meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of meta-edc might be problematic. Click here for more details.
- meta_ae/action_items.py +2 -1
- meta_ae/admin/__init__.py +11 -0
- meta_ae/admin/ae_susar_admin.py +1 -1
- meta_ae/admin/death_report_admin.py +1 -1
- meta_ae/admin/modeladmin_mixins.py +10 -12
- meta_ae/baker_recipes.py +3 -3
- meta_ae/forms/__init__.py +13 -0
- meta_ae/forms/modelform_mixins.py +2 -2
- meta_ae/migrations/0001_initial.py +27 -27
- meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
- meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
- meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
- meta_ae/model_mixins/__init__.py +2 -0
- meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
- meta_ae/model_mixins/death_report_model_mixin.py +3 -3
- meta_ae/models/__init__.py +13 -0
- meta_ae/models/hospitalization.py +3 -3
- meta_ae/pdf_reports/__init__.py +2 -0
- meta_analytics/.DS_Store +0 -0
- meta_analytics/dataframes/__init__.py +24 -0
- meta_analytics/dataframes/get_eos_df.py +1 -2
- meta_analytics/dataframes/get_glucose_df.py +6 -7
- meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
- meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
- meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
- meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
- meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
- meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
- meta_analytics/dataframes/screening/__init__.py +2 -0
- meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
- meta_analytics/dataframes/screening/get_screening_df.py +6 -10
- meta_analytics/dataframes/utils.py +3 -8
- meta_analytics/get_tables.py +1 -2
- meta_analytics/tables/__init__.py +2 -0
- meta_consent/action_items.py +2 -1
- meta_consent/admin/__init__.py +6 -0
- meta_consent/admin/actions/__init__.py +2 -0
- meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
- meta_consent/admin/list_filters.py +2 -2
- meta_consent/admin/modeladmin_mixins.py +3 -4
- meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
- meta_consent/baker_recipes.py +7 -8
- meta_consent/form_validators/__init__.py +2 -0
- meta_consent/forms/__init__.py +7 -0
- meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
- meta_consent/forms/subject_reconsent_form.py +4 -4
- meta_consent/management/commands/create_missing_prescriptions.py +4 -2
- meta_consent/migrations/0001_initial.py +9 -9
- meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
- meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
- meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
- meta_consent/models/__init__.py +9 -0
- meta_consent/models/model_mixins.py +1 -2
- meta_consent/models/signals.py +9 -10
- meta_consent/models/subject_consent.py +1 -1
- meta_consent/models/subject_reconsent.py +3 -3
- meta_dashboard/patterns.py +1 -1
- meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
- meta_dashboard/view_utils/__init__.py +7 -0
- meta_dashboard/view_utils/subject_screening_button.py +9 -16
- meta_dashboard/views/__init__.py +8 -0
- meta_dashboard/views/ae/__init__.py +2 -0
- meta_dashboard/views/ae/ae_listboard_view.py +1 -1
- meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
- meta_dashboard/views/screening/__init__.py +2 -0
- meta_dashboard/views/subject/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
- meta_dashboard/views/subject/listboard/__init__.py +2 -0
- meta_edc/__init__.py +5 -9
- meta_edc/celery.py +1 -1
- meta_edc/celery_live.py +1 -1
- meta_edc/celery_uat.py +1 -1
- meta_edc/management/commands/update_forms_reference.py +10 -12
- meta_edc/settings/debug.py +5 -4
- meta_edc/settings/defaults.py +18 -3
- meta_edc/settings/live.py +3 -1
- meta_edc/settings/logging.py +9 -4
- meta_edc/settings/minimal.py +4 -5
- meta_edc/settings/uat.py +3 -1
- meta_edc/views/__init__.py +2 -0
- meta_edc-1.1.12.dist-info/METADATA +174 -0
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
- meta_edc-1.1.12.dist-info/WHEEL +4 -0
- meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
- meta_pharmacy/admin/__init__.py +5 -0
- meta_pharmacy/admin/substitutions_admin.py +2 -2
- meta_pharmacy/forms/__init__.py +2 -0
- meta_pharmacy/forms/substitutions_form.py +6 -4
- meta_pharmacy/labels/__init__.py +4 -2
- meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
- meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
- meta_pharmacy/labels/label_data.py +1 -2
- meta_pharmacy/labels/print_sheets.py +4 -6
- meta_pharmacy/migrations/0002_initial.py +7 -20
- meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
- meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
- meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
- meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
- meta_pharmacy/models/__init__.py +7 -0
- meta_pharmacy/models/label_data.py +4 -5
- meta_pharmacy/models/substitutions.py +3 -3
- meta_pharmacy/prepare_meta_pharmacy.py +1 -1
- meta_pharmacy/utils/__init__.py +2 -0
- meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
- meta_prn/admin/__init__.py +16 -0
- meta_prn/admin/dm_referral_admin.py +2 -1
- meta_prn/admin/end_of_study_admin.py +6 -7
- meta_prn/admin/loss_to_followup_admin.py +3 -2
- meta_prn/admin/off_study_medication_admin.py +5 -6
- meta_prn/admin/offschedule_admin.py +5 -6
- meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
- meta_prn/admin/offschedule_postnatal_admin.py +7 -7
- meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
- meta_prn/admin/onschedule_admin.py +7 -8
- meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
- meta_prn/admin/pregnancy_notification_admin.py +5 -6
- meta_prn/admin/protocol_incident_admin.py +1 -1
- meta_prn/admin/subject_transfer_admin.py +1 -1
- meta_prn/baker_recipes.py +4 -4
- meta_prn/form_validators/__init__.py +5 -0
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/forms/__init__.py +13 -0
- meta_prn/migrations/0001_initial.py +25 -25
- meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
- meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
- meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
- meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
- meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
- meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
- meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
- meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
- meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
- meta_prn/models/__init__.py +20 -0
- meta_prn/models/offschedule.py +4 -4
- meta_prn/models/protocol_incident.py +1 -1
- meta_prn/models/subject_transfer.py +8 -0
- meta_rando/migrations/0001_initial.py +5 -5
- meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
- meta_reports/__init__.py +2 -0
- meta_reports/admin/__init__.py +16 -0
- meta_reports/admin/dbviews/__init__.py +13 -0
- meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
- meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
- meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
- meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
- meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
- meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
- meta_reports/admin/endpoints_admin.py +1 -1
- meta_reports/admin/last_imp_refill_admin.py +9 -9
- meta_reports/admin/list_filters.py +2 -2
- meta_reports/admin/modeladmin_mixins.py +9 -16
- meta_reports/death_report.py +1 -1
- meta_reports/forms/__init__.py +2 -0
- meta_reports/forms/missing_ogtt_note_form.py +2 -3
- meta_reports/management/commands/generate_endpoints.py +5 -4
- meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
- meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
- meta_reports/models/__init__.py +17 -0
- meta_reports/models/dbviews/__init__.py +14 -0
- meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
- meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
- meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
- meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
- meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
- meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
- meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
- meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
- meta_reports/models/endpoints.py +4 -4
- meta_reports/models/last_imp_refill.py +2 -3
- meta_reports/pdf_report.py +2 -2
- meta_reports/tasks.py +1 -1
- meta_screening/admin/__init__.py +8 -0
- meta_screening/admin/fieldsets.py +13 -14
- meta_screening/admin/list_filters.py +6 -4
- meta_screening/admin/screening_part_one_admin.py +1 -2
- meta_screening/admin/screening_part_three_admin.py +2 -3
- meta_screening/admin/screening_part_two_admin.py +7 -10
- meta_screening/admin/subject_refusal_admin.py +5 -3
- meta_screening/admin/subject_screening_admin.py +4 -4
- meta_screening/baker_recipes.py +9 -9
- meta_screening/eligibility/__init__.py +9 -0
- meta_screening/eligibility/eligibility.py +7 -7
- meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
- meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
- meta_screening/form_validators/__init__.py +8 -0
- meta_screening/forms/__init__.py +20 -0
- meta_screening/forms/field_lists.py +16 -17
- meta_screening/forms/screening_part_one_form.py +2 -2
- meta_screening/forms/screening_part_three_form.py +5 -3
- meta_screening/forms/screening_part_two_form.py +1 -5
- meta_screening/forms/subject_refusal_form.py +0 -4
- meta_screening/forms/subject_screening_form.py +0 -4
- meta_screening/migrations/0001_initial.py +15 -15
- meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
- meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
- meta_screening/model_mixins/__init__.py +8 -0
- meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
- meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
- meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
- meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
- meta_screening/models/__init__.py +9 -0
- meta_screening/models/icp_referral.py +5 -5
- meta_screening/models/signals.py +10 -11
- meta_screening/models/subject_refusal.py +1 -1
- meta_screening/models/subject_screening.py +1 -3
- meta_subject/action_items.py +13 -15
- meta_subject/admin/__init__.py +39 -0
- meta_subject/admin/birth_outcome_admin.py +4 -8
- meta_subject/admin/blood_results/__init__.py +9 -0
- meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
- meta_subject/admin/complications_glycemia_admin.py +1 -1
- meta_subject/admin/delivery_admin.py +7 -10
- meta_subject/admin/diabetes/__init__.py +2 -0
- meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
- meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
- meta_subject/admin/egfr_drop_notification_admin.py +1 -1
- meta_subject/admin/followup_examination_admin.py +10 -9
- meta_subject/admin/followup_vitals_admin.py +4 -5
- meta_subject/admin/glucose_admin.py +2 -4
- meta_subject/admin/glucose_fbg_admin.py +1 -3
- meta_subject/admin/health_economics/__init__.py +2 -0
- meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
- meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
- meta_subject/admin/hepatitis_test_admin.py +1 -1
- meta_subject/admin/list_filters.py +1 -1
- meta_subject/admin/mnsi_admin.py +7 -5
- meta_subject/admin/other_arv_regimens_admin.py +3 -3
- meta_subject/admin/patient_history_admin.py +4 -4
- meta_subject/admin/physical_exam_admin.py +1 -1
- meta_subject/admin/pregnancy_update_admin.py +1 -1
- meta_subject/admin/study_medication_admin.py +8 -15
- meta_subject/admin/subject_requisition_admin.py +1 -1
- meta_subject/admin/subject_visit_admin.py +1 -1
- meta_subject/admin/subject_visit_missed_admin.py +1 -1
- meta_subject/admin/urine_dipstick_test_admin.py +1 -1
- meta_subject/admin/urine_pregnancy_admin.py +1 -1
- meta_subject/baker_recipes.py +15 -15
- meta_subject/form_validators/__init__.py +11 -0
- meta_subject/form_validators/delivery_form_validator.py +2 -3
- meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
- meta_subject/form_validators/dm_followup_form_validator.py +7 -6
- meta_subject/form_validators/glucose_form_validator.py +3 -5
- meta_subject/forms/__init__.py +41 -0
- meta_subject/forms/blood_results/__init__.py +9 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
- meta_subject/forms/diabetes/__init__.py +2 -0
- meta_subject/forms/diabetes/dm_followup_form.py +2 -2
- meta_subject/forms/followup_vitals_form.py +3 -8
- meta_subject/forms/health_economics/__init__.py +2 -0
- meta_subject/forms/next_appointment_form.py +2 -3
- meta_subject/forms/slider_widget.py +1 -1
- meta_subject/forms/study_medication_form.py +11 -8
- meta_subject/management/commands/create_missing_refills.py +3 -3
- meta_subject/management/commands/create_missing_rx.py +1 -1
- meta_subject/management/commands/missed.py +20 -23
- meta_subject/metadata_rules/__init__.py +2 -0
- meta_subject/metadata_rules/predicates.py +25 -32
- meta_subject/migrations/0001_initial.py +61 -61
- meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
- meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
- meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
- meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
- meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
- meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
- meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
- meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
- meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
- meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
- meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
- meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
- meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
- meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
- meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
- meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
- meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
- meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
- meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
- meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
- meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
- meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
- meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
- meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
- meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
- meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
- meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
- meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
- meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
- meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
- meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
- meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
- meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
- meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
- meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
- meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
- meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
- meta_subject/model_mixins/__init__.py +8 -0
- meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
- meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
- meta_subject/models/__init__.py +48 -0
- meta_subject/models/birth_outcomes.py +3 -3
- meta_subject/models/blood_results/__init__.py +11 -0
- meta_subject/models/delivery.py +3 -3
- meta_subject/models/diabetes/__init__.py +2 -0
- meta_subject/models/diabetes/dm_endpoint.py +4 -4
- meta_subject/models/diabetes/dm_followup.py +3 -4
- meta_subject/models/diet_and_lifestyle.py +2 -2
- meta_subject/models/followup_examination.py +11 -11
- meta_subject/models/glucose.py +4 -4
- meta_subject/models/glucose_fbg.py +2 -3
- meta_subject/models/health_economics/__init__.py +2 -0
- meta_subject/models/health_economics/health_economics.py +7 -7
- meta_subject/models/health_economics/health_economics_update.py +2 -1
- meta_subject/models/hepatitis_test.py +2 -2
- meta_subject/models/other_arv_regimens_detail.py +1 -1
- meta_subject/models/patient_history.py +5 -6
- meta_subject/models/physical_exam.py +2 -2
- meta_subject/models/pregnancy_update.py +1 -1
- meta_subject/models/signals.py +14 -12
- meta_subject/models/subject_visit.py +1 -1
- meta_subject/models/urine_dipstick_test.py +1 -1
- meta_subject/models/urine_pregnancy.py +1 -1
- meta_visit_schedule/visit_schedules/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
- meta_ae/tests/holidays.csv +0 -15
- meta_ae/tests/tests/test_actions.py +0 -126
- meta_ae/tests/urls.py +0 -10
- meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
- meta_analytics/notebooks/anu.ipynb +0 -95
- meta_analytics/notebooks/appointment_planning.ipynb +0 -329
- meta_analytics/notebooks/arvs.ipynb +0 -103
- meta_analytics/notebooks/cleaning/__init__.py +0 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
- meta_analytics/notebooks/followup_examination.ipynb +0 -141
- meta_analytics/notebooks/hba1c.ipynb +0 -136
- meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
- meta_analytics/notebooks/incidence.ipynb +0 -232
- meta_analytics/notebooks/liver.ipynb +0 -389
- meta_analytics/notebooks/magreth.ipynb +0 -645
- meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
- meta_analytics/notebooks/pharmacy.ipynb +0 -1061
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
- meta_analytics/notebooks/qa.ipynb +0 -273
- meta_analytics/notebooks/steering.ipynb +0 -61
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
- meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
- meta_analytics/notebooks/ven.ipynb +0 -191
- meta_analytics/notebooks/vitals.ipynb +0 -263
- meta_analytics/tests/__init__.py +0 -0
- meta_analytics/tests/test_endpoints_by_date.py +0 -94
- meta_consent/tests/__init__.py +0 -0
- meta_consent/tests/holidays.csv +0 -15
- meta_consent/tests/tests/__init__.py +0 -0
- meta_consent/tests/tests/test_form_validators.py +0 -110
- meta_consent/tests/tests/test_subject_consent.py +0 -10
- meta_consent/tests/urls.py +0 -17
- meta_dashboard/tests/__init__.py +0 -0
- meta_dashboard/tests/admin.py +0 -22
- meta_dashboard/tests/holidays.csv +0 -15
- meta_dashboard/tests/tests/__init__.py +0 -0
- meta_dashboard/tests/urls.py +0 -55
- meta_edc/tests/__init__.py +0 -0
- meta_edc/tests/tests/__init__.py +0 -0
- meta_edc/tests/tests/test_endpoints.py +0 -555
- meta_edc-1.1.8.dist-info/METADATA +0 -767
- meta_edc-1.1.8.dist-info/WHEEL +0 -5
- meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
- meta_edc-1.1.8.dist-info/top_level.txt +0 -20
- meta_labs/tests/__init__.py +0 -0
- meta_labs/tests/test_labs.py +0 -27
- meta_labs/tests/test_reportables.py +0 -70
- meta_labs/tests/urls.py +0 -4
- meta_lists/tests/__init__.py +0 -0
- meta_lists/tests/test_lists.py +0 -8
- meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
- meta_prn/tests/__init__.py +0 -0
- meta_prn/tests/tests/__init__.py +0 -0
- meta_prn/tests/tests/test_actions.py +0 -97
- meta_prn/tests/tests/test_dm_referral.py +0 -203
- meta_prn/tests/tests/test_eos_events.py +0 -134
- meta_prn/tests/tests/test_manager_order.py +0 -14
- meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
- meta_prn/tests/urls.py +0 -10
- meta_rando/tests/__init__.py +0 -0
- meta_rando/tests/tests/__init__.py +0 -0
- meta_rando/tests/tests/test_randomizers.py +0 -57
- meta_reports/tests/__init__.py +0 -0
- meta_reports/tests/test_reports.py +0 -35
- meta_reports/tests/test_sql_gen.py +0 -5
- meta_reports/tests/urls.py +0 -4
- meta_screening/offline_models.py +0 -3
- meta_screening/tests/__init__.py +0 -0
- meta_screening/tests/holidays.csv +0 -15
- meta_screening/tests/meta_test_case_mixin.py +0 -234
- meta_screening/tests/options.py +0 -127
- meta_screening/tests/tests/__init__.py +0 -0
- meta_screening/tests/tests/test_forms.py +0 -404
- meta_screening/tests/tests/test_screening_part_one.py +0 -108
- meta_screening/tests/tests/test_screening_part_three.py +0 -433
- meta_screening/tests/tests/test_screening_part_two.py +0 -84
- meta_sites/tests/__init__.py +0 -0
- meta_sites/tests/test_sites.py +0 -12
- meta_sites/tests/urls.py +0 -4
- meta_stats/__init__.py +0 -0
- meta_stats/incidence.py +0 -16
- meta_stats/models.py +0 -0
- meta_stats/tests/__init__.py +0 -0
- meta_stats/tests/tests/__init__.py +0 -0
- meta_stats/tests/tests/test_incidence.py +0 -10
- meta_subject/tests/__init__.py +0 -0
- meta_subject/tests/holidays.csv +0 -15
- meta_subject/tests/tests/__init__.py +0 -0
- meta_subject/tests/tests/test_egfr.py +0 -234
- meta_subject/tests/tests/test_fixes.py +0 -64
- meta_subject/tests/tests/test_followup.py +0 -52
- meta_subject/tests/tests/test_manager_order.py +0 -11
- meta_subject/tests/tests/test_medication_adherence.py +0 -79
- meta_subject/tests/tests/test_metadata_rules.py +0 -135
- meta_subject/tests/tests/test_mnsi.py +0 -341
- meta_subject/tests/tests/test_next_appointment.py +0 -231
- meta_subject/tests/tests/test_patient_history_form.py +0 -74
- meta_subject/tests/tests/test_physical_exam.py +0 -84
- meta_subject/tests/tests/test_sf12.py +0 -161
- meta_subject/tests/tests/test_study_medication.py +0 -229
- meta_subject/tests/urls.py +0 -24
- meta_visit_schedule/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/test_schedule.py +0 -181
- meta_visit_schedule/tests/urls.py +0 -4
- tests/__init__.py +0 -0
- tests/etc/randomization_list.csv +0 -241
- tests/etc/randomization_list_phase_three.csv +0 -241
- tests/etc/user-aes-local.key +0 -0
- tests/etc/user-aes-restricted.key +0 -1
- tests/etc/user-rsa-local-private.pem +0 -27
- tests/etc/user-rsa-local-public.pem +0 -9
- tests/etc/user-rsa-restricted-private.pem +0 -27
- tests/etc/user-rsa-restricted-public.pem +0 -9
- tests/etc/user-salt-local.key +0 -0
- tests/etc/user-salt-restricted.key +0 -0
- tests/holidays.csv +0 -15
- tests/test_settings.py +0 -185
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
- /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
- /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
|
@@ -1,429 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "code",
|
|
5
|
-
"execution_count": null,
|
|
6
|
-
"id": "0",
|
|
7
|
-
"metadata": {},
|
|
8
|
-
"outputs": [],
|
|
9
|
-
"source": [
|
|
10
|
-
"%%capture\n",
|
|
11
|
-
"import os\n",
|
|
12
|
-
"from pathlib import Path\n",
|
|
13
|
-
"import pandas as pd\n",
|
|
14
|
-
"from dj_notebook import activate\n",
|
|
15
|
-
"\n",
|
|
16
|
-
"env_file = os.environ[\"META_ENV\"]\n",
|
|
17
|
-
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
|
18
|
-
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
|
19
|
-
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
|
20
|
-
"plus = activate(dotenv_file=env_file)\n",
|
|
21
|
-
"pd.set_option('future.no_silent_downcasting', True)"
|
|
22
|
-
]
|
|
23
|
-
},
|
|
24
|
-
{
|
|
25
|
-
"cell_type": "code",
|
|
26
|
-
"execution_count": null,
|
|
27
|
-
"id": "1",
|
|
28
|
-
"metadata": {},
|
|
29
|
-
"outputs": [],
|
|
30
|
-
"source": [
|
|
31
|
-
"from edc_pdutils.dataframes import get_crf, get_subject_visit\n",
|
|
32
|
-
"from edc_constants.constants import YES\n",
|
|
33
|
-
"from edc_appointment.analytics import get_appointment_df\n",
|
|
34
|
-
"from datetime import datetime"
|
|
35
|
-
]
|
|
36
|
-
},
|
|
37
|
-
{
|
|
38
|
-
"cell_type": "code",
|
|
39
|
-
"execution_count": null,
|
|
40
|
-
"id": "2",
|
|
41
|
-
"metadata": {},
|
|
42
|
-
"outputs": [],
|
|
43
|
-
"source": [
|
|
44
|
-
"cutoff_datetime = datetime(2026,3,1)\n",
|
|
45
|
-
"df_patienthistory = get_crf(\"meta_subject.patienthistory\", subject_visit_model=\"meta_subject.subjectvisit\")\n",
|
|
46
|
-
"df_followup_examination = get_crf(\"meta_subject.FollowupExamination\", subject_visit_model=\"meta_subject.subjectvisit\")"
|
|
47
|
-
]
|
|
48
|
-
},
|
|
49
|
-
{
|
|
50
|
-
"cell_type": "code",
|
|
51
|
-
"execution_count": null,
|
|
52
|
-
"id": "3",
|
|
53
|
-
"metadata": {},
|
|
54
|
-
"outputs": [],
|
|
55
|
-
"source": [
|
|
56
|
-
"replacements = {\n",
|
|
57
|
-
" \"ABC+ 3TC+ DTG\": \"ABC + 3TC + DTG\",\n",
|
|
58
|
-
" \"ABC+3TC+DTG\": \"ABC + 3TC + DTG\",\n",
|
|
59
|
-
" \"ABC, 3TC, DTG\":\"ABC + 3TC + DTG\",\n",
|
|
60
|
-
" \"ABC, EFV, DTG\": \"ABC + EFV + DTG\",\n",
|
|
61
|
-
" \"TDF+FTC+DTG\": \"TDF + FTC + DTG\",\n",
|
|
62
|
-
" \"AZT+3TC+DTG\": \"AZT + 3TC + DTG\",\n",
|
|
63
|
-
" \"AZT + 3 TC + DTG\":\"AZT + 3TC + DTG\",\n",
|
|
64
|
-
" \"TDF+3TC+DTG\": \"TDF + 3TC + DTG\",\n",
|
|
65
|
-
"}\n",
|
|
66
|
-
"\n",
|
|
67
|
-
"df_patienthistory[\"other_current_arv_regimen\"] = (\n",
|
|
68
|
-
" df_patienthistory[\"other_current_arv_regimen\"]\n",
|
|
69
|
-
" .replace(replacements)\n",
|
|
70
|
-
")"
|
|
71
|
-
]
|
|
72
|
-
},
|
|
73
|
-
{
|
|
74
|
-
"cell_type": "code",
|
|
75
|
-
"execution_count": null,
|
|
76
|
-
"id": "4",
|
|
77
|
-
"metadata": {},
|
|
78
|
-
"outputs": [],
|
|
79
|
-
"source": [
|
|
80
|
-
"df_patienthistory['regimen'] = df_patienthistory[\"current_arv_regimen\"]\n",
|
|
81
|
-
"df_patienthistory.loc[df_patienthistory[\"current_arv_regimen\"]==\"Other, specify ...\", \"regimen\"] = df_patienthistory[\"other_current_arv_regimen\"]"
|
|
82
|
-
]
|
|
83
|
-
},
|
|
84
|
-
{
|
|
85
|
-
"cell_type": "code",
|
|
86
|
-
"execution_count": null,
|
|
87
|
-
"id": "5",
|
|
88
|
-
"metadata": {},
|
|
89
|
-
"outputs": [],
|
|
90
|
-
"source": [
|
|
91
|
-
"df_followup_examination[\"art_new_regimen_other\"] = (\n",
|
|
92
|
-
" df_followup_examination[\"art_new_regimen_other\"]\n",
|
|
93
|
-
" .replace(replacements)\n",
|
|
94
|
-
")"
|
|
95
|
-
]
|
|
96
|
-
},
|
|
97
|
-
{
|
|
98
|
-
"cell_type": "code",
|
|
99
|
-
"execution_count": null,
|
|
100
|
-
"id": "6",
|
|
101
|
-
"metadata": {},
|
|
102
|
-
"outputs": [],
|
|
103
|
-
"source": [
|
|
104
|
-
"df_followup_examination['regimen'] = pd.NA\n",
|
|
105
|
-
"df_followup_examination.loc[(df_followup_examination[\"art_change\"]==YES) & (df_followup_examination.art_new_regimen_other.notna()), \"regimen\"] = df_followup_examination[\"art_new_regimen_other\"]\n",
|
|
106
|
-
"df_followup_examination.loc[(df_followup_examination[\"art_change\"]==YES) & (df_followup_examination.art_new_regimen_other.isna()), \"regimen\"] = \"CHANGE_NOT_REPORTED\""
|
|
107
|
-
]
|
|
108
|
-
},
|
|
109
|
-
{
|
|
110
|
-
"cell_type": "code",
|
|
111
|
-
"execution_count": null,
|
|
112
|
-
"id": "7",
|
|
113
|
-
"metadata": {},
|
|
114
|
-
"outputs": [],
|
|
115
|
-
"source": [
|
|
116
|
-
"df_regimen = pd.concat([df_patienthistory[[\"subject_identifier\", \"visit_datetime\", \"regimen\"]], df_followup_examination[[\"subject_identifier\", \"visit_datetime\", \"regimen\"]]])\n",
|
|
117
|
-
"df_regimen[\"regimen\"] = df_regimen[\"regimen\"].replace({\"Other second line\": \"CHANGE_NOT_REPORTED\"})\n",
|
|
118
|
-
"df_regimen[\"regimen\"] = pd.Categorical(df_regimen[\"regimen\"], categories=list(df_regimen.query(\"regimen.notna()\").regimen.unique()), ordered=False)\n",
|
|
119
|
-
"df_regimen = df_regimen.sort_values([\"subject_identifier\", \"visit_datetime\"])\n",
|
|
120
|
-
"df_regimen = df_regimen.reset_index(drop=True)"
|
|
121
|
-
]
|
|
122
|
-
},
|
|
123
|
-
{
|
|
124
|
-
"cell_type": "code",
|
|
125
|
-
"execution_count": null,
|
|
126
|
-
"id": "8",
|
|
127
|
-
"metadata": {},
|
|
128
|
-
"outputs": [],
|
|
129
|
-
"source": [
|
|
130
|
-
"df_pivot = df_regimen.pivot_table(values=\"visit_datetime\", columns=\"regimen\", index=\"subject_identifier\", observed=True)\n",
|
|
131
|
-
"df_pivot = df_pivot.reset_index()"
|
|
132
|
-
]
|
|
133
|
-
},
|
|
134
|
-
{
|
|
135
|
-
"cell_type": "code",
|
|
136
|
-
"execution_count": null,
|
|
137
|
-
"id": "9",
|
|
138
|
-
"metadata": {},
|
|
139
|
-
"outputs": [],
|
|
140
|
-
"source": [
|
|
141
|
-
"subject_identifier = \"105-20-0050-0\"\n",
|
|
142
|
-
"df_pivot[df_pivot.subject_identifier==subject_identifier].melt().query(\"value.notna() and regimen!='subject_identifier'\").sort_values(\"value\", ascending=False)"
|
|
143
|
-
]
|
|
144
|
-
},
|
|
145
|
-
{
|
|
146
|
-
"cell_type": "code",
|
|
147
|
-
"execution_count": null,
|
|
148
|
-
"id": "10",
|
|
149
|
-
"metadata": {},
|
|
150
|
-
"outputs": [],
|
|
151
|
-
"source": [
|
|
152
|
-
"df_melt = df_pivot.melt(id_vars=[\"subject_identifier\"]).query(\"value.notna()\")"
|
|
153
|
-
]
|
|
154
|
-
},
|
|
155
|
-
{
|
|
156
|
-
"cell_type": "code",
|
|
157
|
-
"execution_count": null,
|
|
158
|
-
"id": "11",
|
|
159
|
-
"metadata": {},
|
|
160
|
-
"outputs": [],
|
|
161
|
-
"source": [
|
|
162
|
-
"df_melt[\"max_date\"] = df_melt.groupby(\"subject_identifier\")[\"value\"].transform(\"max\")\n",
|
|
163
|
-
"df_melt[\"current_regimen\"] = df_melt[df_melt.value==df_melt.max_date][\"regimen\"]"
|
|
164
|
-
]
|
|
165
|
-
},
|
|
166
|
-
{
|
|
167
|
-
"cell_type": "code",
|
|
168
|
-
"execution_count": null,
|
|
169
|
-
"id": "12",
|
|
170
|
-
"metadata": {},
|
|
171
|
-
"outputs": [],
|
|
172
|
-
"source": [
|
|
173
|
-
"df_current_regimens = df_melt.query(\"current_regimen.notna()\")[[\"subject_identifier\", \"max_date\", \"current_regimen\"]].copy()"
|
|
174
|
-
]
|
|
175
|
-
},
|
|
176
|
-
{
|
|
177
|
-
"cell_type": "code",
|
|
178
|
-
"execution_count": null,
|
|
179
|
-
"id": "13",
|
|
180
|
-
"metadata": {},
|
|
181
|
-
"outputs": [],
|
|
182
|
-
"source": [
|
|
183
|
-
"df_visit = get_subject_visit(model=\"meta_subject.subjectvisit\")\n",
|
|
184
|
-
"df_visit = df_visit[df_visit.visit_code==1000.0].copy()"
|
|
185
|
-
]
|
|
186
|
-
},
|
|
187
|
-
{
|
|
188
|
-
"cell_type": "code",
|
|
189
|
-
"execution_count": null,
|
|
190
|
-
"id": "14",
|
|
191
|
-
"metadata": {},
|
|
192
|
-
"outputs": [],
|
|
193
|
-
"source": [
|
|
194
|
-
"df_appointment = get_appointment_df()\n",
|
|
195
|
-
"df_appointment_next = (\n",
|
|
196
|
-
" df_appointment\n",
|
|
197
|
-
" .groupby(by=[\"subject_identifier\", \"next_appt_datetime\", \"next_visit_code\"])\n",
|
|
198
|
-
" .size()\n",
|
|
199
|
-
" .copy()\n",
|
|
200
|
-
" .reset_index()\n",
|
|
201
|
-
")"
|
|
202
|
-
]
|
|
203
|
-
},
|
|
204
|
-
{
|
|
205
|
-
"cell_type": "code",
|
|
206
|
-
"execution_count": null,
|
|
207
|
-
"id": "15",
|
|
208
|
-
"metadata": {},
|
|
209
|
-
"outputs": [],
|
|
210
|
-
"source": [
|
|
211
|
-
"df_appointment_last = (\n",
|
|
212
|
-
" df_appointment[df_appointment.appt_datetime<cutoff_datetime][[\"subject_identifier\", \"appt_datetime\", \"visit_code\"]]\n",
|
|
213
|
-
" .sort_values([\"subject_identifier\", \"appt_datetime\", \"visit_code\"])\n",
|
|
214
|
-
" .groupby(by=[\"subject_identifier\"])\n",
|
|
215
|
-
" .agg([\"last\"])\n",
|
|
216
|
-
" .reset_index() )\n",
|
|
217
|
-
"df_appointment_last.columns = [\"_\".join(col).strip() for col in df_appointment_last.columns.values]\n",
|
|
218
|
-
"df_appointment_last = (\n",
|
|
219
|
-
" df_appointment_last\n",
|
|
220
|
-
" .rename(columns={\n",
|
|
221
|
-
" \"subject_identifier_\":\"subject_identifier\",\n",
|
|
222
|
-
" \"appt_datetime_last\":\"last_appt_datetime\",\n",
|
|
223
|
-
" \"visit_code_last\":\"last_visit_code\"\n",
|
|
224
|
-
" }\n",
|
|
225
|
-
" )\n",
|
|
226
|
-
")"
|
|
227
|
-
]
|
|
228
|
-
},
|
|
229
|
-
{
|
|
230
|
-
"cell_type": "code",
|
|
231
|
-
"execution_count": null,
|
|
232
|
-
"id": "16",
|
|
233
|
-
"metadata": {},
|
|
234
|
-
"outputs": [],
|
|
235
|
-
"source": [
|
|
236
|
-
"df = df_current_regimens.merge(df_visit[[ \"subject_identifier\", \"baseline_datetime\", \"endline_visit_datetime\", \"endline_visit_code\"]], on=\"subject_identifier\", how=\"left\")\n",
|
|
237
|
-
"df = df.reset_index(drop=True)\n",
|
|
238
|
-
"df[\"changed\"] = False\n",
|
|
239
|
-
"df.loc[df.max_date != df.baseline_datetime, \"changed\"] = True"
|
|
240
|
-
]
|
|
241
|
-
},
|
|
242
|
-
{
|
|
243
|
-
"cell_type": "code",
|
|
244
|
-
"execution_count": null,
|
|
245
|
-
"id": "17",
|
|
246
|
-
"metadata": {},
|
|
247
|
-
"outputs": [],
|
|
248
|
-
"source": [
|
|
249
|
-
"df = df.merge(df_appointment_next[[\"subject_identifier\", \"next_appt_datetime\", \"next_visit_code\"]], on=\"subject_identifier\", how=\"left\")\n",
|
|
250
|
-
"df = df.merge(df_appointment_last[[\"subject_identifier\", \"last_appt_datetime\", \"last_visit_code\"]], on=\"subject_identifier\", how=\"left\")"
|
|
251
|
-
]
|
|
252
|
-
},
|
|
253
|
-
{
|
|
254
|
-
"cell_type": "code",
|
|
255
|
-
"execution_count": null,
|
|
256
|
-
"id": "18",
|
|
257
|
-
"metadata": {},
|
|
258
|
-
"outputs": [],
|
|
259
|
-
"source": [
|
|
260
|
-
"# from last seen to final scheduled appt\n",
|
|
261
|
-
"df[\"remaining_delta_from_last_seen\"] = df.last_appt_datetime - df.endline_visit_datetime\n",
|
|
262
|
-
"df[\"remaining_delta_from_last_seen\"] = df[\"remaining_delta_from_last_seen\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
|
|
263
|
-
"df[\"remaining_delta_from_last_seen\"] = pd.to_timedelta(df[\"remaining_delta_from_last_seen\"])\n",
|
|
264
|
-
"df[\"remaining_days_last_seen_to_final\"] = df[\"remaining_delta_from_last_seen\"].dt.days\n",
|
|
265
|
-
"\n",
|
|
266
|
-
"# from now to final scheduled appt\n",
|
|
267
|
-
"df[\"remaining_delta_from_now\"] = 0.0\n",
|
|
268
|
-
"df[\"remaining_delta_from_now\"] = df[df.remaining_days_last_seen_to_final>0].last_appt_datetime - datetime.now()\n",
|
|
269
|
-
"df[\"remaining_delta_from_now\"] = df[\"remaining_delta_from_now\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
|
|
270
|
-
"df[\"remaining_delta_from_now\"] = pd.to_timedelta(df[\"remaining_delta_from_now\"])\n",
|
|
271
|
-
"df[\"remaining_days_now_to_final\"] = df[\"remaining_delta_from_now\"].dt.days\n",
|
|
272
|
-
"\n",
|
|
273
|
-
"# from next appointment to final scheduled appt\n",
|
|
274
|
-
"df[\"remaining_delta_from_next\"] = 0.0\n",
|
|
275
|
-
"df[\"remaining_delta_from_next\"] = df[df.remaining_days_last_seen_to_final>0].last_appt_datetime - df[df.remaining_days_last_seen_to_final>0].next_appt_datetime\n",
|
|
276
|
-
"df[\"remaining_delta_from_next\"] = df[\"remaining_delta_from_next\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
|
|
277
|
-
"df[\"remaining_delta_from_next\"] = pd.to_timedelta(df[\"remaining_delta_from_next\"])\n",
|
|
278
|
-
"df[\"remaining_days_next_to_final\"] = df[\"remaining_delta_from_next\"].dt.days"
|
|
279
|
-
]
|
|
280
|
-
},
|
|
281
|
-
{
|
|
282
|
-
"cell_type": "code",
|
|
283
|
-
"execution_count": null,
|
|
284
|
-
"id": "19",
|
|
285
|
-
"metadata": {},
|
|
286
|
-
"outputs": [],
|
|
287
|
-
"source": [
|
|
288
|
-
"df_final = (\n",
|
|
289
|
-
" df\n",
|
|
290
|
-
" .rename(columns={\n",
|
|
291
|
-
" \"max_date\": \"current_regimen_date\",\n",
|
|
292
|
-
" \"endline_visit_code\": \"last_attended_visit_code\",\n",
|
|
293
|
-
" \"endline_visit_datetime\": \"last_attended_visit_datetime\",\n",
|
|
294
|
-
" })\n",
|
|
295
|
-
" .copy()\n",
|
|
296
|
-
")\n",
|
|
297
|
-
"df_final = df_final[[\n",
|
|
298
|
-
" \"subject_identifier\",\n",
|
|
299
|
-
" \"current_regimen\",\n",
|
|
300
|
-
" \"current_regimen_date\",\n",
|
|
301
|
-
" \"changed\",\n",
|
|
302
|
-
" \"baseline_datetime\",\n",
|
|
303
|
-
" \"last_attended_visit_code\",\n",
|
|
304
|
-
" \"last_attended_visit_datetime\",\n",
|
|
305
|
-
" \"next_visit_code\",\n",
|
|
306
|
-
" \"next_appt_datetime\",\n",
|
|
307
|
-
" \"last_visit_code\",\n",
|
|
308
|
-
" \"last_appt_datetime\",\n",
|
|
309
|
-
" \"remaining_days_last_seen_to_final\",\n",
|
|
310
|
-
" \"remaining_days_now_to_final\",\n",
|
|
311
|
-
" \"remaining_days_next_to_final\",\n",
|
|
312
|
-
"]].copy()\n",
|
|
313
|
-
"\n",
|
|
314
|
-
"df_final = (\n",
|
|
315
|
-
" df_final\n",
|
|
316
|
-
" .sort_values(\"subject_identifier\")\n",
|
|
317
|
-
" .reset_index(drop=True)\n",
|
|
318
|
-
")\n",
|
|
319
|
-
"df_final[\"remaining_days_last_seen_to_final\"] = df_final[\"remaining_days_last_seen_to_final\"].astype(\"float64\").fillna(0)\n",
|
|
320
|
-
"df_final[\"remaining_days_now_to_final\"] = df_final[\"remaining_days_now_to_final\"].astype(\"float64\").fillna(0)\n",
|
|
321
|
-
"df_final[\"remaining_days_next_to_final\"] = df_final[\"remaining_days_next_to_final\"].astype(\"float64\").fillna(0)\n",
|
|
322
|
-
"df_final"
|
|
323
|
-
]
|
|
324
|
-
},
|
|
325
|
-
{
|
|
326
|
-
"cell_type": "code",
|
|
327
|
-
"execution_count": null,
|
|
328
|
-
"id": "20",
|
|
329
|
-
"metadata": {},
|
|
330
|
-
"outputs": [],
|
|
331
|
-
"source": [
|
|
332
|
-
"# need from now until end of study\n",
|
|
333
|
-
"df_summary1 = (pd.merge(\n",
|
|
334
|
-
" df_final.groupby(by=[\"current_regimen\"]).remaining_days_now_to_final.sum(),\n",
|
|
335
|
-
" df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
|
|
336
|
-
" .rename(columns={\n",
|
|
337
|
-
" \"remaining_days_now_to_final\": \"days_medication_needed\",\n",
|
|
338
|
-
" \"subject_identifier\": \"subjects\"\n",
|
|
339
|
-
" })\n",
|
|
340
|
-
" .sort_values(\"days_medication_needed\", ascending=False)\n",
|
|
341
|
-
" .reset_index()\n",
|
|
342
|
-
")\n",
|
|
343
|
-
"df_summary1"
|
|
344
|
-
]
|
|
345
|
-
},
|
|
346
|
-
{
|
|
347
|
-
"cell_type": "code",
|
|
348
|
-
"execution_count": null,
|
|
349
|
-
"id": "21",
|
|
350
|
-
"metadata": {},
|
|
351
|
-
"outputs": [],
|
|
352
|
-
"source": [
|
|
353
|
-
"# need from last seen to end of study\n",
|
|
354
|
-
"df_summary2 = (pd.merge(\n",
|
|
355
|
-
" df_final.groupby(by=[\"current_regimen\"]).remaining_days_last_seen_to_final.sum(),\n",
|
|
356
|
-
" df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
|
|
357
|
-
" .rename(columns={\n",
|
|
358
|
-
" \"remaining_days_last_seen_to_final\": \"days_medication_needed\",\n",
|
|
359
|
-
" \"subject_identifier\": \"subjects\"\n",
|
|
360
|
-
" })\n",
|
|
361
|
-
" .sort_values(\"days_medication_needed\", ascending=False)\n",
|
|
362
|
-
" .reset_index()\n",
|
|
363
|
-
")\n",
|
|
364
|
-
"df_summary2"
|
|
365
|
-
]
|
|
366
|
-
},
|
|
367
|
-
{
|
|
368
|
-
"cell_type": "code",
|
|
369
|
-
"execution_count": null,
|
|
370
|
-
"id": "22",
|
|
371
|
-
"metadata": {},
|
|
372
|
-
"outputs": [],
|
|
373
|
-
"source": [
|
|
374
|
-
"# need from next to end of study\n",
|
|
375
|
-
"df_summary3 = (pd.merge(\n",
|
|
376
|
-
" df_final.groupby(by=[\"current_regimen\"]).remaining_days_next_to_final.sum(),\n",
|
|
377
|
-
" df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
|
|
378
|
-
" .rename(columns={\n",
|
|
379
|
-
" \"remaining_days_next_to_final\": \"days_medication_needed\",\n",
|
|
380
|
-
" \"subject_identifier\": \"subjects\"\n",
|
|
381
|
-
" })\n",
|
|
382
|
-
" .sort_values(\"days_medication_needed\", ascending=False)\n",
|
|
383
|
-
" .reset_index()\n",
|
|
384
|
-
")\n",
|
|
385
|
-
"\n",
|
|
386
|
-
"df_summary3"
|
|
387
|
-
]
|
|
388
|
-
},
|
|
389
|
-
{
|
|
390
|
-
"cell_type": "code",
|
|
391
|
-
"execution_count": null,
|
|
392
|
-
"id": "23",
|
|
393
|
-
"metadata": {},
|
|
394
|
-
"outputs": [],
|
|
395
|
-
"source": [
|
|
396
|
-
"with pd.ExcelWriter(\n",
|
|
397
|
-
" analysis_folder / \"hiv_medication.xlsx\",\n",
|
|
398
|
-
" date_format=\"YYYY-MM-DD\",\n",
|
|
399
|
-
" datetime_format=\"YYYY-MM-DD HH:MM:SS\"\n",
|
|
400
|
-
") as writer:\n",
|
|
401
|
-
" df_final.to_excel(writer, sheet_name=\"subjects\", index=False)\n",
|
|
402
|
-
" df_summary1.to_excel(writer, sheet_name=\"now to final\", index=False)\n",
|
|
403
|
-
" df_summary2.to_excel(writer, sheet_name=\"last seen to final\", index=False)\n",
|
|
404
|
-
" df_summary3.to_excel(writer, sheet_name=\"next to final\", index=False)\n"
|
|
405
|
-
]
|
|
406
|
-
}
|
|
407
|
-
],
|
|
408
|
-
"metadata": {
|
|
409
|
-
"kernelspec": {
|
|
410
|
-
"display_name": "Python 3",
|
|
411
|
-
"language": "python",
|
|
412
|
-
"name": "python3"
|
|
413
|
-
},
|
|
414
|
-
"language_info": {
|
|
415
|
-
"codemirror_mode": {
|
|
416
|
-
"name": "ipython",
|
|
417
|
-
"version": 2
|
|
418
|
-
},
|
|
419
|
-
"file_extension": ".py",
|
|
420
|
-
"mimetype": "text/x-python",
|
|
421
|
-
"name": "python",
|
|
422
|
-
"nbconvert_exporter": "python",
|
|
423
|
-
"pygments_lexer": "ipython2",
|
|
424
|
-
"version": "2.7.6"
|
|
425
|
-
}
|
|
426
|
-
},
|
|
427
|
-
"nbformat": 4,
|
|
428
|
-
"nbformat_minor": 5
|
|
429
|
-
}
|
|
@@ -1,232 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "code",
|
|
5
|
-
"execution_count": null,
|
|
6
|
-
"id": "0",
|
|
7
|
-
"metadata": {},
|
|
8
|
-
"outputs": [],
|
|
9
|
-
"source": [
|
|
10
|
-
"%%capture\n",
|
|
11
|
-
"import os\n",
|
|
12
|
-
"from pathlib import Path\n",
|
|
13
|
-
"import pandas as pd\n",
|
|
14
|
-
"from dj_notebook import activate\n",
|
|
15
|
-
"\n",
|
|
16
|
-
"env_file = os.environ[\"META_ENV\"]\n",
|
|
17
|
-
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
|
18
|
-
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
|
19
|
-
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
|
20
|
-
"plus = activate(dotenv_file=env_file)\n",
|
|
21
|
-
"pd.set_option('future.no_silent_downcasting', True)"
|
|
22
|
-
]
|
|
23
|
-
},
|
|
24
|
-
{
|
|
25
|
-
"cell_type": "code",
|
|
26
|
-
"execution_count": null,
|
|
27
|
-
"id": "1",
|
|
28
|
-
"metadata": {},
|
|
29
|
-
"outputs": [],
|
|
30
|
-
"source": [
|
|
31
|
-
"\n",
|
|
32
|
-
"import pdfkit\n",
|
|
33
|
-
"from datetime import date\n",
|
|
34
|
-
"from edc_pdutils.dataframes import get_subject_visit\n",
|
|
35
|
-
"from meta_analytics.dataframes import get_eos_df\n",
|
|
36
|
-
"from meta_analytics.dataframes import GlucoseEndpointsByDate\n",
|
|
37
|
-
"from scipy.stats import chi2\n",
|
|
38
|
-
"from meta_analytics.utils import df_as_great_table\n",
|
|
39
|
-
"from great_tables import md\n"
|
|
40
|
-
]
|
|
41
|
-
},
|
|
42
|
-
{
|
|
43
|
-
"cell_type": "code",
|
|
44
|
-
"execution_count": null,
|
|
45
|
-
"id": "2",
|
|
46
|
-
"metadata": {},
|
|
47
|
-
"outputs": [],
|
|
48
|
-
"source": [
|
|
49
|
-
"html_data = []\n",
|
|
50
|
-
"cutoff_date = date(2025,3, 31)\n"
|
|
51
|
-
]
|
|
52
|
-
},
|
|
53
|
-
{
|
|
54
|
-
"cell_type": "code",
|
|
55
|
-
"execution_count": null,
|
|
56
|
-
"id": "3",
|
|
57
|
-
"metadata": {},
|
|
58
|
-
"outputs": [],
|
|
59
|
-
"source": [
|
|
60
|
-
"df_visit = get_subject_visit(\"meta_subject.subjectvisit\")\n",
|
|
61
|
-
"df_visit = df_visit[df_visit.appt_datetime.dt.date<=cutoff_date]\n"
|
|
62
|
-
]
|
|
63
|
-
},
|
|
64
|
-
{
|
|
65
|
-
"cell_type": "code",
|
|
66
|
-
"execution_count": null,
|
|
67
|
-
"id": "4",
|
|
68
|
-
"metadata": {},
|
|
69
|
-
"outputs": [],
|
|
70
|
-
"source": [
|
|
71
|
-
"cls = GlucoseEndpointsByDate()\n",
|
|
72
|
-
"cls.run()\n",
|
|
73
|
-
"df_endpoint = cls.endpoint_only_df.copy()"
|
|
74
|
-
]
|
|
75
|
-
},
|
|
76
|
-
{
|
|
77
|
-
"cell_type": "code",
|
|
78
|
-
"execution_count": null,
|
|
79
|
-
"id": "5",
|
|
80
|
-
"metadata": {},
|
|
81
|
-
"outputs": [],
|
|
82
|
-
"source": [
|
|
83
|
-
"def get_df_main(df_visit:pd.DataFrame, lower_days:float|None=None, upper_days:float|None=None):\n",
|
|
84
|
-
" if not lower_days:\n",
|
|
85
|
-
" lower_days = -1\n",
|
|
86
|
-
" cutoff_datetime = df_visit.query(\"@lower_days<followup_days<=@upper_days\").visit_datetime.max()\n",
|
|
87
|
-
" # exclude subjects for this reason\n",
|
|
88
|
-
" offstudy_reasons = ['Patient fulfilled late exclusion criteria (due to abnormal blood values or raised blood pressure at enrolment']\n",
|
|
89
|
-
"\n",
|
|
90
|
-
" df_eos = get_eos_df()\n",
|
|
91
|
-
" df_eos_excluded = (\n",
|
|
92
|
-
" df_eos\n",
|
|
93
|
-
" .query(\"followup_days<@lower_days and followup_days<=@upper_days and offstudy_reason.isin(@offstudy_reasons)\")\n",
|
|
94
|
-
" .copy()\n",
|
|
95
|
-
" .reset_index()\n",
|
|
96
|
-
" )\n",
|
|
97
|
-
" df_visit_final = (\n",
|
|
98
|
-
" df_visit.query(\"@lower_days<followup_days<=@upper_days and reason!='missed'\")\n",
|
|
99
|
-
" .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", suffixes=(\"\", \"_y\"), indicator=True)\n",
|
|
100
|
-
" .query(\"_merge=='left_only'\")\n",
|
|
101
|
-
" .drop(columns=[\"_merge\"])\n",
|
|
102
|
-
" )\n",
|
|
103
|
-
" df_main = (\n",
|
|
104
|
-
" df_visit_final\n",
|
|
105
|
-
" .groupby(by=[\"subject_identifier\"])[[\"baseline_datetime\", \"visit_datetime\", \"followup_days\"]]\n",
|
|
106
|
-
" .max()\n",
|
|
107
|
-
" .reset_index()\n",
|
|
108
|
-
" )\n",
|
|
109
|
-
"\n",
|
|
110
|
-
" df_main = (\n",
|
|
111
|
-
" df_main\n",
|
|
112
|
-
" .merge(\n",
|
|
113
|
-
" df_endpoint.query(\"days_to_endpoint>@lower_days\")[[\"subject_identifier\", \"endpoint_label\", \"endpoint_type\", \"days_to_endpoint\"]],\n",
|
|
114
|
-
" how=\"left\",\n",
|
|
115
|
-
" on=[\"subject_identifier\"])\n",
|
|
116
|
-
" .reset_index(drop=True)\n",
|
|
117
|
-
" )\n",
|
|
118
|
-
" if lower_days>=365.25:\n",
|
|
119
|
-
" df_main[\"followup_days\"] = df_main[\"followup_days\"] - lower_days\n",
|
|
120
|
-
" df_main[\"followup_years\"] = df_main[\"followup_days\"]/365.25\n",
|
|
121
|
-
" return df_main, len(df_main), len(df_main.query(\"@lower_days<days_to_endpoint<=@upper_days and endpoint_label.notna()\"))\n",
|
|
122
|
-
"\n",
|
|
123
|
-
"def get_rate_and_ci(events, person_years_total):\n",
|
|
124
|
-
" lower_ci = (chi2.ppf(0.025, 2 * events) / (2 * person_years_total)) * 1000\n",
|
|
125
|
-
" upper_ci = (chi2.ppf(0.975, 2 * (events + 1)) / (2 * person_years_total)) * 1000\n",
|
|
126
|
-
" return events/person_years_total*1000, lower_ci, upper_ci\n",
|
|
127
|
-
"\n",
|
|
128
|
-
"def get_incidence_data(term:str, lower_days:float, upper_days:float):\n",
|
|
129
|
-
" data = {}\n",
|
|
130
|
-
" df_main, subjects, events = get_df_main(df_visit, lower_days=lower_days, upper_days=upper_days)\n",
|
|
131
|
-
" person_years_total = df_main.followup_years.sum()\n",
|
|
132
|
-
" data.update({term:[person_years_total, subjects, events, *get_rate_and_ci(events, person_years_total)]})\n",
|
|
133
|
-
" return data"
|
|
134
|
-
]
|
|
135
|
-
},
|
|
136
|
-
{
|
|
137
|
-
"cell_type": "code",
|
|
138
|
-
"execution_count": null,
|
|
139
|
-
"id": "6",
|
|
140
|
-
"metadata": {},
|
|
141
|
-
"outputs": [],
|
|
142
|
-
"source": [
|
|
143
|
-
"incidence_data = {}\n",
|
|
144
|
-
"incidence_data.update(get_incidence_data(\"total\", lower_days=0, upper_days=10000))\n",
|
|
145
|
-
"incidence_data.update(get_incidence_data(\"0-1 years\", lower_days=0, upper_days=365.25))\n",
|
|
146
|
-
"incidence_data.update(get_incidence_data(\"1-2 years\", lower_days=365.25, upper_days=2*365.25))\n",
|
|
147
|
-
"incidence_data.update(get_incidence_data(\"2-3 years\", lower_days=2*365.25, upper_days=3*365.25))\n",
|
|
148
|
-
"incidence_data.update(get_incidence_data(\"3+ years\", lower_days=3*365.25, upper_days=10*365.25))"
|
|
149
|
-
]
|
|
150
|
-
},
|
|
151
|
-
{
|
|
152
|
-
"cell_type": "code",
|
|
153
|
-
"execution_count": null,
|
|
154
|
-
"id": "7",
|
|
155
|
-
"metadata": {},
|
|
156
|
-
"outputs": [],
|
|
157
|
-
"source": [
|
|
158
|
-
"data = dict(label=[], person_years=[], failures=[], rate=[], lower_ci=[], upper_ci=[])\n",
|
|
159
|
-
"for k in incidence_data:\n",
|
|
160
|
-
" data[\"label\"].append(k)\n",
|
|
161
|
-
"\n",
|
|
162
|
-
"for v in incidence_data.values():\n",
|
|
163
|
-
" data[\"person_years\"].append(v[0])\n",
|
|
164
|
-
" data[\"failures\"].append(v[2])\n",
|
|
165
|
-
" data[\"rate\"].append(v[3])\n",
|
|
166
|
-
" data[\"lower_ci\"].append(v[4])\n",
|
|
167
|
-
" data[\"upper_ci\"].append(v[5])\n",
|
|
168
|
-
"\n",
|
|
169
|
-
"df = pd.DataFrame(data=data)"
|
|
170
|
-
]
|
|
171
|
-
},
|
|
172
|
-
{
|
|
173
|
-
"cell_type": "code",
|
|
174
|
-
"execution_count": null,
|
|
175
|
-
"id": "8",
|
|
176
|
-
"metadata": {},
|
|
177
|
-
"outputs": [],
|
|
178
|
-
"source": [
|
|
179
|
-
"gt = df_as_great_table(\n",
|
|
180
|
-
" df,\n",
|
|
181
|
-
" title=\"Table 9: Incident Rate per 1000 person years\",\n",
|
|
182
|
-
" subtitle=md(\"using randomisation to diabetes/last seen\"),\n",
|
|
183
|
-
")\n",
|
|
184
|
-
"gt = gt.fmt_number(columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"], decimals=2)\n",
|
|
185
|
-
"gt = (gt\n",
|
|
186
|
-
" .cols_label({\"label\": \"Label\", \"person_years\": \"Person years\", \"failures\": \"Failures\", \"rate\": \"Rate\", \"lower_ci\": \"Lower\", \"upper_ci\": \"Upper\"})\n",
|
|
187
|
-
" .cols_align(align=\"left\", columns=[\"label\"])\n",
|
|
188
|
-
" .cols_align(align=\"center\", columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"])\n",
|
|
189
|
-
" .tab_spanner(\n",
|
|
190
|
-
" label=\"95%CI\",\n",
|
|
191
|
-
" columns=[\"lower_ci\", \"upper_ci\"],\n",
|
|
192
|
-
" )\n",
|
|
193
|
-
")\n",
|
|
194
|
-
"gt.show()\n",
|
|
195
|
-
"html_data.append(gt.as_raw_html())\n"
|
|
196
|
-
]
|
|
197
|
-
},
|
|
198
|
-
{
|
|
199
|
-
"cell_type": "code",
|
|
200
|
-
"execution_count": null,
|
|
201
|
-
"id": "9",
|
|
202
|
-
"metadata": {},
|
|
203
|
-
"outputs": [],
|
|
204
|
-
"source": [
|
|
205
|
-
"raw_html = \"</BR>\".join(html_data)\n",
|
|
206
|
-
"raw_html = '<!DOCTYPE html>\\n<html lang=\"en\">\\n<head>\\n<meta charset=\"utf-8\"/>\\n</head>\\n<body>\\n' + raw_html + '\\n</body>\\n</html>\\n'\n",
|
|
207
|
-
"pdfkit.from_string(raw_html, str(analysis_folder / \"incident_rate.pdf\"))\n"
|
|
208
|
-
]
|
|
209
|
-
}
|
|
210
|
-
],
|
|
211
|
-
"metadata": {
|
|
212
|
-
"kernelspec": {
|
|
213
|
-
"display_name": "Python 3 (ipykernel)",
|
|
214
|
-
"language": "python",
|
|
215
|
-
"name": "python3"
|
|
216
|
-
},
|
|
217
|
-
"language_info": {
|
|
218
|
-
"codemirror_mode": {
|
|
219
|
-
"name": "ipython",
|
|
220
|
-
"version": 3
|
|
221
|
-
},
|
|
222
|
-
"file_extension": ".py",
|
|
223
|
-
"mimetype": "text/x-python",
|
|
224
|
-
"name": "python",
|
|
225
|
-
"nbconvert_exporter": "python",
|
|
226
|
-
"pygments_lexer": "ipython3",
|
|
227
|
-
"version": "3.12.4"
|
|
228
|
-
}
|
|
229
|
-
},
|
|
230
|
-
"nbformat": 4,
|
|
231
|
-
"nbformat_minor": 5
|
|
232
|
-
}
|