meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of meta-edc might be problematic. Click here for more details.
- meta_ae/action_items.py +2 -1
- meta_ae/admin/__init__.py +11 -0
- meta_ae/admin/ae_susar_admin.py +1 -1
- meta_ae/admin/death_report_admin.py +1 -1
- meta_ae/admin/modeladmin_mixins.py +10 -12
- meta_ae/baker_recipes.py +3 -3
- meta_ae/forms/__init__.py +13 -0
- meta_ae/forms/modelform_mixins.py +2 -2
- meta_ae/migrations/0001_initial.py +27 -27
- meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
- meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
- meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
- meta_ae/model_mixins/__init__.py +2 -0
- meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
- meta_ae/model_mixins/death_report_model_mixin.py +3 -3
- meta_ae/models/__init__.py +13 -0
- meta_ae/models/hospitalization.py +3 -3
- meta_ae/pdf_reports/__init__.py +2 -0
- meta_analytics/.DS_Store +0 -0
- meta_analytics/dataframes/__init__.py +24 -0
- meta_analytics/dataframes/get_eos_df.py +1 -2
- meta_analytics/dataframes/get_glucose_df.py +6 -7
- meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
- meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
- meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
- meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
- meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
- meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
- meta_analytics/dataframes/screening/__init__.py +2 -0
- meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
- meta_analytics/dataframes/screening/get_screening_df.py +6 -10
- meta_analytics/dataframes/utils.py +3 -8
- meta_analytics/get_tables.py +1 -2
- meta_analytics/tables/__init__.py +2 -0
- meta_consent/action_items.py +2 -1
- meta_consent/admin/__init__.py +6 -0
- meta_consent/admin/actions/__init__.py +2 -0
- meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
- meta_consent/admin/list_filters.py +2 -2
- meta_consent/admin/modeladmin_mixins.py +3 -4
- meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
- meta_consent/baker_recipes.py +7 -8
- meta_consent/form_validators/__init__.py +2 -0
- meta_consent/forms/__init__.py +7 -0
- meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
- meta_consent/forms/subject_reconsent_form.py +4 -4
- meta_consent/management/commands/create_missing_prescriptions.py +4 -2
- meta_consent/migrations/0001_initial.py +9 -9
- meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
- meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
- meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
- meta_consent/models/__init__.py +9 -0
- meta_consent/models/model_mixins.py +1 -2
- meta_consent/models/signals.py +9 -10
- meta_consent/models/subject_consent.py +1 -1
- meta_consent/models/subject_reconsent.py +3 -3
- meta_dashboard/patterns.py +1 -1
- meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
- meta_dashboard/view_utils/__init__.py +7 -0
- meta_dashboard/view_utils/subject_screening_button.py +9 -16
- meta_dashboard/views/__init__.py +8 -0
- meta_dashboard/views/ae/__init__.py +2 -0
- meta_dashboard/views/ae/ae_listboard_view.py +1 -1
- meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
- meta_dashboard/views/screening/__init__.py +2 -0
- meta_dashboard/views/subject/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
- meta_dashboard/views/subject/listboard/__init__.py +2 -0
- meta_edc/__init__.py +5 -9
- meta_edc/celery.py +1 -1
- meta_edc/celery_live.py +1 -1
- meta_edc/celery_uat.py +1 -1
- meta_edc/management/commands/update_forms_reference.py +10 -12
- meta_edc/settings/debug.py +5 -4
- meta_edc/settings/defaults.py +18 -3
- meta_edc/settings/live.py +3 -1
- meta_edc/settings/logging.py +9 -4
- meta_edc/settings/minimal.py +4 -5
- meta_edc/settings/uat.py +3 -1
- meta_edc/views/__init__.py +2 -0
- meta_edc-1.1.12.dist-info/METADATA +174 -0
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
- meta_edc-1.1.12.dist-info/WHEEL +4 -0
- meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
- meta_pharmacy/admin/__init__.py +5 -0
- meta_pharmacy/admin/substitutions_admin.py +2 -2
- meta_pharmacy/forms/__init__.py +2 -0
- meta_pharmacy/forms/substitutions_form.py +6 -4
- meta_pharmacy/labels/__init__.py +4 -2
- meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
- meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
- meta_pharmacy/labels/label_data.py +1 -2
- meta_pharmacy/labels/print_sheets.py +4 -6
- meta_pharmacy/migrations/0002_initial.py +7 -20
- meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
- meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
- meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
- meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
- meta_pharmacy/models/__init__.py +7 -0
- meta_pharmacy/models/label_data.py +4 -5
- meta_pharmacy/models/substitutions.py +3 -3
- meta_pharmacy/prepare_meta_pharmacy.py +1 -1
- meta_pharmacy/utils/__init__.py +2 -0
- meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
- meta_prn/admin/__init__.py +16 -0
- meta_prn/admin/dm_referral_admin.py +2 -1
- meta_prn/admin/end_of_study_admin.py +6 -7
- meta_prn/admin/loss_to_followup_admin.py +3 -2
- meta_prn/admin/off_study_medication_admin.py +5 -6
- meta_prn/admin/offschedule_admin.py +5 -6
- meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
- meta_prn/admin/offschedule_postnatal_admin.py +7 -7
- meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
- meta_prn/admin/onschedule_admin.py +7 -8
- meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
- meta_prn/admin/pregnancy_notification_admin.py +5 -6
- meta_prn/admin/protocol_incident_admin.py +1 -1
- meta_prn/admin/subject_transfer_admin.py +1 -1
- meta_prn/baker_recipes.py +4 -4
- meta_prn/form_validators/__init__.py +5 -0
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/forms/__init__.py +13 -0
- meta_prn/migrations/0001_initial.py +25 -25
- meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
- meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
- meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
- meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
- meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
- meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
- meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
- meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
- meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
- meta_prn/models/__init__.py +20 -0
- meta_prn/models/offschedule.py +4 -4
- meta_prn/models/protocol_incident.py +1 -1
- meta_prn/models/subject_transfer.py +8 -0
- meta_rando/migrations/0001_initial.py +5 -5
- meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
- meta_reports/__init__.py +2 -0
- meta_reports/admin/__init__.py +16 -0
- meta_reports/admin/dbviews/__init__.py +13 -0
- meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
- meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
- meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
- meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
- meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
- meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
- meta_reports/admin/endpoints_admin.py +1 -1
- meta_reports/admin/last_imp_refill_admin.py +9 -9
- meta_reports/admin/list_filters.py +2 -2
- meta_reports/admin/modeladmin_mixins.py +9 -16
- meta_reports/death_report.py +1 -1
- meta_reports/forms/__init__.py +2 -0
- meta_reports/forms/missing_ogtt_note_form.py +2 -3
- meta_reports/management/commands/generate_endpoints.py +5 -4
- meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
- meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
- meta_reports/models/__init__.py +17 -0
- meta_reports/models/dbviews/__init__.py +14 -0
- meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
- meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
- meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
- meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
- meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
- meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
- meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
- meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
- meta_reports/models/endpoints.py +4 -4
- meta_reports/models/last_imp_refill.py +2 -3
- meta_reports/pdf_report.py +2 -2
- meta_reports/tasks.py +1 -1
- meta_screening/admin/__init__.py +8 -0
- meta_screening/admin/fieldsets.py +13 -14
- meta_screening/admin/list_filters.py +6 -4
- meta_screening/admin/screening_part_one_admin.py +1 -2
- meta_screening/admin/screening_part_three_admin.py +2 -3
- meta_screening/admin/screening_part_two_admin.py +7 -10
- meta_screening/admin/subject_refusal_admin.py +5 -3
- meta_screening/admin/subject_screening_admin.py +4 -4
- meta_screening/baker_recipes.py +9 -9
- meta_screening/eligibility/__init__.py +9 -0
- meta_screening/eligibility/eligibility.py +7 -7
- meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
- meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
- meta_screening/form_validators/__init__.py +8 -0
- meta_screening/forms/__init__.py +20 -0
- meta_screening/forms/field_lists.py +16 -17
- meta_screening/forms/screening_part_one_form.py +2 -2
- meta_screening/forms/screening_part_three_form.py +5 -3
- meta_screening/forms/screening_part_two_form.py +1 -5
- meta_screening/forms/subject_refusal_form.py +0 -4
- meta_screening/forms/subject_screening_form.py +0 -4
- meta_screening/migrations/0001_initial.py +15 -15
- meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
- meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
- meta_screening/model_mixins/__init__.py +8 -0
- meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
- meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
- meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
- meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
- meta_screening/models/__init__.py +9 -0
- meta_screening/models/icp_referral.py +5 -5
- meta_screening/models/signals.py +10 -11
- meta_screening/models/subject_refusal.py +1 -1
- meta_screening/models/subject_screening.py +1 -3
- meta_subject/action_items.py +13 -15
- meta_subject/admin/__init__.py +39 -0
- meta_subject/admin/birth_outcome_admin.py +4 -8
- meta_subject/admin/blood_results/__init__.py +9 -0
- meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
- meta_subject/admin/complications_glycemia_admin.py +1 -1
- meta_subject/admin/delivery_admin.py +7 -10
- meta_subject/admin/diabetes/__init__.py +2 -0
- meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
- meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
- meta_subject/admin/egfr_drop_notification_admin.py +1 -1
- meta_subject/admin/followup_examination_admin.py +10 -9
- meta_subject/admin/followup_vitals_admin.py +4 -5
- meta_subject/admin/glucose_admin.py +2 -4
- meta_subject/admin/glucose_fbg_admin.py +1 -3
- meta_subject/admin/health_economics/__init__.py +2 -0
- meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
- meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
- meta_subject/admin/hepatitis_test_admin.py +1 -1
- meta_subject/admin/list_filters.py +1 -1
- meta_subject/admin/mnsi_admin.py +7 -5
- meta_subject/admin/other_arv_regimens_admin.py +3 -3
- meta_subject/admin/patient_history_admin.py +4 -4
- meta_subject/admin/physical_exam_admin.py +1 -1
- meta_subject/admin/pregnancy_update_admin.py +1 -1
- meta_subject/admin/study_medication_admin.py +8 -15
- meta_subject/admin/subject_requisition_admin.py +1 -1
- meta_subject/admin/subject_visit_admin.py +1 -1
- meta_subject/admin/subject_visit_missed_admin.py +1 -1
- meta_subject/admin/urine_dipstick_test_admin.py +1 -1
- meta_subject/admin/urine_pregnancy_admin.py +1 -1
- meta_subject/baker_recipes.py +15 -15
- meta_subject/form_validators/__init__.py +11 -0
- meta_subject/form_validators/delivery_form_validator.py +2 -3
- meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
- meta_subject/form_validators/dm_followup_form_validator.py +7 -6
- meta_subject/form_validators/glucose_form_validator.py +3 -5
- meta_subject/forms/__init__.py +41 -0
- meta_subject/forms/blood_results/__init__.py +9 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
- meta_subject/forms/diabetes/__init__.py +2 -0
- meta_subject/forms/diabetes/dm_followup_form.py +2 -2
- meta_subject/forms/followup_vitals_form.py +3 -8
- meta_subject/forms/health_economics/__init__.py +2 -0
- meta_subject/forms/next_appointment_form.py +2 -3
- meta_subject/forms/slider_widget.py +1 -1
- meta_subject/forms/study_medication_form.py +11 -8
- meta_subject/management/commands/create_missing_refills.py +3 -3
- meta_subject/management/commands/create_missing_rx.py +1 -1
- meta_subject/management/commands/missed.py +20 -23
- meta_subject/metadata_rules/__init__.py +2 -0
- meta_subject/metadata_rules/predicates.py +25 -32
- meta_subject/migrations/0001_initial.py +61 -61
- meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
- meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
- meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
- meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
- meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
- meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
- meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
- meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
- meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
- meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
- meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
- meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
- meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
- meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
- meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
- meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
- meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
- meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
- meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
- meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
- meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
- meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
- meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
- meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
- meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
- meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
- meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
- meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
- meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
- meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
- meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
- meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
- meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
- meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
- meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
- meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
- meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
- meta_subject/model_mixins/__init__.py +8 -0
- meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
- meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
- meta_subject/models/__init__.py +48 -0
- meta_subject/models/birth_outcomes.py +3 -3
- meta_subject/models/blood_results/__init__.py +11 -0
- meta_subject/models/delivery.py +3 -3
- meta_subject/models/diabetes/__init__.py +2 -0
- meta_subject/models/diabetes/dm_endpoint.py +4 -4
- meta_subject/models/diabetes/dm_followup.py +3 -4
- meta_subject/models/diet_and_lifestyle.py +2 -2
- meta_subject/models/followup_examination.py +11 -11
- meta_subject/models/glucose.py +4 -4
- meta_subject/models/glucose_fbg.py +2 -3
- meta_subject/models/health_economics/__init__.py +2 -0
- meta_subject/models/health_economics/health_economics.py +7 -7
- meta_subject/models/health_economics/health_economics_update.py +2 -1
- meta_subject/models/hepatitis_test.py +2 -2
- meta_subject/models/other_arv_regimens_detail.py +1 -1
- meta_subject/models/patient_history.py +5 -6
- meta_subject/models/physical_exam.py +2 -2
- meta_subject/models/pregnancy_update.py +1 -1
- meta_subject/models/signals.py +14 -12
- meta_subject/models/subject_visit.py +1 -1
- meta_subject/models/urine_dipstick_test.py +1 -1
- meta_subject/models/urine_pregnancy.py +1 -1
- meta_visit_schedule/visit_schedules/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
- meta_ae/tests/holidays.csv +0 -15
- meta_ae/tests/tests/test_actions.py +0 -126
- meta_ae/tests/urls.py +0 -10
- meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
- meta_analytics/notebooks/anu.ipynb +0 -95
- meta_analytics/notebooks/appointment_planning.ipynb +0 -329
- meta_analytics/notebooks/arvs.ipynb +0 -103
- meta_analytics/notebooks/cleaning/__init__.py +0 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
- meta_analytics/notebooks/followup_examination.ipynb +0 -141
- meta_analytics/notebooks/hba1c.ipynb +0 -136
- meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
- meta_analytics/notebooks/incidence.ipynb +0 -232
- meta_analytics/notebooks/liver.ipynb +0 -389
- meta_analytics/notebooks/magreth.ipynb +0 -645
- meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
- meta_analytics/notebooks/pharmacy.ipynb +0 -1061
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
- meta_analytics/notebooks/qa.ipynb +0 -273
- meta_analytics/notebooks/steering.ipynb +0 -61
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
- meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
- meta_analytics/notebooks/ven.ipynb +0 -191
- meta_analytics/notebooks/vitals.ipynb +0 -263
- meta_analytics/tests/__init__.py +0 -0
- meta_analytics/tests/test_endpoints_by_date.py +0 -94
- meta_consent/tests/__init__.py +0 -0
- meta_consent/tests/holidays.csv +0 -15
- meta_consent/tests/tests/__init__.py +0 -0
- meta_consent/tests/tests/test_form_validators.py +0 -110
- meta_consent/tests/tests/test_subject_consent.py +0 -10
- meta_consent/tests/urls.py +0 -17
- meta_dashboard/tests/__init__.py +0 -0
- meta_dashboard/tests/admin.py +0 -22
- meta_dashboard/tests/holidays.csv +0 -15
- meta_dashboard/tests/tests/__init__.py +0 -0
- meta_dashboard/tests/urls.py +0 -55
- meta_edc/tests/__init__.py +0 -0
- meta_edc/tests/tests/__init__.py +0 -0
- meta_edc/tests/tests/test_endpoints.py +0 -555
- meta_edc-1.1.8.dist-info/METADATA +0 -767
- meta_edc-1.1.8.dist-info/WHEEL +0 -5
- meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
- meta_edc-1.1.8.dist-info/top_level.txt +0 -20
- meta_labs/tests/__init__.py +0 -0
- meta_labs/tests/test_labs.py +0 -27
- meta_labs/tests/test_reportables.py +0 -70
- meta_labs/tests/urls.py +0 -4
- meta_lists/tests/__init__.py +0 -0
- meta_lists/tests/test_lists.py +0 -8
- meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
- meta_prn/tests/__init__.py +0 -0
- meta_prn/tests/tests/__init__.py +0 -0
- meta_prn/tests/tests/test_actions.py +0 -97
- meta_prn/tests/tests/test_dm_referral.py +0 -203
- meta_prn/tests/tests/test_eos_events.py +0 -134
- meta_prn/tests/tests/test_manager_order.py +0 -14
- meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
- meta_prn/tests/urls.py +0 -10
- meta_rando/tests/__init__.py +0 -0
- meta_rando/tests/tests/__init__.py +0 -0
- meta_rando/tests/tests/test_randomizers.py +0 -57
- meta_reports/tests/__init__.py +0 -0
- meta_reports/tests/test_reports.py +0 -35
- meta_reports/tests/test_sql_gen.py +0 -5
- meta_reports/tests/urls.py +0 -4
- meta_screening/offline_models.py +0 -3
- meta_screening/tests/__init__.py +0 -0
- meta_screening/tests/holidays.csv +0 -15
- meta_screening/tests/meta_test_case_mixin.py +0 -234
- meta_screening/tests/options.py +0 -127
- meta_screening/tests/tests/__init__.py +0 -0
- meta_screening/tests/tests/test_forms.py +0 -404
- meta_screening/tests/tests/test_screening_part_one.py +0 -108
- meta_screening/tests/tests/test_screening_part_three.py +0 -433
- meta_screening/tests/tests/test_screening_part_two.py +0 -84
- meta_sites/tests/__init__.py +0 -0
- meta_sites/tests/test_sites.py +0 -12
- meta_sites/tests/urls.py +0 -4
- meta_stats/__init__.py +0 -0
- meta_stats/incidence.py +0 -16
- meta_stats/models.py +0 -0
- meta_stats/tests/__init__.py +0 -0
- meta_stats/tests/tests/__init__.py +0 -0
- meta_stats/tests/tests/test_incidence.py +0 -10
- meta_subject/tests/__init__.py +0 -0
- meta_subject/tests/holidays.csv +0 -15
- meta_subject/tests/tests/__init__.py +0 -0
- meta_subject/tests/tests/test_egfr.py +0 -234
- meta_subject/tests/tests/test_fixes.py +0 -64
- meta_subject/tests/tests/test_followup.py +0 -52
- meta_subject/tests/tests/test_manager_order.py +0 -11
- meta_subject/tests/tests/test_medication_adherence.py +0 -79
- meta_subject/tests/tests/test_metadata_rules.py +0 -135
- meta_subject/tests/tests/test_mnsi.py +0 -341
- meta_subject/tests/tests/test_next_appointment.py +0 -231
- meta_subject/tests/tests/test_patient_history_form.py +0 -74
- meta_subject/tests/tests/test_physical_exam.py +0 -84
- meta_subject/tests/tests/test_sf12.py +0 -161
- meta_subject/tests/tests/test_study_medication.py +0 -229
- meta_subject/tests/urls.py +0 -24
- meta_visit_schedule/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/test_schedule.py +0 -181
- meta_visit_schedule/tests/urls.py +0 -4
- tests/__init__.py +0 -0
- tests/etc/randomization_list.csv +0 -241
- tests/etc/randomization_list_phase_three.csv +0 -241
- tests/etc/user-aes-local.key +0 -0
- tests/etc/user-aes-restricted.key +0 -1
- tests/etc/user-rsa-local-private.pem +0 -27
- tests/etc/user-rsa-local-public.pem +0 -9
- tests/etc/user-rsa-restricted-private.pem +0 -27
- tests/etc/user-rsa-restricted-public.pem +0 -9
- tests/etc/user-salt-local.key +0 -0
- tests/etc/user-salt-restricted.key +0 -0
- tests/holidays.csv +0 -15
- tests/test_settings.py +0 -185
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
- /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
- /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
|
@@ -1,1061 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "code",
|
|
5
|
-
"execution_count": null,
|
|
6
|
-
"id": "0",
|
|
7
|
-
"metadata": {},
|
|
8
|
-
"outputs": [],
|
|
9
|
-
"source": [
|
|
10
|
-
"%%capture\n",
|
|
11
|
-
"import os\n",
|
|
12
|
-
"from pathlib import Path\n",
|
|
13
|
-
"import pandas as pd\n",
|
|
14
|
-
"from dj_notebook import activate\n",
|
|
15
|
-
"import numpy as np\n",
|
|
16
|
-
"\n",
|
|
17
|
-
"env_file = os.environ[\"META_ENV\"]\n",
|
|
18
|
-
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
|
19
|
-
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
|
20
|
-
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
|
21
|
-
"plus = activate(dotenv_file=env_file)"
|
|
22
|
-
]
|
|
23
|
-
},
|
|
24
|
-
{
|
|
25
|
-
"cell_type": "markdown",
|
|
26
|
-
"id": "1",
|
|
27
|
-
"metadata": {},
|
|
28
|
-
"source": []
|
|
29
|
-
},
|
|
30
|
-
{
|
|
31
|
-
"cell_type": "code",
|
|
32
|
-
"execution_count": null,
|
|
33
|
-
"id": "2",
|
|
34
|
-
"metadata": {},
|
|
35
|
-
"outputs": [],
|
|
36
|
-
"source": [
|
|
37
|
-
"from edc_pharmacy.analytics.dataframes import no_stock_for_subjects_df\n",
|
|
38
|
-
"from datetime import datetime\n",
|
|
39
|
-
"from edc_registration.models import RegisteredSubject\n",
|
|
40
|
-
"\n",
|
|
41
|
-
"from edc_appointment.analytics import get_appointment_df\n",
|
|
42
|
-
"from edc_appointment.constants import NEW_APPT\n",
|
|
43
|
-
"from edc_pharmacy.models import StockRequest, Allocation, ReceiveItem, OrderItem, Lot\n",
|
|
44
|
-
"\n",
|
|
45
|
-
"from edc_pharmacy.analytics import get_next_scheduled_visit_for_subjects_df\n",
|
|
46
|
-
"from meta_rando.models import RandomizationList\n",
|
|
47
|
-
"from edc_pharmacy.models import Stock\n",
|
|
48
|
-
"from edc_visit_schedule.models import SubjectScheduleHistory\n",
|
|
49
|
-
"from django.apps import apps as django_apps\n",
|
|
50
|
-
"from django.db.models import Count\n",
|
|
51
|
-
"from django_pandas.io import read_frame\n",
|
|
52
|
-
"from edc_visit_schedule.site_visit_schedules import site_visit_schedules\n",
|
|
53
|
-
"from edc_pharmacy.models import Container\n",
|
|
54
|
-
"from great_tables import GT, html, loc, style\n",
|
|
55
|
-
"from PIL import Image\n",
|
|
56
|
-
"from edc_pdutils.dataframes.get_subject_visit import convert_visit_code_to_float\n"
|
|
57
|
-
]
|
|
58
|
-
},
|
|
59
|
-
{
|
|
60
|
-
"cell_type": "code",
|
|
61
|
-
"execution_count": null,
|
|
62
|
-
"id": "3",
|
|
63
|
-
"metadata": {},
|
|
64
|
-
"outputs": [],
|
|
65
|
-
"source": [
|
|
66
|
-
"from edc_model_to_dataframe import read_frame_edc\n",
|
|
67
|
-
"from meta_subject.models import FollowupExamination\n",
|
|
68
|
-
"\n",
|
|
69
|
-
"df = read_frame_edc(FollowupExamination.objects.all(), drop_sys_columns=True, drop_action_item_columns=True)\n",
|
|
70
|
-
"df = df.replace(\"none\", pd.NA)\n",
|
|
71
|
-
"df = df.replace(\"none\", pd.NA)\n",
|
|
72
|
-
"df = df.fillna(pd.NA)\n",
|
|
73
|
-
"convert_visit_code_to_float(df)"
|
|
74
|
-
]
|
|
75
|
-
},
|
|
76
|
-
{
|
|
77
|
-
"cell_type": "code",
|
|
78
|
-
"execution_count": null,
|
|
79
|
-
"id": "4",
|
|
80
|
-
"metadata": {},
|
|
81
|
-
"outputs": [],
|
|
82
|
-
"source": [
|
|
83
|
-
"from edc_analytics.stata import get_stata_labels_from_model\n",
|
|
84
|
-
"\n",
|
|
85
|
-
"df = df[[\"subject_identifier\", \"subject_visit_id\", \"report_datetime\", \"visit_code\", \"site_id\", \"site_name\", \"visit_reason\", \"symptoms\",\"symptoms_detail\", \"symptoms_sought_care\", \"symptoms_g3\", \"symptoms_g4\", \"comment\"]].copy().reset_index(drop=True)\n",
|
|
86
|
-
"\n",
|
|
87
|
-
"df = df.astype(\n",
|
|
88
|
-
" {col: \"Float64\" for col in df.select_dtypes(include=[\"float\", \"float64\"]).columns}\n",
|
|
89
|
-
")\n",
|
|
90
|
-
"df_meds = df.astype(\n",
|
|
91
|
-
" {col: \"Int64\" for col in df.select_dtypes(include=[\"int\", \"int64\"]).columns}\n",
|
|
92
|
-
")\n",
|
|
93
|
-
"df = df.astype(\n",
|
|
94
|
-
" {\n",
|
|
95
|
-
" col: \"datetime64[ns]\"\n",
|
|
96
|
-
" for col in df.select_dtypes(include=[\"datetime\", \"datetime64\"]).columns\n",
|
|
97
|
-
" }\n",
|
|
98
|
-
")\n",
|
|
99
|
-
"df = df.astype(\n",
|
|
100
|
-
" {\n",
|
|
101
|
-
" col: str\n",
|
|
102
|
-
" for col in df.select_dtypes(include=[\"object\"]).columns\n",
|
|
103
|
-
" }\n",
|
|
104
|
-
")\n",
|
|
105
|
-
"df = df.fillna(pd.NA)\n",
|
|
106
|
-
"\n",
|
|
107
|
-
"variable_labels = {}\n",
|
|
108
|
-
"variable_labels.update(**get_stata_labels_from_model(df, model=\"meta_subject.followupexamination\", suffix=None))\n",
|
|
109
|
-
"\n",
|
|
110
|
-
"df.to_stata(\n",
|
|
111
|
-
" path=analysis_folder / \"followupexamination.dta\",\n",
|
|
112
|
-
" variable_labels=variable_labels,\n",
|
|
113
|
-
" version=118,\n",
|
|
114
|
-
" write_index=False,\n",
|
|
115
|
-
")"
|
|
116
|
-
]
|
|
117
|
-
},
|
|
118
|
-
{
|
|
119
|
-
"cell_type": "code",
|
|
120
|
-
"execution_count": null,
|
|
121
|
-
"id": "5",
|
|
122
|
-
"metadata": {},
|
|
123
|
-
"outputs": [],
|
|
124
|
-
"source": [
|
|
125
|
-
"df"
|
|
126
|
-
]
|
|
127
|
-
},
|
|
128
|
-
{
|
|
129
|
-
"cell_type": "code",
|
|
130
|
-
"execution_count": null,
|
|
131
|
-
"id": "6",
|
|
132
|
-
"metadata": {},
|
|
133
|
-
"outputs": [],
|
|
134
|
-
"source": [
|
|
135
|
-
"\n",
|
|
136
|
-
"def get_great_table(df:pd.DataFrame, title:str, footnote:str|None=None):\n",
|
|
137
|
-
" return (GT(df)\n",
|
|
138
|
-
" .tab_header(title=html(title))\n",
|
|
139
|
-
" .cols_align(align=\"left\", columns=[0])\n",
|
|
140
|
-
" .cols_align(align=\"right\", columns=list(range(1, len(df.columns))))\n",
|
|
141
|
-
" .opt_stylize(style=5)\n",
|
|
142
|
-
" .opt_row_striping(row_striping=False)\n",
|
|
143
|
-
" .opt_vertical_padding(scale=1.2)\n",
|
|
144
|
-
" .opt_horizontal_padding(scale=1.0)\n",
|
|
145
|
-
" .tab_options(\n",
|
|
146
|
-
" stub_background_color=\"white\",\n",
|
|
147
|
-
" row_group_border_bottom_style=\"hidden\",\n",
|
|
148
|
-
" row_group_padding=0.5,\n",
|
|
149
|
-
" row_group_background_color=\"white\",\n",
|
|
150
|
-
" table_background_color=\"white\",\n",
|
|
151
|
-
" table_font_size=12,\n",
|
|
152
|
-
" )\n",
|
|
153
|
-
" .tab_style(\n",
|
|
154
|
-
" style=[style.fill(color=\"white\"), style.text(color=\"black\")],\n",
|
|
155
|
-
" locations=loc.body(columns=list(range(len(df.columns))), rows=list(range(0, len(df)))),\n",
|
|
156
|
-
" )\n",
|
|
157
|
-
" .tab_style(\n",
|
|
158
|
-
" style=[style.fill(color=\"lightgrey\"), style.text(color=\"black\")],\n",
|
|
159
|
-
" locations=loc.body(columns=list(range(len(df.columns))), rows=[len(df)-1]),\n",
|
|
160
|
-
" )\n",
|
|
161
|
-
" .tab_source_note(source_note=html(footnote or \"\"))\n",
|
|
162
|
-
" .tab_style(\n",
|
|
163
|
-
" style=style.text(color=\"black\", size=\"small\"),\n",
|
|
164
|
-
" locations=loc.footer(),\n",
|
|
165
|
-
" )\n",
|
|
166
|
-
"\n",
|
|
167
|
-
"\n",
|
|
168
|
-
" )\n"
|
|
169
|
-
]
|
|
170
|
-
},
|
|
171
|
-
{
|
|
172
|
-
"cell_type": "code",
|
|
173
|
-
"execution_count": null,
|
|
174
|
-
"id": "7",
|
|
175
|
-
"metadata": {},
|
|
176
|
-
"outputs": [],
|
|
177
|
-
"source": [
|
|
178
|
-
"start_from_appt_date = datetime(2025,5,15)"
|
|
179
|
-
]
|
|
180
|
-
},
|
|
181
|
-
{
|
|
182
|
-
"cell_type": "code",
|
|
183
|
-
"execution_count": null,
|
|
184
|
-
"id": "8",
|
|
185
|
-
"metadata": {},
|
|
186
|
-
"outputs": [],
|
|
187
|
-
"source": [
|
|
188
|
-
"# get rando\n",
|
|
189
|
-
"df_rando = read_frame(RandomizationList.objects.values(\"subject_identifier\", \"assignment\").filter(subject_identifier__isnull=False))"
|
|
190
|
-
]
|
|
191
|
-
},
|
|
192
|
-
{
|
|
193
|
-
"cell_type": "code",
|
|
194
|
-
"execution_count": null,
|
|
195
|
-
"id": "9",
|
|
196
|
-
"metadata": {},
|
|
197
|
-
"outputs": [],
|
|
198
|
-
"source": [
|
|
199
|
-
"# get appointments\n",
|
|
200
|
-
"df_appt = get_appointment_df()\n",
|
|
201
|
-
"print(f\"{len(df_appt[(df_appt.appt_status==NEW_APPT) & (df_appt.appt_datetime >= start_from_appt_date) & (df_appt.appt_datetime < datetime(2026,3,1)) & (df_appt.visit_code!=1480.0)])} appointments after filtering\")"
|
|
202
|
-
]
|
|
203
|
-
},
|
|
204
|
-
{
|
|
205
|
-
"cell_type": "code",
|
|
206
|
-
"execution_count": null,
|
|
207
|
-
"id": "10",
|
|
208
|
-
"metadata": {},
|
|
209
|
-
"outputs": [],
|
|
210
|
-
"source": [
|
|
211
|
-
"# create a dataframe of subjects still on the 'schedule' schedule\n",
|
|
212
|
-
"# use SubjectScheduleHistory where offschedule_datetime is null\n",
|
|
213
|
-
"df_subject_schedule = read_frame(SubjectScheduleHistory.objects.values(\"subject_identifier\", \"visit_schedule_name\", \"schedule_name\", \"onschedule_datetime\", \"offschedule_datetime\").filter(offschedule_datetime__isnull=True, schedule_name=\"schedule\"))\n",
|
|
214
|
-
"\n",
|
|
215
|
-
"print(f\"{len(df_subject_schedule)} subjects currently onstudy\")"
|
|
216
|
-
]
|
|
217
|
-
},
|
|
218
|
-
{
|
|
219
|
-
"cell_type": "code",
|
|
220
|
-
"execution_count": null,
|
|
221
|
-
"id": "11",
|
|
222
|
-
"metadata": {},
|
|
223
|
-
"outputs": [],
|
|
224
|
-
"source": [
|
|
225
|
-
"# for now merge with the unfiltered df_appt\n",
|
|
226
|
-
"df_main = df_subject_schedule.merge(\n",
|
|
227
|
-
" df_appt[[\"appointment_id\", \"subject_identifier\", \"visit_code\", \"visit_code_str\", \"appt_datetime\", \"baseline_datetime\", \"endline_visit_code\", \"visit_code_sequence\", \"appt_status\"]],\n",
|
|
228
|
-
" on=\"subject_identifier\",\n",
|
|
229
|
-
" how=\"left\")\n",
|
|
230
|
-
"# exclude unscheduled,\n",
|
|
231
|
-
"df_main = df_main[\n",
|
|
232
|
-
" (df_main.visit_code_sequence==0) &\n",
|
|
233
|
-
" (df_main.visit_schedule_name==\"visit_schedule\") &\n",
|
|
234
|
-
" (df_main.schedule_name==\"schedule\") &\n",
|
|
235
|
-
" (df_main.visit_code<2000.0) &\n",
|
|
236
|
-
" (df_main.appt_status==NEW_APPT)\n",
|
|
237
|
-
"].copy()\n",
|
|
238
|
-
"print(f\"{len(df_main)} new appointments for subjects on study\")\n"
|
|
239
|
-
]
|
|
240
|
-
},
|
|
241
|
-
{
|
|
242
|
-
"cell_type": "code",
|
|
243
|
-
"execution_count": null,
|
|
244
|
-
"id": "12",
|
|
245
|
-
"metadata": {},
|
|
246
|
-
"outputs": [],
|
|
247
|
-
"source": [
|
|
248
|
-
"# number of appointments before extended all subjects out to 48m\n",
|
|
249
|
-
"df_grouped = df_main[\n",
|
|
250
|
-
" (df_main.appt_datetime >= start_from_appt_date) &\n",
|
|
251
|
-
" (df_main.appt_datetime < datetime(2026,3,1)) &\n",
|
|
252
|
-
" (df_main.visit_code!=1480.0)\n",
|
|
253
|
-
"].visit_code.value_counts().reset_index(name=\"appointments\").sort_values(by=\"visit_code\", ascending=True).reset_index(drop=True)\n",
|
|
254
|
-
"df_grouped[\"cumsum\"] = df_grouped.appointments.cumsum()\n",
|
|
255
|
-
"df_grouped[\"cumsum\"].max()\n"
|
|
256
|
-
]
|
|
257
|
-
},
|
|
258
|
-
{
|
|
259
|
-
"cell_type": "code",
|
|
260
|
-
"execution_count": null,
|
|
261
|
-
"id": "13",
|
|
262
|
-
"metadata": {},
|
|
263
|
-
"outputs": [],
|
|
264
|
-
"source": [
|
|
265
|
-
"df_main"
|
|
266
|
-
]
|
|
267
|
-
},
|
|
268
|
-
{
|
|
269
|
-
"cell_type": "code",
|
|
270
|
-
"execution_count": null,
|
|
271
|
-
"id": "14",
|
|
272
|
-
"metadata": {},
|
|
273
|
-
"outputs": [],
|
|
274
|
-
"source": [
|
|
275
|
-
"# now extend everyone to 48 months.\n",
|
|
276
|
-
"# Subjects are in the process of consenting for extended\n",
|
|
277
|
-
"# followup. Assume ALL have done so by filling in all\n",
|
|
278
|
-
"# subject schedules to 48m\n",
|
|
279
|
-
"\n",
|
|
280
|
-
"# pivot\n",
|
|
281
|
-
"df_pivot = df_main[\n",
|
|
282
|
-
" (df_main.visit_code_sequence==0) &\n",
|
|
283
|
-
" (df_main.visit_code<2000.0)\n",
|
|
284
|
-
"].pivot_table(index=\"subject_identifier\", columns='visit_code', values='appt_datetime', aggfunc='count')\n",
|
|
285
|
-
"df_pivot.fillna(0, inplace=True)\n",
|
|
286
|
-
"df_pivot.reset_index(inplace=True)\n",
|
|
287
|
-
"df_pivot.rename_axis(\"\", axis=\"columns\", inplace=True)\n",
|
|
288
|
-
"\n",
|
|
289
|
-
"# melt\n",
|
|
290
|
-
"df_pivot = df_pivot.melt(id_vars=\"subject_identifier\", var_name=\"visit_code\", value_name=\"exists\")\n",
|
|
291
|
-
"df_pivot[\"visit_code\"] = df_pivot[\"visit_code\"].astype(float)\n",
|
|
292
|
-
"df_pivot.sort_values([\"subject_identifier\", \"visit_code\"], ascending=True, inplace=True)\n",
|
|
293
|
-
"df_pivot.reset_index(drop=True, inplace=True)\n",
|
|
294
|
-
"\n",
|
|
295
|
-
"# merge in baseline_datetime\n",
|
|
296
|
-
"df_baseline = df_appt[df_appt.visit_code==1000.0][[\"subject_identifier\", \"baseline_datetime\"]]\n",
|
|
297
|
-
"df_pivot = df_pivot.merge(df_baseline, on=[\"subject_identifier\"], how=\"left\")\n",
|
|
298
|
-
"df_pivot.reset_index(drop=True, inplace=True)\n",
|
|
299
|
-
"\n",
|
|
300
|
-
"# merge df_main back in\n",
|
|
301
|
-
"df_pivot = df_pivot.merge(df_main[[\"subject_identifier\", \"visit_code\", \"appt_datetime\", \"appt_status\"]], on=[\"subject_identifier\",\"visit_code\"], how=\"left\")\n",
|
|
302
|
-
"df_pivot"
|
|
303
|
-
]
|
|
304
|
-
},
|
|
305
|
-
{
|
|
306
|
-
"cell_type": "code",
|
|
307
|
-
"execution_count": null,
|
|
308
|
-
"id": "15",
|
|
309
|
-
"metadata": {},
|
|
310
|
-
"outputs": [],
|
|
311
|
-
"source": [
|
|
312
|
-
"# len(df_pivot[(df_pivot.appt_datetime>=datetime(2025,1,1)) & (df_pivot.visit_code==MONTH48)])/3"
|
|
313
|
-
]
|
|
314
|
-
},
|
|
315
|
-
{
|
|
316
|
-
"cell_type": "code",
|
|
317
|
-
"execution_count": null,
|
|
318
|
-
"id": "16",
|
|
319
|
-
"metadata": {},
|
|
320
|
-
"outputs": [],
|
|
321
|
-
"source": [
|
|
322
|
-
"# extend no one!\n",
|
|
323
|
-
"# df_pivot = df_pivot[df_pivot.exists==1].copy()\n",
|
|
324
|
-
"# df_pivot.reset_index(drop=True, inplace=True)\n"
|
|
325
|
-
]
|
|
326
|
-
},
|
|
327
|
-
{
|
|
328
|
-
"cell_type": "code",
|
|
329
|
-
"execution_count": null,
|
|
330
|
-
"id": "17",
|
|
331
|
-
"metadata": {},
|
|
332
|
-
"outputs": [],
|
|
333
|
-
"source": [
|
|
334
|
-
"# add appointments do not have an appt_datetime, so calculate\n",
|
|
335
|
-
"# using the visit schedule relative to baseline_datetime\n",
|
|
336
|
-
"visit_schedule = site_visit_schedules.get_visit_schedule(\"visit_schedule\")\n",
|
|
337
|
-
"schedule = visit_schedule.schedules.get(\"schedule\")\n",
|
|
338
|
-
"mapping = {k: visit.rbase for k,visit in schedule.visits.items()}\n",
|
|
339
|
-
"\n",
|
|
340
|
-
"def estimate_appt_datetime(row):\n",
|
|
341
|
-
" if pd.isna(row[\"appt_datetime\"]):\n",
|
|
342
|
-
" row[\"appt_datetime\"] = row[\"baseline_datetime\"] + mapping.get(str(int(row[\"visit_code\"])))\n",
|
|
343
|
-
" return row\n",
|
|
344
|
-
"\n",
|
|
345
|
-
"df_pivot = df_pivot.apply(estimate_appt_datetime, axis=1)\n",
|
|
346
|
-
"df_pivot.sort_values(by=[\"subject_identifier\", \"visit_code\"], ascending=True, inplace=True)\n",
|
|
347
|
-
"df_pivot.reset_index(drop=True, inplace=True)\n",
|
|
348
|
-
"\n",
|
|
349
|
-
"# merge in assignment\n",
|
|
350
|
-
"df_pivot = df_pivot.merge(df_rando, on=\"subject_identifier\", how=\"left\")\n",
|
|
351
|
-
"df_pivot.reset_index(drop=True, inplace=True)\n",
|
|
352
|
-
"\n",
|
|
353
|
-
"# flag added appointments as NEW\n",
|
|
354
|
-
"df_pivot.loc[df_pivot.exists==0.0, \"appt_status\"] = NEW_APPT\n",
|
|
355
|
-
"\n",
|
|
356
|
-
"print(f\"{len(df_pivot)} appointments\")"
|
|
357
|
-
]
|
|
358
|
-
},
|
|
359
|
-
{
|
|
360
|
-
"cell_type": "code",
|
|
361
|
-
"execution_count": null,
|
|
362
|
-
"id": "18",
|
|
363
|
-
"metadata": {},
|
|
364
|
-
"outputs": [],
|
|
365
|
-
"source": [
|
|
366
|
-
"# df_subject_appointments is a dataframe of appointments\n",
|
|
367
|
-
"# - only include NEW appointments\n",
|
|
368
|
-
"# - only include appts between today (2025,4,4) and before (2026,3,1).\n",
|
|
369
|
-
"# - exclude the last visit (48m) since no meds are dispensed then.\n",
|
|
370
|
-
"cutoff_date = datetime(2026,3,1)\n",
|
|
371
|
-
"df_subject_appointments = df_pivot[\n",
|
|
372
|
-
" (df_pivot.appt_status==NEW_APPT) &\n",
|
|
373
|
-
" (df_pivot.appt_datetime >= start_from_appt_date) &\n",
|
|
374
|
-
" (df_pivot.appt_datetime < cutoff_date) &\n",
|
|
375
|
-
" (df_pivot.visit_code!=1480.0)\n",
|
|
376
|
-
"].copy()\n",
|
|
377
|
-
"print(f\"{len(df_subject_appointments)} appointments\")"
|
|
378
|
-
]
|
|
379
|
-
},
|
|
380
|
-
{
|
|
381
|
-
"cell_type": "code",
|
|
382
|
-
"execution_count": null,
|
|
383
|
-
"id": "19",
|
|
384
|
-
"metadata": {},
|
|
385
|
-
"outputs": [],
|
|
386
|
-
"source": [
|
|
387
|
-
"n = df_subject_appointments.subject_identifier.nunique()\n",
|
|
388
|
-
"print(f\"{n} subjects\")\n"
|
|
389
|
-
]
|
|
390
|
-
},
|
|
391
|
-
{
|
|
392
|
-
"cell_type": "code",
|
|
393
|
-
"execution_count": null,
|
|
394
|
-
"id": "20",
|
|
395
|
-
"metadata": {},
|
|
396
|
-
"outputs": [],
|
|
397
|
-
"source": [
|
|
398
|
-
"(len(df_subject_appointments[df_subject_appointments.appt_datetime>=datetime(2026,1,1)])/36)/5"
|
|
399
|
-
]
|
|
400
|
-
},
|
|
401
|
-
{
|
|
402
|
-
"cell_type": "code",
|
|
403
|
-
"execution_count": null,
|
|
404
|
-
"id": "21",
|
|
405
|
-
"metadata": {},
|
|
406
|
-
"outputs": [],
|
|
407
|
-
"source": [
|
|
408
|
-
"# summarize the appointments\n",
|
|
409
|
-
"df_summary = df_subject_appointments.visit_code.value_counts().reset_index(name=\"appointments\").sort_values(by=[\"visit_code\"], ascending=True)\n",
|
|
410
|
-
"df_summary[\"cumsum\"] = df_summary.appointments.cumsum()\n",
|
|
411
|
-
"df_summary"
|
|
412
|
-
]
|
|
413
|
-
},
|
|
414
|
-
{
|
|
415
|
-
"cell_type": "code",
|
|
416
|
-
"execution_count": null,
|
|
417
|
-
"id": "22",
|
|
418
|
-
"metadata": {},
|
|
419
|
-
"outputs": [],
|
|
420
|
-
"source": [
|
|
421
|
-
"df = df_subject_appointments.assignment.value_counts(dropna=False).reset_index()\n",
|
|
422
|
-
"df.rename(columns={\"count\":\"appointments\"}, inplace=True)\n",
|
|
423
|
-
"df[\"bottles\"] = df.appointments * 3\n",
|
|
424
|
-
"df[\"tablets\"] = df.bottles * 128\n",
|
|
425
|
-
"\n",
|
|
426
|
-
"# we need this many bottles / tablets by assignment\n",
|
|
427
|
-
"# filter\n",
|
|
428
|
-
"df.loc[len(df)] = {\"appointments\": df.appointments.sum(), \"bottles\": df.bottles.sum(), \"tablets\": df.tablets.sum()}\n",
|
|
429
|
-
"df"
|
|
430
|
-
]
|
|
431
|
-
},
|
|
432
|
-
{
|
|
433
|
-
"cell_type": "code",
|
|
434
|
-
"execution_count": null,
|
|
435
|
-
"id": "23",
|
|
436
|
-
"metadata": {},
|
|
437
|
-
"outputs": [],
|
|
438
|
-
"source": [
|
|
439
|
-
"gt = get_great_table(\n",
|
|
440
|
-
" df,\n",
|
|
441
|
-
" \"Table 1: IMP Bottles of 128 needed<BR><small>as of 2025-05-15</small>\",\n",
|
|
442
|
-
" footnote=(\n",
|
|
443
|
-
" \"<ol>\"\n",
|
|
444
|
-
" \"<li>assume all participants consent for extended followup.\"\n",
|
|
445
|
-
" \"<li>Need 3 bottles every three months\"\n",
|
|
446
|
-
" \"<li>48m appointment is excluded\"\n",
|
|
447
|
-
" \"<li>Only prepare for appointments scheduled before 2026-03-01.\"\n",
|
|
448
|
-
" \"</ol>\"\n",
|
|
449
|
-
" ))\n",
|
|
450
|
-
"gt.show()"
|
|
451
|
-
]
|
|
452
|
-
},
|
|
453
|
-
{
|
|
454
|
-
"cell_type": "code",
|
|
455
|
-
"execution_count": null,
|
|
456
|
-
"id": "24",
|
|
457
|
-
"metadata": {},
|
|
458
|
-
"outputs": [],
|
|
459
|
-
"source": [
|
|
460
|
-
"\n",
|
|
461
|
-
"# save as png\n",
|
|
462
|
-
"gt.save(analysis_folder / \"pharmacy_tbl1.png\")\n",
|
|
463
|
-
"# export to PDF\n",
|
|
464
|
-
"image = Image.open(analysis_folder / \"pharmacy_tbl1.png\")\n",
|
|
465
|
-
"image = image.resize((image.width * 6, image.height * 6), Image.LANCZOS)\n",
|
|
466
|
-
"image.save(analysis_folder / \"pharmacy_tbl1.pdf\", \"PDF\", resolution=800, optimize=True, quality=95)"
|
|
467
|
-
]
|
|
468
|
-
},
|
|
469
|
-
{
|
|
470
|
-
"cell_type": "code",
|
|
471
|
-
"execution_count": null,
|
|
472
|
-
"id": "25",
|
|
473
|
-
"metadata": {},
|
|
474
|
-
"outputs": [],
|
|
475
|
-
"source": [
|
|
476
|
-
"# now lets look at the stock\n",
|
|
477
|
-
"df_stock = read_frame(Stock.objects.values(\"code\", \"lot_id\", \"container__name\", \"confirmation\", \"allocation\", \"dispense\", \"qty_in\", \"qty_out\", \"unit_qty_in\", \"unit_qty_out\").all(), verbose=False)\n",
|
|
478
|
-
"df_stock = df_stock.fillna(pd.NA)\n",
|
|
479
|
-
"\n",
|
|
480
|
-
"# merge in assignment\n",
|
|
481
|
-
"df_lot = read_frame(Lot.objects.values(\"id\", \"assignment__name\").all(), verbose=False)\n",
|
|
482
|
-
"df_lot.rename(columns={\"id\":\"lot_id\", \"assignment__name\": \"assignment\"}, inplace=True)\n",
|
|
483
|
-
"df_stock = df_stock.merge(df_lot[[\"lot_id\", \"assignment\"]], on=\"lot_id\", how=\"left\")\n",
|
|
484
|
-
"df_stock.rename(columns={\"container__name\":\"container\"}, inplace=True)\n",
|
|
485
|
-
"df_stock.reset_index(drop=True, inplace=True)"
|
|
486
|
-
]
|
|
487
|
-
},
|
|
488
|
-
{
|
|
489
|
-
"cell_type": "code",
|
|
490
|
-
"execution_count": null,
|
|
491
|
-
"id": "26",
|
|
492
|
-
"metadata": {},
|
|
493
|
-
"outputs": [],
|
|
494
|
-
"source": [
|
|
495
|
-
"# merge in container columns\n",
|
|
496
|
-
"df_container = read_frame(Container.objects.all())\n",
|
|
497
|
-
"df_container.rename(columns={\"name\": \"container\", \"display_name\": \"container_display_name\", \"units\": \"container_units\", \"qty\": \"container_qty\"}, inplace=True)\n",
|
|
498
|
-
"df_stock = df_stock.merge(df_container[[\"container\", \"container_display_name\", \"container_type\", \"container_units\", \"container_qty\"]], on=\"container\", how=\"left\")\n",
|
|
499
|
-
"df_stock.reset_index(drop=True, inplace=True)\n",
|
|
500
|
-
"\n",
|
|
501
|
-
"# calculate bal\n",
|
|
502
|
-
"df_stock[\"bal\"] = df_stock[\"unit_qty_in\"] - df_stock[\"unit_qty_out\"]\n"
|
|
503
|
-
]
|
|
504
|
-
},
|
|
505
|
-
{
|
|
506
|
-
"cell_type": "code",
|
|
507
|
-
"execution_count": null,
|
|
508
|
-
"id": "27",
|
|
509
|
-
"metadata": {},
|
|
510
|
-
"outputs": [],
|
|
511
|
-
"source": [
|
|
512
|
-
"# show the balance of tablets decanted to bottles by assignment (on the EDC)\n",
|
|
513
|
-
"df2 = df_stock[df_stock.container_display_name==\"Bottle 128\"].groupby(by=[\"assignment\"]).bal.agg(\"sum\").reset_index()\n",
|
|
514
|
-
"df2.loc[len(df2)] = {\"bal\": df2.bal.sum()}\n",
|
|
515
|
-
"df2"
|
|
516
|
-
]
|
|
517
|
-
},
|
|
518
|
-
{
|
|
519
|
-
"cell_type": "code",
|
|
520
|
-
"execution_count": null,
|
|
521
|
-
"id": "28",
|
|
522
|
-
"metadata": {},
|
|
523
|
-
"outputs": [],
|
|
524
|
-
"source": [
|
|
525
|
-
"# some bottles, as of today, have not been captured in the system\n",
|
|
526
|
-
"# here is an estimate of what has been decanted into bottles but not labelled.\n",
|
|
527
|
-
"# in the system, these tablets would appear on the EDC as still in buckets\n",
|
|
528
|
-
"df3 = df2.copy()\n",
|
|
529
|
-
"df3 = df3.drop(len(df3) - 1)\n",
|
|
530
|
-
"placebo_unlabelled = 0 # 21*128*128\n",
|
|
531
|
-
"active_unlabelled = 0 # 25*191*128\n",
|
|
532
|
-
"\n",
|
|
533
|
-
"# adding in the estimates, this is about what we have bottled\n",
|
|
534
|
-
"df3.loc[df3.assignment==\"placebo\", \"bal\"] += placebo_unlabelled\n",
|
|
535
|
-
"df3.loc[df3.assignment==\"active\", \"bal\"] += active_unlabelled\n",
|
|
536
|
-
"df3.loc[len(df3)] = {\"bal\": df3.bal.sum()}\n",
|
|
537
|
-
"df3"
|
|
538
|
-
]
|
|
539
|
-
},
|
|
540
|
-
{
|
|
541
|
-
"cell_type": "code",
|
|
542
|
-
"execution_count": null,
|
|
543
|
-
"id": "29",
|
|
544
|
-
"metadata": {},
|
|
545
|
-
"outputs": [],
|
|
546
|
-
"source": [
|
|
547
|
-
"gt = get_great_table(\n",
|
|
548
|
-
" df3,\n",
|
|
549
|
-
" \"Table 2: IMP tablets in stock<BR><small>as of 2025-04-04</small>\",\n",
|
|
550
|
-
" # footnote=\"Includes recently decanted but unlabelled bottles\"\n",
|
|
551
|
-
" )\n",
|
|
552
|
-
"gt.show()"
|
|
553
|
-
]
|
|
554
|
-
},
|
|
555
|
-
{
|
|
556
|
-
"cell_type": "code",
|
|
557
|
-
"execution_count": null,
|
|
558
|
-
"id": "30",
|
|
559
|
-
"metadata": {},
|
|
560
|
-
"outputs": [],
|
|
561
|
-
"source": [
|
|
562
|
-
"# save as png\n",
|
|
563
|
-
"gt.save(analysis_folder / \"pharmacy_tbl2.png\")\n",
|
|
564
|
-
"# export to PDF\n",
|
|
565
|
-
"image = Image.open(analysis_folder / \"pharmacy_tbl2.png\")\n",
|
|
566
|
-
"image = image.resize((image.width * 6, image.height * 6), Image.LANCZOS)\n",
|
|
567
|
-
"image.save(analysis_folder / \"pharmacy_tbl2.pdf\", \"PDF\", resolution=800, optimize=True, quality=95)"
|
|
568
|
-
]
|
|
569
|
-
},
|
|
570
|
-
{
|
|
571
|
-
"cell_type": "code",
|
|
572
|
-
"execution_count": null,
|
|
573
|
-
"id": "31",
|
|
574
|
-
"metadata": {},
|
|
575
|
-
"outputs": [],
|
|
576
|
-
"source": [
|
|
577
|
-
"# tablets: ordered\n",
|
|
578
|
-
"df_orderitems = read_frame(OrderItem.objects.all())\n",
|
|
579
|
-
"df_orderitems.qty.sum()"
|
|
580
|
-
]
|
|
581
|
-
},
|
|
582
|
-
{
|
|
583
|
-
"cell_type": "code",
|
|
584
|
-
"execution_count": null,
|
|
585
|
-
"id": "32",
|
|
586
|
-
"metadata": {},
|
|
587
|
-
"outputs": [],
|
|
588
|
-
"source": [
|
|
589
|
-
"# tablets: received\n",
|
|
590
|
-
"df_received_items = read_frame(ReceiveItem.objects.all())\n",
|
|
591
|
-
"df_received_items.unit_qty.sum()"
|
|
592
|
-
]
|
|
593
|
-
},
|
|
594
|
-
{
|
|
595
|
-
"cell_type": "code",
|
|
596
|
-
"execution_count": null,
|
|
597
|
-
"id": "33",
|
|
598
|
-
"metadata": {},
|
|
599
|
-
"outputs": [],
|
|
600
|
-
"source": [
|
|
601
|
-
"# tablets: received into stock\n",
|
|
602
|
-
"df_stock[df_stock.container_type==\"bucket\"].unit_qty_in.sum()"
|
|
603
|
-
]
|
|
604
|
-
},
|
|
605
|
-
{
|
|
606
|
-
"cell_type": "code",
|
|
607
|
-
"execution_count": null,
|
|
608
|
-
"id": "34",
|
|
609
|
-
"metadata": {},
|
|
610
|
-
"outputs": [],
|
|
611
|
-
"source": [
|
|
612
|
-
"# tablets: decanted from buckets into bottles\n",
|
|
613
|
-
"df_stock[df_stock.container_type==\"bucket\"].unit_qty_out.sum()"
|
|
614
|
-
]
|
|
615
|
-
},
|
|
616
|
-
{
|
|
617
|
-
"cell_type": "code",
|
|
618
|
-
"execution_count": null,
|
|
619
|
-
"id": "35",
|
|
620
|
-
"metadata": {},
|
|
621
|
-
"outputs": [],
|
|
622
|
-
"source": [
|
|
623
|
-
"# tablets: total in bottles\n",
|
|
624
|
-
"df_stock[df_stock.container_type==\"Bottle\"].unit_qty_in.sum()"
|
|
625
|
-
]
|
|
626
|
-
},
|
|
627
|
-
{
|
|
628
|
-
"cell_type": "code",
|
|
629
|
-
"execution_count": null,
|
|
630
|
-
"id": "36",
|
|
631
|
-
"metadata": {},
|
|
632
|
-
"outputs": [],
|
|
633
|
-
"source": [
|
|
634
|
-
"# tablets: total bottles available / not yet dispensed BY ASSIGNMENT\n",
|
|
635
|
-
"# the total matches the total above for column \"bal\"\n",
|
|
636
|
-
"df4 = df_stock[(df_stock.container_type==\"Bottle\") & ~(df_stock.confirmation.isna()) & ~(df_stock.dispense.isna())].groupby(by=[\"assignment\"]).unit_qty_in.sum().reset_index()\n",
|
|
637
|
-
"df4[\"subtotal\"] = np.nan\n",
|
|
638
|
-
"df4.loc[len(df4)] = {\"subtotal\": df4.unit_qty_in.sum()}\n",
|
|
639
|
-
"df[\"dispensed\"] = True\n",
|
|
640
|
-
"\n",
|
|
641
|
-
"df5 = df_stock[(df_stock.container_type==\"Bottle\") & ~(df_stock.confirmation.isna()) & (df_stock.dispense.isna())].groupby(by=[\"assignment\"]).unit_qty_in.sum().reset_index()\n",
|
|
642
|
-
"df5.loc[df5.assignment==\"placebo\", \"unit_qty_in\"] += placebo_unlabelled\n",
|
|
643
|
-
"df5.loc[df5.assignment==\"active\", \"unit_qty_in\"] += active_unlabelled\n",
|
|
644
|
-
"df5[\"subtotal\"] = np.nan\n",
|
|
645
|
-
"df5.loc[len(df5)] = {\"subtotal\" : df5.unit_qty_in.sum()}\n",
|
|
646
|
-
"df5[\"dispensed\"] = False\n",
|
|
647
|
-
"\n",
|
|
648
|
-
"df6 = pd.concat([df4, df5])\n",
|
|
649
|
-
"df6[\"total\"] = np.nan\n",
|
|
650
|
-
"df6.reset_index(drop=True, inplace=True)\n",
|
|
651
|
-
"df6.loc[len(df6)] = {\"total\": df6.subtotal.sum()}\n",
|
|
652
|
-
"df6 = df6[[\"dispensed\", \"assignment\", \"unit_qty_in\", \"subtotal\", \"total\"]]\n",
|
|
653
|
-
"df6"
|
|
654
|
-
]
|
|
655
|
-
},
|
|
656
|
-
{
|
|
657
|
-
"cell_type": "code",
|
|
658
|
-
"execution_count": null,
|
|
659
|
-
"id": "37",
|
|
660
|
-
"metadata": {},
|
|
661
|
-
"outputs": [],
|
|
662
|
-
"source": []
|
|
663
|
-
},
|
|
664
|
-
{
|
|
665
|
-
"cell_type": "code",
|
|
666
|
-
"execution_count": null,
|
|
667
|
-
"id": "38",
|
|
668
|
-
"metadata": {},
|
|
669
|
-
"outputs": [],
|
|
670
|
-
"source": [
|
|
671
|
-
"from meta_visit_schedule.constants import MONTH36\n",
|
|
672
|
-
"\n",
|
|
673
|
-
"df_appt[(df_appt.visit_code_str==MONTH36) & (df_appt.appt_datetime >= datetime(2024,12,15)) & (df_appt.appt_status==NEW_APPT) & (df_appt.appt_datetime <= datetime(2026,2,28))]"
|
|
674
|
-
]
|
|
675
|
-
},
|
|
676
|
-
{
|
|
677
|
-
"cell_type": "code",
|
|
678
|
-
"execution_count": null,
|
|
679
|
-
"id": "39",
|
|
680
|
-
"metadata": {},
|
|
681
|
-
"outputs": [],
|
|
682
|
-
"source": [
|
|
683
|
-
"def remove_subjects_where_stock_on_site(stock_request: StockRequest, df: pd.DataFrame):\n",
|
|
684
|
-
" stock_model_cls = django_apps.get_model(\"edc_pharmacy.Stock\")\n",
|
|
685
|
-
" qs_stock = (\n",
|
|
686
|
-
" stock_model_cls.objects.values(\n",
|
|
687
|
-
" \"allocation__registered_subject__subject_identifier\", \"code\"\n",
|
|
688
|
-
" )\n",
|
|
689
|
-
" .filter(location=stock_request.location, qty=1)\n",
|
|
690
|
-
" .annotate(count=Count(\"allocation__registered_subject__subject_identifier\"))\n",
|
|
691
|
-
" )\n",
|
|
692
|
-
" df_stock = read_frame(qs_stock)\n",
|
|
693
|
-
" df_stock = df_stock.rename(\n",
|
|
694
|
-
" columns={\n",
|
|
695
|
-
" \"allocation__registered_subject__subject_identifier\": \"subject_identifier\",\n",
|
|
696
|
-
" \"count\": \"stock_qty\",\n",
|
|
697
|
-
" }\n",
|
|
698
|
-
" )\n",
|
|
699
|
-
" if not df.empty and not df_stock.empty:\n",
|
|
700
|
-
" df_subject = df.copy()\n",
|
|
701
|
-
" df_subject[\"code\"] = None\n",
|
|
702
|
-
" df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
|
|
703
|
-
" for index, row in df.iterrows():\n",
|
|
704
|
-
" qty_needed = stock_request.containers_per_subject - len(df[df.subject_identifier == row.subject_identifier])\n",
|
|
705
|
-
" if qty_needed > 0:\n",
|
|
706
|
-
" for _ in range(0, qty_needed):\n",
|
|
707
|
-
" df = pd.concat([df, df_subject])\n",
|
|
708
|
-
" else:\n",
|
|
709
|
-
" df[\"code\"] = None\n",
|
|
710
|
-
" df[\"stock_qty\"] = 0.0\n",
|
|
711
|
-
" df = df.reset_index(drop=True)\n",
|
|
712
|
-
" return df\n"
|
|
713
|
-
]
|
|
714
|
-
},
|
|
715
|
-
{
|
|
716
|
-
"cell_type": "code",
|
|
717
|
-
"execution_count": null,
|
|
718
|
-
"id": "40",
|
|
719
|
-
"metadata": {},
|
|
720
|
-
"outputs": [],
|
|
721
|
-
"source": [
|
|
722
|
-
"def pad_with_null_rows(df, qty_needed):\n",
|
|
723
|
-
" padded_data = []\n",
|
|
724
|
-
" for index, row in df.iterrows():\n",
|
|
725
|
-
" customer = row['subject']\n",
|
|
726
|
-
" products = row['product_code']\n",
|
|
727
|
-
" # Pad the products list with None to make its length x\n",
|
|
728
|
-
" products += [None] * (qty_needed - len(products))\n",
|
|
729
|
-
" # Create x rows for each customer\n",
|
|
730
|
-
" for product in products:\n",
|
|
731
|
-
" padded_data.append({'customer': customer, 'product_code': product})\n",
|
|
732
|
-
" return pd.DataFrame(padded_data)"
|
|
733
|
-
]
|
|
734
|
-
},
|
|
735
|
-
{
|
|
736
|
-
"cell_type": "code",
|
|
737
|
-
"execution_count": null,
|
|
738
|
-
"id": "41",
|
|
739
|
-
"metadata": {},
|
|
740
|
-
"outputs": [],
|
|
741
|
-
"source": [
|
|
742
|
-
"pk = \"5455cf66-b8e5-449c-a1e8-24d3325026d7\"\n",
|
|
743
|
-
"stock_request = StockRequest.objects.get(pk=pk)\n"
|
|
744
|
-
]
|
|
745
|
-
},
|
|
746
|
-
{
|
|
747
|
-
"cell_type": "code",
|
|
748
|
-
"execution_count": null,
|
|
749
|
-
"id": "42",
|
|
750
|
-
"metadata": {},
|
|
751
|
-
"outputs": [],
|
|
752
|
-
"source": [
|
|
753
|
-
"df_subjects = get_next_scheduled_visit_for_subjects_df(stock_request)\n",
|
|
754
|
-
"df_subjects"
|
|
755
|
-
]
|
|
756
|
-
},
|
|
757
|
-
{
|
|
758
|
-
"cell_type": "code",
|
|
759
|
-
"execution_count": null,
|
|
760
|
-
"id": "43",
|
|
761
|
-
"metadata": {},
|
|
762
|
-
"outputs": [],
|
|
763
|
-
"source": []
|
|
764
|
-
},
|
|
765
|
-
{
|
|
766
|
-
"cell_type": "code",
|
|
767
|
-
"execution_count": null,
|
|
768
|
-
"id": "44",
|
|
769
|
-
"metadata": {},
|
|
770
|
-
"outputs": [],
|
|
771
|
-
"source": [
|
|
772
|
-
"df = df_subjects.copy()\n",
|
|
773
|
-
"stock_model_cls = django_apps.get_model(\"edc_pharmacy.Stock\")\n",
|
|
774
|
-
"qs_stock = (\n",
|
|
775
|
-
" stock_model_cls.objects.values(\n",
|
|
776
|
-
" \"allocation__registered_subject__subject_identifier\", \"code\"\n",
|
|
777
|
-
" )\n",
|
|
778
|
-
" .filter(location=stock_request.location, qty=1)\n",
|
|
779
|
-
" .annotate(count=Count(\"allocation__registered_subject__subject_identifier\"))\n",
|
|
780
|
-
")\n",
|
|
781
|
-
"df_stock = read_frame(qs_stock)\n",
|
|
782
|
-
"df_stock = df_stock.rename(\n",
|
|
783
|
-
" columns={\n",
|
|
784
|
-
" \"allocation__registered_subject__subject_identifier\": \"subject_identifier\",\n",
|
|
785
|
-
" \"count\": \"stock_qty\",\n",
|
|
786
|
-
" }\n",
|
|
787
|
-
")\n",
|
|
788
|
-
"df_stock"
|
|
789
|
-
]
|
|
790
|
-
},
|
|
791
|
-
{
|
|
792
|
-
"cell_type": "code",
|
|
793
|
-
"execution_count": null,
|
|
794
|
-
"id": "45",
|
|
795
|
-
"metadata": {},
|
|
796
|
-
"outputs": [],
|
|
797
|
-
"source": [
|
|
798
|
-
"df.merge(df_stock, on=\"subject_identifier\", how=\"left\")"
|
|
799
|
-
]
|
|
800
|
-
},
|
|
801
|
-
{
|
|
802
|
-
"cell_type": "code",
|
|
803
|
-
"execution_count": null,
|
|
804
|
-
"id": "46",
|
|
805
|
-
"metadata": {},
|
|
806
|
-
"outputs": [],
|
|
807
|
-
"source": [
|
|
808
|
-
"if not df.empty and not df_stock.empty:\n",
|
|
809
|
-
" df_subject = df.copy()\n",
|
|
810
|
-
" df_subject[\"code\"] = None\n",
|
|
811
|
-
" df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
|
|
812
|
-
" for index, row in df.iterrows():\n",
|
|
813
|
-
" qty_needed = stock_request.containers_per_subject - len(df[df.subject_identifier == row.subject_identifier])\n",
|
|
814
|
-
" if qty_needed > 0:\n",
|
|
815
|
-
" for _ in range(0, qty_needed):\n",
|
|
816
|
-
" df = pd.concat([df, df_subject])\n",
|
|
817
|
-
"else:\n",
|
|
818
|
-
" df[\"code\"] = None\n",
|
|
819
|
-
"df[\"stock_qty\"] = 0.0\n",
|
|
820
|
-
"df = df.reset_index(drop=True)\n",
|
|
821
|
-
"df"
|
|
822
|
-
]
|
|
823
|
-
},
|
|
824
|
-
{
|
|
825
|
-
"cell_type": "code",
|
|
826
|
-
"execution_count": null,
|
|
827
|
-
"id": "47",
|
|
828
|
-
"metadata": {},
|
|
829
|
-
"outputs": [],
|
|
830
|
-
"source": [
|
|
831
|
-
"df.loc[df.index.repeat(3)]"
|
|
832
|
-
]
|
|
833
|
-
},
|
|
834
|
-
{
|
|
835
|
-
"cell_type": "code",
|
|
836
|
-
"execution_count": null,
|
|
837
|
-
"id": "48",
|
|
838
|
-
"metadata": {},
|
|
839
|
-
"outputs": [],
|
|
840
|
-
"source": [
|
|
841
|
-
"if not df.empty and not df_stock.empty:\n",
|
|
842
|
-
" df = df.merge(df_stock, on=\"subject_identifier\", how=\"left\")\n",
|
|
843
|
-
"else:\n",
|
|
844
|
-
" df[\"code\"] = None\n",
|
|
845
|
-
"df[\"stock_qty\"] = 0.0\n",
|
|
846
|
-
"df = df.reset_index(drop=True)\n",
|
|
847
|
-
"df"
|
|
848
|
-
]
|
|
849
|
-
},
|
|
850
|
-
{
|
|
851
|
-
"cell_type": "code",
|
|
852
|
-
"execution_count": null,
|
|
853
|
-
"id": "49",
|
|
854
|
-
"metadata": {},
|
|
855
|
-
"outputs": [],
|
|
856
|
-
"source": [
|
|
857
|
-
"df = remove_subjects_where_stock_on_site(stock_request, df_subjects)\n",
|
|
858
|
-
"df"
|
|
859
|
-
]
|
|
860
|
-
},
|
|
861
|
-
{
|
|
862
|
-
"cell_type": "code",
|
|
863
|
-
"execution_count": null,
|
|
864
|
-
"id": "50",
|
|
865
|
-
"metadata": {},
|
|
866
|
-
"outputs": [],
|
|
867
|
-
"source": [
|
|
868
|
-
"df_instock = df[~df.code.isna()]\n",
|
|
869
|
-
"df_instock = df_instock.reset_index(drop=True)\n",
|
|
870
|
-
"df_instock = df_instock.sort_values(by=[\"subject_identifier\"])\n",
|
|
871
|
-
"\n",
|
|
872
|
-
"df_nostock = df[df.code.isna()]\n",
|
|
873
|
-
"df_nostock = df_nostock.reset_index(drop=True)\n",
|
|
874
|
-
"df_nostock = df_nostock.loc[\n",
|
|
875
|
-
" df_nostock.index.repeat(stock_request.containers_per_subject)\n",
|
|
876
|
-
"].reset_index(drop=True)\n",
|
|
877
|
-
"df_nostock = df_nostock.sort_values(by=[\"subject_identifier\"])\n",
|
|
878
|
-
"df_nostock[\"code\"] = df_nostock[\"code\"].fillna(\"---\")\n"
|
|
879
|
-
]
|
|
880
|
-
},
|
|
881
|
-
{
|
|
882
|
-
"cell_type": "code",
|
|
883
|
-
"execution_count": null,
|
|
884
|
-
"id": "51",
|
|
885
|
-
"metadata": {},
|
|
886
|
-
"outputs": [],
|
|
887
|
-
"source": []
|
|
888
|
-
},
|
|
889
|
-
{
|
|
890
|
-
"cell_type": "code",
|
|
891
|
-
"execution_count": null,
|
|
892
|
-
"id": "52",
|
|
893
|
-
"metadata": {},
|
|
894
|
-
"outputs": [],
|
|
895
|
-
"source": []
|
|
896
|
-
},
|
|
897
|
-
{
|
|
898
|
-
"cell_type": "code",
|
|
899
|
-
"execution_count": null,
|
|
900
|
-
"id": "53",
|
|
901
|
-
"metadata": {},
|
|
902
|
-
"outputs": [],
|
|
903
|
-
"source": [
|
|
904
|
-
"no_stock_for_subjects_df()"
|
|
905
|
-
]
|
|
906
|
-
},
|
|
907
|
-
{
|
|
908
|
-
"cell_type": "code",
|
|
909
|
-
"execution_count": null,
|
|
910
|
-
"id": "54",
|
|
911
|
-
"metadata": {},
|
|
912
|
-
"outputs": [],
|
|
913
|
-
"source": [
|
|
914
|
-
"df_schedule = read_frame(SubjectScheduleHistory.objects.values(\"subject_identifier\", \"visit_schedule_name\",\"schedule_name\", \"offschedule_datetime\").all())\n"
|
|
915
|
-
]
|
|
916
|
-
},
|
|
917
|
-
{
|
|
918
|
-
"cell_type": "code",
|
|
919
|
-
"execution_count": null,
|
|
920
|
-
"id": "55",
|
|
921
|
-
"metadata": {},
|
|
922
|
-
"outputs": [],
|
|
923
|
-
"source": [
|
|
924
|
-
"df_schedule = df_schedule[(df_schedule.visit_schedule_name==\"visit_schedule\") & (df_schedule.schedule_name==\"schedule\") & df_schedule.offschedule_datetime.isna()]\n",
|
|
925
|
-
"df_schedule.reset_index(drop=True, inplace=True)"
|
|
926
|
-
]
|
|
927
|
-
},
|
|
928
|
-
{
|
|
929
|
-
"cell_type": "code",
|
|
930
|
-
"execution_count": null,
|
|
931
|
-
"id": "56",
|
|
932
|
-
"metadata": {},
|
|
933
|
-
"outputs": [],
|
|
934
|
-
"source": [
|
|
935
|
-
"df_stock = read_frame(Stock.objects.all(), verbose=False)\n",
|
|
936
|
-
"df_stock_on_site = df_stock[(df_stock.confirmed_at_site==True) & (df_stock.dispensed==False)].copy()\n",
|
|
937
|
-
"df_stock_on_site.reset_index(drop=True, inplace=True)\n",
|
|
938
|
-
"df_stock_on_site = df_stock_on_site.drop(columns=[\"subject_identifier\"])\n"
|
|
939
|
-
]
|
|
940
|
-
},
|
|
941
|
-
{
|
|
942
|
-
"cell_type": "code",
|
|
943
|
-
"execution_count": null,
|
|
944
|
-
"id": "57",
|
|
945
|
-
"metadata": {},
|
|
946
|
-
"outputs": [],
|
|
947
|
-
"source": [
|
|
948
|
-
"df_allocation = read_frame(Allocation.objects.values(\"id\", \"registered_subject\").all(), verbose=False)\n",
|
|
949
|
-
"df_rs = read_frame(RegisteredSubject.objects.values(\"id\", \"subject_identifier\").all(), verbose=False)\n",
|
|
950
|
-
"df_allocation = df_allocation.merge(df_rs[[\"id\", \"subject_identifier\"]], how=\"left\", left_on=\"registered_subject\", right_on=\"id\", suffixes=[\"_allocation\", \"_rs\"])"
|
|
951
|
-
]
|
|
952
|
-
},
|
|
953
|
-
{
|
|
954
|
-
"cell_type": "code",
|
|
955
|
-
"execution_count": null,
|
|
956
|
-
"id": "58",
|
|
957
|
-
"metadata": {},
|
|
958
|
-
"outputs": [],
|
|
959
|
-
"source": [
|
|
960
|
-
"df_stock_on_site = df_stock_on_site.merge(df_allocation[[\"id_allocation\", \"subject_identifier\"]], how=\"left\", left_on=\"allocation\", right_on=\"id_allocation\")"
|
|
961
|
-
]
|
|
962
|
-
},
|
|
963
|
-
{
|
|
964
|
-
"cell_type": "code",
|
|
965
|
-
"execution_count": null,
|
|
966
|
-
"id": "59",
|
|
967
|
-
"metadata": {},
|
|
968
|
-
"outputs": [],
|
|
969
|
-
"source": [
|
|
970
|
-
"df = pd.merge(df_schedule[[\"subject_identifier\", 'offschedule_datetime']], df_stock_on_site, on=\"subject_identifier\", how=\"left\")\n",
|
|
971
|
-
"df= df[df.code.isna()][[\"subject_identifier\", ]].sort_values(by=[\"subject_identifier\"]).reset_index(drop=True)"
|
|
972
|
-
]
|
|
973
|
-
},
|
|
974
|
-
{
|
|
975
|
-
"cell_type": "code",
|
|
976
|
-
"execution_count": null,
|
|
977
|
-
"id": "60",
|
|
978
|
-
"metadata": {},
|
|
979
|
-
"outputs": [],
|
|
980
|
-
"source": [
|
|
981
|
-
"df_appt = get_next_scheduled_visit_for_subjects_df()\n",
|
|
982
|
-
"df_appt = df_appt[[\"subject_identifier\", \"site_id\", \"visit_code\", \"appt_datetime\", \"baseline_datetime\"]].copy()\n",
|
|
983
|
-
"df_appt.reset_index(drop=True, inplace=True)"
|
|
984
|
-
]
|
|
985
|
-
},
|
|
986
|
-
{
|
|
987
|
-
"cell_type": "code",
|
|
988
|
-
"execution_count": null,
|
|
989
|
-
"id": "61",
|
|
990
|
-
"metadata": {},
|
|
991
|
-
"outputs": [],
|
|
992
|
-
"source": [
|
|
993
|
-
"\n",
|
|
994
|
-
"df = df.merge(df_appt, how=\"left\", on=\"subject_identifier\")\n",
|
|
995
|
-
"df = df[(df.appt_datetime.notna())]\n",
|
|
996
|
-
"df.reset_index(drop=True, inplace=True)"
|
|
997
|
-
]
|
|
998
|
-
},
|
|
999
|
-
{
|
|
1000
|
-
"cell_type": "code",
|
|
1001
|
-
"execution_count": null,
|
|
1002
|
-
"id": "62",
|
|
1003
|
-
"metadata": {},
|
|
1004
|
-
"outputs": [],
|
|
1005
|
-
"source": [
|
|
1006
|
-
"utc_now = pd.Timestamp.utcnow().tz_localize(None)\n",
|
|
1007
|
-
"df[\"relative_days\"] = (df.appt_datetime - utc_now).dt.days\n",
|
|
1008
|
-
"df_final = df[(df.relative_days >= -105)].copy()\n",
|
|
1009
|
-
"df_final.reset_index(drop=True, inplace=True)\n",
|
|
1010
|
-
"df_final"
|
|
1011
|
-
]
|
|
1012
|
-
},
|
|
1013
|
-
{
|
|
1014
|
-
"cell_type": "code",
|
|
1015
|
-
"execution_count": null,
|
|
1016
|
-
"id": "63",
|
|
1017
|
-
"metadata": {},
|
|
1018
|
-
"outputs": [],
|
|
1019
|
-
"source": [
|
|
1020
|
-
"RegisteredSubject.objects.filter(site_id=10)"
|
|
1021
|
-
]
|
|
1022
|
-
},
|
|
1023
|
-
{
|
|
1024
|
-
"cell_type": "code",
|
|
1025
|
-
"execution_count": null,
|
|
1026
|
-
"id": "64",
|
|
1027
|
-
"metadata": {},
|
|
1028
|
-
"outputs": [],
|
|
1029
|
-
"source": []
|
|
1030
|
-
},
|
|
1031
|
-
{
|
|
1032
|
-
"cell_type": "code",
|
|
1033
|
-
"execution_count": null,
|
|
1034
|
-
"id": "65",
|
|
1035
|
-
"metadata": {},
|
|
1036
|
-
"outputs": [],
|
|
1037
|
-
"source": []
|
|
1038
|
-
}
|
|
1039
|
-
],
|
|
1040
|
-
"metadata": {
|
|
1041
|
-
"kernelspec": {
|
|
1042
|
-
"display_name": "Python 3",
|
|
1043
|
-
"language": "python",
|
|
1044
|
-
"name": "python3"
|
|
1045
|
-
},
|
|
1046
|
-
"language_info": {
|
|
1047
|
-
"codemirror_mode": {
|
|
1048
|
-
"name": "ipython",
|
|
1049
|
-
"version": 2
|
|
1050
|
-
},
|
|
1051
|
-
"file_extension": ".py",
|
|
1052
|
-
"mimetype": "text/x-python",
|
|
1053
|
-
"name": "python",
|
|
1054
|
-
"nbconvert_exporter": "python",
|
|
1055
|
-
"pygments_lexer": "ipython2",
|
|
1056
|
-
"version": "2.7.6"
|
|
1057
|
-
}
|
|
1058
|
-
},
|
|
1059
|
-
"nbformat": 4,
|
|
1060
|
-
"nbformat_minor": 5
|
|
1061
|
-
}
|