,C,a,b,g = [pi(gen) for gen in AW.algebra_generators()]
|
|
703
|
+
sage: A
|
|
704
|
+
[ 1/q*lambda^-1 + q*lambda ((-q^2 + 1)/q)*lambda^-1 + ((q^2 - 1)/q)]
|
|
705
|
+
[ 0 q*lambda^-1 + 1/q*lambda]
|
|
706
|
+
sage: B
|
|
707
|
+
[ q*lambda^-1 + 1/q*lambda 0]
|
|
708
|
+
[((-q^2 + 1)/q) + ((q^2 - 1)/q)*lambda 1/q*lambda^-1 + q*lambda]
|
|
709
|
+
sage: C
|
|
710
|
+
[1/q*lambda^-1 + ((q^2 - 1)/q) + 1/q*lambda ((q^2 - 1)/q) + ((-q^2 + 1)/q)*lambda]
|
|
711
|
+
[ ((q^2 - 1)/q)*lambda^-1 + ((-q^2 + 1)/q) q*lambda^-1 + ((-q^2 + 1)/q) + q*lambda]
|
|
712
|
+
sage: a
|
|
713
|
+
[lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2 0]
|
|
714
|
+
[ 0 lambda^-2 + ((q^4 + 1)/q^2)*lambda^-1 + 2 + ((q^4 + 1)/q^2)*lambda + lambda^2]
|
|
715
|
+
sage: a == b
|
|
716
|
+
True
|
|
717
|
+
sage: a == g
|
|
718
|
+
True
|
|
719
|
+
|
|
720
|
+
sage: AW.an_element()
|
|
721
|
+
(q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
|
|
722
|
+
sage: x = pi(AW.an_element())
|
|
723
|
+
sage: y = (q^-3+3+2*q+q^2)*a*b*g^3 + q*A*C^2*b + 3*q^2*B*a^2*g + A
|
|
724
|
+
sage: x == y
|
|
725
|
+
True
|
|
726
|
+
|
|
727
|
+
We check the defining relations of the Askey-Wilson algebra::
|
|
728
|
+
|
|
729
|
+
sage: A + (q*B*C - q^-1*C*B) / (q^2 - q^-2) == a / (q + q^-1)
|
|
730
|
+
True
|
|
731
|
+
sage: B + (q*C*A - q^-1*A*C) / (q^2 - q^-2) == b / (q + q^-1)
|
|
732
|
+
True
|
|
733
|
+
sage: C + (q*A*B - q^-1*B*A) / (q^2 - q^-2) == g / (q + q^-1)
|
|
734
|
+
True
|
|
735
|
+
|
|
736
|
+
We check Lemma 3.12 in [Terwilliger2011]_::
|
|
737
|
+
|
|
738
|
+
sage: M = pi.codomain()
|
|
739
|
+
sage: la = M.base_ring().gen()
|
|
740
|
+
sage: p = M([[0,-1],[1,1]])
|
|
741
|
+
sage: s = M([[0,1],[la,0]])
|
|
742
|
+
sage: rho = AW.rho()
|
|
743
|
+
sage: sigma = AW.sigma()
|
|
744
|
+
sage: all(p*pi(gen)*~p == pi(rho(gen)) for gen in AW.algebra_generators())
|
|
745
|
+
True
|
|
746
|
+
sage: all(s*pi(gen)*~s == pi(sigma(gen)) for gen in AW.algebra_generators())
|
|
747
|
+
True
|
|
748
|
+
"""
|
|
749
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
750
|
+
q = self._q
|
|
751
|
+
base = LaurentPolynomialRing(self.base_ring().fraction_field(), 'lambda')
|
|
752
|
+
la = base.gen()
|
|
753
|
+
inv = ~la
|
|
754
|
+
M = MatrixSpace(base, 2)
|
|
755
|
+
A = M([[la,1-inv],[0,inv]])
|
|
756
|
+
Ai = M([[inv,inv-1],[0,la]])
|
|
757
|
+
B = M([[inv,0],[la-1,la]])
|
|
758
|
+
Bi = M([[la,0],[1-la,inv]])
|
|
759
|
+
C = M([[1,1-la],[inv-1,la+inv-1]])
|
|
760
|
+
Ci = M([[la+inv-1,la-1],[1-inv,1]])
|
|
761
|
+
mu = la + inv
|
|
762
|
+
nu = (self._q**2 + self._q**-2) * mu + mu**2
|
|
763
|
+
nuI = M(nu)
|
|
764
|
+
# After #29374 is fixed, the category can become
|
|
765
|
+
# Algebras(Rings().Commutative()) as it was before #29399.
|
|
766
|
+
category = Rings()
|
|
767
|
+
return AlgebraMorphism(self, [q*A + q**-1*Ai, q*B + q**-1*Bi, q*C + q**-1*Ci,
|
|
768
|
+
nuI, nuI, nuI],
|
|
769
|
+
codomain=M, category=category)
|
|
770
|
+
|
|
771
|
+
pi = loop_representation
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
def _basis_key(t):
|
|
775
|
+
"""
|
|
776
|
+
Return a key for the basis element of the Askey-Wilson algebra
|
|
777
|
+
indexed by ``t``.
|
|
778
|
+
|
|
779
|
+
EXAMPLES::
|
|
780
|
+
|
|
781
|
+
sage: from sage.algebras.askey_wilson import _basis_key
|
|
782
|
+
sage: I = algebras.AskeyWilson(QQ).indices()
|
|
783
|
+
sage: _basis_key(I((0,2,3,1,2,5)))
|
|
784
|
+
(13, (0, 2, 3, 1, 2, 5))
|
|
785
|
+
"""
|
|
786
|
+
return (sum(t), t.value)
|
|
787
|
+
|
|
788
|
+
|
|
789
|
+
class AlgebraMorphism(ModuleMorphismByLinearity):
|
|
790
|
+
"""
|
|
791
|
+
An algebra morphism of the Askey-Wilson algebra defined by
|
|
792
|
+
the images of the generators.
|
|
793
|
+
"""
|
|
794
|
+
def __init__(self, domain, on_generators, position=0, codomain=None,
|
|
795
|
+
category=None):
|
|
796
|
+
"""
|
|
797
|
+
Given a map on the multiplicative basis of a free algebra, this method
|
|
798
|
+
returns the algebra morphism that is the linear extension of its image
|
|
799
|
+
on generators.
|
|
800
|
+
|
|
801
|
+
INPUT:
|
|
802
|
+
|
|
803
|
+
- ``domain`` -- an Askey-Wilson algebra
|
|
804
|
+
- ``on_generators`` -- list of length 6 corresponding to
|
|
805
|
+
the images of the generators
|
|
806
|
+
- ``codomain`` -- (optional) the codomain
|
|
807
|
+
- ``position`` -- integer (default: 0)
|
|
808
|
+
- ``category`` -- (optional) category
|
|
809
|
+
|
|
810
|
+
OUTPUT: module morphism
|
|
811
|
+
|
|
812
|
+
EXAMPLES::
|
|
813
|
+
|
|
814
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
815
|
+
sage: sigma = AW.sigma()
|
|
816
|
+
sage: TestSuite(sigma).run()
|
|
817
|
+
"""
|
|
818
|
+
if category is None:
|
|
819
|
+
category = Algebras(Rings().Commutative()).WithBasis()
|
|
820
|
+
self._on_generators = tuple(on_generators)
|
|
821
|
+
ModuleMorphismByLinearity.__init__(self, domain=domain, codomain=codomain,
|
|
822
|
+
position=position, category=category)
|
|
823
|
+
|
|
824
|
+
def __eq__(self, other):
|
|
825
|
+
"""
|
|
826
|
+
Check equality.
|
|
827
|
+
|
|
828
|
+
EXAMPLES::
|
|
829
|
+
|
|
830
|
+
sage: from sage.algebras.askey_wilson import AlgebraMorphism
|
|
831
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
832
|
+
sage: rho = AW.rho()
|
|
833
|
+
sage: sigma = AW.sigma()
|
|
834
|
+
sage: id = AlgebraMorphism(AW, AW.gens(), codomain=AW)
|
|
835
|
+
sage: sigma * sigma == id
|
|
836
|
+
True
|
|
837
|
+
sage: id == rho * rho * rho
|
|
838
|
+
True
|
|
839
|
+
"""
|
|
840
|
+
return (self.__class__ is other.__class__ and self.parent() == other.parent()
|
|
841
|
+
and self._zero == other._zero
|
|
842
|
+
and self._on_generators == other._on_generators
|
|
843
|
+
and self._position == other._position
|
|
844
|
+
and self._is_module_with_basis_over_same_base_ring
|
|
845
|
+
== other._is_module_with_basis_over_same_base_ring)
|
|
846
|
+
|
|
847
|
+
def _on_basis(self, c):
|
|
848
|
+
r"""
|
|
849
|
+
Compute the image of this morphism on the basis element
|
|
850
|
+
indexed by ``c``.
|
|
851
|
+
|
|
852
|
+
INPUT:
|
|
853
|
+
|
|
854
|
+
- ``c`` -- tuple of length 6
|
|
855
|
+
|
|
856
|
+
OUTPUT: element of the codomain
|
|
857
|
+
|
|
858
|
+
EXAMPLES::
|
|
859
|
+
|
|
860
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
861
|
+
sage: AW.inject_variables()
|
|
862
|
+
Defining A, B, C, a, b, g
|
|
863
|
+
sage: rho = AW.rho()
|
|
864
|
+
sage: sigma = AW.sigma()
|
|
865
|
+
sage: rho._on_basis((2,1,1,2,0,5))
|
|
866
|
+
q^2*A*B^2*C*a^5*b^2 + (q^-3-q)*B^3*a^5*b^2 - (q^-2-1)*B^2*a^5*b^3
|
|
867
|
+
- (q^-3-q^5)*B*C^2*a^5*b^2 + (q^-2-q^2)*B*C*a^5*b^2*g
|
|
868
|
+
+ (q^-2-2*q^2+q^6)*A*C*a^5*b^2 - (q^-1-q-q^3+q^5)*C*a^6*b^2
|
|
869
|
+
|
|
870
|
+
sage: sigma._on_basis((2,1,1,2,0,5))
|
|
871
|
+
-q^9*A^2*B^3*b^2*g^5 + (q^2-q^10-q^14)*A*B^2*C*b^2*g^5
|
|
872
|
+
- (q^3-q^7-q^9)*A*B^2*b^2*g^6
|
|
873
|
+
- (2*q-q^5-3*q^9+q^13+q^17)*A^2*B*b^2*g^5
|
|
874
|
+
+ (1-q^6-q^8+q^14)*A*B*a*b^2*g^5 + (q^-3-q-q^5+q^9)*B^3*b^2*g^5
|
|
875
|
+
- (q^-2-1-q^6+q^8)*B^2*b^3*g^5 + (q^5-q^13)*B*C^2*b^2*g^5
|
|
876
|
+
- (q^2+q^6-2*q^10)*B*C*b^2*g^6 + (q^3-q^7)*B*b^2*g^7
|
|
877
|
+
+ (q^-6-4*q^2+2*q^6+2*q^10-q^18)*A*C*b^2*g^5
|
|
878
|
+
- (q^-3+q^-1-3*q-2*q^3+q^5+2*q^7+2*q^9-2*q^11+q^15-q^17)*A*b^2*g^6
|
|
879
|
+
- (q^-3-2*q-q^3+q^5+q^7+q^9-q^13)*C*a*b^2*g^5
|
|
880
|
+
+ (q^-2-1-q^2-q^4+2*q^6+2*q^8-2*q^10)*a*b^2*g^6
|
|
881
|
+
+ (q^-7-3*q^-3+2*q+2*q^5-3*q^9+q^13)*B*b^2*g^5
|
|
882
|
+
- (q^-6-q^-4-2*q^-2+2+2*q^6-2*q^8-q^10+q^12)*b^3*g^5
|
|
883
|
+
|
|
884
|
+
sage: rho(B*A)
|
|
885
|
+
q^2*B*C - (q^-1-q^3)*A + (1-q^2)*a
|
|
886
|
+
sage: rho(A*B)
|
|
887
|
+
B*C
|
|
888
|
+
sage: rho(A*B*C)
|
|
889
|
+
A*B*C + (q^-3-q)*B^2 - (q^-2-1)*B*b - (q^-3-q)*C^2 + (q^-2-1)*C*g
|
|
890
|
+
sage: rho(B*C*A)
|
|
891
|
+
A*B*C - (q^-3-q)*A^2 + (q^-2-1)*A*a + (q^-3-q)*B^2 - (q^-2-1)*B*b
|
|
892
|
+
sage: rho(C*A*B)
|
|
893
|
+
A*B*C
|
|
894
|
+
|
|
895
|
+
sage: rho(C^2*a*b^6*g^2)
|
|
896
|
+
A^2*a^2*b*g^6
|
|
897
|
+
|
|
898
|
+
sage: sigma(C^2)
|
|
899
|
+
q^4*A^2*B^2 + (q^3+q^7)*A*B*C - (q^2+q^4)*A*B*g
|
|
900
|
+
- (q^4-q^8)*A^2 + (q^5-q^7)*A*a + (1-q^4)*B^2
|
|
901
|
+
- (q-q^3)*B*b + q^4*C^2 - 2*q^3*C*g + q^2*g^2
|
|
902
|
+
sage: sigma(A*B)
|
|
903
|
+
q^2*A*B - (q^-1-q^3)*C + (1-q^2)*g
|
|
904
|
+
sage: sigma(C + 3*g*A*B)
|
|
905
|
+
3*q^2*A*B*g - q*A*B - (3*q^-1-3*q^3)*C*g
|
|
906
|
+
+ (3-3*q^2)*g^2 - q^2*C + q*g
|
|
907
|
+
"""
|
|
908
|
+
return self.codomain().prod(self._on_generators[i]**exp
|
|
909
|
+
for i, exp in enumerate(c))
|
|
910
|
+
|
|
911
|
+
def _composition_(self, right, homset):
|
|
912
|
+
"""
|
|
913
|
+
Return the composition of ``self`` and ``right`` in ``homset``.
|
|
914
|
+
|
|
915
|
+
EXAMPLES::
|
|
916
|
+
|
|
917
|
+
sage: AW = algebras.AskeyWilson(QQ)
|
|
918
|
+
sage: rho = AW.rho()
|
|
919
|
+
sage: sigma = AW.sigma()
|
|
920
|
+
sage: s2 = sigma * sigma
|
|
921
|
+
sage: s2._on_generators
|
|
922
|
+
(A, B, C, a, b, g)
|
|
923
|
+
sage: sr = sigma * rho
|
|
924
|
+
sage: sr._on_generators
|
|
925
|
+
(C, B, -q*B*C - q^2*A + q*a, g, b, a)
|
|
926
|
+
sage: rs = rho * sigma
|
|
927
|
+
sage: rs._on_generators
|
|
928
|
+
(A, -q*A*B - q^2*C + q*g, B, a, g, b)
|
|
929
|
+
"""
|
|
930
|
+
if isinstance(right, AlgebraMorphism):
|
|
931
|
+
cat = homset.homset_category()
|
|
932
|
+
return AlgebraMorphism(homset.domain(),
|
|
933
|
+
[right(g) for g in self._on_generators],
|
|
934
|
+
codomain=homset.codomain(), category=cat)
|
|
935
|
+
return super()._composition_(right, homset)
|