meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,429 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import os\n",
12
- "from pathlib import Path\n",
13
- "import pandas as pd\n",
14
- "from dj_notebook import activate\n",
15
- "\n",
16
- "env_file = os.environ[\"META_ENV\"]\n",
17
- "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
18
- "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
19
- "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
20
- "plus = activate(dotenv_file=env_file)\n",
21
- "pd.set_option('future.no_silent_downcasting', True)"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": null,
27
- "id": "1",
28
- "metadata": {},
29
- "outputs": [],
30
- "source": [
31
- "from edc_pdutils.dataframes import get_crf, get_subject_visit\n",
32
- "from edc_constants.constants import YES\n",
33
- "from edc_appointment.analytics import get_appointment_df\n",
34
- "from datetime import datetime"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": null,
40
- "id": "2",
41
- "metadata": {},
42
- "outputs": [],
43
- "source": [
44
- "cutoff_datetime = datetime(2026,3,1)\n",
45
- "df_patienthistory = get_crf(\"meta_subject.patienthistory\", subject_visit_model=\"meta_subject.subjectvisit\")\n",
46
- "df_followup_examination = get_crf(\"meta_subject.FollowupExamination\", subject_visit_model=\"meta_subject.subjectvisit\")"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "3",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "replacements = {\n",
57
- " \"ABC+ 3TC+ DTG\": \"ABC + 3TC + DTG\",\n",
58
- " \"ABC+3TC+DTG\": \"ABC + 3TC + DTG\",\n",
59
- " \"ABC, 3TC, DTG\":\"ABC + 3TC + DTG\",\n",
60
- " \"ABC, EFV, DTG\": \"ABC + EFV + DTG\",\n",
61
- " \"TDF+FTC+DTG\": \"TDF + FTC + DTG\",\n",
62
- " \"AZT+3TC+DTG\": \"AZT + 3TC + DTG\",\n",
63
- " \"AZT + 3 TC + DTG\":\"AZT + 3TC + DTG\",\n",
64
- " \"TDF+3TC+DTG\": \"TDF + 3TC + DTG\",\n",
65
- "}\n",
66
- "\n",
67
- "df_patienthistory[\"other_current_arv_regimen\"] = (\n",
68
- " df_patienthistory[\"other_current_arv_regimen\"]\n",
69
- " .replace(replacements)\n",
70
- ")"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": null,
76
- "id": "4",
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "df_patienthistory['regimen'] = df_patienthistory[\"current_arv_regimen\"]\n",
81
- "df_patienthistory.loc[df_patienthistory[\"current_arv_regimen\"]==\"Other, specify ...\", \"regimen\"] = df_patienthistory[\"other_current_arv_regimen\"]"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "id": "5",
88
- "metadata": {},
89
- "outputs": [],
90
- "source": [
91
- "df_followup_examination[\"art_new_regimen_other\"] = (\n",
92
- " df_followup_examination[\"art_new_regimen_other\"]\n",
93
- " .replace(replacements)\n",
94
- ")"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "id": "6",
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "df_followup_examination['regimen'] = pd.NA\n",
105
- "df_followup_examination.loc[(df_followup_examination[\"art_change\"]==YES) & (df_followup_examination.art_new_regimen_other.notna()), \"regimen\"] = df_followup_examination[\"art_new_regimen_other\"]\n",
106
- "df_followup_examination.loc[(df_followup_examination[\"art_change\"]==YES) & (df_followup_examination.art_new_regimen_other.isna()), \"regimen\"] = \"CHANGE_NOT_REPORTED\""
107
- ]
108
- },
109
- {
110
- "cell_type": "code",
111
- "execution_count": null,
112
- "id": "7",
113
- "metadata": {},
114
- "outputs": [],
115
- "source": [
116
- "df_regimen = pd.concat([df_patienthistory[[\"subject_identifier\", \"visit_datetime\", \"regimen\"]], df_followup_examination[[\"subject_identifier\", \"visit_datetime\", \"regimen\"]]])\n",
117
- "df_regimen[\"regimen\"] = df_regimen[\"regimen\"].replace({\"Other second line\": \"CHANGE_NOT_REPORTED\"})\n",
118
- "df_regimen[\"regimen\"] = pd.Categorical(df_regimen[\"regimen\"], categories=list(df_regimen.query(\"regimen.notna()\").regimen.unique()), ordered=False)\n",
119
- "df_regimen = df_regimen.sort_values([\"subject_identifier\", \"visit_datetime\"])\n",
120
- "df_regimen = df_regimen.reset_index(drop=True)"
121
- ]
122
- },
123
- {
124
- "cell_type": "code",
125
- "execution_count": null,
126
- "id": "8",
127
- "metadata": {},
128
- "outputs": [],
129
- "source": [
130
- "df_pivot = df_regimen.pivot_table(values=\"visit_datetime\", columns=\"regimen\", index=\"subject_identifier\", observed=True)\n",
131
- "df_pivot = df_pivot.reset_index()"
132
- ]
133
- },
134
- {
135
- "cell_type": "code",
136
- "execution_count": null,
137
- "id": "9",
138
- "metadata": {},
139
- "outputs": [],
140
- "source": [
141
- "subject_identifier = \"105-20-0050-0\"\n",
142
- "df_pivot[df_pivot.subject_identifier==subject_identifier].melt().query(\"value.notna() and regimen!='subject_identifier'\").sort_values(\"value\", ascending=False)"
143
- ]
144
- },
145
- {
146
- "cell_type": "code",
147
- "execution_count": null,
148
- "id": "10",
149
- "metadata": {},
150
- "outputs": [],
151
- "source": [
152
- "df_melt = df_pivot.melt(id_vars=[\"subject_identifier\"]).query(\"value.notna()\")"
153
- ]
154
- },
155
- {
156
- "cell_type": "code",
157
- "execution_count": null,
158
- "id": "11",
159
- "metadata": {},
160
- "outputs": [],
161
- "source": [
162
- "df_melt[\"max_date\"] = df_melt.groupby(\"subject_identifier\")[\"value\"].transform(\"max\")\n",
163
- "df_melt[\"current_regimen\"] = df_melt[df_melt.value==df_melt.max_date][\"regimen\"]"
164
- ]
165
- },
166
- {
167
- "cell_type": "code",
168
- "execution_count": null,
169
- "id": "12",
170
- "metadata": {},
171
- "outputs": [],
172
- "source": [
173
- "df_current_regimens = df_melt.query(\"current_regimen.notna()\")[[\"subject_identifier\", \"max_date\", \"current_regimen\"]].copy()"
174
- ]
175
- },
176
- {
177
- "cell_type": "code",
178
- "execution_count": null,
179
- "id": "13",
180
- "metadata": {},
181
- "outputs": [],
182
- "source": [
183
- "df_visit = get_subject_visit(model=\"meta_subject.subjectvisit\")\n",
184
- "df_visit = df_visit[df_visit.visit_code==1000.0].copy()"
185
- ]
186
- },
187
- {
188
- "cell_type": "code",
189
- "execution_count": null,
190
- "id": "14",
191
- "metadata": {},
192
- "outputs": [],
193
- "source": [
194
- "df_appointment = get_appointment_df()\n",
195
- "df_appointment_next = (\n",
196
- " df_appointment\n",
197
- " .groupby(by=[\"subject_identifier\", \"next_appt_datetime\", \"next_visit_code\"])\n",
198
- " .size()\n",
199
- " .copy()\n",
200
- " .reset_index()\n",
201
- ")"
202
- ]
203
- },
204
- {
205
- "cell_type": "code",
206
- "execution_count": null,
207
- "id": "15",
208
- "metadata": {},
209
- "outputs": [],
210
- "source": [
211
- "df_appointment_last = (\n",
212
- " df_appointment[df_appointment.appt_datetime<cutoff_datetime][[\"subject_identifier\", \"appt_datetime\", \"visit_code\"]]\n",
213
- " .sort_values([\"subject_identifier\", \"appt_datetime\", \"visit_code\"])\n",
214
- " .groupby(by=[\"subject_identifier\"])\n",
215
- " .agg([\"last\"])\n",
216
- " .reset_index() )\n",
217
- "df_appointment_last.columns = [\"_\".join(col).strip() for col in df_appointment_last.columns.values]\n",
218
- "df_appointment_last = (\n",
219
- " df_appointment_last\n",
220
- " .rename(columns={\n",
221
- " \"subject_identifier_\":\"subject_identifier\",\n",
222
- " \"appt_datetime_last\":\"last_appt_datetime\",\n",
223
- " \"visit_code_last\":\"last_visit_code\"\n",
224
- " }\n",
225
- " )\n",
226
- ")"
227
- ]
228
- },
229
- {
230
- "cell_type": "code",
231
- "execution_count": null,
232
- "id": "16",
233
- "metadata": {},
234
- "outputs": [],
235
- "source": [
236
- "df = df_current_regimens.merge(df_visit[[ \"subject_identifier\", \"baseline_datetime\", \"endline_visit_datetime\", \"endline_visit_code\"]], on=\"subject_identifier\", how=\"left\")\n",
237
- "df = df.reset_index(drop=True)\n",
238
- "df[\"changed\"] = False\n",
239
- "df.loc[df.max_date != df.baseline_datetime, \"changed\"] = True"
240
- ]
241
- },
242
- {
243
- "cell_type": "code",
244
- "execution_count": null,
245
- "id": "17",
246
- "metadata": {},
247
- "outputs": [],
248
- "source": [
249
- "df = df.merge(df_appointment_next[[\"subject_identifier\", \"next_appt_datetime\", \"next_visit_code\"]], on=\"subject_identifier\", how=\"left\")\n",
250
- "df = df.merge(df_appointment_last[[\"subject_identifier\", \"last_appt_datetime\", \"last_visit_code\"]], on=\"subject_identifier\", how=\"left\")"
251
- ]
252
- },
253
- {
254
- "cell_type": "code",
255
- "execution_count": null,
256
- "id": "18",
257
- "metadata": {},
258
- "outputs": [],
259
- "source": [
260
- "# from last seen to final scheduled appt\n",
261
- "df[\"remaining_delta_from_last_seen\"] = df.last_appt_datetime - df.endline_visit_datetime\n",
262
- "df[\"remaining_delta_from_last_seen\"] = df[\"remaining_delta_from_last_seen\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
263
- "df[\"remaining_delta_from_last_seen\"] = pd.to_timedelta(df[\"remaining_delta_from_last_seen\"])\n",
264
- "df[\"remaining_days_last_seen_to_final\"] = df[\"remaining_delta_from_last_seen\"].dt.days\n",
265
- "\n",
266
- "# from now to final scheduled appt\n",
267
- "df[\"remaining_delta_from_now\"] = 0.0\n",
268
- "df[\"remaining_delta_from_now\"] = df[df.remaining_days_last_seen_to_final>0].last_appt_datetime - datetime.now()\n",
269
- "df[\"remaining_delta_from_now\"] = df[\"remaining_delta_from_now\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
270
- "df[\"remaining_delta_from_now\"] = pd.to_timedelta(df[\"remaining_delta_from_now\"])\n",
271
- "df[\"remaining_days_now_to_final\"] = df[\"remaining_delta_from_now\"].dt.days\n",
272
- "\n",
273
- "# from next appointment to final scheduled appt\n",
274
- "df[\"remaining_delta_from_next\"] = 0.0\n",
275
- "df[\"remaining_delta_from_next\"] = df[df.remaining_days_last_seen_to_final>0].last_appt_datetime - df[df.remaining_days_last_seen_to_final>0].next_appt_datetime\n",
276
- "df[\"remaining_delta_from_next\"] = df[\"remaining_delta_from_next\"].apply(lambda x: 0 if x.total_seconds()<0 else x)\n",
277
- "df[\"remaining_delta_from_next\"] = pd.to_timedelta(df[\"remaining_delta_from_next\"])\n",
278
- "df[\"remaining_days_next_to_final\"] = df[\"remaining_delta_from_next\"].dt.days"
279
- ]
280
- },
281
- {
282
- "cell_type": "code",
283
- "execution_count": null,
284
- "id": "19",
285
- "metadata": {},
286
- "outputs": [],
287
- "source": [
288
- "df_final = (\n",
289
- " df\n",
290
- " .rename(columns={\n",
291
- " \"max_date\": \"current_regimen_date\",\n",
292
- " \"endline_visit_code\": \"last_attended_visit_code\",\n",
293
- " \"endline_visit_datetime\": \"last_attended_visit_datetime\",\n",
294
- " })\n",
295
- " .copy()\n",
296
- ")\n",
297
- "df_final = df_final[[\n",
298
- " \"subject_identifier\",\n",
299
- " \"current_regimen\",\n",
300
- " \"current_regimen_date\",\n",
301
- " \"changed\",\n",
302
- " \"baseline_datetime\",\n",
303
- " \"last_attended_visit_code\",\n",
304
- " \"last_attended_visit_datetime\",\n",
305
- " \"next_visit_code\",\n",
306
- " \"next_appt_datetime\",\n",
307
- " \"last_visit_code\",\n",
308
- " \"last_appt_datetime\",\n",
309
- " \"remaining_days_last_seen_to_final\",\n",
310
- " \"remaining_days_now_to_final\",\n",
311
- " \"remaining_days_next_to_final\",\n",
312
- "]].copy()\n",
313
- "\n",
314
- "df_final = (\n",
315
- " df_final\n",
316
- " .sort_values(\"subject_identifier\")\n",
317
- " .reset_index(drop=True)\n",
318
- ")\n",
319
- "df_final[\"remaining_days_last_seen_to_final\"] = df_final[\"remaining_days_last_seen_to_final\"].astype(\"float64\").fillna(0)\n",
320
- "df_final[\"remaining_days_now_to_final\"] = df_final[\"remaining_days_now_to_final\"].astype(\"float64\").fillna(0)\n",
321
- "df_final[\"remaining_days_next_to_final\"] = df_final[\"remaining_days_next_to_final\"].astype(\"float64\").fillna(0)\n",
322
- "df_final"
323
- ]
324
- },
325
- {
326
- "cell_type": "code",
327
- "execution_count": null,
328
- "id": "20",
329
- "metadata": {},
330
- "outputs": [],
331
- "source": [
332
- "# need from now until end of study\n",
333
- "df_summary1 = (pd.merge(\n",
334
- " df_final.groupby(by=[\"current_regimen\"]).remaining_days_now_to_final.sum(),\n",
335
- " df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
336
- " .rename(columns={\n",
337
- " \"remaining_days_now_to_final\": \"days_medication_needed\",\n",
338
- " \"subject_identifier\": \"subjects\"\n",
339
- " })\n",
340
- " .sort_values(\"days_medication_needed\", ascending=False)\n",
341
- " .reset_index()\n",
342
- ")\n",
343
- "df_summary1"
344
- ]
345
- },
346
- {
347
- "cell_type": "code",
348
- "execution_count": null,
349
- "id": "21",
350
- "metadata": {},
351
- "outputs": [],
352
- "source": [
353
- "# need from last seen to end of study\n",
354
- "df_summary2 = (pd.merge(\n",
355
- " df_final.groupby(by=[\"current_regimen\"]).remaining_days_last_seen_to_final.sum(),\n",
356
- " df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
357
- " .rename(columns={\n",
358
- " \"remaining_days_last_seen_to_final\": \"days_medication_needed\",\n",
359
- " \"subject_identifier\": \"subjects\"\n",
360
- " })\n",
361
- " .sort_values(\"days_medication_needed\", ascending=False)\n",
362
- " .reset_index()\n",
363
- ")\n",
364
- "df_summary2"
365
- ]
366
- },
367
- {
368
- "cell_type": "code",
369
- "execution_count": null,
370
- "id": "22",
371
- "metadata": {},
372
- "outputs": [],
373
- "source": [
374
- "# need from next to end of study\n",
375
- "df_summary3 = (pd.merge(\n",
376
- " df_final.groupby(by=[\"current_regimen\"]).remaining_days_next_to_final.sum(),\n",
377
- " df_final.groupby(by=[\"current_regimen\"]).subject_identifier.count(), on=\"current_regimen\")\n",
378
- " .rename(columns={\n",
379
- " \"remaining_days_next_to_final\": \"days_medication_needed\",\n",
380
- " \"subject_identifier\": \"subjects\"\n",
381
- " })\n",
382
- " .sort_values(\"days_medication_needed\", ascending=False)\n",
383
- " .reset_index()\n",
384
- ")\n",
385
- "\n",
386
- "df_summary3"
387
- ]
388
- },
389
- {
390
- "cell_type": "code",
391
- "execution_count": null,
392
- "id": "23",
393
- "metadata": {},
394
- "outputs": [],
395
- "source": [
396
- "with pd.ExcelWriter(\n",
397
- " analysis_folder / \"hiv_medication.xlsx\",\n",
398
- " date_format=\"YYYY-MM-DD\",\n",
399
- " datetime_format=\"YYYY-MM-DD HH:MM:SS\"\n",
400
- ") as writer:\n",
401
- " df_final.to_excel(writer, sheet_name=\"subjects\", index=False)\n",
402
- " df_summary1.to_excel(writer, sheet_name=\"now to final\", index=False)\n",
403
- " df_summary2.to_excel(writer, sheet_name=\"last seen to final\", index=False)\n",
404
- " df_summary3.to_excel(writer, sheet_name=\"next to final\", index=False)\n"
405
- ]
406
- }
407
- ],
408
- "metadata": {
409
- "kernelspec": {
410
- "display_name": "Python 3",
411
- "language": "python",
412
- "name": "python3"
413
- },
414
- "language_info": {
415
- "codemirror_mode": {
416
- "name": "ipython",
417
- "version": 2
418
- },
419
- "file_extension": ".py",
420
- "mimetype": "text/x-python",
421
- "name": "python",
422
- "nbconvert_exporter": "python",
423
- "pygments_lexer": "ipython2",
424
- "version": "2.7.6"
425
- }
426
- },
427
- "nbformat": 4,
428
- "nbformat_minor": 5
429
- }
@@ -1,232 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import os\n",
12
- "from pathlib import Path\n",
13
- "import pandas as pd\n",
14
- "from dj_notebook import activate\n",
15
- "\n",
16
- "env_file = os.environ[\"META_ENV\"]\n",
17
- "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
18
- "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
19
- "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
20
- "plus = activate(dotenv_file=env_file)\n",
21
- "pd.set_option('future.no_silent_downcasting', True)"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": null,
27
- "id": "1",
28
- "metadata": {},
29
- "outputs": [],
30
- "source": [
31
- "\n",
32
- "import pdfkit\n",
33
- "from datetime import date\n",
34
- "from edc_pdutils.dataframes import get_subject_visit\n",
35
- "from meta_analytics.dataframes import get_eos_df\n",
36
- "from meta_analytics.dataframes import GlucoseEndpointsByDate\n",
37
- "from scipy.stats import chi2\n",
38
- "from meta_analytics.utils import df_as_great_table\n",
39
- "from great_tables import md\n"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": null,
45
- "id": "2",
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "html_data = []\n",
50
- "cutoff_date = date(2025,3, 31)\n"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "id": "3",
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "df_visit = get_subject_visit(\"meta_subject.subjectvisit\")\n",
61
- "df_visit = df_visit[df_visit.appt_datetime.dt.date<=cutoff_date]\n"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "id": "4",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "cls = GlucoseEndpointsByDate()\n",
72
- "cls.run()\n",
73
- "df_endpoint = cls.endpoint_only_df.copy()"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "5",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "def get_df_main(df_visit:pd.DataFrame, lower_days:float|None=None, upper_days:float|None=None):\n",
84
- " if not lower_days:\n",
85
- " lower_days = -1\n",
86
- " cutoff_datetime = df_visit.query(\"@lower_days<followup_days<=@upper_days\").visit_datetime.max()\n",
87
- " # exclude subjects for this reason\n",
88
- " offstudy_reasons = ['Patient fulfilled late exclusion criteria (due to abnormal blood values or raised blood pressure at enrolment']\n",
89
- "\n",
90
- " df_eos = get_eos_df()\n",
91
- " df_eos_excluded = (\n",
92
- " df_eos\n",
93
- " .query(\"followup_days<@lower_days and followup_days<=@upper_days and offstudy_reason.isin(@offstudy_reasons)\")\n",
94
- " .copy()\n",
95
- " .reset_index()\n",
96
- " )\n",
97
- " df_visit_final = (\n",
98
- " df_visit.query(\"@lower_days<followup_days<=@upper_days and reason!='missed'\")\n",
99
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", suffixes=(\"\", \"_y\"), indicator=True)\n",
100
- " .query(\"_merge=='left_only'\")\n",
101
- " .drop(columns=[\"_merge\"])\n",
102
- " )\n",
103
- " df_main = (\n",
104
- " df_visit_final\n",
105
- " .groupby(by=[\"subject_identifier\"])[[\"baseline_datetime\", \"visit_datetime\", \"followup_days\"]]\n",
106
- " .max()\n",
107
- " .reset_index()\n",
108
- " )\n",
109
- "\n",
110
- " df_main = (\n",
111
- " df_main\n",
112
- " .merge(\n",
113
- " df_endpoint.query(\"days_to_endpoint>@lower_days\")[[\"subject_identifier\", \"endpoint_label\", \"endpoint_type\", \"days_to_endpoint\"]],\n",
114
- " how=\"left\",\n",
115
- " on=[\"subject_identifier\"])\n",
116
- " .reset_index(drop=True)\n",
117
- " )\n",
118
- " if lower_days>=365.25:\n",
119
- " df_main[\"followup_days\"] = df_main[\"followup_days\"] - lower_days\n",
120
- " df_main[\"followup_years\"] = df_main[\"followup_days\"]/365.25\n",
121
- " return df_main, len(df_main), len(df_main.query(\"@lower_days<days_to_endpoint<=@upper_days and endpoint_label.notna()\"))\n",
122
- "\n",
123
- "def get_rate_and_ci(events, person_years_total):\n",
124
- " lower_ci = (chi2.ppf(0.025, 2 * events) / (2 * person_years_total)) * 1000\n",
125
- " upper_ci = (chi2.ppf(0.975, 2 * (events + 1)) / (2 * person_years_total)) * 1000\n",
126
- " return events/person_years_total*1000, lower_ci, upper_ci\n",
127
- "\n",
128
- "def get_incidence_data(term:str, lower_days:float, upper_days:float):\n",
129
- " data = {}\n",
130
- " df_main, subjects, events = get_df_main(df_visit, lower_days=lower_days, upper_days=upper_days)\n",
131
- " person_years_total = df_main.followup_years.sum()\n",
132
- " data.update({term:[person_years_total, subjects, events, *get_rate_and_ci(events, person_years_total)]})\n",
133
- " return data"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": null,
139
- "id": "6",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "incidence_data = {}\n",
144
- "incidence_data.update(get_incidence_data(\"total\", lower_days=0, upper_days=10000))\n",
145
- "incidence_data.update(get_incidence_data(\"0-1 years\", lower_days=0, upper_days=365.25))\n",
146
- "incidence_data.update(get_incidence_data(\"1-2 years\", lower_days=365.25, upper_days=2*365.25))\n",
147
- "incidence_data.update(get_incidence_data(\"2-3 years\", lower_days=2*365.25, upper_days=3*365.25))\n",
148
- "incidence_data.update(get_incidence_data(\"3+ years\", lower_days=3*365.25, upper_days=10*365.25))"
149
- ]
150
- },
151
- {
152
- "cell_type": "code",
153
- "execution_count": null,
154
- "id": "7",
155
- "metadata": {},
156
- "outputs": [],
157
- "source": [
158
- "data = dict(label=[], person_years=[], failures=[], rate=[], lower_ci=[], upper_ci=[])\n",
159
- "for k in incidence_data:\n",
160
- " data[\"label\"].append(k)\n",
161
- "\n",
162
- "for v in incidence_data.values():\n",
163
- " data[\"person_years\"].append(v[0])\n",
164
- " data[\"failures\"].append(v[2])\n",
165
- " data[\"rate\"].append(v[3])\n",
166
- " data[\"lower_ci\"].append(v[4])\n",
167
- " data[\"upper_ci\"].append(v[5])\n",
168
- "\n",
169
- "df = pd.DataFrame(data=data)"
170
- ]
171
- },
172
- {
173
- "cell_type": "code",
174
- "execution_count": null,
175
- "id": "8",
176
- "metadata": {},
177
- "outputs": [],
178
- "source": [
179
- "gt = df_as_great_table(\n",
180
- " df,\n",
181
- " title=\"Table 9: Incident Rate per 1000 person years\",\n",
182
- " subtitle=md(\"using randomisation to diabetes/last seen\"),\n",
183
- ")\n",
184
- "gt = gt.fmt_number(columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"], decimals=2)\n",
185
- "gt = (gt\n",
186
- " .cols_label({\"label\": \"Label\", \"person_years\": \"Person years\", \"failures\": \"Failures\", \"rate\": \"Rate\", \"lower_ci\": \"Lower\", \"upper_ci\": \"Upper\"})\n",
187
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
188
- " .cols_align(align=\"center\", columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"])\n",
189
- " .tab_spanner(\n",
190
- " label=\"95%CI\",\n",
191
- " columns=[\"lower_ci\", \"upper_ci\"],\n",
192
- " )\n",
193
- ")\n",
194
- "gt.show()\n",
195
- "html_data.append(gt.as_raw_html())\n"
196
- ]
197
- },
198
- {
199
- "cell_type": "code",
200
- "execution_count": null,
201
- "id": "9",
202
- "metadata": {},
203
- "outputs": [],
204
- "source": [
205
- "raw_html = \"</BR>\".join(html_data)\n",
206
- "raw_html = '<!DOCTYPE html>\\n<html lang=\"en\">\\n<head>\\n<meta charset=\"utf-8\"/>\\n</head>\\n<body>\\n' + raw_html + '\\n</body>\\n</html>\\n'\n",
207
- "pdfkit.from_string(raw_html, str(analysis_folder / \"incident_rate.pdf\"))\n"
208
- ]
209
- }
210
- ],
211
- "metadata": {
212
- "kernelspec": {
213
- "display_name": "Python 3 (ipykernel)",
214
- "language": "python",
215
- "name": "python3"
216
- },
217
- "language_info": {
218
- "codemirror_mode": {
219
- "name": "ipython",
220
- "version": 3
221
- },
222
- "file_extension": ".py",
223
- "mimetype": "text/x-python",
224
- "name": "python",
225
- "nbconvert_exporter": "python",
226
- "pygments_lexer": "ipython3",
227
- "version": "3.12.4"
228
- }
229
- },
230
- "nbformat": 4,
231
- "nbformat_minor": 5
232
- }