meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,1061 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import os\n",
12
- "from pathlib import Path\n",
13
- "import pandas as pd\n",
14
- "from dj_notebook import activate\n",
15
- "import numpy as np\n",
16
- "\n",
17
- "env_file = os.environ[\"META_ENV\"]\n",
18
- "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
19
- "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
20
- "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
21
- "plus = activate(dotenv_file=env_file)"
22
- ]
23
- },
24
- {
25
- "cell_type": "markdown",
26
- "id": "1",
27
- "metadata": {},
28
- "source": []
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "2",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "from edc_pharmacy.analytics.dataframes import no_stock_for_subjects_df\n",
38
- "from datetime import datetime\n",
39
- "from edc_registration.models import RegisteredSubject\n",
40
- "\n",
41
- "from edc_appointment.analytics import get_appointment_df\n",
42
- "from edc_appointment.constants import NEW_APPT\n",
43
- "from edc_pharmacy.models import StockRequest, Allocation, ReceiveItem, OrderItem, Lot\n",
44
- "\n",
45
- "from edc_pharmacy.analytics import get_next_scheduled_visit_for_subjects_df\n",
46
- "from meta_rando.models import RandomizationList\n",
47
- "from edc_pharmacy.models import Stock\n",
48
- "from edc_visit_schedule.models import SubjectScheduleHistory\n",
49
- "from django.apps import apps as django_apps\n",
50
- "from django.db.models import Count\n",
51
- "from django_pandas.io import read_frame\n",
52
- "from edc_visit_schedule.site_visit_schedules import site_visit_schedules\n",
53
- "from edc_pharmacy.models import Container\n",
54
- "from great_tables import GT, html, loc, style\n",
55
- "from PIL import Image\n",
56
- "from edc_pdutils.dataframes.get_subject_visit import convert_visit_code_to_float\n"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "3",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "from edc_model_to_dataframe import read_frame_edc\n",
67
- "from meta_subject.models import FollowupExamination\n",
68
- "\n",
69
- "df = read_frame_edc(FollowupExamination.objects.all(), drop_sys_columns=True, drop_action_item_columns=True)\n",
70
- "df = df.replace(\"none\", pd.NA)\n",
71
- "df = df.replace(\"none\", pd.NA)\n",
72
- "df = df.fillna(pd.NA)\n",
73
- "convert_visit_code_to_float(df)"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "4",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "from edc_analytics.stata import get_stata_labels_from_model\n",
84
- "\n",
85
- "df = df[[\"subject_identifier\", \"subject_visit_id\", \"report_datetime\", \"visit_code\", \"site_id\", \"site_name\", \"visit_reason\", \"symptoms\",\"symptoms_detail\", \"symptoms_sought_care\", \"symptoms_g3\", \"symptoms_g4\", \"comment\"]].copy().reset_index(drop=True)\n",
86
- "\n",
87
- "df = df.astype(\n",
88
- " {col: \"Float64\" for col in df.select_dtypes(include=[\"float\", \"float64\"]).columns}\n",
89
- ")\n",
90
- "df_meds = df.astype(\n",
91
- " {col: \"Int64\" for col in df.select_dtypes(include=[\"int\", \"int64\"]).columns}\n",
92
- ")\n",
93
- "df = df.astype(\n",
94
- " {\n",
95
- " col: \"datetime64[ns]\"\n",
96
- " for col in df.select_dtypes(include=[\"datetime\", \"datetime64\"]).columns\n",
97
- " }\n",
98
- ")\n",
99
- "df = df.astype(\n",
100
- " {\n",
101
- " col: str\n",
102
- " for col in df.select_dtypes(include=[\"object\"]).columns\n",
103
- " }\n",
104
- ")\n",
105
- "df = df.fillna(pd.NA)\n",
106
- "\n",
107
- "variable_labels = {}\n",
108
- "variable_labels.update(**get_stata_labels_from_model(df, model=\"meta_subject.followupexamination\", suffix=None))\n",
109
- "\n",
110
- "df.to_stata(\n",
111
- " path=analysis_folder / \"followupexamination.dta\",\n",
112
- " variable_labels=variable_labels,\n",
113
- " version=118,\n",
114
- " write_index=False,\n",
115
- ")"
116
- ]
117
- },
118
- {
119
- "cell_type": "code",
120
- "execution_count": null,
121
- "id": "5",
122
- "metadata": {},
123
- "outputs": [],
124
- "source": [
125
- "df"
126
- ]
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "id": "6",
132
- "metadata": {},
133
- "outputs": [],
134
- "source": [
135
- "\n",
136
- "def get_great_table(df:pd.DataFrame, title:str, footnote:str|None=None):\n",
137
- " return (GT(df)\n",
138
- " .tab_header(title=html(title))\n",
139
- " .cols_align(align=\"left\", columns=[0])\n",
140
- " .cols_align(align=\"right\", columns=list(range(1, len(df.columns))))\n",
141
- " .opt_stylize(style=5)\n",
142
- " .opt_row_striping(row_striping=False)\n",
143
- " .opt_vertical_padding(scale=1.2)\n",
144
- " .opt_horizontal_padding(scale=1.0)\n",
145
- " .tab_options(\n",
146
- " stub_background_color=\"white\",\n",
147
- " row_group_border_bottom_style=\"hidden\",\n",
148
- " row_group_padding=0.5,\n",
149
- " row_group_background_color=\"white\",\n",
150
- " table_background_color=\"white\",\n",
151
- " table_font_size=12,\n",
152
- " )\n",
153
- " .tab_style(\n",
154
- " style=[style.fill(color=\"white\"), style.text(color=\"black\")],\n",
155
- " locations=loc.body(columns=list(range(len(df.columns))), rows=list(range(0, len(df)))),\n",
156
- " )\n",
157
- " .tab_style(\n",
158
- " style=[style.fill(color=\"lightgrey\"), style.text(color=\"black\")],\n",
159
- " locations=loc.body(columns=list(range(len(df.columns))), rows=[len(df)-1]),\n",
160
- " )\n",
161
- " .tab_source_note(source_note=html(footnote or \"\"))\n",
162
- " .tab_style(\n",
163
- " style=style.text(color=\"black\", size=\"small\"),\n",
164
- " locations=loc.footer(),\n",
165
- " )\n",
166
- "\n",
167
- "\n",
168
- " )\n"
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "execution_count": null,
174
- "id": "7",
175
- "metadata": {},
176
- "outputs": [],
177
- "source": [
178
- "start_from_appt_date = datetime(2025,5,15)"
179
- ]
180
- },
181
- {
182
- "cell_type": "code",
183
- "execution_count": null,
184
- "id": "8",
185
- "metadata": {},
186
- "outputs": [],
187
- "source": [
188
- "# get rando\n",
189
- "df_rando = read_frame(RandomizationList.objects.values(\"subject_identifier\", \"assignment\").filter(subject_identifier__isnull=False))"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "id": "9",
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "# get appointments\n",
200
- "df_appt = get_appointment_df()\n",
201
- "print(f\"{len(df_appt[(df_appt.appt_status==NEW_APPT) & (df_appt.appt_datetime >= start_from_appt_date) & (df_appt.appt_datetime < datetime(2026,3,1)) & (df_appt.visit_code!=1480.0)])} appointments after filtering\")"
202
- ]
203
- },
204
- {
205
- "cell_type": "code",
206
- "execution_count": null,
207
- "id": "10",
208
- "metadata": {},
209
- "outputs": [],
210
- "source": [
211
- "# create a dataframe of subjects still on the 'schedule' schedule\n",
212
- "# use SubjectScheduleHistory where offschedule_datetime is null\n",
213
- "df_subject_schedule = read_frame(SubjectScheduleHistory.objects.values(\"subject_identifier\", \"visit_schedule_name\", \"schedule_name\", \"onschedule_datetime\", \"offschedule_datetime\").filter(offschedule_datetime__isnull=True, schedule_name=\"schedule\"))\n",
214
- "\n",
215
- "print(f\"{len(df_subject_schedule)} subjects currently onstudy\")"
216
- ]
217
- },
218
- {
219
- "cell_type": "code",
220
- "execution_count": null,
221
- "id": "11",
222
- "metadata": {},
223
- "outputs": [],
224
- "source": [
225
- "# for now merge with the unfiltered df_appt\n",
226
- "df_main = df_subject_schedule.merge(\n",
227
- " df_appt[[\"appointment_id\", \"subject_identifier\", \"visit_code\", \"visit_code_str\", \"appt_datetime\", \"baseline_datetime\", \"endline_visit_code\", \"visit_code_sequence\", \"appt_status\"]],\n",
228
- " on=\"subject_identifier\",\n",
229
- " how=\"left\")\n",
230
- "# exclude unscheduled,\n",
231
- "df_main = df_main[\n",
232
- " (df_main.visit_code_sequence==0) &\n",
233
- " (df_main.visit_schedule_name==\"visit_schedule\") &\n",
234
- " (df_main.schedule_name==\"schedule\") &\n",
235
- " (df_main.visit_code<2000.0) &\n",
236
- " (df_main.appt_status==NEW_APPT)\n",
237
- "].copy()\n",
238
- "print(f\"{len(df_main)} new appointments for subjects on study\")\n"
239
- ]
240
- },
241
- {
242
- "cell_type": "code",
243
- "execution_count": null,
244
- "id": "12",
245
- "metadata": {},
246
- "outputs": [],
247
- "source": [
248
- "# number of appointments before extended all subjects out to 48m\n",
249
- "df_grouped = df_main[\n",
250
- " (df_main.appt_datetime >= start_from_appt_date) &\n",
251
- " (df_main.appt_datetime < datetime(2026,3,1)) &\n",
252
- " (df_main.visit_code!=1480.0)\n",
253
- "].visit_code.value_counts().reset_index(name=\"appointments\").sort_values(by=\"visit_code\", ascending=True).reset_index(drop=True)\n",
254
- "df_grouped[\"cumsum\"] = df_grouped.appointments.cumsum()\n",
255
- "df_grouped[\"cumsum\"].max()\n"
256
- ]
257
- },
258
- {
259
- "cell_type": "code",
260
- "execution_count": null,
261
- "id": "13",
262
- "metadata": {},
263
- "outputs": [],
264
- "source": [
265
- "df_main"
266
- ]
267
- },
268
- {
269
- "cell_type": "code",
270
- "execution_count": null,
271
- "id": "14",
272
- "metadata": {},
273
- "outputs": [],
274
- "source": [
275
- "# now extend everyone to 48 months.\n",
276
- "# Subjects are in the process of consenting for extended\n",
277
- "# followup. Assume ALL have done so by filling in all\n",
278
- "# subject schedules to 48m\n",
279
- "\n",
280
- "# pivot\n",
281
- "df_pivot = df_main[\n",
282
- " (df_main.visit_code_sequence==0) &\n",
283
- " (df_main.visit_code<2000.0)\n",
284
- "].pivot_table(index=\"subject_identifier\", columns='visit_code', values='appt_datetime', aggfunc='count')\n",
285
- "df_pivot.fillna(0, inplace=True)\n",
286
- "df_pivot.reset_index(inplace=True)\n",
287
- "df_pivot.rename_axis(\"\", axis=\"columns\", inplace=True)\n",
288
- "\n",
289
- "# melt\n",
290
- "df_pivot = df_pivot.melt(id_vars=\"subject_identifier\", var_name=\"visit_code\", value_name=\"exists\")\n",
291
- "df_pivot[\"visit_code\"] = df_pivot[\"visit_code\"].astype(float)\n",
292
- "df_pivot.sort_values([\"subject_identifier\", \"visit_code\"], ascending=True, inplace=True)\n",
293
- "df_pivot.reset_index(drop=True, inplace=True)\n",
294
- "\n",
295
- "# merge in baseline_datetime\n",
296
- "df_baseline = df_appt[df_appt.visit_code==1000.0][[\"subject_identifier\", \"baseline_datetime\"]]\n",
297
- "df_pivot = df_pivot.merge(df_baseline, on=[\"subject_identifier\"], how=\"left\")\n",
298
- "df_pivot.reset_index(drop=True, inplace=True)\n",
299
- "\n",
300
- "# merge df_main back in\n",
301
- "df_pivot = df_pivot.merge(df_main[[\"subject_identifier\", \"visit_code\", \"appt_datetime\", \"appt_status\"]], on=[\"subject_identifier\",\"visit_code\"], how=\"left\")\n",
302
- "df_pivot"
303
- ]
304
- },
305
- {
306
- "cell_type": "code",
307
- "execution_count": null,
308
- "id": "15",
309
- "metadata": {},
310
- "outputs": [],
311
- "source": [
312
- "# len(df_pivot[(df_pivot.appt_datetime>=datetime(2025,1,1)) & (df_pivot.visit_code==MONTH48)])/3"
313
- ]
314
- },
315
- {
316
- "cell_type": "code",
317
- "execution_count": null,
318
- "id": "16",
319
- "metadata": {},
320
- "outputs": [],
321
- "source": [
322
- "# extend no one!\n",
323
- "# df_pivot = df_pivot[df_pivot.exists==1].copy()\n",
324
- "# df_pivot.reset_index(drop=True, inplace=True)\n"
325
- ]
326
- },
327
- {
328
- "cell_type": "code",
329
- "execution_count": null,
330
- "id": "17",
331
- "metadata": {},
332
- "outputs": [],
333
- "source": [
334
- "# add appointments do not have an appt_datetime, so calculate\n",
335
- "# using the visit schedule relative to baseline_datetime\n",
336
- "visit_schedule = site_visit_schedules.get_visit_schedule(\"visit_schedule\")\n",
337
- "schedule = visit_schedule.schedules.get(\"schedule\")\n",
338
- "mapping = {k: visit.rbase for k,visit in schedule.visits.items()}\n",
339
- "\n",
340
- "def estimate_appt_datetime(row):\n",
341
- " if pd.isna(row[\"appt_datetime\"]):\n",
342
- " row[\"appt_datetime\"] = row[\"baseline_datetime\"] + mapping.get(str(int(row[\"visit_code\"])))\n",
343
- " return row\n",
344
- "\n",
345
- "df_pivot = df_pivot.apply(estimate_appt_datetime, axis=1)\n",
346
- "df_pivot.sort_values(by=[\"subject_identifier\", \"visit_code\"], ascending=True, inplace=True)\n",
347
- "df_pivot.reset_index(drop=True, inplace=True)\n",
348
- "\n",
349
- "# merge in assignment\n",
350
- "df_pivot = df_pivot.merge(df_rando, on=\"subject_identifier\", how=\"left\")\n",
351
- "df_pivot.reset_index(drop=True, inplace=True)\n",
352
- "\n",
353
- "# flag added appointments as NEW\n",
354
- "df_pivot.loc[df_pivot.exists==0.0, \"appt_status\"] = NEW_APPT\n",
355
- "\n",
356
- "print(f\"{len(df_pivot)} appointments\")"
357
- ]
358
- },
359
- {
360
- "cell_type": "code",
361
- "execution_count": null,
362
- "id": "18",
363
- "metadata": {},
364
- "outputs": [],
365
- "source": [
366
- "# df_subject_appointments is a dataframe of appointments\n",
367
- "# - only include NEW appointments\n",
368
- "# - only include appts between today (2025,4,4) and before (2026,3,1).\n",
369
- "# - exclude the last visit (48m) since no meds are dispensed then.\n",
370
- "cutoff_date = datetime(2026,3,1)\n",
371
- "df_subject_appointments = df_pivot[\n",
372
- " (df_pivot.appt_status==NEW_APPT) &\n",
373
- " (df_pivot.appt_datetime >= start_from_appt_date) &\n",
374
- " (df_pivot.appt_datetime < cutoff_date) &\n",
375
- " (df_pivot.visit_code!=1480.0)\n",
376
- "].copy()\n",
377
- "print(f\"{len(df_subject_appointments)} appointments\")"
378
- ]
379
- },
380
- {
381
- "cell_type": "code",
382
- "execution_count": null,
383
- "id": "19",
384
- "metadata": {},
385
- "outputs": [],
386
- "source": [
387
- "n = df_subject_appointments.subject_identifier.nunique()\n",
388
- "print(f\"{n} subjects\")\n"
389
- ]
390
- },
391
- {
392
- "cell_type": "code",
393
- "execution_count": null,
394
- "id": "20",
395
- "metadata": {},
396
- "outputs": [],
397
- "source": [
398
- "(len(df_subject_appointments[df_subject_appointments.appt_datetime>=datetime(2026,1,1)])/36)/5"
399
- ]
400
- },
401
- {
402
- "cell_type": "code",
403
- "execution_count": null,
404
- "id": "21",
405
- "metadata": {},
406
- "outputs": [],
407
- "source": [
408
- "# summarize the appointments\n",
409
- "df_summary = df_subject_appointments.visit_code.value_counts().reset_index(name=\"appointments\").sort_values(by=[\"visit_code\"], ascending=True)\n",
410
- "df_summary[\"cumsum\"] = df_summary.appointments.cumsum()\n",
411
- "df_summary"
412
- ]
413
- },
414
- {
415
- "cell_type": "code",
416
- "execution_count": null,
417
- "id": "22",
418
- "metadata": {},
419
- "outputs": [],
420
- "source": [
421
- "df = df_subject_appointments.assignment.value_counts(dropna=False).reset_index()\n",
422
- "df.rename(columns={\"count\":\"appointments\"}, inplace=True)\n",
423
- "df[\"bottles\"] = df.appointments * 3\n",
424
- "df[\"tablets\"] = df.bottles * 128\n",
425
- "\n",
426
- "# we need this many bottles / tablets by assignment\n",
427
- "# filter\n",
428
- "df.loc[len(df)] = {\"appointments\": df.appointments.sum(), \"bottles\": df.bottles.sum(), \"tablets\": df.tablets.sum()}\n",
429
- "df"
430
- ]
431
- },
432
- {
433
- "cell_type": "code",
434
- "execution_count": null,
435
- "id": "23",
436
- "metadata": {},
437
- "outputs": [],
438
- "source": [
439
- "gt = get_great_table(\n",
440
- " df,\n",
441
- " \"Table 1: IMP Bottles of 128 needed<BR><small>as of 2025-05-15</small>\",\n",
442
- " footnote=(\n",
443
- " \"<ol>\"\n",
444
- " \"<li>assume all participants consent for extended followup.\"\n",
445
- " \"<li>Need 3 bottles every three months\"\n",
446
- " \"<li>48m appointment is excluded\"\n",
447
- " \"<li>Only prepare for appointments scheduled before 2026-03-01.\"\n",
448
- " \"</ol>\"\n",
449
- " ))\n",
450
- "gt.show()"
451
- ]
452
- },
453
- {
454
- "cell_type": "code",
455
- "execution_count": null,
456
- "id": "24",
457
- "metadata": {},
458
- "outputs": [],
459
- "source": [
460
- "\n",
461
- "# save as png\n",
462
- "gt.save(analysis_folder / \"pharmacy_tbl1.png\")\n",
463
- "# export to PDF\n",
464
- "image = Image.open(analysis_folder / \"pharmacy_tbl1.png\")\n",
465
- "image = image.resize((image.width * 6, image.height * 6), Image.LANCZOS)\n",
466
- "image.save(analysis_folder / \"pharmacy_tbl1.pdf\", \"PDF\", resolution=800, optimize=True, quality=95)"
467
- ]
468
- },
469
- {
470
- "cell_type": "code",
471
- "execution_count": null,
472
- "id": "25",
473
- "metadata": {},
474
- "outputs": [],
475
- "source": [
476
- "# now lets look at the stock\n",
477
- "df_stock = read_frame(Stock.objects.values(\"code\", \"lot_id\", \"container__name\", \"confirmation\", \"allocation\", \"dispense\", \"qty_in\", \"qty_out\", \"unit_qty_in\", \"unit_qty_out\").all(), verbose=False)\n",
478
- "df_stock = df_stock.fillna(pd.NA)\n",
479
- "\n",
480
- "# merge in assignment\n",
481
- "df_lot = read_frame(Lot.objects.values(\"id\", \"assignment__name\").all(), verbose=False)\n",
482
- "df_lot.rename(columns={\"id\":\"lot_id\", \"assignment__name\": \"assignment\"}, inplace=True)\n",
483
- "df_stock = df_stock.merge(df_lot[[\"lot_id\", \"assignment\"]], on=\"lot_id\", how=\"left\")\n",
484
- "df_stock.rename(columns={\"container__name\":\"container\"}, inplace=True)\n",
485
- "df_stock.reset_index(drop=True, inplace=True)"
486
- ]
487
- },
488
- {
489
- "cell_type": "code",
490
- "execution_count": null,
491
- "id": "26",
492
- "metadata": {},
493
- "outputs": [],
494
- "source": [
495
- "# merge in container columns\n",
496
- "df_container = read_frame(Container.objects.all())\n",
497
- "df_container.rename(columns={\"name\": \"container\", \"display_name\": \"container_display_name\", \"units\": \"container_units\", \"qty\": \"container_qty\"}, inplace=True)\n",
498
- "df_stock = df_stock.merge(df_container[[\"container\", \"container_display_name\", \"container_type\", \"container_units\", \"container_qty\"]], on=\"container\", how=\"left\")\n",
499
- "df_stock.reset_index(drop=True, inplace=True)\n",
500
- "\n",
501
- "# calculate bal\n",
502
- "df_stock[\"bal\"] = df_stock[\"unit_qty_in\"] - df_stock[\"unit_qty_out\"]\n"
503
- ]
504
- },
505
- {
506
- "cell_type": "code",
507
- "execution_count": null,
508
- "id": "27",
509
- "metadata": {},
510
- "outputs": [],
511
- "source": [
512
- "# show the balance of tablets decanted to bottles by assignment (on the EDC)\n",
513
- "df2 = df_stock[df_stock.container_display_name==\"Bottle 128\"].groupby(by=[\"assignment\"]).bal.agg(\"sum\").reset_index()\n",
514
- "df2.loc[len(df2)] = {\"bal\": df2.bal.sum()}\n",
515
- "df2"
516
- ]
517
- },
518
- {
519
- "cell_type": "code",
520
- "execution_count": null,
521
- "id": "28",
522
- "metadata": {},
523
- "outputs": [],
524
- "source": [
525
- "# some bottles, as of today, have not been captured in the system\n",
526
- "# here is an estimate of what has been decanted into bottles but not labelled.\n",
527
- "# in the system, these tablets would appear on the EDC as still in buckets\n",
528
- "df3 = df2.copy()\n",
529
- "df3 = df3.drop(len(df3) - 1)\n",
530
- "placebo_unlabelled = 0 # 21*128*128\n",
531
- "active_unlabelled = 0 # 25*191*128\n",
532
- "\n",
533
- "# adding in the estimates, this is about what we have bottled\n",
534
- "df3.loc[df3.assignment==\"placebo\", \"bal\"] += placebo_unlabelled\n",
535
- "df3.loc[df3.assignment==\"active\", \"bal\"] += active_unlabelled\n",
536
- "df3.loc[len(df3)] = {\"bal\": df3.bal.sum()}\n",
537
- "df3"
538
- ]
539
- },
540
- {
541
- "cell_type": "code",
542
- "execution_count": null,
543
- "id": "29",
544
- "metadata": {},
545
- "outputs": [],
546
- "source": [
547
- "gt = get_great_table(\n",
548
- " df3,\n",
549
- " \"Table 2: IMP tablets in stock<BR><small>as of 2025-04-04</small>\",\n",
550
- " # footnote=\"Includes recently decanted but unlabelled bottles\"\n",
551
- " )\n",
552
- "gt.show()"
553
- ]
554
- },
555
- {
556
- "cell_type": "code",
557
- "execution_count": null,
558
- "id": "30",
559
- "metadata": {},
560
- "outputs": [],
561
- "source": [
562
- "# save as png\n",
563
- "gt.save(analysis_folder / \"pharmacy_tbl2.png\")\n",
564
- "# export to PDF\n",
565
- "image = Image.open(analysis_folder / \"pharmacy_tbl2.png\")\n",
566
- "image = image.resize((image.width * 6, image.height * 6), Image.LANCZOS)\n",
567
- "image.save(analysis_folder / \"pharmacy_tbl2.pdf\", \"PDF\", resolution=800, optimize=True, quality=95)"
568
- ]
569
- },
570
- {
571
- "cell_type": "code",
572
- "execution_count": null,
573
- "id": "31",
574
- "metadata": {},
575
- "outputs": [],
576
- "source": [
577
- "# tablets: ordered\n",
578
- "df_orderitems = read_frame(OrderItem.objects.all())\n",
579
- "df_orderitems.qty.sum()"
580
- ]
581
- },
582
- {
583
- "cell_type": "code",
584
- "execution_count": null,
585
- "id": "32",
586
- "metadata": {},
587
- "outputs": [],
588
- "source": [
589
- "# tablets: received\n",
590
- "df_received_items = read_frame(ReceiveItem.objects.all())\n",
591
- "df_received_items.unit_qty.sum()"
592
- ]
593
- },
594
- {
595
- "cell_type": "code",
596
- "execution_count": null,
597
- "id": "33",
598
- "metadata": {},
599
- "outputs": [],
600
- "source": [
601
- "# tablets: received into stock\n",
602
- "df_stock[df_stock.container_type==\"bucket\"].unit_qty_in.sum()"
603
- ]
604
- },
605
- {
606
- "cell_type": "code",
607
- "execution_count": null,
608
- "id": "34",
609
- "metadata": {},
610
- "outputs": [],
611
- "source": [
612
- "# tablets: decanted from buckets into bottles\n",
613
- "df_stock[df_stock.container_type==\"bucket\"].unit_qty_out.sum()"
614
- ]
615
- },
616
- {
617
- "cell_type": "code",
618
- "execution_count": null,
619
- "id": "35",
620
- "metadata": {},
621
- "outputs": [],
622
- "source": [
623
- "# tablets: total in bottles\n",
624
- "df_stock[df_stock.container_type==\"Bottle\"].unit_qty_in.sum()"
625
- ]
626
- },
627
- {
628
- "cell_type": "code",
629
- "execution_count": null,
630
- "id": "36",
631
- "metadata": {},
632
- "outputs": [],
633
- "source": [
634
- "# tablets: total bottles available / not yet dispensed BY ASSIGNMENT\n",
635
- "# the total matches the total above for column \"bal\"\n",
636
- "df4 = df_stock[(df_stock.container_type==\"Bottle\") & ~(df_stock.confirmation.isna()) & ~(df_stock.dispense.isna())].groupby(by=[\"assignment\"]).unit_qty_in.sum().reset_index()\n",
637
- "df4[\"subtotal\"] = np.nan\n",
638
- "df4.loc[len(df4)] = {\"subtotal\": df4.unit_qty_in.sum()}\n",
639
- "df[\"dispensed\"] = True\n",
640
- "\n",
641
- "df5 = df_stock[(df_stock.container_type==\"Bottle\") & ~(df_stock.confirmation.isna()) & (df_stock.dispense.isna())].groupby(by=[\"assignment\"]).unit_qty_in.sum().reset_index()\n",
642
- "df5.loc[df5.assignment==\"placebo\", \"unit_qty_in\"] += placebo_unlabelled\n",
643
- "df5.loc[df5.assignment==\"active\", \"unit_qty_in\"] += active_unlabelled\n",
644
- "df5[\"subtotal\"] = np.nan\n",
645
- "df5.loc[len(df5)] = {\"subtotal\" : df5.unit_qty_in.sum()}\n",
646
- "df5[\"dispensed\"] = False\n",
647
- "\n",
648
- "df6 = pd.concat([df4, df5])\n",
649
- "df6[\"total\"] = np.nan\n",
650
- "df6.reset_index(drop=True, inplace=True)\n",
651
- "df6.loc[len(df6)] = {\"total\": df6.subtotal.sum()}\n",
652
- "df6 = df6[[\"dispensed\", \"assignment\", \"unit_qty_in\", \"subtotal\", \"total\"]]\n",
653
- "df6"
654
- ]
655
- },
656
- {
657
- "cell_type": "code",
658
- "execution_count": null,
659
- "id": "37",
660
- "metadata": {},
661
- "outputs": [],
662
- "source": []
663
- },
664
- {
665
- "cell_type": "code",
666
- "execution_count": null,
667
- "id": "38",
668
- "metadata": {},
669
- "outputs": [],
670
- "source": [
671
- "from meta_visit_schedule.constants import MONTH36\n",
672
- "\n",
673
- "df_appt[(df_appt.visit_code_str==MONTH36) & (df_appt.appt_datetime >= datetime(2024,12,15)) & (df_appt.appt_status==NEW_APPT) & (df_appt.appt_datetime <= datetime(2026,2,28))]"
674
- ]
675
- },
676
- {
677
- "cell_type": "code",
678
- "execution_count": null,
679
- "id": "39",
680
- "metadata": {},
681
- "outputs": [],
682
- "source": [
683
- "def remove_subjects_where_stock_on_site(stock_request: StockRequest, df: pd.DataFrame):\n",
684
- " stock_model_cls = django_apps.get_model(\"edc_pharmacy.Stock\")\n",
685
- " qs_stock = (\n",
686
- " stock_model_cls.objects.values(\n",
687
- " \"allocation__registered_subject__subject_identifier\", \"code\"\n",
688
- " )\n",
689
- " .filter(location=stock_request.location, qty=1)\n",
690
- " .annotate(count=Count(\"allocation__registered_subject__subject_identifier\"))\n",
691
- " )\n",
692
- " df_stock = read_frame(qs_stock)\n",
693
- " df_stock = df_stock.rename(\n",
694
- " columns={\n",
695
- " \"allocation__registered_subject__subject_identifier\": \"subject_identifier\",\n",
696
- " \"count\": \"stock_qty\",\n",
697
- " }\n",
698
- " )\n",
699
- " if not df.empty and not df_stock.empty:\n",
700
- " df_subject = df.copy()\n",
701
- " df_subject[\"code\"] = None\n",
702
- " df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
703
- " for index, row in df.iterrows():\n",
704
- " qty_needed = stock_request.containers_per_subject - len(df[df.subject_identifier == row.subject_identifier])\n",
705
- " if qty_needed > 0:\n",
706
- " for _ in range(0, qty_needed):\n",
707
- " df = pd.concat([df, df_subject])\n",
708
- " else:\n",
709
- " df[\"code\"] = None\n",
710
- " df[\"stock_qty\"] = 0.0\n",
711
- " df = df.reset_index(drop=True)\n",
712
- " return df\n"
713
- ]
714
- },
715
- {
716
- "cell_type": "code",
717
- "execution_count": null,
718
- "id": "40",
719
- "metadata": {},
720
- "outputs": [],
721
- "source": [
722
- "def pad_with_null_rows(df, qty_needed):\n",
723
- " padded_data = []\n",
724
- " for index, row in df.iterrows():\n",
725
- " customer = row['subject']\n",
726
- " products = row['product_code']\n",
727
- " # Pad the products list with None to make its length x\n",
728
- " products += [None] * (qty_needed - len(products))\n",
729
- " # Create x rows for each customer\n",
730
- " for product in products:\n",
731
- " padded_data.append({'customer': customer, 'product_code': product})\n",
732
- " return pd.DataFrame(padded_data)"
733
- ]
734
- },
735
- {
736
- "cell_type": "code",
737
- "execution_count": null,
738
- "id": "41",
739
- "metadata": {},
740
- "outputs": [],
741
- "source": [
742
- "pk = \"5455cf66-b8e5-449c-a1e8-24d3325026d7\"\n",
743
- "stock_request = StockRequest.objects.get(pk=pk)\n"
744
- ]
745
- },
746
- {
747
- "cell_type": "code",
748
- "execution_count": null,
749
- "id": "42",
750
- "metadata": {},
751
- "outputs": [],
752
- "source": [
753
- "df_subjects = get_next_scheduled_visit_for_subjects_df(stock_request)\n",
754
- "df_subjects"
755
- ]
756
- },
757
- {
758
- "cell_type": "code",
759
- "execution_count": null,
760
- "id": "43",
761
- "metadata": {},
762
- "outputs": [],
763
- "source": []
764
- },
765
- {
766
- "cell_type": "code",
767
- "execution_count": null,
768
- "id": "44",
769
- "metadata": {},
770
- "outputs": [],
771
- "source": [
772
- "df = df_subjects.copy()\n",
773
- "stock_model_cls = django_apps.get_model(\"edc_pharmacy.Stock\")\n",
774
- "qs_stock = (\n",
775
- " stock_model_cls.objects.values(\n",
776
- " \"allocation__registered_subject__subject_identifier\", \"code\"\n",
777
- " )\n",
778
- " .filter(location=stock_request.location, qty=1)\n",
779
- " .annotate(count=Count(\"allocation__registered_subject__subject_identifier\"))\n",
780
- ")\n",
781
- "df_stock = read_frame(qs_stock)\n",
782
- "df_stock = df_stock.rename(\n",
783
- " columns={\n",
784
- " \"allocation__registered_subject__subject_identifier\": \"subject_identifier\",\n",
785
- " \"count\": \"stock_qty\",\n",
786
- " }\n",
787
- ")\n",
788
- "df_stock"
789
- ]
790
- },
791
- {
792
- "cell_type": "code",
793
- "execution_count": null,
794
- "id": "45",
795
- "metadata": {},
796
- "outputs": [],
797
- "source": [
798
- "df.merge(df_stock, on=\"subject_identifier\", how=\"left\")"
799
- ]
800
- },
801
- {
802
- "cell_type": "code",
803
- "execution_count": null,
804
- "id": "46",
805
- "metadata": {},
806
- "outputs": [],
807
- "source": [
808
- "if not df.empty and not df_stock.empty:\n",
809
- " df_subject = df.copy()\n",
810
- " df_subject[\"code\"] = None\n",
811
- " df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
812
- " for index, row in df.iterrows():\n",
813
- " qty_needed = stock_request.containers_per_subject - len(df[df.subject_identifier == row.subject_identifier])\n",
814
- " if qty_needed > 0:\n",
815
- " for _ in range(0, qty_needed):\n",
816
- " df = pd.concat([df, df_subject])\n",
817
- "else:\n",
818
- " df[\"code\"] = None\n",
819
- "df[\"stock_qty\"] = 0.0\n",
820
- "df = df.reset_index(drop=True)\n",
821
- "df"
822
- ]
823
- },
824
- {
825
- "cell_type": "code",
826
- "execution_count": null,
827
- "id": "47",
828
- "metadata": {},
829
- "outputs": [],
830
- "source": [
831
- "df.loc[df.index.repeat(3)]"
832
- ]
833
- },
834
- {
835
- "cell_type": "code",
836
- "execution_count": null,
837
- "id": "48",
838
- "metadata": {},
839
- "outputs": [],
840
- "source": [
841
- "if not df.empty and not df_stock.empty:\n",
842
- " df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
843
- "else:\n",
844
- " df[\"code\"] = None\n",
845
- "df[\"stock_qty\"] = 0.0\n",
846
- "df = df.reset_index(drop=True)\n",
847
- "df"
848
- ]
849
- },
850
- {
851
- "cell_type": "code",
852
- "execution_count": null,
853
- "id": "49",
854
- "metadata": {},
855
- "outputs": [],
856
- "source": [
857
- "df = remove_subjects_where_stock_on_site(stock_request, df_subjects)\n",
858
- "df"
859
- ]
860
- },
861
- {
862
- "cell_type": "code",
863
- "execution_count": null,
864
- "id": "50",
865
- "metadata": {},
866
- "outputs": [],
867
- "source": [
868
- "df_instock = df[~df.code.isna()]\n",
869
- "df_instock = df_instock.reset_index(drop=True)\n",
870
- "df_instock = df_instock.sort_values(by=[\"subject_identifier\"])\n",
871
- "\n",
872
- "df_nostock = df[df.code.isna()]\n",
873
- "df_nostock = df_nostock.reset_index(drop=True)\n",
874
- "df_nostock = df_nostock.loc[\n",
875
- " df_nostock.index.repeat(stock_request.containers_per_subject)\n",
876
- "].reset_index(drop=True)\n",
877
- "df_nostock = df_nostock.sort_values(by=[\"subject_identifier\"])\n",
878
- "df_nostock[\"code\"] = df_nostock[\"code\"].fillna(\"---\")\n"
879
- ]
880
- },
881
- {
882
- "cell_type": "code",
883
- "execution_count": null,
884
- "id": "51",
885
- "metadata": {},
886
- "outputs": [],
887
- "source": []
888
- },
889
- {
890
- "cell_type": "code",
891
- "execution_count": null,
892
- "id": "52",
893
- "metadata": {},
894
- "outputs": [],
895
- "source": []
896
- },
897
- {
898
- "cell_type": "code",
899
- "execution_count": null,
900
- "id": "53",
901
- "metadata": {},
902
- "outputs": [],
903
- "source": [
904
- "no_stock_for_subjects_df()"
905
- ]
906
- },
907
- {
908
- "cell_type": "code",
909
- "execution_count": null,
910
- "id": "54",
911
- "metadata": {},
912
- "outputs": [],
913
- "source": [
914
- "df_schedule = read_frame(SubjectScheduleHistory.objects.values(\"subject_identifier\", \"visit_schedule_name\",\"schedule_name\", \"offschedule_datetime\").all())\n"
915
- ]
916
- },
917
- {
918
- "cell_type": "code",
919
- "execution_count": null,
920
- "id": "55",
921
- "metadata": {},
922
- "outputs": [],
923
- "source": [
924
- "df_schedule = df_schedule[(df_schedule.visit_schedule_name==\"visit_schedule\") & (df_schedule.schedule_name==\"schedule\") & df_schedule.offschedule_datetime.isna()]\n",
925
- "df_schedule.reset_index(drop=True, inplace=True)"
926
- ]
927
- },
928
- {
929
- "cell_type": "code",
930
- "execution_count": null,
931
- "id": "56",
932
- "metadata": {},
933
- "outputs": [],
934
- "source": [
935
- "df_stock = read_frame(Stock.objects.all(), verbose=False)\n",
936
- "df_stock_on_site = df_stock[(df_stock.confirmed_at_site==True) & (df_stock.dispensed==False)].copy()\n",
937
- "df_stock_on_site.reset_index(drop=True, inplace=True)\n",
938
- "df_stock_on_site = df_stock_on_site.drop(columns=[\"subject_identifier\"])\n"
939
- ]
940
- },
941
- {
942
- "cell_type": "code",
943
- "execution_count": null,
944
- "id": "57",
945
- "metadata": {},
946
- "outputs": [],
947
- "source": [
948
- "df_allocation = read_frame(Allocation.objects.values(\"id\", \"registered_subject\").all(), verbose=False)\n",
949
- "df_rs = read_frame(RegisteredSubject.objects.values(\"id\", \"subject_identifier\").all(), verbose=False)\n",
950
- "df_allocation = df_allocation.merge(df_rs[[\"id\", \"subject_identifier\"]], how=\"left\", left_on=\"registered_subject\", right_on=\"id\", suffixes=[\"_allocation\", \"_rs\"])"
951
- ]
952
- },
953
- {
954
- "cell_type": "code",
955
- "execution_count": null,
956
- "id": "58",
957
- "metadata": {},
958
- "outputs": [],
959
- "source": [
960
- "df_stock_on_site = df_stock_on_site.merge(df_allocation[[\"id_allocation\", \"subject_identifier\"]], how=\"left\", left_on=\"allocation\", right_on=\"id_allocation\")"
961
- ]
962
- },
963
- {
964
- "cell_type": "code",
965
- "execution_count": null,
966
- "id": "59",
967
- "metadata": {},
968
- "outputs": [],
969
- "source": [
970
- "df = pd.merge(df_schedule[[\"subject_identifier\", 'offschedule_datetime']], df_stock_on_site, on=\"subject_identifier\", how=\"left\")\n",
971
- "df= df[df.code.isna()][[\"subject_identifier\", ]].sort_values(by=[\"subject_identifier\"]).reset_index(drop=True)"
972
- ]
973
- },
974
- {
975
- "cell_type": "code",
976
- "execution_count": null,
977
- "id": "60",
978
- "metadata": {},
979
- "outputs": [],
980
- "source": [
981
- "df_appt = get_next_scheduled_visit_for_subjects_df()\n",
982
- "df_appt = df_appt[[\"subject_identifier\", \"site_id\", \"visit_code\", \"appt_datetime\", \"baseline_datetime\"]].copy()\n",
983
- "df_appt.reset_index(drop=True, inplace=True)"
984
- ]
985
- },
986
- {
987
- "cell_type": "code",
988
- "execution_count": null,
989
- "id": "61",
990
- "metadata": {},
991
- "outputs": [],
992
- "source": [
993
- "\n",
994
- "df = df.merge(df_appt, how=\"left\", on=\"subject_identifier\")\n",
995
- "df = df[(df.appt_datetime.notna())]\n",
996
- "df.reset_index(drop=True, inplace=True)"
997
- ]
998
- },
999
- {
1000
- "cell_type": "code",
1001
- "execution_count": null,
1002
- "id": "62",
1003
- "metadata": {},
1004
- "outputs": [],
1005
- "source": [
1006
- "utc_now = pd.Timestamp.utcnow().tz_localize(None)\n",
1007
- "df[\"relative_days\"] = (df.appt_datetime - utc_now).dt.days\n",
1008
- "df_final = df[(df.relative_days >= -105)].copy()\n",
1009
- "df_final.reset_index(drop=True, inplace=True)\n",
1010
- "df_final"
1011
- ]
1012
- },
1013
- {
1014
- "cell_type": "code",
1015
- "execution_count": null,
1016
- "id": "63",
1017
- "metadata": {},
1018
- "outputs": [],
1019
- "source": [
1020
- "RegisteredSubject.objects.filter(site_id=10)"
1021
- ]
1022
- },
1023
- {
1024
- "cell_type": "code",
1025
- "execution_count": null,
1026
- "id": "64",
1027
- "metadata": {},
1028
- "outputs": [],
1029
- "source": []
1030
- },
1031
- {
1032
- "cell_type": "code",
1033
- "execution_count": null,
1034
- "id": "65",
1035
- "metadata": {},
1036
- "outputs": [],
1037
- "source": []
1038
- }
1039
- ],
1040
- "metadata": {
1041
- "kernelspec": {
1042
- "display_name": "Python 3",
1043
- "language": "python",
1044
- "name": "python3"
1045
- },
1046
- "language_info": {
1047
- "codemirror_mode": {
1048
- "name": "ipython",
1049
- "version": 2
1050
- },
1051
- "file_extension": ".py",
1052
- "mimetype": "text/x-python",
1053
- "name": "python",
1054
- "nbconvert_exporter": "python",
1055
- "pygments_lexer": "ipython2",
1056
- "version": "2.7.6"
1057
- }
1058
- },
1059
- "nbformat": 4,
1060
- "nbformat_minor": 5
1061
- }