meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,958 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "# output is suppressed but normally would spew out all the edc loading messages\n",
12
- "\n",
13
- "import os\n",
14
- "from pathlib import Path\n",
15
- "from datetime import datetime\n",
16
- "import pandas as pd\n",
17
- "import numpy as np\n",
18
- "import math\n",
19
- "# import matplotlxib.pyplot as plt\n",
20
- "# import seaborn as sns\n",
21
- "import scipy.stats as stats\n",
22
- "\n",
23
- "from dj_notebook import activate\n",
24
- "\n",
25
- "env_file = os.environ[\"META_ENV\"]\n",
26
- "documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
27
- "report_folder = Path(documents_folder)\n",
28
- "\n",
29
- "plus = activate(dotenv_file=env_file)\n"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "1",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "import itertools\n",
40
- "from meta_analytics.dataframes import GlucoseEndpointsByDate, get_eos_df, get_screening_df\n",
41
- "from meta_analytics.dataframes.screening import get_glucose_tested_only_df\n"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "2",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "\n",
52
- "df = get_screening_df()\n"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": null,
58
- "id": "3",
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "# unwilling to stay or not living nearby\n",
63
- "df[(df[\"reasons_ineligible_part_one\"].str.contains(\"nearby\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))].reasons_ineligible_part_one.value_counts(dropna=False)\n"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": null,
69
- "id": "4",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "df[(df[\"reasons_ineligible_part_one\"].str.contains(\"nearby\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))].reasons_ineligible_part_one.count()"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "5",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "df[\n",
84
- "(df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
85
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
86
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
87
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
88
- "].reasons_ineligible_part_one.count()"
89
- ]
90
- },
91
- {
92
- "cell_type": "code",
93
- "execution_count": null,
94
- "id": "6",
95
- "metadata": {},
96
- "outputs": [],
97
- "source": [
98
- "# VL not suppressed or not measured within last 6-12\n",
99
- "df[\n",
100
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
101
- "(df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
102
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
103
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
104
- "].reasons_ineligible_part_one.count()"
105
- ]
106
- },
107
- {
108
- "cell_type": "code",
109
- "execution_count": null,
110
- "id": "7",
111
- "metadata": {},
112
- "outputs": [],
113
- "source": [
114
- "# pregnant (unconfirmed)\n",
115
- "df[\n",
116
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
117
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
118
- "(df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
119
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
120
- "].reasons_ineligible_part_one.counts()"
121
- ]
122
- },
123
- {
124
- "cell_type": "code",
125
- "execution_count": null,
126
- "id": "8",
127
- "metadata": {},
128
- "outputs": [],
129
- "source": [
130
- "# META 2 participant\n",
131
- "df[\n",
132
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
133
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
134
- "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
135
- "(df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
136
- "].reasons_ineligible_part_one.count()"
137
- ]
138
- },
139
- {
140
- "cell_type": "code",
141
- "execution_count": null,
142
- "id": "9",
143
- "metadata": {},
144
- "outputs": [],
145
- "source": [
146
- "prods = list(itertools.product([\"Yes\", \"No\", \"tbd\"], repeat=3))\n",
147
- "dfs = []\n",
148
- "for p in prods:\n",
149
- " if p[0] == \"tbd\":\n",
150
- " continue\n",
151
- " dfs.append(\n",
152
- " pd.DataFrame([[\n",
153
- " p[0], \n",
154
- " p[1],\n",
155
- " p[2],\n",
156
- " df[\n",
157
- " (df.eligible_part_one==p[0]) & \n",
158
- " (df.eligible_part_two==p[1]) &\n",
159
- " (df.eligible_part_three==p[2])\n",
160
- " ].eligible_part_three.count()]],\n",
161
- " columns=[\"p1\", \"p2\", \"p3\", \"count\"]))\n",
162
- "\n",
163
- "df_eligibility = pd.concat(dfs, ignore_index=True)\n",
164
- "df_eligibility"
165
- ]
166
- },
167
- {
168
- "cell_type": "code",
169
- "execution_count": null,
170
- "id": "10",
171
- "metadata": {},
172
- "outputs": [],
173
- "source": []
174
- },
175
- {
176
- "cell_type": "code",
177
- "execution_count": null,
178
- "id": "11",
179
- "metadata": {},
180
- "outputs": [],
181
- "source": [
182
- "# assessed part one only\n",
183
- "p1 = df_eligibility[df_eligibility.p2.isin([\"tbd\"])][\"count\"].sum()\n",
184
- "p1"
185
- ]
186
- },
187
- {
188
- "cell_type": "code",
189
- "execution_count": null,
190
- "id": "12",
191
- "metadata": {},
192
- "outputs": [],
193
- "source": [
194
- "# assessed part one and part two\n",
195
- "p12 = df_eligibility[\n",
196
- " (df_eligibility.p1.isin([\"Yes\", \"No\"])) & \n",
197
- " (df_eligibility.p2.isin([\"Yes\", \"No\"])) & \n",
198
- " (df_eligibility.p3 == \"tbd\")\n",
199
- "][\"count\"].sum()\n",
200
- "p12"
201
- ]
202
- },
203
- {
204
- "cell_type": "code",
205
- "execution_count": null,
206
- "id": "13",
207
- "metadata": {},
208
- "outputs": [],
209
- "source": [
210
- "# assessed part one, part two, part three\n",
211
- "p123 = df_eligibility[\n",
212
- " (df_eligibility.p1.isin([\"Yes\", \"No\"])) & \n",
213
- " (df_eligibility.p2.isin([\"Yes\", \"No\"])) & \n",
214
- " (df_eligibility.p3 != \"tbd\")\n",
215
- "][\"count\"].sum()\n",
216
- "p123"
217
- ]
218
- },
219
- {
220
- "cell_type": "code",
221
- "execution_count": null,
222
- "id": "14",
223
- "metadata": {},
224
- "outputs": [],
225
- "source": [
226
- "assert p1+p12+p123 == 10574"
227
- ]
228
- },
229
- {
230
- "cell_type": "code",
231
- "execution_count": null,
232
- "id": "15",
233
- "metadata": {},
234
- "outputs": [],
235
- "source": [
236
- "p12 + p123"
237
- ]
238
- },
239
- {
240
- "cell_type": "code",
241
- "execution_count": null,
242
- "id": "16",
243
- "metadata": {},
244
- "outputs": [],
245
- "source": [
246
- "cond = (df[\"eligible_part_one\"] == \"Yes\") \n",
247
- "df[cond].count()"
248
- ]
249
- },
250
- {
251
- "cell_type": "code",
252
- "execution_count": null,
253
- "id": "17",
254
- "metadata": {},
255
- "outputs": [],
256
- "source": [
257
- "# 9706 evaluated for part one and two\n",
258
- "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]))\n",
259
- "df[cond].count()"
260
- ]
261
- },
262
- {
263
- "cell_type": "code",
264
- "execution_count": null,
265
- "id": "18",
266
- "metadata": {},
267
- "outputs": [],
268
- "source": []
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": null,
273
- "id": "19",
274
- "metadata": {},
275
- "outputs": [],
276
- "source": []
277
- },
278
- {
279
- "cell_type": "code",
280
- "execution_count": null,
281
- "id": "20",
282
- "metadata": {},
283
- "outputs": [],
284
- "source": []
285
- },
286
- {
287
- "cell_type": "code",
288
- "execution_count": null,
289
- "id": "21",
290
- "metadata": {},
291
- "outputs": [],
292
- "source": [
293
- "# 9706 evaluated for part one and two\n",
294
- "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]))\n",
295
- "df[cond].eligible_part_three.value_counts()\n",
296
- "\n"
297
- ]
298
- },
299
- {
300
- "cell_type": "code",
301
- "execution_count": null,
302
- "id": "22",
303
- "metadata": {},
304
- "outputs": [],
305
- "source": []
306
- },
307
- {
308
- "cell_type": "code",
309
- "execution_count": null,
310
- "id": "23",
311
- "metadata": {},
312
- "outputs": [],
313
- "source": []
314
- },
315
- {
316
- "cell_type": "code",
317
- "execution_count": null,
318
- "id": "24",
319
- "metadata": {},
320
- "outputs": [],
321
- "source": [
322
- "df_glu = get_glucose_tested_only_df()"
323
- ]
324
- },
325
- {
326
- "cell_type": "code",
327
- "execution_count": null,
328
- "id": "25",
329
- "metadata": {},
330
- "outputs": [],
331
- "source": [
332
- "df_glu.eligible_part_three.value_counts()\n"
333
- ]
334
- },
335
- {
336
- "cell_type": "code",
337
- "execution_count": null,
338
- "id": "26",
339
- "metadata": {},
340
- "outputs": [],
341
- "source": [
342
- "cond = (df[\"eligible_part_one\"].isin([\"Yes\"])) & (df[\"eligible_part_two\"].isin([\"Yes\"]))\n",
343
- "df[cond].agree_to_p3.value_counts()"
344
- ]
345
- },
346
- {
347
- "cell_type": "code",
348
- "execution_count": null,
349
- "id": "27",
350
- "metadata": {},
351
- "outputs": [],
352
- "source": [
353
- "df_glu.gender.value_counts()"
354
- ]
355
- },
356
- {
357
- "cell_type": "code",
358
- "execution_count": null,
359
- "id": "28",
360
- "metadata": {},
361
- "outputs": [],
362
- "source": [
363
- "df_glu = df_glu.set_index(\"screening_identifier\")"
364
- ]
365
- },
366
- {
367
- "cell_type": "code",
368
- "execution_count": null,
369
- "id": "29",
370
- "metadata": {},
371
- "outputs": [],
372
- "source": [
373
- "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]) & (df[\"has_dm\"]==\"No\"))\n",
374
- "df[cond].eligible_part_three.count()\n"
375
- ]
376
- },
377
- {
378
- "cell_type": "code",
379
- "execution_count": null,
380
- "id": "30",
381
- "metadata": {},
382
- "outputs": [],
383
- "source": [
384
- "df2 = df[cond].copy()\n",
385
- "df2 = df2.reset_index(drop=True)\n",
386
- "df2 = df2.set_index(\"screening_identifier\")\n",
387
- "df2.count()"
388
- ]
389
- },
390
- {
391
- "cell_type": "code",
392
- "execution_count": null,
393
- "id": "31",
394
- "metadata": {},
395
- "outputs": [],
396
- "source": [
397
- "df2 = df2.drop(index=df_glu.index)"
398
- ]
399
- },
400
- {
401
- "cell_type": "code",
402
- "execution_count": null,
403
- "id": "32",
404
- "metadata": {},
405
- "outputs": [],
406
- "source": [
407
- "df2.count()"
408
- ]
409
- },
410
- {
411
- "cell_type": "code",
412
- "execution_count": null,
413
- "id": "33",
414
- "metadata": {},
415
- "outputs": [],
416
- "source": [
417
- "df2.gender.value_counts()"
418
- ]
419
- },
420
- {
421
- "cell_type": "code",
422
- "execution_count": null,
423
- "id": "34",
424
- "metadata": {},
425
- "outputs": [],
426
- "source": [
427
- "df2[df2[\"gender\"] == \"F\"].age_in_years.describe()"
428
- ]
429
- },
430
- {
431
- "cell_type": "code",
432
- "execution_count": null,
433
- "id": "35",
434
- "metadata": {},
435
- "outputs": [],
436
- "source": [
437
- "df_glu[df_glu[\"gender\"] == \"F\"].age_in_years.describe()"
438
- ]
439
- },
440
- {
441
- "cell_type": "code",
442
- "execution_count": null,
443
- "id": "36",
444
- "metadata": {},
445
- "outputs": [],
446
- "source": [
447
- "df_glu.age_in_years.describe()"
448
- ]
449
- },
450
- {
451
- "cell_type": "code",
452
- "execution_count": null,
453
- "id": "37",
454
- "metadata": {},
455
- "outputs": [],
456
- "source": [
457
- "df_glu[df_glu[\"gender\"] == \"M\"].age_in_years.describe()"
458
- ]
459
- },
460
- {
461
- "cell_type": "code",
462
- "execution_count": null,
463
- "id": "38",
464
- "metadata": {},
465
- "outputs": [],
466
- "source": [
467
- "import scipy.stats as stats\n",
468
- "df_glu[(df_glu[\"gender\"] == \"F\")].count()"
469
- ]
470
- },
471
- {
472
- "cell_type": "code",
473
- "execution_count": null,
474
- "id": "39",
475
- "metadata": {},
476
- "outputs": [],
477
- "source": [
478
- "cond_fasting = (df_glu.fasting == \"Yes\") & (df_glu.fasting_fbg_hrs >= 8.0)\n",
479
- "cond_f = (df_glu[\"gender\"] == \"F\")\n",
480
- "cond_m = (df_glu[\"gender\"] == \"M\")\n",
481
- "\n",
482
- "df_glu[(df_glu.fasting == \"Yes\") & (df_glu.fasting_fbg_hrs >= 8.0)].gender.value_counts()"
483
- ]
484
- },
485
- {
486
- "cell_type": "code",
487
- "execution_count": null,
488
- "id": "40",
489
- "metadata": {},
490
- "outputs": [],
491
- "source": [
492
- "df_glu[cond_fasting & cond_f].count()\n",
493
- "df_glu[cond_fasting & cond_f & (df_glu.ogtt.notna())].count()"
494
- ]
495
- },
496
- {
497
- "cell_type": "code",
498
- "execution_count": null,
499
- "id": "41",
500
- "metadata": {},
501
- "outputs": [],
502
- "source": []
503
- },
504
- {
505
- "cell_type": "code",
506
- "execution_count": null,
507
- "id": "42",
508
- "metadata": {},
509
- "outputs": [],
510
- "source": [
511
- "df_glu[\"fbg_threshold\"] = df_glu[cond_fasting].fbg >= 7.0\n",
512
- "df_glu[\"ogtt_threshold\"] = df_glu[cond_fasting].ogtt >= 11.1\n"
513
- ]
514
- },
515
- {
516
- "cell_type": "code",
517
- "execution_count": null,
518
- "id": "43",
519
- "metadata": {},
520
- "outputs": [],
521
- "source": [
522
- "df_glu_female = df_glu[cond_f & cond_fasting][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()"
523
- ]
524
- },
525
- {
526
- "cell_type": "code",
527
- "execution_count": null,
528
- "id": "44",
529
- "metadata": {},
530
- "outputs": [],
531
- "source": [
532
- "assert df_glu_female[\"count\"].sum() == 4201"
533
- ]
534
- },
535
- {
536
- "cell_type": "code",
537
- "execution_count": null,
538
- "id": "45",
539
- "metadata": {},
540
- "outputs": [],
541
- "source": [
542
- "assert df_glu_female[df_glu_female.fbg_threshold == True][\"count\"].sum() == 534"
543
- ]
544
- },
545
- {
546
- "cell_type": "code",
547
- "execution_count": null,
548
- "id": "46",
549
- "metadata": {},
550
- "outputs": [],
551
- "source": [
552
- "assert df_glu_female[df_glu_female.ogtt_threshold == True][\"count\"].sum() == 148"
553
- ]
554
- },
555
- {
556
- "cell_type": "code",
557
- "execution_count": null,
558
- "id": "47",
559
- "metadata": {},
560
- "outputs": [],
561
- "source": [
562
- "assert df_glu[cond_f & cond_fasting & (df_glu.fbg >= 7.0)][\"gender\"].count() == 534\n",
563
- "assert df_glu_female[df_glu_female.fbg_threshold == True][\"count\"].sum() == 534"
564
- ]
565
- },
566
- {
567
- "cell_type": "code",
568
- "execution_count": null,
569
- "id": "48",
570
- "metadata": {},
571
- "outputs": [],
572
- "source": []
573
- },
574
- {
575
- "cell_type": "code",
576
- "execution_count": null,
577
- "id": "49",
578
- "metadata": {},
579
- "outputs": [],
580
- "source": []
581
- },
582
- {
583
- "cell_type": "code",
584
- "execution_count": null,
585
- "id": "50",
586
- "metadata": {},
587
- "outputs": [],
588
- "source": []
589
- },
590
- {
591
- "cell_type": "code",
592
- "execution_count": null,
593
- "id": "51",
594
- "metadata": {},
595
- "outputs": [],
596
- "source": []
597
- },
598
- {
599
- "cell_type": "code",
600
- "execution_count": null,
601
- "id": "52",
602
- "metadata": {},
603
- "outputs": [],
604
- "source": []
605
- },
606
- {
607
- "cell_type": "code",
608
- "execution_count": null,
609
- "id": "53",
610
- "metadata": {},
611
- "outputs": [],
612
- "source": [
613
- "# men fbg\n",
614
- "df_glu[cond_m & cond_fasting][[\"fbg\", \"ogtt\"]].count()"
615
- ]
616
- },
617
- {
618
- "cell_type": "code",
619
- "execution_count": null,
620
- "id": "54",
621
- "metadata": {},
622
- "outputs": [],
623
- "source": [
624
- "# men fbg\n",
625
- "assert df_glu[cond_m & cond_fasting & (df_glu.fbg >= 7.0)][\"gender\"].count() == 194"
626
- ]
627
- },
628
- {
629
- "cell_type": "code",
630
- "execution_count": null,
631
- "id": "55",
632
- "metadata": {},
633
- "outputs": [],
634
- "source": [
635
- "# men fbg\n",
636
- "194/1414"
637
- ]
638
- },
639
- {
640
- "cell_type": "code",
641
- "execution_count": null,
642
- "id": "56",
643
- "metadata": {},
644
- "outputs": [],
645
- "source": [
646
- "# men ogtt\n",
647
- "assert df_glu[cond_m & cond_fasting & (df_glu.ogtt >= 11.1)][\"gender\"].count() == 76"
648
- ]
649
- },
650
- {
651
- "cell_type": "code",
652
- "execution_count": null,
653
- "id": "57",
654
- "metadata": {},
655
- "outputs": [],
656
- "source": [
657
- "76/1393"
658
- ]
659
- },
660
- {
661
- "cell_type": "code",
662
- "execution_count": null,
663
- "id": "58",
664
- "metadata": {},
665
- "outputs": [],
666
- "source": [
667
- "\n",
668
- "df_glu_male = df_glu[cond_m & cond_fasting & (df_glu.)][\n",
669
- "[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()\n"
670
- ]
671
- },
672
- {
673
- "cell_type": "code",
674
- "execution_count": null,
675
- "id": "59",
676
- "metadata": {},
677
- "outputs": [],
678
- "source": [
679
- "df_glu_male"
680
- ]
681
- },
682
- {
683
- "cell_type": "code",
684
- "execution_count": null,
685
- "id": "60",
686
- "metadata": {},
687
- "outputs": [],
688
- "source": [
689
- "assert df_glu_male[\"count\"].sum() == 1414"
690
- ]
691
- },
692
- {
693
- "cell_type": "code",
694
- "execution_count": null,
695
- "id": "61",
696
- "metadata": {},
697
- "outputs": [],
698
- "source": []
699
- },
700
- {
701
- "cell_type": "code",
702
- "execution_count": null,
703
- "id": "62",
704
- "metadata": {},
705
- "outputs": [],
706
- "source": []
707
- },
708
- {
709
- "cell_type": "code",
710
- "execution_count": null,
711
- "id": "63",
712
- "metadata": {},
713
- "outputs": [],
714
- "source": []
715
- },
716
- {
717
- "cell_type": "code",
718
- "execution_count": null,
719
- "id": "64",
720
- "metadata": {},
721
- "outputs": [],
722
- "source": [
723
- "from scipy.stats.contingency import odds_ratio\n",
724
- "\n",
725
- "# female\n",
726
- "df_glu_female"
727
- ]
728
- },
729
- {
730
- "cell_type": "code",
731
- "execution_count": null,
732
- "id": "65",
733
- "metadata": {},
734
- "outputs": [],
735
- "source": [
736
- "# female\n",
737
- "res = odds_ratio([[98, 436], [50,3617]])\n",
738
- "res.statistic"
739
- ]
740
- },
741
- {
742
- "cell_type": "code",
743
- "execution_count": null,
744
- "id": "66",
745
- "metadata": {},
746
- "outputs": [],
747
- "source": [
748
- "# male\n",
749
- "df_glu_male"
750
- ]
751
- },
752
- {
753
- "cell_type": "code",
754
- "execution_count": null,
755
- "id": "67",
756
- "metadata": {},
757
- "outputs": [],
758
- "source": [
759
- "# male\n",
760
- "df_glu_male\n",
761
- "res = odds_ratio([[44, 32], [150,1188]])\n",
762
- "res.statistic"
763
- ]
764
- },
765
- {
766
- "cell_type": "code",
767
- "execution_count": null,
768
- "id": "68",
769
- "metadata": {},
770
- "outputs": [],
771
- "source": [
772
- "# female\n",
773
- "res.confidence_interval(confidence_level=0.95)"
774
- ]
775
- },
776
- {
777
- "cell_type": "code",
778
- "execution_count": null,
779
- "id": "69",
780
- "metadata": {},
781
- "outputs": [],
782
- "source": [
783
- "res.confidence_interval(confidence_level=0.95)"
784
- ]
785
- },
786
- {
787
- "cell_type": "code",
788
- "execution_count": null,
789
- "id": "70",
790
- "metadata": {},
791
- "outputs": [],
792
- "source": [
793
- "df_glu[\"ogtt\"].dtype"
794
- ]
795
- },
796
- {
797
- "cell_type": "code",
798
- "execution_count": null,
799
- "id": "71",
800
- "metadata": {},
801
- "outputs": [],
802
- "source": [
803
- "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.notna()) & ((df_glu.fbg>=7.0) | (df_glu.ogtt>=11.1))].count()\n",
804
- "\n",
805
- "# when ogtt not done \n",
806
- "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.isna())].fbg.describe()\n",
807
- "\n",
808
- "# we never have ogtt w/o fbg\n",
809
- "# df_glu[cond_f & cond_fasting & (df_glu.fbg.isna())].ogtt.describe()\n",
810
- "df_glu2 = get_glucose_tested_only_df()\n",
811
- "cond_fasting2 = (df_glu2.fasting == \"Yes\") & (df_glu2.fasting_fbg_hrs >= 8.0)\n",
812
- "\n",
813
- "# df_glu = df_glu.reset_index(drop=False)\n",
814
- "def dx(row):\n",
815
- " # print((row.fbg>=7.0) & (row.ogtt>=11.1))\n",
816
- " # print(row.fbg, row.ogtt)\n",
817
- " if (row.fbg>=7.0) & (row.ogtt>=11.1):\n",
818
- " ret = \"fbg_ogtt\"\n",
819
- " elif (row.fbg>=7.0) & (row.ogtt<11.1):\n",
820
- " ret = \"fbg_only\"\n",
821
- " elif (row.fbg<7.0) & (row.ogtt>=11.1):\n",
822
- " ret = \"ogtt_only\"\n",
823
- " elif (row.fbg<7.0) & (row.ogtt<11.1):\n",
824
- " ret = \"neither\"\n",
825
- " else:\n",
826
- " ret = \"error\"\n",
827
- " return ret\n",
828
- " \n",
829
- "df_glu2[\"glucose\"] = \"\" \n",
830
- "df_glu2[\"glucose\"] = df_glu2[cond_fasting2].apply(lambda r: dx(r), axis=1)\n",
831
- "df_glu2[\"glucose\"].value_counts()\n",
832
- "# df_glu[cond_fasting & cond_f]\n"
833
- ]
834
- },
835
- {
836
- "cell_type": "code",
837
- "execution_count": null,
838
- "id": "72",
839
- "metadata": {},
840
- "outputs": [],
841
- "source": []
842
- },
843
- {
844
- "cell_type": "code",
845
- "execution_count": null,
846
- "id": "73",
847
- "metadata": {},
848
- "outputs": [],
849
- "source": [
850
- "df_glu[cond_m & cond_fasting & ((df_glu.fbg>=7.0) | (df_glu.ogtt>=11.1))].count()"
851
- ]
852
- },
853
- {
854
- "cell_type": "code",
855
- "execution_count": null,
856
- "id": "74",
857
- "metadata": {},
858
- "outputs": [],
859
- "source": [
860
- "df_glu_female = df_glu[\n",
861
- " cond_f & \n",
862
- " cond_fasting & \n",
863
- " ((df_glu.fbg>=7.0) | (df_glu.fbg.isna()) | (df_glu.ogtt>=11.1) | (df_glu.ogtt.isna()) )\n",
864
- "][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()\n",
865
- "df_glu_female"
866
- ]
867
- },
868
- {
869
- "cell_type": "code",
870
- "execution_count": null,
871
- "id": "75",
872
- "metadata": {},
873
- "outputs": [],
874
- "source": [
875
- "res = odds_ratio([[98, 50], [436,3619]])\n",
876
- "res.statistic"
877
- ]
878
- },
879
- {
880
- "cell_type": "code",
881
- "execution_count": null,
882
- "id": "76",
883
- "metadata": {},
884
- "outputs": [],
885
- "source": [
886
- "res.confidence_interval(confidence_level=0.95)"
887
- ]
888
- },
889
- {
890
- "cell_type": "code",
891
- "execution_count": null,
892
- "id": "77",
893
- "metadata": {},
894
- "outputs": [],
895
- "source": [
896
- "import numpy as np\n",
897
- "from scipy.stats import hypergeom\n",
898
- "table = np.array([[98, 436], [50, 3619]])\n",
899
- "M = table.sum()\n",
900
- "n = table[0].sum()\n",
901
- "N = table[:, 0].sum()\n",
902
- "start, end = hypergeom.support(M, n, N)\n",
903
- "hypergeom.pmf(np.arange(start, end+1), M, n, N)\n"
904
- ]
905
- },
906
- {
907
- "cell_type": "code",
908
- "execution_count": null,
909
- "id": "78",
910
- "metadata": {},
911
- "outputs": [],
912
- "source": [
913
- "from scipy.stats import fisher_exact\n",
914
- "res = fisher_exact(table, alternative='two-sided')\n",
915
- "res.pvalue"
916
- ]
917
- },
918
- {
919
- "cell_type": "code",
920
- "execution_count": null,
921
- "id": "79",
922
- "metadata": {},
923
- "outputs": [],
924
- "source": [
925
- "res.statistic"
926
- ]
927
- },
928
- {
929
- "cell_type": "code",
930
- "execution_count": null,
931
- "id": "80",
932
- "metadata": {},
933
- "outputs": [],
934
- "source": []
935
- }
936
- ],
937
- "metadata": {
938
- "kernelspec": {
939
- "display_name": "Python 3 (ipykernel)",
940
- "language": "python",
941
- "name": "python3"
942
- },
943
- "language_info": {
944
- "codemirror_mode": {
945
- "name": "ipython",
946
- "version": 3
947
- },
948
- "file_extension": ".py",
949
- "mimetype": "text/x-python",
950
- "name": "python",
951
- "nbconvert_exporter": "python",
952
- "pygments_lexer": "ipython3",
953
- "version": "3.12.4"
954
- }
955
- },
956
- "nbformat": 4,
957
- "nbformat_minor": 5
958
- }