passagemath-combinat 10.6.42__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.42.dist-info/METADATA +160 -0
- passagemath_combinat-10.6.42.dist-info/RECORD +400 -0
- passagemath_combinat-10.6.42.dist-info/WHEEL +5 -0
- passagemath_combinat-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_combinat.libs/libsymmetrica-81fe8739.so.3.0.0 +0 -0
- sage/algebras/affine_nil_temperley_lieb.py +263 -0
- sage/algebras/all.py +24 -0
- sage/algebras/all__sagemath_combinat.py +35 -0
- sage/algebras/askey_wilson.py +935 -0
- sage/algebras/associated_graded.py +345 -0
- sage/algebras/cellular_basis.py +350 -0
- sage/algebras/cluster_algebra.py +2766 -0
- sage/algebras/down_up_algebra.py +860 -0
- sage/algebras/free_algebra.py +1698 -0
- sage/algebras/free_algebra_element.py +345 -0
- sage/algebras/free_algebra_quotient.py +405 -0
- sage/algebras/free_algebra_quotient_element.py +295 -0
- sage/algebras/free_zinbiel_algebra.py +885 -0
- sage/algebras/hall_algebra.py +783 -0
- sage/algebras/hecke_algebras/all.py +4 -0
- sage/algebras/hecke_algebras/ariki_koike_algebra.py +1796 -0
- sage/algebras/hecke_algebras/ariki_koike_specht_modules.py +475 -0
- sage/algebras/hecke_algebras/cubic_hecke_algebra.py +3520 -0
- sage/algebras/hecke_algebras/cubic_hecke_base_ring.py +1473 -0
- sage/algebras/hecke_algebras/cubic_hecke_matrix_rep.py +1079 -0
- sage/algebras/iwahori_hecke_algebra.py +3095 -0
- sage/algebras/jordan_algebra.py +1773 -0
- sage/algebras/lie_conformal_algebras/abelian_lie_conformal_algebra.py +113 -0
- sage/algebras/lie_conformal_algebras/affine_lie_conformal_algebra.py +156 -0
- sage/algebras/lie_conformal_algebras/all.py +18 -0
- sage/algebras/lie_conformal_algebras/bosonic_ghosts_lie_conformal_algebra.py +134 -0
- sage/algebras/lie_conformal_algebras/examples.py +43 -0
- sage/algebras/lie_conformal_algebras/fermionic_ghosts_lie_conformal_algebra.py +131 -0
- sage/algebras/lie_conformal_algebras/finitely_freely_generated_lca.py +139 -0
- sage/algebras/lie_conformal_algebras/free_bosons_lie_conformal_algebra.py +174 -0
- sage/algebras/lie_conformal_algebras/free_fermions_lie_conformal_algebra.py +167 -0
- sage/algebras/lie_conformal_algebras/freely_generated_lie_conformal_algebra.py +107 -0
- sage/algebras/lie_conformal_algebras/graded_lie_conformal_algebra.py +135 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra.py +353 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +236 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_basis.py +78 -0
- sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +328 -0
- sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +117 -0
- sage/algebras/lie_conformal_algebras/neveu_schwarz_lie_conformal_algebra.py +86 -0
- sage/algebras/lie_conformal_algebras/virasoro_lie_conformal_algebra.py +82 -0
- sage/algebras/lie_conformal_algebras/weyl_lie_conformal_algebra.py +205 -0
- sage/algebras/nil_coxeter_algebra.py +191 -0
- sage/algebras/q_commuting_polynomials.py +673 -0
- sage/algebras/q_system.py +608 -0
- sage/algebras/quantum_clifford.py +959 -0
- sage/algebras/quantum_groups/ace_quantum_onsager.py +693 -0
- sage/algebras/quantum_groups/all.py +9 -0
- sage/algebras/quantum_groups/fock_space.py +2219 -0
- sage/algebras/quantum_groups/q_numbers.py +207 -0
- sage/algebras/quantum_groups/quantum_group_gap.py +2695 -0
- sage/algebras/quantum_groups/representations.py +591 -0
- sage/algebras/quantum_matrix_coordinate_algebra.py +1006 -0
- sage/algebras/quantum_oscillator.py +623 -0
- sage/algebras/quaternion_algebra.py +20 -0
- sage/algebras/quaternion_algebra_element.py +55 -0
- sage/algebras/rational_cherednik_algebra.py +525 -0
- sage/algebras/schur_algebra.py +670 -0
- sage/algebras/shuffle_algebra.py +1011 -0
- sage/algebras/splitting_algebra.py +779 -0
- sage/algebras/tensor_algebra.py +709 -0
- sage/algebras/yangian.py +1082 -0
- sage/algebras/yokonuma_hecke_algebra.py +1018 -0
- sage/all__sagemath_combinat.py +35 -0
- sage/combinat/SJT.py +255 -0
- sage/combinat/affine_permutation.py +2405 -0
- sage/combinat/algebraic_combinatorics.py +55 -0
- sage/combinat/all.py +53 -0
- sage/combinat/all__sagemath_combinat.py +195 -0
- sage/combinat/alternating_sign_matrix.py +2063 -0
- sage/combinat/baxter_permutations.py +346 -0
- sage/combinat/bijectionist.py +3220 -0
- sage/combinat/binary_recurrence_sequences.py +1180 -0
- sage/combinat/blob_algebra.py +685 -0
- sage/combinat/catalog_partitions.py +27 -0
- sage/combinat/chas/all.py +23 -0
- sage/combinat/chas/fsym.py +1180 -0
- sage/combinat/chas/wqsym.py +2601 -0
- sage/combinat/cluster_complex.py +326 -0
- sage/combinat/colored_permutations.py +2039 -0
- sage/combinat/colored_permutations_representations.py +964 -0
- sage/combinat/composition_signed.py +142 -0
- sage/combinat/composition_tableau.py +855 -0
- sage/combinat/constellation.py +1729 -0
- sage/combinat/core.py +751 -0
- sage/combinat/counting.py +12 -0
- sage/combinat/crystals/affine.py +742 -0
- sage/combinat/crystals/affine_factorization.py +518 -0
- sage/combinat/crystals/affinization.py +331 -0
- sage/combinat/crystals/alcove_path.py +2013 -0
- sage/combinat/crystals/all.py +22 -0
- sage/combinat/crystals/bkk_crystals.py +141 -0
- sage/combinat/crystals/catalog.py +115 -0
- sage/combinat/crystals/catalog_elementary_crystals.py +18 -0
- sage/combinat/crystals/catalog_infinity_crystals.py +33 -0
- sage/combinat/crystals/catalog_kirillov_reshetikhin.py +18 -0
- sage/combinat/crystals/crystals.py +257 -0
- sage/combinat/crystals/direct_sum.py +260 -0
- sage/combinat/crystals/elementary_crystals.py +1251 -0
- sage/combinat/crystals/fast_crystals.py +441 -0
- sage/combinat/crystals/fully_commutative_stable_grothendieck.py +1205 -0
- sage/combinat/crystals/generalized_young_walls.py +1076 -0
- sage/combinat/crystals/highest_weight_crystals.py +436 -0
- sage/combinat/crystals/induced_structure.py +695 -0
- sage/combinat/crystals/infinity_crystals.py +730 -0
- sage/combinat/crystals/kac_modules.py +863 -0
- sage/combinat/crystals/kirillov_reshetikhin.py +4196 -0
- sage/combinat/crystals/kyoto_path_model.py +497 -0
- sage/combinat/crystals/letters.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/letters.pxd +79 -0
- sage/combinat/crystals/letters.pyx +3056 -0
- sage/combinat/crystals/littelmann_path.py +1518 -0
- sage/combinat/crystals/monomial_crystals.py +1262 -0
- sage/combinat/crystals/multisegments.py +462 -0
- sage/combinat/crystals/mv_polytopes.py +467 -0
- sage/combinat/crystals/pbw_crystal.py +511 -0
- sage/combinat/crystals/pbw_datum.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/pbw_datum.pxd +4 -0
- sage/combinat/crystals/pbw_datum.pyx +487 -0
- sage/combinat/crystals/polyhedral_realization.py +372 -0
- sage/combinat/crystals/spins.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/spins.pxd +21 -0
- sage/combinat/crystals/spins.pyx +756 -0
- sage/combinat/crystals/star_crystal.py +290 -0
- sage/combinat/crystals/subcrystal.py +464 -0
- sage/combinat/crystals/tensor_product.py +1177 -0
- sage/combinat/crystals/tensor_product_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/crystals/tensor_product_element.pxd +35 -0
- sage/combinat/crystals/tensor_product_element.pyx +1870 -0
- sage/combinat/crystals/virtual_crystal.py +420 -0
- sage/combinat/cyclic_sieving_phenomenon.py +204 -0
- sage/combinat/debruijn_sequence.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/debruijn_sequence.pyx +355 -0
- sage/combinat/decorated_permutation.py +270 -0
- sage/combinat/degree_sequences.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/degree_sequences.pyx +588 -0
- sage/combinat/derangements.py +527 -0
- sage/combinat/descent_algebra.py +1008 -0
- sage/combinat/diagram.py +1551 -0
- sage/combinat/diagram_algebras.py +5886 -0
- sage/combinat/dyck_word.py +4349 -0
- sage/combinat/e_one_star.py +1623 -0
- sage/combinat/enumerated_sets.py +123 -0
- sage/combinat/expnums.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/expnums.pyx +148 -0
- sage/combinat/fast_vector_partitions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/fast_vector_partitions.pyx +346 -0
- sage/combinat/fqsym.py +1977 -0
- sage/combinat/free_dendriform_algebra.py +954 -0
- sage/combinat/free_prelie_algebra.py +1141 -0
- sage/combinat/fully_commutative_elements.py +1077 -0
- sage/combinat/fully_packed_loop.py +1523 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1409 -0
- sage/combinat/gray_codes.py +311 -0
- sage/combinat/grossman_larson_algebras.py +667 -0
- sage/combinat/growth.py +4352 -0
- sage/combinat/hall_polynomial.py +188 -0
- sage/combinat/hillman_grassl.py +866 -0
- sage/combinat/integer_matrices.py +329 -0
- sage/combinat/integer_vectors_mod_permgroup.py +1238 -0
- sage/combinat/k_tableau.py +4564 -0
- sage/combinat/kazhdan_lusztig.py +215 -0
- sage/combinat/key_polynomial.py +885 -0
- sage/combinat/knutson_tao_puzzles.py +2286 -0
- sage/combinat/lr_tableau.py +311 -0
- sage/combinat/matrices/all.py +24 -0
- sage/combinat/matrices/hadamard_matrix.py +3790 -0
- sage/combinat/matrices/latin.py +2912 -0
- sage/combinat/misc.py +401 -0
- sage/combinat/multiset_partition_into_sets_ordered.py +3541 -0
- sage/combinat/ncsf_qsym/all.py +21 -0
- sage/combinat/ncsf_qsym/combinatorics.py +317 -0
- sage/combinat/ncsf_qsym/generic_basis_code.py +1427 -0
- sage/combinat/ncsf_qsym/ncsf.py +5637 -0
- sage/combinat/ncsf_qsym/qsym.py +4053 -0
- sage/combinat/ncsf_qsym/tutorial.py +447 -0
- sage/combinat/ncsym/all.py +21 -0
- sage/combinat/ncsym/bases.py +855 -0
- sage/combinat/ncsym/dual.py +593 -0
- sage/combinat/ncsym/ncsym.py +2076 -0
- sage/combinat/necklace.py +551 -0
- sage/combinat/non_decreasing_parking_function.py +634 -0
- sage/combinat/nu_dyck_word.py +1474 -0
- sage/combinat/output.py +861 -0
- sage/combinat/parallelogram_polyomino.py +4326 -0
- sage/combinat/parking_functions.py +1602 -0
- sage/combinat/partition_algebra.py +1998 -0
- sage/combinat/partition_kleshchev.py +1982 -0
- sage/combinat/partition_shifting_algebras.py +584 -0
- sage/combinat/partition_tuple.py +3114 -0
- sage/combinat/path_tableaux/all.py +13 -0
- sage/combinat/path_tableaux/catalog.py +29 -0
- sage/combinat/path_tableaux/dyck_path.py +380 -0
- sage/combinat/path_tableaux/frieze.py +476 -0
- sage/combinat/path_tableaux/path_tableau.py +728 -0
- sage/combinat/path_tableaux/semistandard.py +510 -0
- sage/combinat/perfect_matching.py +779 -0
- sage/combinat/plane_partition.py +3300 -0
- sage/combinat/q_bernoulli.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/q_bernoulli.pyx +128 -0
- sage/combinat/quickref.py +81 -0
- sage/combinat/recognizable_series.py +2051 -0
- sage/combinat/regular_sequence.py +4316 -0
- sage/combinat/regular_sequence_bounded.py +543 -0
- sage/combinat/restricted_growth.py +81 -0
- sage/combinat/ribbon.py +20 -0
- sage/combinat/ribbon_shaped_tableau.py +489 -0
- sage/combinat/ribbon_tableau.py +1180 -0
- sage/combinat/rigged_configurations/all.py +46 -0
- sage/combinat/rigged_configurations/bij_abstract_class.py +548 -0
- sage/combinat/rigged_configurations/bij_infinity.py +370 -0
- sage/combinat/rigged_configurations/bij_type_A.py +163 -0
- sage/combinat/rigged_configurations/bij_type_A2_dual.py +338 -0
- sage/combinat/rigged_configurations/bij_type_A2_even.py +218 -0
- sage/combinat/rigged_configurations/bij_type_A2_odd.py +199 -0
- sage/combinat/rigged_configurations/bij_type_B.py +900 -0
- sage/combinat/rigged_configurations/bij_type_C.py +267 -0
- sage/combinat/rigged_configurations/bij_type_D.py +771 -0
- sage/combinat/rigged_configurations/bij_type_D_tri.py +392 -0
- sage/combinat/rigged_configurations/bij_type_D_twisted.py +576 -0
- sage/combinat/rigged_configurations/bij_type_E67.py +402 -0
- sage/combinat/rigged_configurations/bijection.py +143 -0
- sage/combinat/rigged_configurations/kleber_tree.py +1475 -0
- sage/combinat/rigged_configurations/kr_tableaux.py +1898 -0
- sage/combinat/rigged_configurations/rc_crystal.py +461 -0
- sage/combinat/rigged_configurations/rc_infinity.py +540 -0
- sage/combinat/rigged_configurations/rigged_configuration_element.py +2403 -0
- sage/combinat/rigged_configurations/rigged_configurations.py +1918 -0
- sage/combinat/rigged_configurations/rigged_partition.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/rigged_configurations/rigged_partition.pxd +15 -0
- sage/combinat/rigged_configurations/rigged_partition.pyx +680 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux.py +499 -0
- sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element.py +428 -0
- sage/combinat/rsk.py +3438 -0
- sage/combinat/schubert_polynomial.py +508 -0
- sage/combinat/set_partition.py +3318 -0
- sage/combinat/set_partition_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/set_partition_iterator.pyx +136 -0
- sage/combinat/set_partition_ordered.py +1590 -0
- sage/combinat/sf/abreu_nigro.py +346 -0
- sage/combinat/sf/all.py +52 -0
- sage/combinat/sf/character.py +576 -0
- sage/combinat/sf/classical.py +319 -0
- sage/combinat/sf/dual.py +996 -0
- sage/combinat/sf/elementary.py +549 -0
- sage/combinat/sf/hall_littlewood.py +1028 -0
- sage/combinat/sf/hecke.py +336 -0
- sage/combinat/sf/homogeneous.py +464 -0
- sage/combinat/sf/jack.py +1428 -0
- sage/combinat/sf/k_dual.py +1458 -0
- sage/combinat/sf/kfpoly.py +447 -0
- sage/combinat/sf/llt.py +789 -0
- sage/combinat/sf/macdonald.py +2019 -0
- sage/combinat/sf/monomial.py +525 -0
- sage/combinat/sf/multiplicative.py +113 -0
- sage/combinat/sf/new_kschur.py +1786 -0
- sage/combinat/sf/ns_macdonald.py +964 -0
- sage/combinat/sf/orthogonal.py +246 -0
- sage/combinat/sf/orthotriang.py +355 -0
- sage/combinat/sf/powersum.py +963 -0
- sage/combinat/sf/schur.py +880 -0
- sage/combinat/sf/sf.py +1653 -0
- sage/combinat/sf/sfa.py +7053 -0
- sage/combinat/sf/symplectic.py +253 -0
- sage/combinat/sf/witt.py +721 -0
- sage/combinat/shifted_primed_tableau.py +2735 -0
- sage/combinat/shuffle.py +830 -0
- sage/combinat/sidon_sets.py +146 -0
- sage/combinat/similarity_class_type.py +1721 -0
- sage/combinat/sine_gordon.py +618 -0
- sage/combinat/six_vertex_model.py +784 -0
- sage/combinat/skew_partition.py +2053 -0
- sage/combinat/skew_tableau.py +2989 -0
- sage/combinat/sloane_functions.py +8935 -0
- sage/combinat/specht_module.py +1403 -0
- sage/combinat/species/all.py +48 -0
- sage/combinat/species/characteristic_species.py +321 -0
- sage/combinat/species/composition_species.py +273 -0
- sage/combinat/species/cycle_species.py +284 -0
- sage/combinat/species/empty_species.py +155 -0
- sage/combinat/species/functorial_composition_species.py +148 -0
- sage/combinat/species/generating_series.py +673 -0
- sage/combinat/species/library.py +148 -0
- sage/combinat/species/linear_order_species.py +169 -0
- sage/combinat/species/misc.py +83 -0
- sage/combinat/species/partition_species.py +290 -0
- sage/combinat/species/permutation_species.py +268 -0
- sage/combinat/species/product_species.py +423 -0
- sage/combinat/species/recursive_species.py +476 -0
- sage/combinat/species/set_species.py +192 -0
- sage/combinat/species/species.py +820 -0
- sage/combinat/species/structure.py +539 -0
- sage/combinat/species/subset_species.py +243 -0
- sage/combinat/species/sum_species.py +225 -0
- sage/combinat/subword.py +564 -0
- sage/combinat/subword_complex.py +2122 -0
- sage/combinat/subword_complex_c.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/subword_complex_c.pyx +119 -0
- sage/combinat/super_tableau.py +821 -0
- sage/combinat/superpartition.py +1154 -0
- sage/combinat/symmetric_group_algebra.py +3774 -0
- sage/combinat/symmetric_group_representations.py +1830 -0
- sage/combinat/t_sequences.py +877 -0
- sage/combinat/tableau.py +9506 -0
- sage/combinat/tableau_residues.py +860 -0
- sage/combinat/tableau_tuple.py +5353 -0
- sage/combinat/tiling.py +2432 -0
- sage/combinat/triangles_FHM.py +777 -0
- sage/combinat/tutorial.py +1857 -0
- sage/combinat/vector_partition.py +337 -0
- sage/combinat/words/abstract_word.py +1722 -0
- sage/combinat/words/all.py +59 -0
- sage/combinat/words/alphabet.py +268 -0
- sage/combinat/words/finite_word.py +7201 -0
- sage/combinat/words/infinite_word.py +113 -0
- sage/combinat/words/lyndon_word.py +652 -0
- sage/combinat/words/morphic.py +351 -0
- sage/combinat/words/morphism.py +3878 -0
- sage/combinat/words/paths.py +2932 -0
- sage/combinat/words/shuffle_product.py +278 -0
- sage/combinat/words/suffix_trees.py +1873 -0
- sage/combinat/words/word.py +769 -0
- sage/combinat/words/word_char.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_char.pyx +847 -0
- sage/combinat/words/word_datatypes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/words/word_datatypes.pxd +4 -0
- sage/combinat/words/word_datatypes.pyx +1067 -0
- sage/combinat/words/word_generators.py +2026 -0
- sage/combinat/words/word_infinite_datatypes.py +1218 -0
- sage/combinat/words/word_options.py +99 -0
- sage/combinat/words/words.py +2396 -0
- sage/data_structures/all__sagemath_combinat.py +1 -0
- sage/databases/all__sagemath_combinat.py +13 -0
- sage/databases/findstat.py +4897 -0
- sage/databases/oeis.py +2058 -0
- sage/databases/sloane.py +393 -0
- sage/dynamics/all__sagemath_combinat.py +14 -0
- sage/dynamics/cellular_automata/all.py +7 -0
- sage/dynamics/cellular_automata/catalog.py +34 -0
- sage/dynamics/cellular_automata/elementary.py +612 -0
- sage/dynamics/cellular_automata/glca.py +477 -0
- sage/dynamics/cellular_automata/solitons.py +1463 -0
- sage/dynamics/finite_dynamical_system.py +1249 -0
- sage/dynamics/finite_dynamical_system_catalog.py +382 -0
- sage/games/all.py +7 -0
- sage/games/hexad.py +704 -0
- sage/games/quantumino.py +591 -0
- sage/games/sudoku.py +889 -0
- sage/games/sudoku_backtrack.cpython-314-x86_64-linux-musl.so +0 -0
- sage/games/sudoku_backtrack.pyx +189 -0
- sage/groups/all__sagemath_combinat.py +1 -0
- sage/groups/indexed_free_group.py +489 -0
- sage/libs/all__sagemath_combinat.py +6 -0
- sage/libs/lrcalc/__init__.py +1 -0
- sage/libs/lrcalc/lrcalc.py +525 -0
- sage/libs/symmetrica/__init__.py +7 -0
- sage/libs/symmetrica/all.py +101 -0
- sage/libs/symmetrica/kostka.pxi +168 -0
- sage/libs/symmetrica/part.pxi +193 -0
- sage/libs/symmetrica/plet.pxi +42 -0
- sage/libs/symmetrica/sab.pxi +196 -0
- sage/libs/symmetrica/sb.pxi +332 -0
- sage/libs/symmetrica/sc.pxi +192 -0
- sage/libs/symmetrica/schur.pxi +956 -0
- sage/libs/symmetrica/symmetrica.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1172 -0
- sage/libs/symmetrica/symmetrica.pyx +39 -0
- sage/monoids/all.py +13 -0
- sage/monoids/automatic_semigroup.py +1054 -0
- sage/monoids/free_abelian_monoid.py +315 -0
- sage/monoids/free_abelian_monoid_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/monoids/free_abelian_monoid_element.pxd +16 -0
- sage/monoids/free_abelian_monoid_element.pyx +397 -0
- sage/monoids/free_monoid.py +335 -0
- sage/monoids/free_monoid_element.py +431 -0
- sage/monoids/hecke_monoid.py +65 -0
- sage/monoids/string_monoid.py +817 -0
- sage/monoids/string_monoid_element.py +547 -0
- sage/monoids/string_ops.py +143 -0
- sage/monoids/trace_monoid.py +972 -0
- sage/rings/all__sagemath_combinat.py +2 -0
- sage/sat/all.py +4 -0
- sage/sat/boolean_polynomials.py +405 -0
- sage/sat/converters/__init__.py +6 -0
- sage/sat/converters/anf2cnf.py +14 -0
- sage/sat/converters/polybori.py +611 -0
- sage/sat/solvers/__init__.py +5 -0
- sage/sat/solvers/cryptominisat.py +287 -0
- sage/sat/solvers/dimacs.py +783 -0
- sage/sat/solvers/picosat.py +228 -0
- sage/sat/solvers/sat_lp.py +156 -0
- sage/sat/solvers/satsolver.cpython-314-x86_64-linux-musl.so +0 -0
- sage/sat/solvers/satsolver.pxd +3 -0
- sage/sat/solvers/satsolver.pyx +405 -0
|
@@ -0,0 +1,2122 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-combinat
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Subword complex
|
|
5
|
+
|
|
6
|
+
Fix a Coxeter system `(W,S)`. The subword complex `\mathcal{SC}(Q,w)`
|
|
7
|
+
associated to a word `Q \in S^*` and an element `w \in W` is the
|
|
8
|
+
simplicial complex whose ground set is the set of positions in `Q` and whose
|
|
9
|
+
facets are complements of sets of positions defining a reduced
|
|
10
|
+
expression for `w`.
|
|
11
|
+
|
|
12
|
+
A subword complex is a shellable sphere if and only if the Demazure
|
|
13
|
+
product of `Q` equals `w`, otherwise it is a shellable ball.
|
|
14
|
+
|
|
15
|
+
The code is optimized to be used with :class:`ReflectionGroup`, it works as well
|
|
16
|
+
with :class:`CoxeterGroup`, but many methods fail for :class:`WeylGroup`.
|
|
17
|
+
|
|
18
|
+
EXAMPLES::
|
|
19
|
+
|
|
20
|
+
sage: W = ReflectionGroup(['A',3]); I = list(W.index_set()) # optional - gap3
|
|
21
|
+
sage: Q = I + W.w0.coxeter_sorting_word(I); Q # optional - gap3
|
|
22
|
+
[1, 2, 3, 1, 2, 3, 1, 2, 1]
|
|
23
|
+
|
|
24
|
+
sage: S = SubwordComplex(Q,W.w0) # optional - gap3
|
|
25
|
+
sage: for F in S: print("{} {}".format(F, F.root_configuration())) # optional - gap3
|
|
26
|
+
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
|
|
27
|
+
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
|
|
28
|
+
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
|
|
29
|
+
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
|
|
30
|
+
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
|
|
31
|
+
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
|
|
32
|
+
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]
|
|
33
|
+
(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
|
|
34
|
+
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
|
|
35
|
+
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
|
|
36
|
+
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
|
|
37
|
+
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
|
|
38
|
+
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
|
|
39
|
+
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]
|
|
40
|
+
|
|
41
|
+
Testing that the implementation also works with CoxeterGroup::
|
|
42
|
+
|
|
43
|
+
sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
|
|
44
|
+
sage: Q = I + W.w0.coxeter_sorting_word(I); Q
|
|
45
|
+
[1, 2, 3, 1, 2, 3, 1, 2, 1]
|
|
46
|
+
sage: S = SubwordComplex(Q,W.w0); S
|
|
47
|
+
Subword complex of type ['A', 3] for Q = (1, 2, 3, 1, 2, 3, 1, 2, 1) and pi = [1, 2, 3, 1, 2, 1]
|
|
48
|
+
sage: P = S.increasing_flip_poset(); P; len(P.cover_relations())
|
|
49
|
+
Finite poset containing 14 elements
|
|
50
|
+
21
|
|
51
|
+
|
|
52
|
+
The root configuration works::
|
|
53
|
+
|
|
54
|
+
sage: for F in S: print("{} {}".format(F, F.root_configuration()))
|
|
55
|
+
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
|
|
56
|
+
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
|
|
57
|
+
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
|
|
58
|
+
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
|
|
59
|
+
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
|
|
60
|
+
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
|
|
61
|
+
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]
|
|
62
|
+
(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
|
|
63
|
+
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
|
|
64
|
+
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
|
|
65
|
+
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
|
|
66
|
+
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
|
|
67
|
+
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
|
|
68
|
+
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]
|
|
69
|
+
|
|
70
|
+
And the weight configuration also works::
|
|
71
|
+
|
|
72
|
+
sage: W = CoxeterGroup(['A',2])
|
|
73
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
74
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
75
|
+
sage: F = SC([1,2])
|
|
76
|
+
sage: F.extended_weight_configuration()
|
|
77
|
+
[(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)]
|
|
78
|
+
sage: F.extended_weight_configuration(coefficients=(1,2))
|
|
79
|
+
[(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]
|
|
80
|
+
|
|
81
|
+
One finally can compute the brick polytope, using all functionality
|
|
82
|
+
on weight configurations, though it does not realize to live in
|
|
83
|
+
real space::
|
|
84
|
+
|
|
85
|
+
sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
|
|
86
|
+
sage: Q = I + W.w0.coxeter_sorting_word(I)
|
|
87
|
+
sage: S = SubwordComplex(Q,W.w0)
|
|
88
|
+
sage: S.brick_polytope() # needs sage.geometry.polyhedron
|
|
89
|
+
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 14 vertices
|
|
90
|
+
|
|
91
|
+
sage: W = CoxeterGroup(['H',3]); I = list(W.index_set())
|
|
92
|
+
sage: Q = I + W.w0.coxeter_sorting_word(I)
|
|
93
|
+
sage: S = SubwordComplex(Q,W.w0)
|
|
94
|
+
sage: S.brick_polytope() # needs sage.geometry.polyhedron
|
|
95
|
+
doctest:...: RuntimeWarning: the polytope is built with rational vertices
|
|
96
|
+
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices
|
|
97
|
+
|
|
98
|
+
AUTHORS:
|
|
99
|
+
|
|
100
|
+
- Christian Stump: initial version
|
|
101
|
+
- Vincent Pilaud: greedy flip algorithm, minor improvements, documentation
|
|
102
|
+
|
|
103
|
+
REFERENCES:
|
|
104
|
+
|
|
105
|
+
.. [KnuMil] Knutson and Miller. *Subword complexes in Coxeter groups*. Adv. Math., 184(1):161-176, 2004.
|
|
106
|
+
.. [PilStu] Pilaud and Stump. *Brick polytopes of spherical subword complexes and generalized associahedra*. Adv. Math. 276:1-61, 2015.
|
|
107
|
+
"""
|
|
108
|
+
# ****************************************************************************
|
|
109
|
+
# Copyright (C) 2015 Christian Stump <christian.stump@gmail.com>
|
|
110
|
+
#
|
|
111
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
112
|
+
# The full text of the GPL is available at:
|
|
113
|
+
#
|
|
114
|
+
# https://www.gnu.org/licenses/
|
|
115
|
+
# ****************************************************************************
|
|
116
|
+
from itertools import repeat
|
|
117
|
+
from copy import copy
|
|
118
|
+
from sage.misc.cachefunc import cached_method
|
|
119
|
+
from sage.misc.lazy_import import lazy_import
|
|
120
|
+
from sage.structure.element import Element
|
|
121
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
|
122
|
+
from sage.topology.simplicial_complex import SimplicialComplex, Simplex
|
|
123
|
+
from sage.categories.simplicial_complexes import SimplicialComplexes
|
|
124
|
+
from sage.combinat.subword_complex_c import _flip_c, _construct_facets_c
|
|
125
|
+
|
|
126
|
+
lazy_import('sage.geometry.polyhedron.constructor', 'Polyhedron')
|
|
127
|
+
lazy_import('sage.geometry.cone', 'Cone')
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
class SubwordComplexFacet(Simplex, Element):
|
|
131
|
+
r"""
|
|
132
|
+
A facet of a subword complex.
|
|
133
|
+
|
|
134
|
+
Facets of the subword complex `\mathcal{SC}(Q,w)` are complements
|
|
135
|
+
of sets of positions in `Q` defining a reduced expression for `w`.
|
|
136
|
+
|
|
137
|
+
EXAMPLES::
|
|
138
|
+
|
|
139
|
+
sage: # optional - gap3
|
|
140
|
+
sage: W = ReflectionGroup(['A',2])
|
|
141
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
142
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
143
|
+
sage: F = SC[0]; F
|
|
144
|
+
(0, 1)
|
|
145
|
+
|
|
146
|
+
sage: W = CoxeterGroup(['A',2])
|
|
147
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
148
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
149
|
+
sage: F = SC[0]; F
|
|
150
|
+
(0, 1)
|
|
151
|
+
|
|
152
|
+
TESTS::
|
|
153
|
+
|
|
154
|
+
sage: type(F) # optional - gap3
|
|
155
|
+
<class 'sage.combinat.subword_complex.SubwordComplex_with_category.element_class'>
|
|
156
|
+
"""
|
|
157
|
+
|
|
158
|
+
# standard functions
|
|
159
|
+
|
|
160
|
+
def __init__(self, parent, positions, facet_test=True):
|
|
161
|
+
r"""
|
|
162
|
+
Initialize a facet of the subword complex ``parent``.
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
167
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
168
|
+
sage: F = SC([1,2]); F # optional - gap3
|
|
169
|
+
(1, 2)
|
|
170
|
+
|
|
171
|
+
sage: W = CoxeterGroup(['A',2])
|
|
172
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
173
|
+
sage: F = SC([1,2]); F
|
|
174
|
+
(1, 2)
|
|
175
|
+
|
|
176
|
+
TESTS::
|
|
177
|
+
|
|
178
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
179
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
180
|
+
sage: SC([1,3]) # optional - gap3
|
|
181
|
+
Traceback (most recent call last):
|
|
182
|
+
...
|
|
183
|
+
ValueError: the given iterable [1, 3] is not a facet of the Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
|
|
184
|
+
|
|
185
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
186
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
187
|
+
sage: TestSuite(SC).run() # optional - gap3
|
|
188
|
+
"""
|
|
189
|
+
if facet_test and positions not in parent:
|
|
190
|
+
raise ValueError("the given iterable %s is not a facet of the %s" % (positions, parent))
|
|
191
|
+
Simplex.__init__(self, sorted(positions))
|
|
192
|
+
Element.__init__(self, parent)
|
|
193
|
+
self._extended_root_conf_indices = None
|
|
194
|
+
self._extended_weight_conf = None
|
|
195
|
+
|
|
196
|
+
# roots
|
|
197
|
+
|
|
198
|
+
def _extended_root_configuration_indices(self):
|
|
199
|
+
r"""
|
|
200
|
+
Return the indices of the roots in ``self.group().roots()`` of
|
|
201
|
+
the extended root configuration of ``self``.
|
|
202
|
+
|
|
203
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The extended
|
|
204
|
+
root configuration of a facet `I` of `\mathcal{SC}(Q,w)` is
|
|
205
|
+
the sequence `\mathsf{r}(I, 1), \dots, \mathsf{r}(I, m)` of
|
|
206
|
+
roots defined by `\mathsf{r}(I, k) = \Pi Q_{[k-1]
|
|
207
|
+
\smallsetminus I} (\alpha_{q_k})`, where `\Pi Q_{[k-1]
|
|
208
|
+
\smallsetminus I}` is the product of the simple reflections
|
|
209
|
+
`q_i` for `i \in [k-1] \smallsetminus I` in this order.
|
|
210
|
+
|
|
211
|
+
.. SEEALSO::
|
|
212
|
+
|
|
213
|
+
:meth:`extended_root_configuration`
|
|
214
|
+
|
|
215
|
+
EXAMPLES::
|
|
216
|
+
|
|
217
|
+
sage: # optional - gap3
|
|
218
|
+
sage: W = ReflectionGroup(['A',2])
|
|
219
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
220
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
221
|
+
sage: F = SC([1,2]); F
|
|
222
|
+
(1, 2)
|
|
223
|
+
sage: F._extended_root_configuration_indices()
|
|
224
|
+
[0, 2, 3, 2, 1]
|
|
225
|
+
|
|
226
|
+
sage: W = CoxeterGroup(['A',2])
|
|
227
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
228
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
229
|
+
sage: F = SC([1,2]); F
|
|
230
|
+
(1, 2)
|
|
231
|
+
sage: F._extended_root_configuration_indices()
|
|
232
|
+
[0, 1, 3, 1, 2]
|
|
233
|
+
"""
|
|
234
|
+
if self._extended_root_conf_indices is None:
|
|
235
|
+
self._extended_root_conf_indices = _extended_root_configuration_indices(self.parent().group(), self.parent().word(), self)
|
|
236
|
+
return self._extended_root_conf_indices
|
|
237
|
+
|
|
238
|
+
def _root_configuration_indices(self):
|
|
239
|
+
r"""
|
|
240
|
+
Return the indices of the roots in ``self.group().roots()`` of
|
|
241
|
+
the root configuration of ``self``.
|
|
242
|
+
|
|
243
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The root
|
|
244
|
+
configuration of a facet `I = [i_1, \dots, i_n]` of
|
|
245
|
+
`\mathcal{SC}(Q,w)` is the sequence `\mathsf{r}(I, i_1),
|
|
246
|
+
\dots, \mathsf{r}(I, i_n)` of roots defined by `\mathsf{r}(I,
|
|
247
|
+
k) = \Pi Q_{[k-1] \smallsetminus I} (\alpha_{q_k})`, where
|
|
248
|
+
`\Pi Q_{[k-1] \smallsetminus I}` is the product of the simple
|
|
249
|
+
reflections `q_i` for `i \in [k-1] \smallsetminus I` in this
|
|
250
|
+
order.
|
|
251
|
+
|
|
252
|
+
.. SEEALSO::
|
|
253
|
+
|
|
254
|
+
:meth:`root_configuration`
|
|
255
|
+
|
|
256
|
+
EXAMPLES::
|
|
257
|
+
|
|
258
|
+
sage: # optional - gap3
|
|
259
|
+
sage: W = ReflectionGroup(['A',2])
|
|
260
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
261
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
262
|
+
sage: F = SC([1,2]); F
|
|
263
|
+
(1, 2)
|
|
264
|
+
sage: F._root_configuration_indices()
|
|
265
|
+
[2, 3]
|
|
266
|
+
|
|
267
|
+
sage: W = CoxeterGroup(['A',2])
|
|
268
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
269
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
270
|
+
sage: F = SC([1,2]); F
|
|
271
|
+
(1, 2)
|
|
272
|
+
sage: F._root_configuration_indices() # optional - gap3
|
|
273
|
+
[1, 3]
|
|
274
|
+
"""
|
|
275
|
+
indices = self._extended_root_configuration_indices()
|
|
276
|
+
return [indices[i] for i in self]
|
|
277
|
+
|
|
278
|
+
def extended_root_configuration(self):
|
|
279
|
+
r"""
|
|
280
|
+
Return the extended root configuration of ``self``.
|
|
281
|
+
|
|
282
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The extended
|
|
283
|
+
root configuration of a facet `I` of `\mathcal{SC}(Q,w)` is
|
|
284
|
+
the sequence `\mathsf{r}(I, 1), \dots, \mathsf{r}(I, m)` of
|
|
285
|
+
roots defined by `\mathsf{r}(I, k) = \Pi Q_{[k-1]
|
|
286
|
+
\smallsetminus I} (\alpha_{q_k})`, where `\Pi Q_{[k-1]
|
|
287
|
+
\smallsetminus I}` is the product of the simple reflections
|
|
288
|
+
`q_i` for `i \in [k-1] \smallsetminus I` in this order.
|
|
289
|
+
|
|
290
|
+
The extended root configuration is used to perform flips efficiently.
|
|
291
|
+
|
|
292
|
+
.. SEEALSO::
|
|
293
|
+
|
|
294
|
+
:meth:`flip`
|
|
295
|
+
|
|
296
|
+
EXAMPLES::
|
|
297
|
+
|
|
298
|
+
sage: # optional - gap3
|
|
299
|
+
sage: W = ReflectionGroup(['A',2])
|
|
300
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
301
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
302
|
+
sage: F = SC([1,2]); F
|
|
303
|
+
(1, 2)
|
|
304
|
+
sage: F.extended_root_configuration()
|
|
305
|
+
[(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)]
|
|
306
|
+
|
|
307
|
+
sage: W = CoxeterGroup(['A',2])
|
|
308
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
309
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
310
|
+
sage: F = SC([1,2]); F
|
|
311
|
+
(1, 2)
|
|
312
|
+
sage: F.extended_root_configuration()
|
|
313
|
+
[(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)]
|
|
314
|
+
"""
|
|
315
|
+
Phi = self.parent().group().roots()
|
|
316
|
+
return [Phi[i] for i in self._extended_root_configuration_indices()]
|
|
317
|
+
|
|
318
|
+
def root_configuration(self):
|
|
319
|
+
r"""
|
|
320
|
+
Return the root configuration of ``self``.
|
|
321
|
+
|
|
322
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The root
|
|
323
|
+
configuration of a facet `I = [i_1, \dots, i_n]` of
|
|
324
|
+
`\mathcal{SC}(Q,w)` is the sequence `\mathsf{r}(I, i_1),
|
|
325
|
+
\dots, \mathsf{r}(I, i_n)` of roots defined by `\mathsf{r}(I,
|
|
326
|
+
k) = \Pi Q_{[k-1] \smallsetminus I} (\alpha_{q_k})`, where
|
|
327
|
+
`\Pi Q_{[k-1] \smallsetminus I}` is the product of the simple
|
|
328
|
+
reflections `q_i` for `i \in [k-1] \smallsetminus I` in this
|
|
329
|
+
order.
|
|
330
|
+
|
|
331
|
+
EXAMPLES::
|
|
332
|
+
|
|
333
|
+
sage: # optional - gap3
|
|
334
|
+
sage: W = ReflectionGroup(['A',2])
|
|
335
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
336
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
337
|
+
sage: F = SC([1,2]); F
|
|
338
|
+
(1, 2)
|
|
339
|
+
sage: F.root_configuration()
|
|
340
|
+
[(1, 1), (-1, 0)]
|
|
341
|
+
|
|
342
|
+
sage: W = CoxeterGroup(['A',2])
|
|
343
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
344
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
345
|
+
sage: F = SC([1,2]); F
|
|
346
|
+
(1, 2)
|
|
347
|
+
sage: F.root_configuration() # optional - gap3
|
|
348
|
+
[(1, 1), (-1, 0)]
|
|
349
|
+
"""
|
|
350
|
+
Phi = self.parent().group().roots()
|
|
351
|
+
return [Phi[i] for i in self._root_configuration_indices()]
|
|
352
|
+
|
|
353
|
+
def kappa_preimage(self):
|
|
354
|
+
r"""
|
|
355
|
+
Return the fiber of ``self`` under the `\kappa` map.
|
|
356
|
+
|
|
357
|
+
The `\kappa` map sends an element `w \in W` to the unique
|
|
358
|
+
facet of `I \in \mathcal{SC}(Q,w)` such that the root
|
|
359
|
+
configuration of `I` is contained in `w(\Phi^+)`.
|
|
360
|
+
In other words, `w` is in the preimage of ``self`` under
|
|
361
|
+
`\kappa` if and only if `w^{-1}` sends every root in the
|
|
362
|
+
root configuration to a positive root.
|
|
363
|
+
|
|
364
|
+
EXAMPLES::
|
|
365
|
+
|
|
366
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
367
|
+
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
|
|
368
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
|
|
369
|
+
|
|
370
|
+
sage: F = SC([1,2]); F # optional - gap3
|
|
371
|
+
(1, 2)
|
|
372
|
+
sage: F.kappa_preimage() # optional - gap3
|
|
373
|
+
[(1,4)(2,3)(5,6)]
|
|
374
|
+
|
|
375
|
+
sage: F = SC([0,4]); F # optional - gap3
|
|
376
|
+
(0, 4)
|
|
377
|
+
sage: F.kappa_preimage() # optional - gap3
|
|
378
|
+
[(1,3)(2,5)(4,6), (1,2,6)(3,4,5)]
|
|
379
|
+
|
|
380
|
+
sage: W = CoxeterGroup(['A',2])
|
|
381
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
382
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
383
|
+
|
|
384
|
+
sage: F = SC([1,2]); F
|
|
385
|
+
(1, 2)
|
|
386
|
+
sage: F.kappa_preimage()
|
|
387
|
+
[
|
|
388
|
+
[-1 1]
|
|
389
|
+
[ 0 1]
|
|
390
|
+
]
|
|
391
|
+
|
|
392
|
+
sage: F = SC([0,4]); F
|
|
393
|
+
(0, 4)
|
|
394
|
+
sage: F.kappa_preimage()
|
|
395
|
+
[
|
|
396
|
+
[ 1 0] [-1 1]
|
|
397
|
+
[ 1 -1], [-1 0]
|
|
398
|
+
]
|
|
399
|
+
"""
|
|
400
|
+
W = self.parent().group()
|
|
401
|
+
N = len(W.long_element(as_word=True))
|
|
402
|
+
root_conf = self._root_configuration_indices()
|
|
403
|
+
return [~w for w in W
|
|
404
|
+
if all(w.action_on_root_indices(i, side='left') < N
|
|
405
|
+
for i in root_conf)]
|
|
406
|
+
|
|
407
|
+
def is_vertex(self):
|
|
408
|
+
r"""
|
|
409
|
+
Return ``True`` if ``self`` is a vertex of the brick polytope
|
|
410
|
+
of ``self.parent``.
|
|
411
|
+
|
|
412
|
+
A facet is a vertex of the brick polytope if its root cone is
|
|
413
|
+
pointed. Note that this property is always satisfied for
|
|
414
|
+
root-independent subword complexes.
|
|
415
|
+
|
|
416
|
+
.. SEEALSO::
|
|
417
|
+
|
|
418
|
+
:meth:`root_cone`
|
|
419
|
+
|
|
420
|
+
EXAMPLES::
|
|
421
|
+
|
|
422
|
+
sage: # optional - gap3
|
|
423
|
+
sage: W = ReflectionGroup(['A',1])
|
|
424
|
+
sage: w = W.from_reduced_word([1])
|
|
425
|
+
sage: SC = SubwordComplex([1,1,1],w)
|
|
426
|
+
sage: F = SC([0,1]); F.is_vertex()
|
|
427
|
+
True
|
|
428
|
+
sage: F = SC([0,2]); F.is_vertex()
|
|
429
|
+
False
|
|
430
|
+
|
|
431
|
+
sage: # optional - gap3
|
|
432
|
+
sage: W = ReflectionGroup(['A',2])
|
|
433
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
434
|
+
sage: SC = SubwordComplex([1,2,1,2,1,2,1],w)
|
|
435
|
+
sage: F = SC([0,1,2,3]); F.is_vertex()
|
|
436
|
+
True
|
|
437
|
+
sage: F = SC([0,1,2,6]); F.is_vertex()
|
|
438
|
+
False
|
|
439
|
+
|
|
440
|
+
sage: W = CoxeterGroup(['A',2])
|
|
441
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
442
|
+
sage: SC = SubwordComplex([1,2,1,2,1,2,1],w)
|
|
443
|
+
sage: F = SC([0,1,2,3]); F.is_vertex()
|
|
444
|
+
True
|
|
445
|
+
sage: F = SC([0,1,2,6]); F.is_vertex()
|
|
446
|
+
False
|
|
447
|
+
"""
|
|
448
|
+
S = self.parent()
|
|
449
|
+
if S.is_root_independent():
|
|
450
|
+
return True
|
|
451
|
+
return self.root_cone().is_strictly_convex()
|
|
452
|
+
|
|
453
|
+
@cached_method
|
|
454
|
+
def root_cone(self):
|
|
455
|
+
r"""
|
|
456
|
+
Return the polyhedral cone generated by the root configuration
|
|
457
|
+
of ``self``.
|
|
458
|
+
|
|
459
|
+
.. SEEALSO::
|
|
460
|
+
|
|
461
|
+
:meth:`root_configuration`
|
|
462
|
+
|
|
463
|
+
EXAMPLES::
|
|
464
|
+
|
|
465
|
+
sage: # optional - gap3
|
|
466
|
+
sage: W = ReflectionGroup(['A',1])
|
|
467
|
+
sage: w = W.from_reduced_word([1])
|
|
468
|
+
sage: SC = SubwordComplex([1,1,1],w)
|
|
469
|
+
sage: F = SC([0,2]); F.root_cone()
|
|
470
|
+
1-d cone in 1-d lattice N
|
|
471
|
+
|
|
472
|
+
sage: W = CoxeterGroup(['A',1])
|
|
473
|
+
sage: w = W.from_reduced_word([1])
|
|
474
|
+
sage: SC = SubwordComplex([1,1,1],w)
|
|
475
|
+
sage: F = SC([0,2]); F.root_cone()
|
|
476
|
+
1-d cone in 1-d lattice N
|
|
477
|
+
"""
|
|
478
|
+
return Cone(self.root_configuration())
|
|
479
|
+
|
|
480
|
+
def upper_root_configuration(self):
|
|
481
|
+
r"""
|
|
482
|
+
Return the positive roots of the root configuration of ``self``.
|
|
483
|
+
|
|
484
|
+
EXAMPLES::
|
|
485
|
+
|
|
486
|
+
sage: # optional - gap3
|
|
487
|
+
sage: W = ReflectionGroup(['A',2])
|
|
488
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
489
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
490
|
+
sage: F = SC([1,2]); F
|
|
491
|
+
(1, 2)
|
|
492
|
+
sage: F.root_configuration()
|
|
493
|
+
[(1, 1), (-1, 0)]
|
|
494
|
+
sage: F.upper_root_configuration()
|
|
495
|
+
[(1, 0)]
|
|
496
|
+
|
|
497
|
+
sage: W = CoxeterGroup(['A',2])
|
|
498
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
499
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
500
|
+
sage: F = SC([1,2]); F
|
|
501
|
+
(1, 2)
|
|
502
|
+
sage: F.upper_root_configuration()
|
|
503
|
+
[(1, 0)]
|
|
504
|
+
"""
|
|
505
|
+
conf = self._root_configuration_indices()
|
|
506
|
+
W = self.parent().group()
|
|
507
|
+
Phi = W.roots()
|
|
508
|
+
N = len(Phi) // 2
|
|
509
|
+
return [Phi[i - N] for i in conf if i >= N]
|
|
510
|
+
|
|
511
|
+
# weights
|
|
512
|
+
|
|
513
|
+
def extended_weight_configuration(self, coefficients=None):
|
|
514
|
+
r"""
|
|
515
|
+
Return the extended weight configuration of ``self``.
|
|
516
|
+
|
|
517
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The extended
|
|
518
|
+
weight configuration of a facet `I` of `\mathcal{SC}(Q,w)` is
|
|
519
|
+
the sequence `\mathsf{w}(I, 1), \dots, \mathsf{w}(I, m)` of
|
|
520
|
+
weights defined by `\mathsf{w}(I, k) = \Pi Q_{[k-1]
|
|
521
|
+
\smallsetminus I} (\omega_{q_k})`, where `\Pi Q_{[k-1]
|
|
522
|
+
\smallsetminus I}` is the product of the simple reflections
|
|
523
|
+
`q_i` for `i \in [k-1] \smallsetminus I` in this order.
|
|
524
|
+
|
|
525
|
+
The extended weight configuration is used to compute the brick vector.
|
|
526
|
+
|
|
527
|
+
INPUT:
|
|
528
|
+
|
|
529
|
+
- ``coefficients`` -- (optional) a list of coefficients used to
|
|
530
|
+
scale the fundamental weights
|
|
531
|
+
|
|
532
|
+
.. SEEALSO::
|
|
533
|
+
|
|
534
|
+
:meth:`brick_vector`
|
|
535
|
+
|
|
536
|
+
EXAMPLES::
|
|
537
|
+
|
|
538
|
+
sage: # optional - gap3
|
|
539
|
+
sage: W = ReflectionGroup(['A',2])
|
|
540
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
541
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
542
|
+
sage: F = SC([1,2])
|
|
543
|
+
sage: F.extended_weight_configuration()
|
|
544
|
+
[(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)]
|
|
545
|
+
sage: F.extended_weight_configuration(coefficients=(1,2))
|
|
546
|
+
[(2/3, 1/3), (2/3, 4/3), (-1/3, 1/3), (2/3, 4/3), (-1/3, 1/3)]
|
|
547
|
+
|
|
548
|
+
sage: W = CoxeterGroup(['A',2])
|
|
549
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
550
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
551
|
+
sage: F = SC([1,2])
|
|
552
|
+
sage: F.extended_weight_configuration()
|
|
553
|
+
[(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)]
|
|
554
|
+
sage: F.extended_weight_configuration(coefficients=(1,2))
|
|
555
|
+
[(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]
|
|
556
|
+
"""
|
|
557
|
+
if coefficients is not None or self._extended_weight_conf is None:
|
|
558
|
+
W = self.parent().group()
|
|
559
|
+
I = W.index_set()
|
|
560
|
+
Lambda = W.fundamental_weights()
|
|
561
|
+
if coefficients is not None:
|
|
562
|
+
coeff = {I[i]: coefficients[i]
|
|
563
|
+
for i in range(len(coefficients))}
|
|
564
|
+
Lambda = {li: coeff[li] * Lambda[li] for li in Lambda.keys()}
|
|
565
|
+
Q = self.parent().word()
|
|
566
|
+
V_weights = []
|
|
567
|
+
pi = W.one()
|
|
568
|
+
for i, wi in enumerate(Q):
|
|
569
|
+
fund_weight = Lambda[wi]
|
|
570
|
+
V_weights.append(pi * fund_weight)
|
|
571
|
+
if i not in self:
|
|
572
|
+
pi = pi.apply_simple_reflection_right(wi)
|
|
573
|
+
if self._extended_weight_conf is None:
|
|
574
|
+
self._extended_weight_conf = V_weights
|
|
575
|
+
return V_weights
|
|
576
|
+
else:
|
|
577
|
+
return self._extended_weight_conf
|
|
578
|
+
|
|
579
|
+
def weight_configuration(self):
|
|
580
|
+
r"""
|
|
581
|
+
Return the weight configuration of ``self``.
|
|
582
|
+
|
|
583
|
+
Let `Q = q_1 \dots q_m \in S^*` and `w \in W`. The weight
|
|
584
|
+
configuration of a facet `I = [i_1, \dots, i_n]` of
|
|
585
|
+
`\mathcal{SC}(Q,w)` is the sequence `\mathsf{w}(I, i_1),
|
|
586
|
+
\dots, \mathsf{w}(I, i_n)` of weights defined by
|
|
587
|
+
`\mathsf{w}(I, k) = \Pi Q_{[k-1] \smallsetminus I}
|
|
588
|
+
(\omega_{q_k})`, where `\Pi Q_{[k-1] \smallsetminus I}` is the
|
|
589
|
+
product of the simple reflections `q_i` for `i \in [k-1]
|
|
590
|
+
\smallsetminus I` in this order.
|
|
591
|
+
|
|
592
|
+
EXAMPLES::
|
|
593
|
+
|
|
594
|
+
sage: # optional - gap3
|
|
595
|
+
sage: W = ReflectionGroup(['A',2])
|
|
596
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
597
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
598
|
+
sage: F = SC([1,2]); F
|
|
599
|
+
(1, 2)
|
|
600
|
+
sage: F.weight_configuration()
|
|
601
|
+
[(1/3, 2/3), (-1/3, 1/3)]
|
|
602
|
+
|
|
603
|
+
sage: W = CoxeterGroup(['A',2])
|
|
604
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
605
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
606
|
+
sage: F = SC([1,2]); F
|
|
607
|
+
(1, 2)
|
|
608
|
+
sage: F.weight_configuration()
|
|
609
|
+
[(2/3, 4/3), (-2/3, 2/3)]
|
|
610
|
+
"""
|
|
611
|
+
extended_configuration = self.extended_weight_configuration()
|
|
612
|
+
return [extended_configuration[i] for i in self]
|
|
613
|
+
|
|
614
|
+
@cached_method
|
|
615
|
+
def weight_cone(self):
|
|
616
|
+
r"""
|
|
617
|
+
Return the polyhedral cone generated by the weight
|
|
618
|
+
configuration of ``self``.
|
|
619
|
+
|
|
620
|
+
.. SEEALSO::
|
|
621
|
+
|
|
622
|
+
:meth:`weight_configuration`
|
|
623
|
+
|
|
624
|
+
EXAMPLES::
|
|
625
|
+
|
|
626
|
+
sage: # optional - gap3
|
|
627
|
+
sage: W = ReflectionGroup(['A',2])
|
|
628
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
629
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
630
|
+
sage: F = SC([1,2]); F
|
|
631
|
+
(1, 2)
|
|
632
|
+
sage: WC = F.weight_cone(); WC
|
|
633
|
+
2-d cone in 2-d lattice N
|
|
634
|
+
sage: WC.rays()
|
|
635
|
+
N( 1, 2),
|
|
636
|
+
N(-1, 1)
|
|
637
|
+
in 2-d lattice N
|
|
638
|
+
|
|
639
|
+
sage: W = CoxeterGroup(['A',2])
|
|
640
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
641
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
642
|
+
sage: F = SC([1,2]); F
|
|
643
|
+
(1, 2)
|
|
644
|
+
sage: WC = F.weight_cone(); WC
|
|
645
|
+
2-d cone in 2-d lattice N
|
|
646
|
+
"""
|
|
647
|
+
return Cone(self.weight_configuration())
|
|
648
|
+
|
|
649
|
+
def brick_vector(self, coefficients=None):
|
|
650
|
+
r"""
|
|
651
|
+
Return the brick vector of ``self``.
|
|
652
|
+
|
|
653
|
+
This is the sum of the weight vectors in the extended weight
|
|
654
|
+
configuration.
|
|
655
|
+
|
|
656
|
+
INPUT:
|
|
657
|
+
|
|
658
|
+
- ``coefficients`` -- (optional) a list of coefficients used to
|
|
659
|
+
scale the fundamental weights
|
|
660
|
+
|
|
661
|
+
.. SEEALSO::
|
|
662
|
+
|
|
663
|
+
:meth:`extended_weight_configuration`
|
|
664
|
+
|
|
665
|
+
EXAMPLES::
|
|
666
|
+
|
|
667
|
+
sage: # optional - gap3
|
|
668
|
+
sage: W = ReflectionGroup(['A',2])
|
|
669
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
670
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
671
|
+
sage: F = SC([1,2]); F
|
|
672
|
+
(1, 2)
|
|
673
|
+
sage: F.extended_weight_configuration()
|
|
674
|
+
[(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)]
|
|
675
|
+
sage: F.brick_vector()
|
|
676
|
+
(2/3, 7/3)
|
|
677
|
+
sage: F.brick_vector(coefficients=[1,2])
|
|
678
|
+
(4/3, 11/3)
|
|
679
|
+
|
|
680
|
+
sage: W = CoxeterGroup(['A',2])
|
|
681
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
682
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
683
|
+
sage: F = SC([1,2])
|
|
684
|
+
sage: F.brick_vector()
|
|
685
|
+
(4/3, 14/3)
|
|
686
|
+
sage: F.brick_vector(coefficients=[1,2])
|
|
687
|
+
(8/3, 22/3)
|
|
688
|
+
"""
|
|
689
|
+
return sum(self.extended_weight_configuration(coefficients=coefficients))
|
|
690
|
+
|
|
691
|
+
# flip
|
|
692
|
+
|
|
693
|
+
def flip(self, i, return_position=False):
|
|
694
|
+
r"""
|
|
695
|
+
Return the facet obtained after flipping position ``i`` in ``self``.
|
|
696
|
+
|
|
697
|
+
INPUT:
|
|
698
|
+
|
|
699
|
+
- ``i`` -- integer; position in the word `Q`
|
|
700
|
+
- ``return_position`` -- boolean (default: ``False``); tells
|
|
701
|
+
whether the new position should be returned as well
|
|
702
|
+
|
|
703
|
+
OUTPUT:
|
|
704
|
+
|
|
705
|
+
- The new subword complex facet.
|
|
706
|
+
- The new position if ``return_position`` is ``True``.
|
|
707
|
+
|
|
708
|
+
EXAMPLES::
|
|
709
|
+
|
|
710
|
+
sage: # optional - gap3
|
|
711
|
+
sage: W = ReflectionGroup(['A',2])
|
|
712
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
713
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
714
|
+
sage: F = SC([1,2]); F
|
|
715
|
+
(1, 2)
|
|
716
|
+
sage: F.flip(1)
|
|
717
|
+
(2, 3)
|
|
718
|
+
sage: F.flip(1, return_position=True)
|
|
719
|
+
((2, 3), 3)
|
|
720
|
+
|
|
721
|
+
sage: W = CoxeterGroup(['A',2])
|
|
722
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
723
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
724
|
+
sage: F = SC([1,2]); F
|
|
725
|
+
(1, 2)
|
|
726
|
+
sage: F.flip(1)
|
|
727
|
+
(2, 3)
|
|
728
|
+
sage: F.flip(1, return_position=True)
|
|
729
|
+
((2, 3), 3)
|
|
730
|
+
"""
|
|
731
|
+
S = self.parent()
|
|
732
|
+
F = set(self)
|
|
733
|
+
R = list(self._extended_root_configuration_indices())
|
|
734
|
+
j = _flip_c(self.parent().group(), F, R, i) # F and R are changed here
|
|
735
|
+
new_facet = S.element_class(self.parent(), F)
|
|
736
|
+
new_facet._extended_root_conf_indices = tuple(R)
|
|
737
|
+
if return_position:
|
|
738
|
+
return new_facet, j
|
|
739
|
+
else:
|
|
740
|
+
return new_facet
|
|
741
|
+
|
|
742
|
+
# plot and show
|
|
743
|
+
|
|
744
|
+
def plot(self, list_colors=None, labels=[], thickness=3, fontsize=14,
|
|
745
|
+
shift=(0, 0), compact=False, roots=True, **args):
|
|
746
|
+
r"""
|
|
747
|
+
In type `A` or `B`, plot a pseudoline arrangement representing
|
|
748
|
+
the facet ``self``.
|
|
749
|
+
|
|
750
|
+
Pseudoline arrangements are graphical representations of
|
|
751
|
+
facets of types A or B subword complexes.
|
|
752
|
+
|
|
753
|
+
INPUT:
|
|
754
|
+
|
|
755
|
+
- ``list_colors`` -- list (default: ``[]``); to change the colors
|
|
756
|
+
of the pseudolines
|
|
757
|
+
- ``labels`` -- list (default: ``[]``); to change the labels
|
|
758
|
+
of the pseudolines
|
|
759
|
+
- ``thickness`` -- integer (default: 3); for the thickness
|
|
760
|
+
of the pseudolines
|
|
761
|
+
- ``fontsize`` -- integer (default: 14); for the size
|
|
762
|
+
of the font used for labels
|
|
763
|
+
- ``shift`` -- couple of coordinates (default: ``(0,0)``)
|
|
764
|
+
to change the origin
|
|
765
|
+
- ``compact`` -- boolean (default: ``False``); to require
|
|
766
|
+
a more compact representation
|
|
767
|
+
- ``roots`` -- boolean (default: ``True``); whether to print
|
|
768
|
+
the extended root configuration
|
|
769
|
+
|
|
770
|
+
EXAMPLES::
|
|
771
|
+
|
|
772
|
+
sage: # optional - gap3
|
|
773
|
+
sage: W = ReflectionGroup(['A',2])
|
|
774
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
775
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
776
|
+
sage: F = SC([1,2]); F.plot() # needs sage.plot
|
|
777
|
+
Graphics object consisting of 26 graphics primitives
|
|
778
|
+
|
|
779
|
+
sage: W = CoxeterGroup(['A',2])
|
|
780
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
781
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
782
|
+
sage: F = SC([1,2]); F.plot() # needs sage.plot
|
|
783
|
+
Graphics object consisting of 26 graphics primitives
|
|
784
|
+
|
|
785
|
+
sage: # optional - gap3
|
|
786
|
+
sage: W = ReflectionGroup(['B',3])
|
|
787
|
+
sage: c = W.from_reduced_word([1,2,3])
|
|
788
|
+
sage: Q = c.reduced_word()*2 + W.w0.coxeter_sorting_word(c)
|
|
789
|
+
sage: SC = SubwordComplex(Q, W.w0)
|
|
790
|
+
sage: F = SC[15]; F.plot() # needs sage.plot
|
|
791
|
+
Graphics object consisting of 53 graphics primitives
|
|
792
|
+
|
|
793
|
+
TESTS::
|
|
794
|
+
|
|
795
|
+
sage: # optional - gap3
|
|
796
|
+
sage: W = ReflectionGroup(['D',4])
|
|
797
|
+
sage: c = W.from_reduced_word([1,2,3,4])
|
|
798
|
+
sage: Q = c.reduced_word() + W.w0.coxeter_sorting_word(c)
|
|
799
|
+
sage: SC = SubwordComplex(Q, W.w0)
|
|
800
|
+
sage: F = SC[1]; F.plot() # needs sage.plot
|
|
801
|
+
Traceback (most recent call last):
|
|
802
|
+
...
|
|
803
|
+
ValueError: plotting is currently only implemented for irreducibles types A, B, and C.
|
|
804
|
+
|
|
805
|
+
sage: W = CoxeterGroup(CoxeterMatrix((['A',2],['A',2])))
|
|
806
|
+
sage: c = W.from_reduced_word([1,2,3,4])
|
|
807
|
+
sage: Q = c.reduced_word() + W.w0.coxeter_sorting_word(c)
|
|
808
|
+
sage: SC = SubwordComplex(Q, W.w0)
|
|
809
|
+
sage: F = SC[1]; F.plot() # needs sage.plot
|
|
810
|
+
Traceback (most recent call last):
|
|
811
|
+
...
|
|
812
|
+
ValueError: plotting is currently only implemented for irreducibles types A, B, and C.
|
|
813
|
+
|
|
814
|
+
REFERENCES: [PilStu]_
|
|
815
|
+
"""
|
|
816
|
+
# check that the type is A or B
|
|
817
|
+
# TODO in a better way
|
|
818
|
+
S = self.parent()
|
|
819
|
+
Q = S.word()
|
|
820
|
+
W = S.group()
|
|
821
|
+
n = W.rank()
|
|
822
|
+
|
|
823
|
+
error_msg = "plotting is currently only implemented for irreducibles types A, B, and C."
|
|
824
|
+
if S._cartan_type is not None:
|
|
825
|
+
cartan_type = S._cartan_type
|
|
826
|
+
type = cartan_type.type()
|
|
827
|
+
G = cartan_type.coxeter_matrix().coxeter_graph()
|
|
828
|
+
else:
|
|
829
|
+
type = None
|
|
830
|
+
|
|
831
|
+
if type not in ['A', 'B', 'C'] or not G.is_connected():
|
|
832
|
+
raise ValueError(error_msg)
|
|
833
|
+
|
|
834
|
+
# organization of the indexing
|
|
835
|
+
# TODO: this might be better done in CoxeterType directly.
|
|
836
|
+
index_set = None
|
|
837
|
+
for a in G.vertex_iterator():
|
|
838
|
+
if G.degree(a) == 1:
|
|
839
|
+
b = G.neighbors(a)[0]
|
|
840
|
+
if type == "A" or G.edge_label(a, b) == 4:
|
|
841
|
+
index_set = [a, b]
|
|
842
|
+
break
|
|
843
|
+
assert index_set is not None, "Bug in the plot method"
|
|
844
|
+
while G.degree(b) == 2:
|
|
845
|
+
for c in G.neighbors(b):
|
|
846
|
+
# picking the other neighbors of b
|
|
847
|
+
if c != a:
|
|
848
|
+
index_set.append(c)
|
|
849
|
+
a = b
|
|
850
|
+
b = c
|
|
851
|
+
break
|
|
852
|
+
|
|
853
|
+
# import plot facilities
|
|
854
|
+
from sage.plot.line import line
|
|
855
|
+
from sage.plot.text import text
|
|
856
|
+
from sage.plot.colors import colors
|
|
857
|
+
from sage.combinat.permutation import Permutation
|
|
858
|
+
|
|
859
|
+
# get properties
|
|
860
|
+
if type == 'A':
|
|
861
|
+
last = n
|
|
862
|
+
else:
|
|
863
|
+
last = n - 1
|
|
864
|
+
permutation = Permutation(range(1, last + 2))
|
|
865
|
+
x_max = .5
|
|
866
|
+
|
|
867
|
+
# list the pseudolines to be drawn
|
|
868
|
+
pseudolines = [[(shift[0], shift[1] + i), .5] for i in range(last + 1)]
|
|
869
|
+
pseudolines_type_B = [[] for _ in repeat(None, last + 1)]
|
|
870
|
+
contact_points = []
|
|
871
|
+
root_labels = []
|
|
872
|
+
pseudoline_labels = []
|
|
873
|
+
if labels is not False:
|
|
874
|
+
pseudoline_labels += [(pseudoline,
|
|
875
|
+
(shift[0] - .1, shift[1] + pseudoline),
|
|
876
|
+
"center") for pseudoline in range(last + 1)]
|
|
877
|
+
if roots:
|
|
878
|
+
extended_root_conf = self.extended_root_configuration()
|
|
879
|
+
for position in range(len(Q)):
|
|
880
|
+
y = index_set.index(Q[position])
|
|
881
|
+
if type in ['B', 'C'] and y == 0:
|
|
882
|
+
pseudoline = permutation(1) - 1
|
|
883
|
+
x = pseudolines[pseudoline].pop()
|
|
884
|
+
if compact:
|
|
885
|
+
x_max = max(x + 1, x_max)
|
|
886
|
+
else:
|
|
887
|
+
x = x_max
|
|
888
|
+
x_max += 1
|
|
889
|
+
if position in self:
|
|
890
|
+
pseudolines[pseudoline] += [(shift[0] + x + 1,
|
|
891
|
+
shift[1]), x + 1]
|
|
892
|
+
contact_points += [[(shift[0] + x + .5, shift[1] - .2),
|
|
893
|
+
(shift[0] + x + .5, shift[1])]]
|
|
894
|
+
else:
|
|
895
|
+
pseudolines_type_B[pseudoline] = pseudolines[pseudoline] + [(shift[0] + x + .5, shift[1]), (shift[0] + x + .5, shift[1] - .2)]
|
|
896
|
+
pseudolines[pseudoline] = [(shift[0] + x + .6, shift[1] - .2), (shift[0] + x + .6, shift[1]), .5]
|
|
897
|
+
if roots:
|
|
898
|
+
root_labels.append((extended_root_conf[position],
|
|
899
|
+
(shift[0] + x + .25, shift[1] - .2)))
|
|
900
|
+
else:
|
|
901
|
+
if type in ['B', 'C']:
|
|
902
|
+
y -= 1
|
|
903
|
+
pseudoline1 = permutation(y + 1) - 1
|
|
904
|
+
pseudoline2 = permutation(y + 2) - 1
|
|
905
|
+
x = max(pseudolines[pseudoline1].pop(),
|
|
906
|
+
pseudolines[pseudoline2].pop())
|
|
907
|
+
if compact:
|
|
908
|
+
x_max = max(x + 1, x_max)
|
|
909
|
+
else:
|
|
910
|
+
x = x_max
|
|
911
|
+
x_max += 1
|
|
912
|
+
if position in self:
|
|
913
|
+
pseudolines[pseudoline1] += [(shift[0] + x + 1,
|
|
914
|
+
shift[1] + y), x + 1]
|
|
915
|
+
pseudolines[pseudoline2] += [(shift[0] + x + 1,
|
|
916
|
+
shift[1] + y + 1), x + 1]
|
|
917
|
+
contact_points += [[(shift[0] + x + .5, shift[1] + y),
|
|
918
|
+
(shift[0] + x + .5, shift[1] + y + 1)]]
|
|
919
|
+
else:
|
|
920
|
+
pseudolines[pseudoline1] += [(shift[0] + x + .6,
|
|
921
|
+
shift[1] + y),
|
|
922
|
+
(shift[0] + x + .6,
|
|
923
|
+
shift[1] + y + 1), x + 1]
|
|
924
|
+
pseudolines[pseudoline2] += [(shift[0] + x + .5,
|
|
925
|
+
shift[1] + y + 1),
|
|
926
|
+
(shift[0] + x + .5,
|
|
927
|
+
shift[1] + y), x + 1]
|
|
928
|
+
permutation = permutation._left_to_right_multiply_on_left(Permutation((y + 1, y + 2)))
|
|
929
|
+
if roots:
|
|
930
|
+
root_labels.append((extended_root_conf[position],
|
|
931
|
+
(shift[0] + x + .35,
|
|
932
|
+
shift[1] + y + .5)))
|
|
933
|
+
if labels is not False:
|
|
934
|
+
pseudoline_labels += [(pseudoline1, (shift[0] + x + .35,
|
|
935
|
+
shift[1] + y + .05),
|
|
936
|
+
"bottom"),
|
|
937
|
+
(pseudoline2, (shift[0] + x + .35,
|
|
938
|
+
shift[1] + y + .95),
|
|
939
|
+
"top")]
|
|
940
|
+
|
|
941
|
+
# transform list to real lines
|
|
942
|
+
if list_colors is None:
|
|
943
|
+
list_colors = []
|
|
944
|
+
list_colors += ['red', 'blue', 'green', 'orange', 'yellow', 'purple']
|
|
945
|
+
list_colors += list(colors)
|
|
946
|
+
thickness = max(thickness, 2)
|
|
947
|
+
L = line([(1, 1)])
|
|
948
|
+
for contact_point in contact_points:
|
|
949
|
+
L += line(contact_point, rgbcolor=[0, 0, 0],
|
|
950
|
+
thickness=thickness - 1)
|
|
951
|
+
for pseudoline in range(last + 1):
|
|
952
|
+
pseudolines[pseudoline].pop()
|
|
953
|
+
pseudolines[pseudoline].append((shift[0] + x_max,
|
|
954
|
+
shift[1] + permutation.inverse()(pseudoline + 1) - 1))
|
|
955
|
+
L += line(pseudolines[pseudoline], color=list_colors[pseudoline],
|
|
956
|
+
thickness=thickness)
|
|
957
|
+
if type in ['B', 'C']:
|
|
958
|
+
L += line(pseudolines_type_B[pseudoline],
|
|
959
|
+
color=list_colors[pseudoline],
|
|
960
|
+
thickness=thickness, linestyle='--')
|
|
961
|
+
for root_label in root_labels:
|
|
962
|
+
L += text(root_label[0], root_label[1], rgbcolor=[0, 0, 0],
|
|
963
|
+
fontsize=fontsize, vertical_alignment='center',
|
|
964
|
+
horizontal_alignment='right')
|
|
965
|
+
if len(labels) < last + 1:
|
|
966
|
+
labels = list(range(1, last + 2))
|
|
967
|
+
for pseudoline_label in pseudoline_labels:
|
|
968
|
+
L += text(labels[pseudoline_label[0]], pseudoline_label[1],
|
|
969
|
+
color=list_colors[pseudoline_label[0]],
|
|
970
|
+
fontsize=fontsize,
|
|
971
|
+
vertical_alignment=pseudoline_label[2],
|
|
972
|
+
horizontal_alignment='right')
|
|
973
|
+
if labels is not False:
|
|
974
|
+
for pseudoline in range(last):
|
|
975
|
+
L += text(labels[pseudoline],
|
|
976
|
+
(shift[0] + x_max + .1,
|
|
977
|
+
shift[1] + permutation.inverse()(pseudoline + 1) - 1),
|
|
978
|
+
color=list_colors[pseudoline], fontsize=fontsize,
|
|
979
|
+
vertical_alignment='center',
|
|
980
|
+
horizontal_alignment='left')
|
|
981
|
+
L.axes(False)
|
|
982
|
+
return L
|
|
983
|
+
|
|
984
|
+
def show(self, *kwds, **args):
|
|
985
|
+
"""
|
|
986
|
+
Show the facet ``self``.
|
|
987
|
+
|
|
988
|
+
.. SEEALSO::
|
|
989
|
+
|
|
990
|
+
:meth:`plot`
|
|
991
|
+
|
|
992
|
+
EXAMPLES::
|
|
993
|
+
|
|
994
|
+
sage: # optional - gap3
|
|
995
|
+
sage: W = ReflectionGroup(['A',2])
|
|
996
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
997
|
+
sage: SC = SubwordComplex([1,2,1,2,1],w)
|
|
998
|
+
sage: F = SC([1,2]); F.show()
|
|
999
|
+
<BLANKLINE>
|
|
1000
|
+
"""
|
|
1001
|
+
return self.plot().show(*kwds, **args)
|
|
1002
|
+
|
|
1003
|
+
|
|
1004
|
+
class SubwordComplex(UniqueRepresentation, SimplicialComplex):
|
|
1005
|
+
r"""
|
|
1006
|
+
Fix a Coxeter system `(W,S)`. The subword complex
|
|
1007
|
+
`\mathcal{SC}(Q,w)` associated to a word `Q \in S^*` and an
|
|
1008
|
+
element `w \in W` is the simplicial complex whose ground set is the set of
|
|
1009
|
+
positions in `Q` and whose facets are complements of sets of
|
|
1010
|
+
positions defining a reduced expression for `w`.
|
|
1011
|
+
|
|
1012
|
+
A subword complex is a shellable sphere if and only if the
|
|
1013
|
+
Demazure product of `Q` equals `w`, otherwise it is a shellable
|
|
1014
|
+
ball.
|
|
1015
|
+
|
|
1016
|
+
.. WARNING::
|
|
1017
|
+
|
|
1018
|
+
This implementation only works for groups build using ``CoxeterGroup``,
|
|
1019
|
+
and does not work with groups build using ``WeylGroup``.
|
|
1020
|
+
|
|
1021
|
+
EXAMPLES:
|
|
1022
|
+
|
|
1023
|
+
As an example, dual associahedra are subword complexes in type
|
|
1024
|
+
`A_{n-1}` given by the word `[1, \dots, n, 1, \dots, n, 1, \dots,
|
|
1025
|
+
n-1, \dots, 1, 2, 1]` and the permutation `w_0`.
|
|
1026
|
+
|
|
1027
|
+
::
|
|
1028
|
+
|
|
1029
|
+
sage: # optional - gap3
|
|
1030
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1031
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1032
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w); SC
|
|
1033
|
+
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
|
|
1034
|
+
sage: SC.facets()
|
|
1035
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1036
|
+
|
|
1037
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1038
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1039
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w); SC
|
|
1040
|
+
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
|
|
1041
|
+
sage: SC.facets()
|
|
1042
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1043
|
+
|
|
1044
|
+
REFERENCES: [KnuMil]_, [PilStu]_
|
|
1045
|
+
|
|
1046
|
+
TESTS::
|
|
1047
|
+
|
|
1048
|
+
sage: # optional - gap3
|
|
1049
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1050
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1051
|
+
sage: SC1 = SubwordComplex([1,2,1,2,1], w)
|
|
1052
|
+
sage: SC2 = SubwordComplex([1,2,1,2,1], w)
|
|
1053
|
+
sage: SC1 == SC2
|
|
1054
|
+
True
|
|
1055
|
+
|
|
1056
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1057
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1058
|
+
sage: SC1 = SubwordComplex([1,2,1,2,1], w)
|
|
1059
|
+
sage: SC2 = SubwordComplex([1,2,1,2,1], w)
|
|
1060
|
+
sage: SC1 == SC2
|
|
1061
|
+
True
|
|
1062
|
+
"""
|
|
1063
|
+
|
|
1064
|
+
# standard functions
|
|
1065
|
+
|
|
1066
|
+
@staticmethod
|
|
1067
|
+
def __classcall__(cls, Q, w, algorithm='inductive'):
|
|
1068
|
+
r"""
|
|
1069
|
+
Making the input hashable.
|
|
1070
|
+
|
|
1071
|
+
TESTS::
|
|
1072
|
+
|
|
1073
|
+
sage: # optional - gap3
|
|
1074
|
+
sage: W = ReflectionGroup(['B',2])
|
|
1075
|
+
sage: S = SubwordComplex((1,2)*3,W.w0)
|
|
1076
|
+
sage: T = SubwordComplex([1,2]*3,W.w0)
|
|
1077
|
+
sage: S is T
|
|
1078
|
+
True
|
|
1079
|
+
|
|
1080
|
+
sage: W = CoxeterGroup(['B',2])
|
|
1081
|
+
sage: S = SubwordComplex((1,2)*3,W.w0)
|
|
1082
|
+
sage: T = SubwordComplex([1,2]*3,W.w0)
|
|
1083
|
+
sage: S is T
|
|
1084
|
+
True
|
|
1085
|
+
"""
|
|
1086
|
+
Q = tuple(Q)
|
|
1087
|
+
return super().__classcall__(cls, Q, w, algorithm=algorithm)
|
|
1088
|
+
|
|
1089
|
+
def __init__(self, Q, w, algorithm='inductive'):
|
|
1090
|
+
r"""
|
|
1091
|
+
Initialize the subword complex `\mathcal{SC}(Q,w)`.
|
|
1092
|
+
|
|
1093
|
+
INPUT:
|
|
1094
|
+
|
|
1095
|
+
- ``Q`` -- word on the simple generators of the Coxeter group
|
|
1096
|
+
- ``w`` -- element of the Coxeter group
|
|
1097
|
+
- ``algorithm`` -- (default: ``'inductive'``) choice of the
|
|
1098
|
+
algorithm to generate the subword complex. Options are
|
|
1099
|
+
``'inductive'`` or ``'greedy'``. The second option is
|
|
1100
|
+
recommended when `|Q|` is closed to `\ell(w) + \mathrm{rank}(W)`.
|
|
1101
|
+
|
|
1102
|
+
EXAMPLES::
|
|
1103
|
+
|
|
1104
|
+
sage: # optional - gap3
|
|
1105
|
+
sage: W = ReflectionGroup(['A',3])
|
|
1106
|
+
sage: w = W.from_reduced_word([1,2,3,1,2,1])
|
|
1107
|
+
sage: SC = SubwordComplex([1,2,3,1,2,3,1,2,1], w); SC
|
|
1108
|
+
Subword complex of type ['A', 3] for Q = (1, 2, 3, 1, 2, 3, 1, 2, 1) and pi = [1, 2, 1, 3, 2, 1]
|
|
1109
|
+
sage: len(SC)
|
|
1110
|
+
14
|
|
1111
|
+
|
|
1112
|
+
sage: W = CoxeterGroup(['A',3])
|
|
1113
|
+
sage: w = W.from_reduced_word([1,2,3,1,2,1])
|
|
1114
|
+
sage: SC = SubwordComplex([1,2,3,1,2,3,1,2,1], w); SC
|
|
1115
|
+
Subword complex of type ['A', 3] for Q = (1, 2, 3, 1, 2, 3, 1, 2, 1) and pi = [1, 2, 3, 1, 2, 1]
|
|
1116
|
+
sage: len(SC)
|
|
1117
|
+
14
|
|
1118
|
+
|
|
1119
|
+
TESTS:
|
|
1120
|
+
|
|
1121
|
+
Check for methods from the enumerated sets category::
|
|
1122
|
+
|
|
1123
|
+
sage: # optional - gap3
|
|
1124
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1125
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1126
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1127
|
+
sage: list(SC)
|
|
1128
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1129
|
+
|
|
1130
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1131
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1132
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1133
|
+
sage: list(SC)
|
|
1134
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1135
|
+
|
|
1136
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1137
|
+
sage: w = W.from_reduced_word([1,1,1])
|
|
1138
|
+
sage: SC = SubwordComplex([1,2,2,2,1], w)
|
|
1139
|
+
sage: len(SC)
|
|
1140
|
+
2
|
|
1141
|
+
"""
|
|
1142
|
+
W = w.parent()
|
|
1143
|
+
I = W.index_set()
|
|
1144
|
+
if not all(i in I for i in Q):
|
|
1145
|
+
raise ValueError("all elements in Q = %s must be contained in the index set %s" % (Q, I))
|
|
1146
|
+
self._Q = Q
|
|
1147
|
+
self._pi = w
|
|
1148
|
+
if algorithm == "inductive":
|
|
1149
|
+
Fs = _construct_facets_c(Q, w)
|
|
1150
|
+
elif algorithm == "greedy":
|
|
1151
|
+
Fs, Rs = _greedy_flip_algorithm(Q, w)
|
|
1152
|
+
else:
|
|
1153
|
+
raise ValueError("the optional argument algorithm can be "
|
|
1154
|
+
"either inductive or greedy")
|
|
1155
|
+
if not Fs:
|
|
1156
|
+
raise ValueError("the word %s does not contain a reduced expression for %s" % (Q, w.reduced_word()))
|
|
1157
|
+
cat = SimplicialComplexes().Finite().Enumerated()
|
|
1158
|
+
SimplicialComplex.__init__(self, maximal_faces=Fs,
|
|
1159
|
+
maximality_check=False,
|
|
1160
|
+
category=cat)
|
|
1161
|
+
self._W = W
|
|
1162
|
+
try:
|
|
1163
|
+
T = W.coxeter_matrix().coxeter_type()
|
|
1164
|
+
self._cartan_type = T.cartan_type()
|
|
1165
|
+
except AttributeError:
|
|
1166
|
+
self._cartan_type = None
|
|
1167
|
+
self._facets_dict = None
|
|
1168
|
+
if algorithm == "greedy":
|
|
1169
|
+
_facets_dict = {}
|
|
1170
|
+
for i in range(len(Fs)):
|
|
1171
|
+
X = self(Fs[i], facet_test=False)
|
|
1172
|
+
X._extended_root_conf_indices = Rs[i]
|
|
1173
|
+
_facets_dict[tuple(sorted(Fs[i]))] = X
|
|
1174
|
+
self._facets_dict = _facets_dict
|
|
1175
|
+
else:
|
|
1176
|
+
self._facets_dict = {}
|
|
1177
|
+
|
|
1178
|
+
def _repr_(self):
|
|
1179
|
+
r"""
|
|
1180
|
+
Return a string representation of ``self``.
|
|
1181
|
+
|
|
1182
|
+
EXAMPLES::
|
|
1183
|
+
|
|
1184
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1185
|
+
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
|
|
1186
|
+
sage: SubwordComplex([1,2,1,2,1], w) # optional - gap3
|
|
1187
|
+
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
|
|
1188
|
+
|
|
1189
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1190
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1191
|
+
sage: SubwordComplex([1,2,1,2,1], w)
|
|
1192
|
+
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
|
|
1193
|
+
"""
|
|
1194
|
+
if self._cartan_type is None:
|
|
1195
|
+
return "Subword complex of unknown type for Q = {} and pi = {}".format(self._Q, self._pi.reduced_word())
|
|
1196
|
+
else:
|
|
1197
|
+
return 'Subword complex of type {} for Q = {} and pi = {}'.format(self.cartan_type(), self._Q, self._pi.reduced_word())
|
|
1198
|
+
|
|
1199
|
+
def __call__(self, F, facet_test=True):
|
|
1200
|
+
r"""
|
|
1201
|
+
Create a facet of ``self``.
|
|
1202
|
+
|
|
1203
|
+
INPUT:
|
|
1204
|
+
|
|
1205
|
+
- ``F`` -- an iterable of positions
|
|
1206
|
+
- ``facet_test`` -- boolean (default: ``True``); whether or
|
|
1207
|
+
not the facet ``F`` should be tested before creation
|
|
1208
|
+
|
|
1209
|
+
OUTPUT: the facet of ``self`` at positions given by ``F``
|
|
1210
|
+
|
|
1211
|
+
EXAMPLES::
|
|
1212
|
+
|
|
1213
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1214
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1215
|
+
sage: F = SC([1,2]); F # optional - gap3
|
|
1216
|
+
(1, 2)
|
|
1217
|
+
|
|
1218
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1219
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1220
|
+
sage: F = SC([1,2]); F
|
|
1221
|
+
(1, 2)
|
|
1222
|
+
"""
|
|
1223
|
+
if hasattr(F, "parent") and F.parent() is self:
|
|
1224
|
+
return F
|
|
1225
|
+
return self.element_class(self, F, facet_test=facet_test)
|
|
1226
|
+
|
|
1227
|
+
Element = SubwordComplexFacet
|
|
1228
|
+
|
|
1229
|
+
def __contains__(self, F):
|
|
1230
|
+
r"""
|
|
1231
|
+
Test if ``self`` contains a given iterable ``F``.
|
|
1232
|
+
|
|
1233
|
+
EXAMPLES::
|
|
1234
|
+
|
|
1235
|
+
sage: # optional - gap3
|
|
1236
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1237
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1238
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1239
|
+
sage: SC.facets()
|
|
1240
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1241
|
+
sage: [0,1] in SC
|
|
1242
|
+
True
|
|
1243
|
+
sage: [0,2] in SC
|
|
1244
|
+
False
|
|
1245
|
+
sage: [0,1,5] in SC
|
|
1246
|
+
False
|
|
1247
|
+
sage: [0] in SC
|
|
1248
|
+
False
|
|
1249
|
+
sage: ['a','b'] in SC
|
|
1250
|
+
False
|
|
1251
|
+
|
|
1252
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1253
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1254
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1255
|
+
sage: SC.facets()
|
|
1256
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1257
|
+
sage: [0,1] in SC
|
|
1258
|
+
True
|
|
1259
|
+
sage: [0,2] in SC
|
|
1260
|
+
False
|
|
1261
|
+
sage: [0,1,5] in SC
|
|
1262
|
+
False
|
|
1263
|
+
sage: [0] in SC
|
|
1264
|
+
False
|
|
1265
|
+
sage: ['a','b'] in SC
|
|
1266
|
+
False
|
|
1267
|
+
"""
|
|
1268
|
+
W = self.group()
|
|
1269
|
+
Q = self.word()
|
|
1270
|
+
r = range(len(Q))
|
|
1271
|
+
if not all(i in r for i in F):
|
|
1272
|
+
return False
|
|
1273
|
+
return W.from_reduced_word(Qi for i, Qi in enumerate(Q) if i not in F) == self.pi()
|
|
1274
|
+
|
|
1275
|
+
# getting the stored properties
|
|
1276
|
+
|
|
1277
|
+
def group(self):
|
|
1278
|
+
r"""
|
|
1279
|
+
Return the group associated to ``self``.
|
|
1280
|
+
|
|
1281
|
+
EXAMPLES::
|
|
1282
|
+
|
|
1283
|
+
sage: # optional - gap3
|
|
1284
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1285
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1286
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1287
|
+
sage: SC.group()
|
|
1288
|
+
Irreducible real reflection group of rank 2 and type A2
|
|
1289
|
+
|
|
1290
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1291
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1292
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1293
|
+
sage: SC.group()
|
|
1294
|
+
Finite Coxeter group over Integer Ring with Coxeter matrix:
|
|
1295
|
+
[1 3]
|
|
1296
|
+
[3 1]
|
|
1297
|
+
"""
|
|
1298
|
+
return self._W
|
|
1299
|
+
|
|
1300
|
+
def cartan_type(self):
|
|
1301
|
+
r"""
|
|
1302
|
+
Return the Cartan type of ``self``.
|
|
1303
|
+
|
|
1304
|
+
EXAMPLES::
|
|
1305
|
+
|
|
1306
|
+
sage: # optional - gap3
|
|
1307
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1308
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1309
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1310
|
+
sage: SC.cartan_type()
|
|
1311
|
+
['A', 2]
|
|
1312
|
+
|
|
1313
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1314
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1315
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1316
|
+
sage: SC.cartan_type()
|
|
1317
|
+
['A', 2]
|
|
1318
|
+
"""
|
|
1319
|
+
if self._cartan_type is None:
|
|
1320
|
+
raise ValueError("no Cartan type defined for {}".format(self._W))
|
|
1321
|
+
else:
|
|
1322
|
+
return self._cartan_type
|
|
1323
|
+
|
|
1324
|
+
def word(self):
|
|
1325
|
+
r"""
|
|
1326
|
+
Return the word in the simple generators associated to ``self``.
|
|
1327
|
+
|
|
1328
|
+
EXAMPLES::
|
|
1329
|
+
|
|
1330
|
+
sage: # optional - gap3
|
|
1331
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1332
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1333
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1334
|
+
sage: SC.word()
|
|
1335
|
+
(1, 2, 1, 2, 1)
|
|
1336
|
+
|
|
1337
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1338
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1339
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1340
|
+
sage: SC.word()
|
|
1341
|
+
(1, 2, 1, 2, 1)
|
|
1342
|
+
"""
|
|
1343
|
+
return copy(self._Q)
|
|
1344
|
+
|
|
1345
|
+
def pi(self):
|
|
1346
|
+
r"""
|
|
1347
|
+
Return the element in the Coxeter group associated to ``self``.
|
|
1348
|
+
|
|
1349
|
+
EXAMPLES::
|
|
1350
|
+
|
|
1351
|
+
sage: # optional - gap3
|
|
1352
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1353
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1354
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1355
|
+
sage: SC.pi().reduced_word()
|
|
1356
|
+
[1, 2, 1]
|
|
1357
|
+
|
|
1358
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1359
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1360
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1361
|
+
sage: SC.pi().reduced_word()
|
|
1362
|
+
[1, 2, 1]
|
|
1363
|
+
"""
|
|
1364
|
+
return self._pi
|
|
1365
|
+
|
|
1366
|
+
def facets(self):
|
|
1367
|
+
r"""
|
|
1368
|
+
Return all facets of ``self``.
|
|
1369
|
+
|
|
1370
|
+
EXAMPLES::
|
|
1371
|
+
|
|
1372
|
+
sage: # optional - gap3
|
|
1373
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1374
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1375
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1376
|
+
sage: SC.facets()
|
|
1377
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1378
|
+
|
|
1379
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1380
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1381
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1382
|
+
sage: SC.facets()
|
|
1383
|
+
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]
|
|
1384
|
+
"""
|
|
1385
|
+
if self._facets_dict:
|
|
1386
|
+
return [self._facets_dict[tuple(F)] for F in self._facets]
|
|
1387
|
+
else:
|
|
1388
|
+
return [self(F, facet_test=False) for F in self._facets]
|
|
1389
|
+
|
|
1390
|
+
def __iter__(self):
|
|
1391
|
+
r"""
|
|
1392
|
+
Return an iterator on the facets of ``self``.
|
|
1393
|
+
|
|
1394
|
+
EXAMPLES::
|
|
1395
|
+
|
|
1396
|
+
sage: # optional - gap3
|
|
1397
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1398
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1399
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1400
|
+
sage: for I in SC: print(I)
|
|
1401
|
+
(0, 1)
|
|
1402
|
+
(0, 4)
|
|
1403
|
+
(1, 2)
|
|
1404
|
+
(2, 3)
|
|
1405
|
+
(3, 4)
|
|
1406
|
+
|
|
1407
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1408
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1409
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1410
|
+
sage: for I in SC: print(I)
|
|
1411
|
+
(0, 1)
|
|
1412
|
+
(0, 4)
|
|
1413
|
+
(1, 2)
|
|
1414
|
+
(2, 3)
|
|
1415
|
+
(3, 4)
|
|
1416
|
+
"""
|
|
1417
|
+
return iter(self.facets())
|
|
1418
|
+
|
|
1419
|
+
def greedy_facet(self, side='positive'):
|
|
1420
|
+
r"""
|
|
1421
|
+
Return the negative (or positive) greedy facet of ``self``.
|
|
1422
|
+
|
|
1423
|
+
This is the lexicographically last (or first) facet of ``self``.
|
|
1424
|
+
|
|
1425
|
+
EXAMPLES::
|
|
1426
|
+
|
|
1427
|
+
sage: # optional - gap3
|
|
1428
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1429
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1430
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1431
|
+
sage: SC.greedy_facet(side='positive')
|
|
1432
|
+
(0, 1)
|
|
1433
|
+
sage: SC.greedy_facet(side='negative')
|
|
1434
|
+
(3, 4)
|
|
1435
|
+
|
|
1436
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1437
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1438
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1439
|
+
sage: SC.greedy_facet(side='positive')
|
|
1440
|
+
(0, 1)
|
|
1441
|
+
sage: SC.greedy_facet(side='negative')
|
|
1442
|
+
(3, 4)
|
|
1443
|
+
"""
|
|
1444
|
+
return self.element_class(self, _greedy_facet(self.word(),
|
|
1445
|
+
self.pi(), side=side))
|
|
1446
|
+
|
|
1447
|
+
# topological properties
|
|
1448
|
+
|
|
1449
|
+
def is_sphere(self):
|
|
1450
|
+
r"""
|
|
1451
|
+
Return ``True`` if the subword complex ``self`` is a sphere.
|
|
1452
|
+
|
|
1453
|
+
EXAMPLES::
|
|
1454
|
+
|
|
1455
|
+
sage: # optional - gap3
|
|
1456
|
+
sage: W = ReflectionGroup(['A',3])
|
|
1457
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1458
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1459
|
+
sage: SC.is_sphere()
|
|
1460
|
+
True
|
|
1461
|
+
|
|
1462
|
+
sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3
|
|
1463
|
+
sage: SC.is_sphere() # optional - gap3
|
|
1464
|
+
False
|
|
1465
|
+
|
|
1466
|
+
sage: W = CoxeterGroup(['A',3])
|
|
1467
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1468
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1469
|
+
sage: SC.is_sphere()
|
|
1470
|
+
True
|
|
1471
|
+
"""
|
|
1472
|
+
W = self._pi.parent()
|
|
1473
|
+
w = W.demazure_product(self._Q)
|
|
1474
|
+
return w == self._pi
|
|
1475
|
+
|
|
1476
|
+
def is_ball(self):
|
|
1477
|
+
r"""
|
|
1478
|
+
Return ``True`` if the subword complex ``self`` is a ball.
|
|
1479
|
+
|
|
1480
|
+
This is the case if and only if it is not a sphere.
|
|
1481
|
+
|
|
1482
|
+
EXAMPLES::
|
|
1483
|
+
|
|
1484
|
+
sage: # optional - gap3
|
|
1485
|
+
sage: W = ReflectionGroup(['A',3])
|
|
1486
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1487
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1488
|
+
sage: SC.is_ball()
|
|
1489
|
+
False
|
|
1490
|
+
|
|
1491
|
+
sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3
|
|
1492
|
+
sage: SC.is_ball() # optional - gap3
|
|
1493
|
+
True
|
|
1494
|
+
|
|
1495
|
+
sage: W = CoxeterGroup(['A',3])
|
|
1496
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1497
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1498
|
+
sage: SC.is_ball()
|
|
1499
|
+
False
|
|
1500
|
+
"""
|
|
1501
|
+
return not self.is_sphere()
|
|
1502
|
+
|
|
1503
|
+
def is_pure(self):
|
|
1504
|
+
r"""
|
|
1505
|
+
Return ``True`` since all subword complexes are pure.
|
|
1506
|
+
|
|
1507
|
+
EXAMPLES::
|
|
1508
|
+
|
|
1509
|
+
sage: # optional - gap3
|
|
1510
|
+
sage: W = ReflectionGroup(['A',3])
|
|
1511
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1512
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1513
|
+
sage: SC.is_pure()
|
|
1514
|
+
True
|
|
1515
|
+
|
|
1516
|
+
sage: W = CoxeterGroup(['A',3])
|
|
1517
|
+
sage: w = W.from_reduced_word([2,3,2])
|
|
1518
|
+
sage: SC = SubwordComplex([3,2,3,2,3], w)
|
|
1519
|
+
sage: SC.is_pure()
|
|
1520
|
+
True
|
|
1521
|
+
"""
|
|
1522
|
+
return True
|
|
1523
|
+
|
|
1524
|
+
def dimension(self):
|
|
1525
|
+
r"""
|
|
1526
|
+
Return the dimension of ``self``.
|
|
1527
|
+
|
|
1528
|
+
EXAMPLES::
|
|
1529
|
+
|
|
1530
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1531
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1532
|
+
sage: SC.dimension() # optional - gap3
|
|
1533
|
+
1
|
|
1534
|
+
|
|
1535
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1536
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1537
|
+
sage: SC.dimension()
|
|
1538
|
+
1
|
|
1539
|
+
"""
|
|
1540
|
+
return self._facets[0].dimension()
|
|
1541
|
+
|
|
1542
|
+
# root and weight
|
|
1543
|
+
|
|
1544
|
+
@cached_method
|
|
1545
|
+
def is_root_independent(self):
|
|
1546
|
+
r"""
|
|
1547
|
+
Return ``True`` if ``self`` is root-independent.
|
|
1548
|
+
|
|
1549
|
+
This means that the root configuration
|
|
1550
|
+
of any (or equivalently all) facets is linearly independent.
|
|
1551
|
+
|
|
1552
|
+
EXAMPLES::
|
|
1553
|
+
|
|
1554
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1555
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1556
|
+
sage: SC.is_root_independent() # optional - gap3
|
|
1557
|
+
True
|
|
1558
|
+
|
|
1559
|
+
sage: SC = SubwordComplex([1,2,1,2,1,2], W.w0) # optional - gap3
|
|
1560
|
+
sage: SC.is_root_independent() # optional - gap3
|
|
1561
|
+
False
|
|
1562
|
+
|
|
1563
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1564
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1565
|
+
sage: SC.is_root_independent()
|
|
1566
|
+
True
|
|
1567
|
+
"""
|
|
1568
|
+
from sage.matrix.constructor import matrix
|
|
1569
|
+
M = matrix(self.greedy_facet(side='negative').root_configuration())
|
|
1570
|
+
return M.rank() == max(M.ncols(), M.nrows())
|
|
1571
|
+
|
|
1572
|
+
@cached_method
|
|
1573
|
+
def is_double_root_free(self):
|
|
1574
|
+
r"""
|
|
1575
|
+
Return ``True`` if ``self`` is double-root-free.
|
|
1576
|
+
|
|
1577
|
+
This means that the root configurations
|
|
1578
|
+
of all facets do not contain a root twice.
|
|
1579
|
+
|
|
1580
|
+
EXAMPLES::
|
|
1581
|
+
|
|
1582
|
+
sage: # optional - gap3
|
|
1583
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1584
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1585
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1586
|
+
sage: SC.is_double_root_free()
|
|
1587
|
+
True
|
|
1588
|
+
|
|
1589
|
+
sage: SC = SubwordComplex([1,1,2,2,1,1], w) # optional - gap3
|
|
1590
|
+
sage: SC.is_double_root_free() # optional - gap3
|
|
1591
|
+
True
|
|
1592
|
+
|
|
1593
|
+
sage: SC = SubwordComplex([1,2,1,2,1,2], w) # optional - gap3
|
|
1594
|
+
sage: SC.is_double_root_free() # optional - gap3
|
|
1595
|
+
False
|
|
1596
|
+
|
|
1597
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1598
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1599
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1600
|
+
sage: SC.is_double_root_free()
|
|
1601
|
+
True
|
|
1602
|
+
"""
|
|
1603
|
+
if not self.is_root_independent():
|
|
1604
|
+
size = self.dimension() + 1
|
|
1605
|
+
for F in self:
|
|
1606
|
+
conf = F._root_configuration_indices()
|
|
1607
|
+
if len(set(conf)) < size:
|
|
1608
|
+
return False
|
|
1609
|
+
return True
|
|
1610
|
+
|
|
1611
|
+
def kappa_preimages(self):
|
|
1612
|
+
"""
|
|
1613
|
+
Return a dictionary containing facets of ``self`` as keys,
|
|
1614
|
+
and list of elements of ``self.group()`` as values.
|
|
1615
|
+
|
|
1616
|
+
.. SEEALSO::
|
|
1617
|
+
|
|
1618
|
+
:meth:`kappa_preimage <sage.combinat.subword_complex.SubwordComplexFacet.kappa_preimage>`
|
|
1619
|
+
|
|
1620
|
+
EXAMPLES::
|
|
1621
|
+
|
|
1622
|
+
sage: # optional - gap3
|
|
1623
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1624
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1625
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1626
|
+
sage: kappa = SC.kappa_preimages()
|
|
1627
|
+
sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in kappa[F]]))
|
|
1628
|
+
(0, 1) [[]]
|
|
1629
|
+
(0, 4) [[2], [2, 1]]
|
|
1630
|
+
(1, 2) [[1]]
|
|
1631
|
+
(2, 3) [[1, 2]]
|
|
1632
|
+
(3, 4) [[1, 2, 1]]
|
|
1633
|
+
|
|
1634
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1635
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1636
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1637
|
+
sage: kappa = SC.kappa_preimages()
|
|
1638
|
+
sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in kappa[F]]))
|
|
1639
|
+
(0, 1) [[]]
|
|
1640
|
+
(0, 4) [[2], [2, 1]]
|
|
1641
|
+
(1, 2) [[1]]
|
|
1642
|
+
(2, 3) [[1, 2]]
|
|
1643
|
+
(3, 4) [[1, 2, 1]]
|
|
1644
|
+
"""
|
|
1645
|
+
return {F: F.kappa_preimage() for F in self}
|
|
1646
|
+
|
|
1647
|
+
def brick_fan(self):
|
|
1648
|
+
r"""
|
|
1649
|
+
Return the brick fan of ``self``.
|
|
1650
|
+
|
|
1651
|
+
It is the normal fan of the brick polytope of ``self``. It is
|
|
1652
|
+
formed by the cones generated by the weight configurations of
|
|
1653
|
+
the facets of ``self``.
|
|
1654
|
+
|
|
1655
|
+
.. SEEALSO::
|
|
1656
|
+
|
|
1657
|
+
:func:`weight_cone <sage.combinat.subword_complex.SubwordComplexFacet.weight_cone>`
|
|
1658
|
+
|
|
1659
|
+
EXAMPLES::
|
|
1660
|
+
|
|
1661
|
+
sage: # optional - gap3
|
|
1662
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1663
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1664
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1665
|
+
sage: SC.brick_fan()
|
|
1666
|
+
Rational polyhedral fan in 2-d lattice N
|
|
1667
|
+
|
|
1668
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1669
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
1670
|
+
sage: SC = SubwordComplex([1,2,1,2,1], w)
|
|
1671
|
+
sage: SC.brick_fan()
|
|
1672
|
+
Rational polyhedral fan in 2-d lattice N
|
|
1673
|
+
"""
|
|
1674
|
+
from sage.geometry.fan import Fan
|
|
1675
|
+
return Fan([F.weight_cone() for F in self])
|
|
1676
|
+
|
|
1677
|
+
# brick polytope
|
|
1678
|
+
|
|
1679
|
+
def brick_vectors(self, coefficients=None):
|
|
1680
|
+
r"""
|
|
1681
|
+
Return the list of all brick vectors of facets of ``self``.
|
|
1682
|
+
|
|
1683
|
+
INPUT:
|
|
1684
|
+
|
|
1685
|
+
- ``coefficients`` -- (optional) a list of coefficients used to
|
|
1686
|
+
scale the fundamental weights
|
|
1687
|
+
|
|
1688
|
+
.. SEEALSO::
|
|
1689
|
+
|
|
1690
|
+
:func:`brick_vector <sage.combinat.subword_complex.SubwordComplexFacet.brick_vector>`
|
|
1691
|
+
|
|
1692
|
+
EXAMPLES::
|
|
1693
|
+
|
|
1694
|
+
sage: # optional - gap3
|
|
1695
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1696
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1697
|
+
sage: SC.brick_vectors()
|
|
1698
|
+
[(5/3, 7/3), (5/3, 1/3), (2/3, 7/3), (-1/3, 4/3), (-1/3, 1/3)]
|
|
1699
|
+
sage: SC.brick_vectors(coefficients=(1,2))
|
|
1700
|
+
[(7/3, 11/3), (7/3, 2/3), (4/3, 11/3), (-2/3, 5/3), (-2/3, 2/3)]
|
|
1701
|
+
|
|
1702
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1703
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1704
|
+
sage: SC.brick_vectors()
|
|
1705
|
+
[(10/3, 14/3), (10/3, 2/3), (4/3, 14/3), (-2/3, 8/3), (-2/3, 2/3)]
|
|
1706
|
+
sage: SC.brick_vectors(coefficients=(1,2))
|
|
1707
|
+
[(14/3, 22/3), (14/3, 4/3), (8/3, 22/3), (-4/3, 10/3), (-4/3, 4/3)]
|
|
1708
|
+
"""
|
|
1709
|
+
return [F.brick_vector(coefficients=coefficients) for F in self]
|
|
1710
|
+
|
|
1711
|
+
def minkowski_summand(self, i):
|
|
1712
|
+
r"""
|
|
1713
|
+
Return the `i` th Minkowski summand of ``self``.
|
|
1714
|
+
|
|
1715
|
+
INPUT:
|
|
1716
|
+
|
|
1717
|
+
- ``i`` -- an integer defining a position in the word `Q`
|
|
1718
|
+
|
|
1719
|
+
EXAMPLES::
|
|
1720
|
+
|
|
1721
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1722
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1723
|
+
sage: SC.minkowski_summand(1) # optional - gap3
|
|
1724
|
+
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex
|
|
1725
|
+
|
|
1726
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1727
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1728
|
+
sage: SC.minkowski_summand(1)
|
|
1729
|
+
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex
|
|
1730
|
+
"""
|
|
1731
|
+
G = self.group()
|
|
1732
|
+
from sage.rings.rational_field import QQ
|
|
1733
|
+
if G.coxeter_matrix().is_crystallographic():
|
|
1734
|
+
min_sum = [[QQ(v) for v in F.extended_weight_configuration()[i]] for F in self]
|
|
1735
|
+
else:
|
|
1736
|
+
from sage.rings.cc import CC
|
|
1737
|
+
from warnings import warn
|
|
1738
|
+
warn("the polytope is built with rational vertices", RuntimeWarning)
|
|
1739
|
+
min_sum = [[QQ(CC(v)) for v in F.extended_weight_configuration()[i]] for F in self]
|
|
1740
|
+
return Polyhedron(min_sum)
|
|
1741
|
+
|
|
1742
|
+
def brick_polytope(self, coefficients=None):
|
|
1743
|
+
r"""
|
|
1744
|
+
Return the brick polytope of ``self``.
|
|
1745
|
+
|
|
1746
|
+
This polytope is the convex hull of the brick vectors of ``self``.
|
|
1747
|
+
|
|
1748
|
+
INPUT:
|
|
1749
|
+
|
|
1750
|
+
- ``coefficients`` -- (optional) a list of coefficients used to
|
|
1751
|
+
scale the fundamental weights
|
|
1752
|
+
|
|
1753
|
+
.. SEEALSO::
|
|
1754
|
+
|
|
1755
|
+
:meth:`brick_vectors`
|
|
1756
|
+
|
|
1757
|
+
EXAMPLES::
|
|
1758
|
+
|
|
1759
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1760
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1761
|
+
sage: X = SC.brick_polytope(); X # optional - gap3
|
|
1762
|
+
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices
|
|
1763
|
+
|
|
1764
|
+
sage: Y = SC.brick_polytope(coefficients=[1,2]); Y # optional - gap3
|
|
1765
|
+
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices
|
|
1766
|
+
|
|
1767
|
+
sage: X == Y # optional - gap3
|
|
1768
|
+
False
|
|
1769
|
+
|
|
1770
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1771
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1772
|
+
sage: X = SC.brick_polytope(); X
|
|
1773
|
+
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices
|
|
1774
|
+
|
|
1775
|
+
sage: # optional - gap3
|
|
1776
|
+
sage: W = ReflectionGroup(['H',3])
|
|
1777
|
+
sage: c = W.index_set(); Q = c + tuple(W.w0.coxeter_sorting_word(c))
|
|
1778
|
+
sage: SC = SubwordComplex(Q,W.w0)
|
|
1779
|
+
sage: SC.brick_polytope()
|
|
1780
|
+
doctest:...:
|
|
1781
|
+
RuntimeWarning: the polytope is built with rational vertices
|
|
1782
|
+
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices
|
|
1783
|
+
"""
|
|
1784
|
+
BV = self.brick_vectors(coefficients=coefficients)
|
|
1785
|
+
G = self.group()
|
|
1786
|
+
from sage.rings.rational_field import QQ
|
|
1787
|
+
if G.coxeter_matrix().is_crystallographic():
|
|
1788
|
+
BV = [[QQ(v) for v in V] for V in BV]
|
|
1789
|
+
else:
|
|
1790
|
+
from sage.rings.cc import CC
|
|
1791
|
+
from warnings import warn
|
|
1792
|
+
warn("the polytope is built with rational vertices", RuntimeWarning)
|
|
1793
|
+
BV = [[QQ(CC(v).real()) for v in V] for V in BV]
|
|
1794
|
+
return Polyhedron(BV)
|
|
1795
|
+
|
|
1796
|
+
def barycenter(self):
|
|
1797
|
+
"""
|
|
1798
|
+
Return the barycenter of the brick polytope of ``self``.
|
|
1799
|
+
|
|
1800
|
+
.. SEEALSO::
|
|
1801
|
+
|
|
1802
|
+
:meth:`brick_polytope`
|
|
1803
|
+
|
|
1804
|
+
EXAMPLES::
|
|
1805
|
+
|
|
1806
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1807
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1808
|
+
sage: SC.barycenter() # optional - gap3
|
|
1809
|
+
(2/3, 4/3)
|
|
1810
|
+
|
|
1811
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1812
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1813
|
+
sage: SC.barycenter()
|
|
1814
|
+
(4/3, 8/3)
|
|
1815
|
+
"""
|
|
1816
|
+
facets = self.facets()
|
|
1817
|
+
if not self.is_root_independent():
|
|
1818
|
+
facets = [F for F in facets if F.is_vertex()]
|
|
1819
|
+
return sum(F.brick_vector() for F in facets) / len(facets)
|
|
1820
|
+
|
|
1821
|
+
# cambrian constructions
|
|
1822
|
+
|
|
1823
|
+
def cover_relations(self, label=False):
|
|
1824
|
+
"""
|
|
1825
|
+
Return the set of cover relations in the associated poset.
|
|
1826
|
+
|
|
1827
|
+
INPUT:
|
|
1828
|
+
|
|
1829
|
+
- ``label`` -- boolean (default: ``False``); whether or not to label
|
|
1830
|
+
the cover relations by the position of flip
|
|
1831
|
+
|
|
1832
|
+
OUTPUT: list of pairs of facets
|
|
1833
|
+
|
|
1834
|
+
EXAMPLES::
|
|
1835
|
+
|
|
1836
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1837
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1838
|
+
sage: sorted(SC.cover_relations()) # optional - gap3
|
|
1839
|
+
[((0, 1), (0, 4)),
|
|
1840
|
+
((0, 1), (1, 2)),
|
|
1841
|
+
((0, 4), (3, 4)),
|
|
1842
|
+
((1, 2), (2, 3)),
|
|
1843
|
+
((2, 3), (3, 4))]
|
|
1844
|
+
|
|
1845
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1846
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1847
|
+
sage: sorted(SC.cover_relations())
|
|
1848
|
+
[((0, 1), (0, 4)),
|
|
1849
|
+
((0, 1), (1, 2)),
|
|
1850
|
+
((0, 4), (3, 4)),
|
|
1851
|
+
((1, 2), (2, 3)),
|
|
1852
|
+
((2, 3), (3, 4))]
|
|
1853
|
+
"""
|
|
1854
|
+
N = len(self.group().long_element(as_word=True))
|
|
1855
|
+
F = self.greedy_facet(side='positive')
|
|
1856
|
+
Fs = {F}
|
|
1857
|
+
seen = {F}
|
|
1858
|
+
covers = []
|
|
1859
|
+
while Fs:
|
|
1860
|
+
F = Fs.pop()
|
|
1861
|
+
seen.add(F)
|
|
1862
|
+
conf = F._extended_root_configuration_indices()
|
|
1863
|
+
for i in F:
|
|
1864
|
+
if conf[i] < N:
|
|
1865
|
+
G = F.flip(i)
|
|
1866
|
+
if label:
|
|
1867
|
+
covers.append((F, G, i))
|
|
1868
|
+
else:
|
|
1869
|
+
covers.append((F, G))
|
|
1870
|
+
if G not in seen:
|
|
1871
|
+
Fs.add(G)
|
|
1872
|
+
return covers
|
|
1873
|
+
|
|
1874
|
+
def increasing_flip_graph(self, label=True):
|
|
1875
|
+
"""
|
|
1876
|
+
Return the increasing flip graph of the subword complex.
|
|
1877
|
+
|
|
1878
|
+
OUTPUT: a directed graph
|
|
1879
|
+
|
|
1880
|
+
EXAMPLES::
|
|
1881
|
+
|
|
1882
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1883
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1884
|
+
sage: SC.increasing_flip_graph() # optional - gap3
|
|
1885
|
+
Digraph on 5 vertices
|
|
1886
|
+
|
|
1887
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1888
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1889
|
+
sage: SC.increasing_flip_graph()
|
|
1890
|
+
Digraph on 5 vertices
|
|
1891
|
+
"""
|
|
1892
|
+
from sage.graphs.digraph import DiGraph
|
|
1893
|
+
return DiGraph(self.cover_relations(label=label))
|
|
1894
|
+
|
|
1895
|
+
def interval(self, I, J) -> set:
|
|
1896
|
+
"""
|
|
1897
|
+
Return the interval [I,J] in the increasing flip graph subword complex.
|
|
1898
|
+
|
|
1899
|
+
INPUT:
|
|
1900
|
+
|
|
1901
|
+
- I, J -- two facets
|
|
1902
|
+
|
|
1903
|
+
OUTPUT: a set of facets
|
|
1904
|
+
|
|
1905
|
+
EXAMPLES::
|
|
1906
|
+
|
|
1907
|
+
sage: # optional - gap3
|
|
1908
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1909
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1910
|
+
sage: F = SC([1,2])
|
|
1911
|
+
sage: SC.interval(F, F)
|
|
1912
|
+
{(1, 2)}
|
|
1913
|
+
|
|
1914
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1915
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1916
|
+
sage: F = SC([1,2])
|
|
1917
|
+
sage: SC.interval(F, F)
|
|
1918
|
+
{(1, 2)}
|
|
1919
|
+
"""
|
|
1920
|
+
G = self.increasing_flip_graph()
|
|
1921
|
+
paths = G.all_paths(I, J)
|
|
1922
|
+
return {K for path in paths for K in path}
|
|
1923
|
+
|
|
1924
|
+
def increasing_flip_poset(self):
|
|
1925
|
+
"""
|
|
1926
|
+
Return the increasing flip poset of the subword complex.
|
|
1927
|
+
|
|
1928
|
+
OUTPUT: a poset
|
|
1929
|
+
|
|
1930
|
+
EXAMPLES::
|
|
1931
|
+
|
|
1932
|
+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
|
|
1933
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
|
|
1934
|
+
sage: SC.increasing_flip_poset() # optional - gap3
|
|
1935
|
+
Finite poset containing 5 elements
|
|
1936
|
+
|
|
1937
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1938
|
+
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
|
|
1939
|
+
sage: SC.increasing_flip_poset()
|
|
1940
|
+
Finite poset containing 5 elements
|
|
1941
|
+
"""
|
|
1942
|
+
from sage.combinat.posets.posets import Poset
|
|
1943
|
+
cov = self.cover_relations()
|
|
1944
|
+
if not self.is_root_independent():
|
|
1945
|
+
Fs = [F for F in self if F.is_vertex()]
|
|
1946
|
+
cov = [(a, b) for a, b in cov if a in Fs and b in Fs]
|
|
1947
|
+
return Poset(((), cov), facade=True)
|
|
1948
|
+
|
|
1949
|
+
|
|
1950
|
+
def _greedy_facet(Q, w, side='negative', n=None, pos=0, l=None, elems=[]):
|
|
1951
|
+
r"""
|
|
1952
|
+
Return the (positive or negative) *greedy facet* of the subword
|
|
1953
|
+
complex `SC(Q, w)`.
|
|
1954
|
+
|
|
1955
|
+
INPUT:
|
|
1956
|
+
|
|
1957
|
+
- ``Q`` -- a word
|
|
1958
|
+
- ``w`` -- an element in the Coxeter group
|
|
1959
|
+
- ``side`` -- string; either ``'negative'`` (default) or ``'positive'``
|
|
1960
|
+
- ``n`` -- integer (default: the length of `Q`)
|
|
1961
|
+
- ``pos`` -- integer (default: 0)
|
|
1962
|
+
- ``l`` -- integer (default: the length of `w`)
|
|
1963
|
+
- ``elems`` -- list (optional)
|
|
1964
|
+
|
|
1965
|
+
OUTPUT: a set
|
|
1966
|
+
|
|
1967
|
+
EXAMPLES::
|
|
1968
|
+
|
|
1969
|
+
sage: from sage.combinat.subword_complex import _greedy_facet
|
|
1970
|
+
|
|
1971
|
+
sage: # optional - gap3
|
|
1972
|
+
sage: W = ReflectionGroup(['A',2])
|
|
1973
|
+
sage: Q = [1,2,1,2,1]
|
|
1974
|
+
sage: w = W.from_reduced_word([1, 2, 1])
|
|
1975
|
+
sage: _greedy_facet(Q, w)
|
|
1976
|
+
{3, 4}
|
|
1977
|
+
|
|
1978
|
+
sage: W = CoxeterGroup(['A',2])
|
|
1979
|
+
sage: Q = [1,2,1,2,1]
|
|
1980
|
+
sage: w = W.from_reduced_word([1, 2, 1])
|
|
1981
|
+
sage: _greedy_facet(Q, w)
|
|
1982
|
+
{3, 4}
|
|
1983
|
+
"""
|
|
1984
|
+
if side == "negative":
|
|
1985
|
+
pass
|
|
1986
|
+
elif side == "positive":
|
|
1987
|
+
Q = Q[::-1]
|
|
1988
|
+
w = w.inverse()
|
|
1989
|
+
else:
|
|
1990
|
+
raise ValueError("the optional argument side is not positive "
|
|
1991
|
+
"or negative")
|
|
1992
|
+
|
|
1993
|
+
if n is None:
|
|
1994
|
+
n = len(Q)
|
|
1995
|
+
if l is None:
|
|
1996
|
+
l = w.length()
|
|
1997
|
+
|
|
1998
|
+
if l == 0:
|
|
1999
|
+
return elems + list(range(pos, n))
|
|
2000
|
+
elif n < l:
|
|
2001
|
+
return []
|
|
2002
|
+
|
|
2003
|
+
s = Q[pos]
|
|
2004
|
+
|
|
2005
|
+
if w.has_left_descent(s):
|
|
2006
|
+
X = _greedy_facet(Q, w.apply_simple_reflection_left(s),
|
|
2007
|
+
n=n, pos=pos + 1, l=l - 1, elems=elems)
|
|
2008
|
+
else:
|
|
2009
|
+
X = []
|
|
2010
|
+
|
|
2011
|
+
if not X:
|
|
2012
|
+
X = _greedy_facet(Q, w, n=n, pos=pos + 1, l=l, elems=elems + [pos])
|
|
2013
|
+
|
|
2014
|
+
if side == "positive":
|
|
2015
|
+
X = [n - 1 - i for i in X]
|
|
2016
|
+
|
|
2017
|
+
return set(X)
|
|
2018
|
+
|
|
2019
|
+
|
|
2020
|
+
def _extended_root_configuration_indices(W, Q, F):
|
|
2021
|
+
"""
|
|
2022
|
+
Return the extended root configuration indices of the facet `F`.
|
|
2023
|
+
|
|
2024
|
+
INPUT:
|
|
2025
|
+
|
|
2026
|
+
- ``W`` -- a Coxeter group
|
|
2027
|
+
- ``Q`` -- a word representing an element of `W`
|
|
2028
|
+
- ``F`` -- a facet of the subword complex
|
|
2029
|
+
|
|
2030
|
+
OUTPUT: list of root indices
|
|
2031
|
+
|
|
2032
|
+
EXAMPLES::
|
|
2033
|
+
|
|
2034
|
+
sage: from sage.combinat.subword_complex import _extended_root_configuration_indices
|
|
2035
|
+
|
|
2036
|
+
sage: # optional - gap3
|
|
2037
|
+
sage: W = ReflectionGroup(['A',2])
|
|
2038
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
2039
|
+
sage: Q = [1,2,1,2,1]
|
|
2040
|
+
sage: SC = SubwordComplex(Q, w)
|
|
2041
|
+
sage: F = SC([1,2])
|
|
2042
|
+
sage: _extended_root_configuration_indices(W, Q, F)
|
|
2043
|
+
[0, 2, 3, 2, 1]
|
|
2044
|
+
|
|
2045
|
+
sage: W = CoxeterGroup(['A',2])
|
|
2046
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
2047
|
+
sage: Q = [1,2,1,2,1]
|
|
2048
|
+
sage: SC = SubwordComplex(Q, w)
|
|
2049
|
+
sage: F = SC([1,2])
|
|
2050
|
+
sage: _extended_root_configuration_indices(W, Q, F)
|
|
2051
|
+
[0, 1, 3, 1, 2]
|
|
2052
|
+
"""
|
|
2053
|
+
V_roots = []
|
|
2054
|
+
pi = W.one()
|
|
2055
|
+
for i, wi in enumerate(Q):
|
|
2056
|
+
V_roots.append(pi.action_on_root_indices(W.simple_root_index(wi),
|
|
2057
|
+
side='left'))
|
|
2058
|
+
if i not in F:
|
|
2059
|
+
pi = pi.apply_simple_reflection_right(wi)
|
|
2060
|
+
return V_roots
|
|
2061
|
+
|
|
2062
|
+
|
|
2063
|
+
def _greedy_flip_algorithm(Q, w):
|
|
2064
|
+
"""
|
|
2065
|
+
INPUT:
|
|
2066
|
+
|
|
2067
|
+
- ``Q`` -- a word in a Coxeter group `W`
|
|
2068
|
+
- ``w`` -- an element of `W`
|
|
2069
|
+
|
|
2070
|
+
OUTPUT: a pair: the list of facets and the list of extended root conf. indices
|
|
2071
|
+
|
|
2072
|
+
EXAMPLES::
|
|
2073
|
+
|
|
2074
|
+
sage: from sage.combinat.subword_complex import _greedy_flip_algorithm
|
|
2075
|
+
|
|
2076
|
+
sage: # optional - gap3
|
|
2077
|
+
sage: W = ReflectionGroup(['A',2])
|
|
2078
|
+
sage: Q = [1,2,1,2,1]
|
|
2079
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
2080
|
+
sage: _greedy_flip_algorithm(Q, w)
|
|
2081
|
+
([{0, 1}, [1, 2], [2, 3], [3, 4], [0, 4]],
|
|
2082
|
+
[[0, 1, 0, 2, 1],
|
|
2083
|
+
[0, 2, 3, 2, 1],
|
|
2084
|
+
[0, 2, 1, 5, 1],
|
|
2085
|
+
[0, 2, 1, 3, 4],
|
|
2086
|
+
[0, 1, 2, 0, 4]])
|
|
2087
|
+
|
|
2088
|
+
sage: W = CoxeterGroup(['A',2])
|
|
2089
|
+
sage: Q = [1,2,1,2,1]
|
|
2090
|
+
sage: w = W.from_reduced_word([1,2,1])
|
|
2091
|
+
sage: _greedy_flip_algorithm(Q, w)
|
|
2092
|
+
([{0, 1}, [1, 2], [2, 3], [3, 4], [0, 4]],
|
|
2093
|
+
[[0, 2, 0, 1, 2],
|
|
2094
|
+
[0, 1, 3, 1, 2],
|
|
2095
|
+
[0, 1, 2, 4, 2],
|
|
2096
|
+
[0, 1, 2, 3, 5],
|
|
2097
|
+
[0, 2, 1, 0, 5]])
|
|
2098
|
+
"""
|
|
2099
|
+
W = w.parent()
|
|
2100
|
+
F = _greedy_facet(Q, w, side='positive')
|
|
2101
|
+
R = _extended_root_configuration_indices(W, Q, F)
|
|
2102
|
+
facet_list = [F]
|
|
2103
|
+
extended_root_conf_indices_list = [R]
|
|
2104
|
+
flip_to_ancestors = [-1]
|
|
2105
|
+
next_index = 0
|
|
2106
|
+
while flip_to_ancestors:
|
|
2107
|
+
has_new_child = False
|
|
2108
|
+
for i in sorted(F):
|
|
2109
|
+
if (not has_new_child) and (i >= next_index):
|
|
2110
|
+
j = _flip_c(W, F, R, i, side='positive')
|
|
2111
|
+
if j != i:
|
|
2112
|
+
flip_to_ancestors.append(j)
|
|
2113
|
+
next_index = i + 1
|
|
2114
|
+
has_new_child = True
|
|
2115
|
+
facet_list.append(list(F))
|
|
2116
|
+
extended_root_conf_indices_list.append(list(R))
|
|
2117
|
+
if not has_new_child:
|
|
2118
|
+
i = flip_to_ancestors.pop()
|
|
2119
|
+
if i != -1:
|
|
2120
|
+
j = _flip_c(W, F, R, i, side='negative')
|
|
2121
|
+
next_index = j + 1
|
|
2122
|
+
return facet_list, extended_root_conf_indices_list
|