meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of meta-edc might be problematic. Click here for more details.
- meta_ae/action_items.py +2 -1
- meta_ae/admin/__init__.py +11 -0
- meta_ae/admin/ae_susar_admin.py +1 -1
- meta_ae/admin/death_report_admin.py +1 -1
- meta_ae/admin/modeladmin_mixins.py +10 -12
- meta_ae/baker_recipes.py +3 -3
- meta_ae/forms/__init__.py +13 -0
- meta_ae/forms/modelform_mixins.py +2 -2
- meta_ae/migrations/0001_initial.py +27 -27
- meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
- meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
- meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
- meta_ae/model_mixins/__init__.py +2 -0
- meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
- meta_ae/model_mixins/death_report_model_mixin.py +3 -3
- meta_ae/models/__init__.py +13 -0
- meta_ae/models/hospitalization.py +3 -3
- meta_ae/pdf_reports/__init__.py +2 -0
- meta_analytics/.DS_Store +0 -0
- meta_analytics/dataframes/__init__.py +24 -0
- meta_analytics/dataframes/get_eos_df.py +1 -2
- meta_analytics/dataframes/get_glucose_df.py +6 -7
- meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
- meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
- meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
- meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
- meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
- meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
- meta_analytics/dataframes/screening/__init__.py +2 -0
- meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
- meta_analytics/dataframes/screening/get_screening_df.py +6 -10
- meta_analytics/dataframes/utils.py +3 -8
- meta_analytics/get_tables.py +1 -2
- meta_analytics/tables/__init__.py +2 -0
- meta_consent/action_items.py +2 -1
- meta_consent/admin/__init__.py +6 -0
- meta_consent/admin/actions/__init__.py +2 -0
- meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
- meta_consent/admin/list_filters.py +2 -2
- meta_consent/admin/modeladmin_mixins.py +3 -4
- meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
- meta_consent/baker_recipes.py +7 -8
- meta_consent/form_validators/__init__.py +2 -0
- meta_consent/forms/__init__.py +7 -0
- meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
- meta_consent/forms/subject_reconsent_form.py +4 -4
- meta_consent/management/commands/create_missing_prescriptions.py +4 -2
- meta_consent/migrations/0001_initial.py +9 -9
- meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
- meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
- meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
- meta_consent/models/__init__.py +9 -0
- meta_consent/models/model_mixins.py +1 -2
- meta_consent/models/signals.py +9 -10
- meta_consent/models/subject_consent.py +1 -1
- meta_consent/models/subject_reconsent.py +3 -3
- meta_dashboard/patterns.py +1 -1
- meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
- meta_dashboard/view_utils/__init__.py +7 -0
- meta_dashboard/view_utils/subject_screening_button.py +9 -16
- meta_dashboard/views/__init__.py +8 -0
- meta_dashboard/views/ae/__init__.py +2 -0
- meta_dashboard/views/ae/ae_listboard_view.py +1 -1
- meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
- meta_dashboard/views/screening/__init__.py +2 -0
- meta_dashboard/views/subject/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
- meta_dashboard/views/subject/listboard/__init__.py +2 -0
- meta_edc/__init__.py +5 -9
- meta_edc/celery.py +1 -1
- meta_edc/celery_live.py +1 -1
- meta_edc/celery_uat.py +1 -1
- meta_edc/management/commands/update_forms_reference.py +10 -12
- meta_edc/settings/debug.py +5 -4
- meta_edc/settings/defaults.py +18 -3
- meta_edc/settings/live.py +3 -1
- meta_edc/settings/logging.py +9 -4
- meta_edc/settings/minimal.py +4 -5
- meta_edc/settings/uat.py +3 -1
- meta_edc/views/__init__.py +2 -0
- meta_edc-1.1.12.dist-info/METADATA +174 -0
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
- meta_edc-1.1.12.dist-info/WHEEL +4 -0
- meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
- meta_pharmacy/admin/__init__.py +5 -0
- meta_pharmacy/admin/substitutions_admin.py +2 -2
- meta_pharmacy/forms/__init__.py +2 -0
- meta_pharmacy/forms/substitutions_form.py +6 -4
- meta_pharmacy/labels/__init__.py +4 -2
- meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
- meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
- meta_pharmacy/labels/label_data.py +1 -2
- meta_pharmacy/labels/print_sheets.py +4 -6
- meta_pharmacy/migrations/0002_initial.py +7 -20
- meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
- meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
- meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
- meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
- meta_pharmacy/models/__init__.py +7 -0
- meta_pharmacy/models/label_data.py +4 -5
- meta_pharmacy/models/substitutions.py +3 -3
- meta_pharmacy/prepare_meta_pharmacy.py +1 -1
- meta_pharmacy/utils/__init__.py +2 -0
- meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
- meta_prn/admin/__init__.py +16 -0
- meta_prn/admin/dm_referral_admin.py +2 -1
- meta_prn/admin/end_of_study_admin.py +6 -7
- meta_prn/admin/loss_to_followup_admin.py +3 -2
- meta_prn/admin/off_study_medication_admin.py +5 -6
- meta_prn/admin/offschedule_admin.py +5 -6
- meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
- meta_prn/admin/offschedule_postnatal_admin.py +7 -7
- meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
- meta_prn/admin/onschedule_admin.py +7 -8
- meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
- meta_prn/admin/pregnancy_notification_admin.py +5 -6
- meta_prn/admin/protocol_incident_admin.py +1 -1
- meta_prn/admin/subject_transfer_admin.py +1 -1
- meta_prn/baker_recipes.py +4 -4
- meta_prn/form_validators/__init__.py +5 -0
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/forms/__init__.py +13 -0
- meta_prn/migrations/0001_initial.py +25 -25
- meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
- meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
- meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
- meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
- meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
- meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
- meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
- meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
- meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
- meta_prn/models/__init__.py +20 -0
- meta_prn/models/offschedule.py +4 -4
- meta_prn/models/protocol_incident.py +1 -1
- meta_prn/models/subject_transfer.py +8 -0
- meta_rando/migrations/0001_initial.py +5 -5
- meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
- meta_reports/__init__.py +2 -0
- meta_reports/admin/__init__.py +16 -0
- meta_reports/admin/dbviews/__init__.py +13 -0
- meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
- meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
- meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
- meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
- meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
- meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
- meta_reports/admin/endpoints_admin.py +1 -1
- meta_reports/admin/last_imp_refill_admin.py +9 -9
- meta_reports/admin/list_filters.py +2 -2
- meta_reports/admin/modeladmin_mixins.py +9 -16
- meta_reports/death_report.py +1 -1
- meta_reports/forms/__init__.py +2 -0
- meta_reports/forms/missing_ogtt_note_form.py +2 -3
- meta_reports/management/commands/generate_endpoints.py +5 -4
- meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
- meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
- meta_reports/models/__init__.py +17 -0
- meta_reports/models/dbviews/__init__.py +14 -0
- meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
- meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
- meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
- meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
- meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
- meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
- meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
- meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
- meta_reports/models/endpoints.py +4 -4
- meta_reports/models/last_imp_refill.py +2 -3
- meta_reports/pdf_report.py +2 -2
- meta_reports/tasks.py +1 -1
- meta_screening/admin/__init__.py +8 -0
- meta_screening/admin/fieldsets.py +13 -14
- meta_screening/admin/list_filters.py +6 -4
- meta_screening/admin/screening_part_one_admin.py +1 -2
- meta_screening/admin/screening_part_three_admin.py +2 -3
- meta_screening/admin/screening_part_two_admin.py +7 -10
- meta_screening/admin/subject_refusal_admin.py +5 -3
- meta_screening/admin/subject_screening_admin.py +4 -4
- meta_screening/baker_recipes.py +9 -9
- meta_screening/eligibility/__init__.py +9 -0
- meta_screening/eligibility/eligibility.py +7 -7
- meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
- meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
- meta_screening/form_validators/__init__.py +8 -0
- meta_screening/forms/__init__.py +20 -0
- meta_screening/forms/field_lists.py +16 -17
- meta_screening/forms/screening_part_one_form.py +2 -2
- meta_screening/forms/screening_part_three_form.py +5 -3
- meta_screening/forms/screening_part_two_form.py +1 -5
- meta_screening/forms/subject_refusal_form.py +0 -4
- meta_screening/forms/subject_screening_form.py +0 -4
- meta_screening/migrations/0001_initial.py +15 -15
- meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
- meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
- meta_screening/model_mixins/__init__.py +8 -0
- meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
- meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
- meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
- meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
- meta_screening/models/__init__.py +9 -0
- meta_screening/models/icp_referral.py +5 -5
- meta_screening/models/signals.py +10 -11
- meta_screening/models/subject_refusal.py +1 -1
- meta_screening/models/subject_screening.py +1 -3
- meta_subject/action_items.py +13 -15
- meta_subject/admin/__init__.py +39 -0
- meta_subject/admin/birth_outcome_admin.py +4 -8
- meta_subject/admin/blood_results/__init__.py +9 -0
- meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
- meta_subject/admin/complications_glycemia_admin.py +1 -1
- meta_subject/admin/delivery_admin.py +7 -10
- meta_subject/admin/diabetes/__init__.py +2 -0
- meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
- meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
- meta_subject/admin/egfr_drop_notification_admin.py +1 -1
- meta_subject/admin/followup_examination_admin.py +10 -9
- meta_subject/admin/followup_vitals_admin.py +4 -5
- meta_subject/admin/glucose_admin.py +2 -4
- meta_subject/admin/glucose_fbg_admin.py +1 -3
- meta_subject/admin/health_economics/__init__.py +2 -0
- meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
- meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
- meta_subject/admin/hepatitis_test_admin.py +1 -1
- meta_subject/admin/list_filters.py +1 -1
- meta_subject/admin/mnsi_admin.py +7 -5
- meta_subject/admin/other_arv_regimens_admin.py +3 -3
- meta_subject/admin/patient_history_admin.py +4 -4
- meta_subject/admin/physical_exam_admin.py +1 -1
- meta_subject/admin/pregnancy_update_admin.py +1 -1
- meta_subject/admin/study_medication_admin.py +8 -15
- meta_subject/admin/subject_requisition_admin.py +1 -1
- meta_subject/admin/subject_visit_admin.py +1 -1
- meta_subject/admin/subject_visit_missed_admin.py +1 -1
- meta_subject/admin/urine_dipstick_test_admin.py +1 -1
- meta_subject/admin/urine_pregnancy_admin.py +1 -1
- meta_subject/baker_recipes.py +15 -15
- meta_subject/form_validators/__init__.py +11 -0
- meta_subject/form_validators/delivery_form_validator.py +2 -3
- meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
- meta_subject/form_validators/dm_followup_form_validator.py +7 -6
- meta_subject/form_validators/glucose_form_validator.py +3 -5
- meta_subject/forms/__init__.py +41 -0
- meta_subject/forms/blood_results/__init__.py +9 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
- meta_subject/forms/diabetes/__init__.py +2 -0
- meta_subject/forms/diabetes/dm_followup_form.py +2 -2
- meta_subject/forms/followup_vitals_form.py +3 -8
- meta_subject/forms/health_economics/__init__.py +2 -0
- meta_subject/forms/next_appointment_form.py +2 -3
- meta_subject/forms/slider_widget.py +1 -1
- meta_subject/forms/study_medication_form.py +11 -8
- meta_subject/management/commands/create_missing_refills.py +3 -3
- meta_subject/management/commands/create_missing_rx.py +1 -1
- meta_subject/management/commands/missed.py +20 -23
- meta_subject/metadata_rules/__init__.py +2 -0
- meta_subject/metadata_rules/predicates.py +25 -32
- meta_subject/migrations/0001_initial.py +61 -61
- meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
- meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
- meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
- meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
- meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
- meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
- meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
- meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
- meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
- meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
- meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
- meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
- meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
- meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
- meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
- meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
- meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
- meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
- meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
- meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
- meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
- meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
- meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
- meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
- meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
- meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
- meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
- meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
- meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
- meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
- meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
- meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
- meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
- meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
- meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
- meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
- meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
- meta_subject/model_mixins/__init__.py +8 -0
- meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
- meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
- meta_subject/models/__init__.py +48 -0
- meta_subject/models/birth_outcomes.py +3 -3
- meta_subject/models/blood_results/__init__.py +11 -0
- meta_subject/models/delivery.py +3 -3
- meta_subject/models/diabetes/__init__.py +2 -0
- meta_subject/models/diabetes/dm_endpoint.py +4 -4
- meta_subject/models/diabetes/dm_followup.py +3 -4
- meta_subject/models/diet_and_lifestyle.py +2 -2
- meta_subject/models/followup_examination.py +11 -11
- meta_subject/models/glucose.py +4 -4
- meta_subject/models/glucose_fbg.py +2 -3
- meta_subject/models/health_economics/__init__.py +2 -0
- meta_subject/models/health_economics/health_economics.py +7 -7
- meta_subject/models/health_economics/health_economics_update.py +2 -1
- meta_subject/models/hepatitis_test.py +2 -2
- meta_subject/models/other_arv_regimens_detail.py +1 -1
- meta_subject/models/patient_history.py +5 -6
- meta_subject/models/physical_exam.py +2 -2
- meta_subject/models/pregnancy_update.py +1 -1
- meta_subject/models/signals.py +14 -12
- meta_subject/models/subject_visit.py +1 -1
- meta_subject/models/urine_dipstick_test.py +1 -1
- meta_subject/models/urine_pregnancy.py +1 -1
- meta_visit_schedule/visit_schedules/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
- meta_ae/tests/holidays.csv +0 -15
- meta_ae/tests/tests/test_actions.py +0 -126
- meta_ae/tests/urls.py +0 -10
- meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
- meta_analytics/notebooks/anu.ipynb +0 -95
- meta_analytics/notebooks/appointment_planning.ipynb +0 -329
- meta_analytics/notebooks/arvs.ipynb +0 -103
- meta_analytics/notebooks/cleaning/__init__.py +0 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
- meta_analytics/notebooks/followup_examination.ipynb +0 -141
- meta_analytics/notebooks/hba1c.ipynb +0 -136
- meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
- meta_analytics/notebooks/incidence.ipynb +0 -232
- meta_analytics/notebooks/liver.ipynb +0 -389
- meta_analytics/notebooks/magreth.ipynb +0 -645
- meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
- meta_analytics/notebooks/pharmacy.ipynb +0 -1061
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
- meta_analytics/notebooks/qa.ipynb +0 -273
- meta_analytics/notebooks/steering.ipynb +0 -61
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
- meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
- meta_analytics/notebooks/ven.ipynb +0 -191
- meta_analytics/notebooks/vitals.ipynb +0 -263
- meta_analytics/tests/__init__.py +0 -0
- meta_analytics/tests/test_endpoints_by_date.py +0 -94
- meta_consent/tests/__init__.py +0 -0
- meta_consent/tests/holidays.csv +0 -15
- meta_consent/tests/tests/__init__.py +0 -0
- meta_consent/tests/tests/test_form_validators.py +0 -110
- meta_consent/tests/tests/test_subject_consent.py +0 -10
- meta_consent/tests/urls.py +0 -17
- meta_dashboard/tests/__init__.py +0 -0
- meta_dashboard/tests/admin.py +0 -22
- meta_dashboard/tests/holidays.csv +0 -15
- meta_dashboard/tests/tests/__init__.py +0 -0
- meta_dashboard/tests/urls.py +0 -55
- meta_edc/tests/__init__.py +0 -0
- meta_edc/tests/tests/__init__.py +0 -0
- meta_edc/tests/tests/test_endpoints.py +0 -555
- meta_edc-1.1.8.dist-info/METADATA +0 -767
- meta_edc-1.1.8.dist-info/WHEEL +0 -5
- meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
- meta_edc-1.1.8.dist-info/top_level.txt +0 -20
- meta_labs/tests/__init__.py +0 -0
- meta_labs/tests/test_labs.py +0 -27
- meta_labs/tests/test_reportables.py +0 -70
- meta_labs/tests/urls.py +0 -4
- meta_lists/tests/__init__.py +0 -0
- meta_lists/tests/test_lists.py +0 -8
- meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
- meta_prn/tests/__init__.py +0 -0
- meta_prn/tests/tests/__init__.py +0 -0
- meta_prn/tests/tests/test_actions.py +0 -97
- meta_prn/tests/tests/test_dm_referral.py +0 -203
- meta_prn/tests/tests/test_eos_events.py +0 -134
- meta_prn/tests/tests/test_manager_order.py +0 -14
- meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
- meta_prn/tests/urls.py +0 -10
- meta_rando/tests/__init__.py +0 -0
- meta_rando/tests/tests/__init__.py +0 -0
- meta_rando/tests/tests/test_randomizers.py +0 -57
- meta_reports/tests/__init__.py +0 -0
- meta_reports/tests/test_reports.py +0 -35
- meta_reports/tests/test_sql_gen.py +0 -5
- meta_reports/tests/urls.py +0 -4
- meta_screening/offline_models.py +0 -3
- meta_screening/tests/__init__.py +0 -0
- meta_screening/tests/holidays.csv +0 -15
- meta_screening/tests/meta_test_case_mixin.py +0 -234
- meta_screening/tests/options.py +0 -127
- meta_screening/tests/tests/__init__.py +0 -0
- meta_screening/tests/tests/test_forms.py +0 -404
- meta_screening/tests/tests/test_screening_part_one.py +0 -108
- meta_screening/tests/tests/test_screening_part_three.py +0 -433
- meta_screening/tests/tests/test_screening_part_two.py +0 -84
- meta_sites/tests/__init__.py +0 -0
- meta_sites/tests/test_sites.py +0 -12
- meta_sites/tests/urls.py +0 -4
- meta_stats/__init__.py +0 -0
- meta_stats/incidence.py +0 -16
- meta_stats/models.py +0 -0
- meta_stats/tests/__init__.py +0 -0
- meta_stats/tests/tests/__init__.py +0 -0
- meta_stats/tests/tests/test_incidence.py +0 -10
- meta_subject/tests/__init__.py +0 -0
- meta_subject/tests/holidays.csv +0 -15
- meta_subject/tests/tests/__init__.py +0 -0
- meta_subject/tests/tests/test_egfr.py +0 -234
- meta_subject/tests/tests/test_fixes.py +0 -64
- meta_subject/tests/tests/test_followup.py +0 -52
- meta_subject/tests/tests/test_manager_order.py +0 -11
- meta_subject/tests/tests/test_medication_adherence.py +0 -79
- meta_subject/tests/tests/test_metadata_rules.py +0 -135
- meta_subject/tests/tests/test_mnsi.py +0 -341
- meta_subject/tests/tests/test_next_appointment.py +0 -231
- meta_subject/tests/tests/test_patient_history_form.py +0 -74
- meta_subject/tests/tests/test_physical_exam.py +0 -84
- meta_subject/tests/tests/test_sf12.py +0 -161
- meta_subject/tests/tests/test_study_medication.py +0 -229
- meta_subject/tests/urls.py +0 -24
- meta_visit_schedule/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/test_schedule.py +0 -181
- meta_visit_schedule/tests/urls.py +0 -4
- tests/__init__.py +0 -0
- tests/etc/randomization_list.csv +0 -241
- tests/etc/randomization_list_phase_three.csv +0 -241
- tests/etc/user-aes-local.key +0 -0
- tests/etc/user-aes-restricted.key +0 -1
- tests/etc/user-rsa-local-private.pem +0 -27
- tests/etc/user-rsa-local-public.pem +0 -9
- tests/etc/user-rsa-restricted-private.pem +0 -27
- tests/etc/user-rsa-restricted-public.pem +0 -9
- tests/etc/user-salt-local.key +0 -0
- tests/etc/user-salt-restricted.key +0 -0
- tests/holidays.csv +0 -15
- tests/test_settings.py +0 -185
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
- /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
- /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
|
@@ -1,1176 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "code",
|
|
5
|
-
"execution_count": null,
|
|
6
|
-
"id": "0",
|
|
7
|
-
"metadata": {},
|
|
8
|
-
"outputs": [],
|
|
9
|
-
"source": [
|
|
10
|
-
"%%capture\n",
|
|
11
|
-
"# output is suppressed but normally would spew out all the edc loading messages\n",
|
|
12
|
-
"\n",
|
|
13
|
-
"import os\n",
|
|
14
|
-
"from pathlib import Path\n",
|
|
15
|
-
"from datetime import datetime\n",
|
|
16
|
-
"import pandas as pd\n",
|
|
17
|
-
"import numpy as np\n",
|
|
18
|
-
"import math\n",
|
|
19
|
-
"# import matplotlxib.pyplot as plt\n",
|
|
20
|
-
"# import seaborn as sns\n",
|
|
21
|
-
"import scipy.stats as stats\n",
|
|
22
|
-
"\n",
|
|
23
|
-
"from dj_notebook import activate\n",
|
|
24
|
-
"\n",
|
|
25
|
-
"env_file = os.environ[\"META_ENV\"]\n",
|
|
26
|
-
"documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
|
|
27
|
-
"report_folder = Path(documents_folder)\n",
|
|
28
|
-
"\n",
|
|
29
|
-
"plus = activate(dotenv_file=env_file)\n"
|
|
30
|
-
]
|
|
31
|
-
},
|
|
32
|
-
{
|
|
33
|
-
"cell_type": "code",
|
|
34
|
-
"execution_count": null,
|
|
35
|
-
"id": "1",
|
|
36
|
-
"metadata": {},
|
|
37
|
-
"outputs": [],
|
|
38
|
-
"source": [
|
|
39
|
-
"from meta_screening.models import SubjectScreening\n",
|
|
40
|
-
"from django_pandas.io import read_frame\n"
|
|
41
|
-
]
|
|
42
|
-
},
|
|
43
|
-
{
|
|
44
|
-
"cell_type": "code",
|
|
45
|
-
"execution_count": null,
|
|
46
|
-
"id": "2",
|
|
47
|
-
"metadata": {},
|
|
48
|
-
"outputs": [],
|
|
49
|
-
"source": [
|
|
50
|
-
"cols = [\n",
|
|
51
|
-
" f.name\n",
|
|
52
|
-
" for f in SubjectScreening._meta.get_fields()\n",
|
|
53
|
-
" if f.name\n",
|
|
54
|
-
" not in [\n",
|
|
55
|
-
" \"contact_number\",\n",
|
|
56
|
-
" \"initials\",\n",
|
|
57
|
-
" \"hospital_identifier\",\n",
|
|
58
|
-
" \"modified\",\n",
|
|
59
|
-
" \"user_created\",\n",
|
|
60
|
-
" \"user_modified\",\n",
|
|
61
|
-
" \"hostname_created\",\n",
|
|
62
|
-
" \"hostname_modified\",\n",
|
|
63
|
-
" \"device_created\",\n",
|
|
64
|
-
" \"device_modified\",\n",
|
|
65
|
-
" \"locale_created\",\n",
|
|
66
|
-
" \"locale_modified\",\n",
|
|
67
|
-
" \"slug\",\n",
|
|
68
|
-
" ]\n",
|
|
69
|
-
"]\n",
|
|
70
|
-
"qs_screening = SubjectScreening.objects.values(*cols).all()\n",
|
|
71
|
-
"df = read_frame(qs_screening)"
|
|
72
|
-
]
|
|
73
|
-
},
|
|
74
|
-
{
|
|
75
|
-
"cell_type": "code",
|
|
76
|
-
"execution_count": null,
|
|
77
|
-
"id": "3",
|
|
78
|
-
"metadata": {},
|
|
79
|
-
"outputs": [],
|
|
80
|
-
"source": [
|
|
81
|
-
"df.count()\n"
|
|
82
|
-
]
|
|
83
|
-
},
|
|
84
|
-
{
|
|
85
|
-
"cell_type": "code",
|
|
86
|
-
"execution_count": null,
|
|
87
|
-
"id": "4",
|
|
88
|
-
"metadata": {},
|
|
89
|
-
"outputs": [],
|
|
90
|
-
"source": [
|
|
91
|
-
"from edc_constants.constants import NO, YES\n",
|
|
92
|
-
"df.count()\n",
|
|
93
|
-
"df.hiv_pos.value_counts()"
|
|
94
|
-
]
|
|
95
|
-
},
|
|
96
|
-
{
|
|
97
|
-
"cell_type": "code",
|
|
98
|
-
"execution_count": null,
|
|
99
|
-
"id": "5",
|
|
100
|
-
"metadata": {},
|
|
101
|
-
"outputs": [],
|
|
102
|
-
"source": [
|
|
103
|
-
"df = df.drop(df[df[\"hiv_pos\"] == \"No\"].index)\n",
|
|
104
|
-
"# df = df.drop(df[df.art_six_months==NO].index)\n",
|
|
105
|
-
"# df = df.drop(df[df.on_rx_stable==NO].index)\n",
|
|
106
|
-
"df.count()"
|
|
107
|
-
]
|
|
108
|
-
},
|
|
109
|
-
{
|
|
110
|
-
"cell_type": "code",
|
|
111
|
-
"execution_count": null,
|
|
112
|
-
"id": "6",
|
|
113
|
-
"metadata": {},
|
|
114
|
-
"outputs": [],
|
|
115
|
-
"source": [
|
|
116
|
-
"# check for duplicate subjects / there are none\n",
|
|
117
|
-
"# df[df.duplicated([\"hospital_identifier\"], keep=False)]\n",
|
|
118
|
-
"# len(df)"
|
|
119
|
-
]
|
|
120
|
-
},
|
|
121
|
-
{
|
|
122
|
-
"cell_type": "code",
|
|
123
|
-
"execution_count": null,
|
|
124
|
-
"id": "7",
|
|
125
|
-
"metadata": {},
|
|
126
|
-
"outputs": [],
|
|
127
|
-
"source": []
|
|
128
|
-
},
|
|
129
|
-
{
|
|
130
|
-
"cell_type": "code",
|
|
131
|
-
"execution_count": null,
|
|
132
|
-
"id": "8",
|
|
133
|
-
"metadata": {},
|
|
134
|
-
"outputs": [],
|
|
135
|
-
"source": [
|
|
136
|
-
"len(df)"
|
|
137
|
-
]
|
|
138
|
-
},
|
|
139
|
-
{
|
|
140
|
-
"cell_type": "code",
|
|
141
|
-
"execution_count": null,
|
|
142
|
-
"id": "9",
|
|
143
|
-
"metadata": {},
|
|
144
|
-
"outputs": [],
|
|
145
|
-
"source": [
|
|
146
|
-
"df_tmp = df.gender.value_counts().to_frame().reset_index()\n",
|
|
147
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
148
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
149
|
-
"df_tmp"
|
|
150
|
-
]
|
|
151
|
-
},
|
|
152
|
-
{
|
|
153
|
-
"cell_type": "code",
|
|
154
|
-
"execution_count": null,
|
|
155
|
-
"id": "10",
|
|
156
|
-
"metadata": {},
|
|
157
|
-
"outputs": [],
|
|
158
|
-
"source": [
|
|
159
|
-
"df_tmp = df.has_dm.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
160
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
161
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
162
|
-
"df_tmp"
|
|
163
|
-
]
|
|
164
|
-
},
|
|
165
|
-
{
|
|
166
|
-
"cell_type": "code",
|
|
167
|
-
"execution_count": null,
|
|
168
|
-
"id": "11",
|
|
169
|
-
"metadata": {},
|
|
170
|
-
"outputs": [],
|
|
171
|
-
"source": [
|
|
172
|
-
"df_tmp = df[df.has_dm.isna()].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
173
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
174
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
175
|
-
"df_tmp"
|
|
176
|
-
]
|
|
177
|
-
},
|
|
178
|
-
{
|
|
179
|
-
"cell_type": "code",
|
|
180
|
-
"execution_count": null,
|
|
181
|
-
"id": "12",
|
|
182
|
-
"metadata": {},
|
|
183
|
-
"outputs": [],
|
|
184
|
-
"source": [
|
|
185
|
-
"cond1 = (df.has_dm==NO) & (df.on_dm_medication==NO)\n",
|
|
186
|
-
"df_tmp = df[cond1].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
187
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
188
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
189
|
-
"df_tmp"
|
|
190
|
-
]
|
|
191
|
-
},
|
|
192
|
-
{
|
|
193
|
-
"cell_type": "code",
|
|
194
|
-
"execution_count": null,
|
|
195
|
-
"id": "13",
|
|
196
|
-
"metadata": {},
|
|
197
|
-
"outputs": [],
|
|
198
|
-
"source": [
|
|
199
|
-
"cond2 = (cond1 & (df.on_rx_stable==YES) & (df.art_six_months==YES) & (df.vl_undetectable==YES))\n",
|
|
200
|
-
"df_tmp = df[cond2].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
201
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
202
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
203
|
-
"df_tmp"
|
|
204
|
-
]
|
|
205
|
-
},
|
|
206
|
-
{
|
|
207
|
-
"cell_type": "code",
|
|
208
|
-
"execution_count": null,
|
|
209
|
-
"id": "14",
|
|
210
|
-
"metadata": {},
|
|
211
|
-
"outputs": [],
|
|
212
|
-
"source": [
|
|
213
|
-
"cond3 = (cond2 & (df.staying_nearby_12==YES) & (df.lives_nearby==YES))\n",
|
|
214
|
-
"df_tmp = df[cond3].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
215
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
216
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
217
|
-
"df_tmp"
|
|
218
|
-
]
|
|
219
|
-
},
|
|
220
|
-
{
|
|
221
|
-
"cell_type": "code",
|
|
222
|
-
"execution_count": null,
|
|
223
|
-
"id": "15",
|
|
224
|
-
"metadata": {},
|
|
225
|
-
"outputs": [],
|
|
226
|
-
"source": [
|
|
227
|
-
"cond4 = (cond3 & ~(df.pregnant==YES))\n",
|
|
228
|
-
"df_tmp = df[cond4].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
229
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
230
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
231
|
-
"df_tmp"
|
|
232
|
-
]
|
|
233
|
-
},
|
|
234
|
-
{
|
|
235
|
-
"cell_type": "code",
|
|
236
|
-
"execution_count": null,
|
|
237
|
-
"id": "16",
|
|
238
|
-
"metadata": {},
|
|
239
|
-
"outputs": [],
|
|
240
|
-
"source": [
|
|
241
|
-
"cond5 = (cond4 & (df.congestive_heart_failure==NO) & (df.liver_disease==NO) & (df.alcoholism==NO) & (df.acute_metabolic_acidosis==NO) & (df.renal_function_condition==NO) & (df.tissue_hypoxia_condition==NO) & (df.acute_condition==NO) & (df.metformin_sensitivity==NO))\n",
|
|
242
|
-
"\n",
|
|
243
|
-
"df_tmp = df[cond5].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
244
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
245
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
246
|
-
"df_tmp"
|
|
247
|
-
]
|
|
248
|
-
},
|
|
249
|
-
{
|
|
250
|
-
"cell_type": "code",
|
|
251
|
-
"execution_count": null,
|
|
252
|
-
"id": "17",
|
|
253
|
-
"metadata": {},
|
|
254
|
-
"outputs": [],
|
|
255
|
-
"source": [
|
|
256
|
-
"df[cond5].eligible_part_one.value_counts()"
|
|
257
|
-
]
|
|
258
|
-
},
|
|
259
|
-
{
|
|
260
|
-
"cell_type": "code",
|
|
261
|
-
"execution_count": null,
|
|
262
|
-
"id": "18",
|
|
263
|
-
"metadata": {},
|
|
264
|
-
"outputs": [],
|
|
265
|
-
"source": [
|
|
266
|
-
"df[cond5].eligible_part_two.value_counts()\n"
|
|
267
|
-
]
|
|
268
|
-
},
|
|
269
|
-
{
|
|
270
|
-
"cell_type": "code",
|
|
271
|
-
"execution_count": null,
|
|
272
|
-
"id": "19",
|
|
273
|
-
"metadata": {},
|
|
274
|
-
"outputs": [],
|
|
275
|
-
"source": [
|
|
276
|
-
"cond6 = (cond5 & (df.meta_phase_two==NO))\n",
|
|
277
|
-
"df_tmp = df[cond6].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
278
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
279
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
280
|
-
"df_tmp"
|
|
281
|
-
]
|
|
282
|
-
},
|
|
283
|
-
{
|
|
284
|
-
"cell_type": "code",
|
|
285
|
-
"execution_count": null,
|
|
286
|
-
"id": "20",
|
|
287
|
-
"metadata": {},
|
|
288
|
-
"outputs": [],
|
|
289
|
-
"source": [
|
|
290
|
-
"cond7 = (cond6 & (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df.agree_to_p3==YES))\n",
|
|
291
|
-
"df_tmp = df[cond7].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
292
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
293
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
294
|
-
"df_tmp"
|
|
295
|
-
]
|
|
296
|
-
},
|
|
297
|
-
{
|
|
298
|
-
"cell_type": "code",
|
|
299
|
-
"execution_count": null,
|
|
300
|
-
"id": "21",
|
|
301
|
-
"metadata": {},
|
|
302
|
-
"outputs": [],
|
|
303
|
-
"source": []
|
|
304
|
-
},
|
|
305
|
-
{
|
|
306
|
-
"cell_type": "code",
|
|
307
|
-
"execution_count": null,
|
|
308
|
-
"id": "22",
|
|
309
|
-
"metadata": {},
|
|
310
|
-
"outputs": [],
|
|
311
|
-
"source": [
|
|
312
|
-
"cond8 = (cond7 & (df.already_fasted==YES))\n",
|
|
313
|
-
"df_tmp = df[cond8].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
314
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
315
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
316
|
-
"df_tmp"
|
|
317
|
-
]
|
|
318
|
-
},
|
|
319
|
-
{
|
|
320
|
-
"cell_type": "code",
|
|
321
|
-
"execution_count": null,
|
|
322
|
-
"id": "23",
|
|
323
|
-
"metadata": {},
|
|
324
|
-
"outputs": [],
|
|
325
|
-
"source": [
|
|
326
|
-
"cond9 = (cond7 & (df.already_fasted==NO))\n",
|
|
327
|
-
"df_tmp = df[cond9].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
328
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
329
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
330
|
-
"df_tmp"
|
|
331
|
-
]
|
|
332
|
-
},
|
|
333
|
-
{
|
|
334
|
-
"cell_type": "code",
|
|
335
|
-
"execution_count": null,
|
|
336
|
-
"id": "24",
|
|
337
|
-
"metadata": {},
|
|
338
|
-
"outputs": [],
|
|
339
|
-
"source": [
|
|
340
|
-
"from edc_model.utils import duration_hm_to_timedelta\n",
|
|
341
|
-
"\n",
|
|
342
|
-
"# gen fasted variable\n",
|
|
343
|
-
"def get_duration_dh_to_timedelta(s):\n",
|
|
344
|
-
" if not pd.isna(s[\"fasting_duration_str\"]):\n",
|
|
345
|
-
" return duration_hm_to_timedelta(s[\"fasting_duration_str\"])\n",
|
|
346
|
-
" return s[\"fasting_duration_str\"]\n",
|
|
347
|
-
"\n",
|
|
348
|
-
"def get_fasted(s):\n",
|
|
349
|
-
" if pd.isna(s[\"fasted_duration_delta\"]) and not has_glucose_value(s):\n",
|
|
350
|
-
" return None\n",
|
|
351
|
-
" elif pd.isna(s[\"fasted_duration_delta\"]) and has_glucose_value(s):\n",
|
|
352
|
-
" return has_glucose_value(s)\n",
|
|
353
|
-
" if s[\"fasted_duration_delta\"] <= pd.Timedelta(hours=8):\n",
|
|
354
|
-
" return NO\n",
|
|
355
|
-
" return YES\n",
|
|
356
|
-
"\n",
|
|
357
|
-
"def has_glucose_value(s):\n",
|
|
358
|
-
" if not pd.isna(s[\"fbg_value\"]):\n",
|
|
359
|
-
" return \"FBG only\"\n",
|
|
360
|
-
" if not pd.isna(s[\"ogtt_value\"]) and not pd.isna(s[\"fbg_value\"]):\n",
|
|
361
|
-
" return \"FBG-OGTT\"\n",
|
|
362
|
-
" elif pd.isna(s[\"ogtt_value\"]) and pd.isna(s[\"ogtt2_value\"]) and pd.isna(s[\"fbg_value\"]) and pd.isna(s[\"fbg2_value\"]):\n",
|
|
363
|
-
" return False\n",
|
|
364
|
-
" return True\n",
|
|
365
|
-
"\n",
|
|
366
|
-
"df[\"fasted_duration_delta\"] = df.apply(get_duration_dh_to_timedelta, axis=1)\n",
|
|
367
|
-
"df[\"fasted\"] = df.apply(get_fasted, axis=1)\n"
|
|
368
|
-
]
|
|
369
|
-
},
|
|
370
|
-
{
|
|
371
|
-
"cell_type": "code",
|
|
372
|
-
"execution_count": null,
|
|
373
|
-
"id": "25",
|
|
374
|
-
"metadata": {},
|
|
375
|
-
"outputs": [],
|
|
376
|
-
"source": [
|
|
377
|
-
"df[(df.subject_identifier.notna()) & (df.subject_identifier.str.len() < 20)].eligible.value_counts()"
|
|
378
|
-
]
|
|
379
|
-
},
|
|
380
|
-
{
|
|
381
|
-
"cell_type": "code",
|
|
382
|
-
"execution_count": null,
|
|
383
|
-
"id": "26",
|
|
384
|
-
"metadata": {},
|
|
385
|
-
"outputs": [],
|
|
386
|
-
"source": [
|
|
387
|
-
"df_tmp = df[cond9 & (df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
388
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
389
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
390
|
-
"df_tmp"
|
|
391
|
-
]
|
|
392
|
-
},
|
|
393
|
-
{
|
|
394
|
-
"cell_type": "code",
|
|
395
|
-
"execution_count": null,
|
|
396
|
-
"id": "27",
|
|
397
|
-
"metadata": {},
|
|
398
|
-
"outputs": [],
|
|
399
|
-
"source": [
|
|
400
|
-
"df_tmp = df[cond9 & ~(df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
401
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
402
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
403
|
-
"df_tmp"
|
|
404
|
-
]
|
|
405
|
-
},
|
|
406
|
-
{
|
|
407
|
-
"cell_type": "code",
|
|
408
|
-
"execution_count": null,
|
|
409
|
-
"id": "28",
|
|
410
|
-
"metadata": {},
|
|
411
|
-
"outputs": [],
|
|
412
|
-
"source": [
|
|
413
|
-
"df[cond9 & ~(df.fasted==YES) & (df.subject_identifier.str.len() < 20)][[\"screening_identifier\", \"subject_identifier\"]]"
|
|
414
|
-
]
|
|
415
|
-
},
|
|
416
|
-
{
|
|
417
|
-
"cell_type": "code",
|
|
418
|
-
"execution_count": null,
|
|
419
|
-
"id": "29",
|
|
420
|
-
"metadata": {},
|
|
421
|
-
"outputs": [],
|
|
422
|
-
"source": [
|
|
423
|
-
"# never returned or not evaluated\n",
|
|
424
|
-
"# note some have part three started and 1 even has a fasting duration\n",
|
|
425
|
-
"cond10 = (cond9 & (df.eligible_part_three==\"To be determined\"))\n",
|
|
426
|
-
"# df[(df.fasted==YES) & cond_eligible].eligible_part_one.value_counts(dropna=False)\n",
|
|
427
|
-
"df_tmp = df[cond10].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
428
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
429
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
430
|
-
"df_tmp"
|
|
431
|
-
]
|
|
432
|
-
},
|
|
433
|
-
{
|
|
434
|
-
"cell_type": "code",
|
|
435
|
-
"execution_count": null,
|
|
436
|
-
"id": "30",
|
|
437
|
-
"metadata": {},
|
|
438
|
-
"outputs": [],
|
|
439
|
-
"source": [
|
|
440
|
-
"cond11 = (cond7 & (df.fasted==YES))\n",
|
|
441
|
-
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
442
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
443
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
444
|
-
"df_tmp"
|
|
445
|
-
]
|
|
446
|
-
},
|
|
447
|
-
{
|
|
448
|
-
"cell_type": "code",
|
|
449
|
-
"execution_count": null,
|
|
450
|
-
"id": "31",
|
|
451
|
-
"metadata": {},
|
|
452
|
-
"outputs": [],
|
|
453
|
-
"source": [
|
|
454
|
-
"cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & (df.fasted==NO))\n",
|
|
455
|
-
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
456
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
457
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
458
|
-
"df_tmp"
|
|
459
|
-
]
|
|
460
|
-
},
|
|
461
|
-
{
|
|
462
|
-
"cell_type": "code",
|
|
463
|
-
"execution_count": null,
|
|
464
|
-
"id": "32",
|
|
465
|
-
"metadata": {},
|
|
466
|
-
"outputs": [],
|
|
467
|
-
"source": [
|
|
468
|
-
"cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & ~(df.fbg_value.isna()))\n",
|
|
469
|
-
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
470
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
471
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
472
|
-
"df_tmp"
|
|
473
|
-
]
|
|
474
|
-
},
|
|
475
|
-
{
|
|
476
|
-
"cell_type": "code",
|
|
477
|
-
"execution_count": null,
|
|
478
|
-
"id": "33",
|
|
479
|
-
"metadata": {},
|
|
480
|
-
"outputs": [],
|
|
481
|
-
"source": [
|
|
482
|
-
"df_tmp = df.eligible_part_three.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
483
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
484
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
485
|
-
"df_tmp"
|
|
486
|
-
]
|
|
487
|
-
},
|
|
488
|
-
{
|
|
489
|
-
"cell_type": "code",
|
|
490
|
-
"execution_count": null,
|
|
491
|
-
"id": "34",
|
|
492
|
-
"metadata": {},
|
|
493
|
-
"outputs": [],
|
|
494
|
-
"source": [
|
|
495
|
-
"df_tmp = df[all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO) & ~(df.fasted==YES) & cond_eligible].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
|
496
|
-
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
|
497
|
-
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
|
498
|
-
"df_tmp\n"
|
|
499
|
-
]
|
|
500
|
-
},
|
|
501
|
-
{
|
|
502
|
-
"cell_type": "code",
|
|
503
|
-
"execution_count": null,
|
|
504
|
-
"id": "35",
|
|
505
|
-
"metadata": {},
|
|
506
|
-
"outputs": [],
|
|
507
|
-
"source": []
|
|
508
|
-
},
|
|
509
|
-
{
|
|
510
|
-
"cell_type": "code",
|
|
511
|
-
"execution_count": null,
|
|
512
|
-
"id": "36",
|
|
513
|
-
"metadata": {},
|
|
514
|
-
"outputs": [],
|
|
515
|
-
"source": []
|
|
516
|
-
},
|
|
517
|
-
{
|
|
518
|
-
"cell_type": "code",
|
|
519
|
-
"execution_count": null,
|
|
520
|
-
"id": "37",
|
|
521
|
-
"metadata": {},
|
|
522
|
-
"outputs": [],
|
|
523
|
-
"source": [
|
|
524
|
-
"all_conds = (all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO))\n",
|
|
525
|
-
"cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
526
|
-
"df[all_conds & cond_eligible & (df.eligible_part_three.isin([YES, NO]))].gender.value_counts(dropna=False)\n"
|
|
527
|
-
]
|
|
528
|
-
},
|
|
529
|
-
{
|
|
530
|
-
"cell_type": "code",
|
|
531
|
-
"execution_count": null,
|
|
532
|
-
"id": "38",
|
|
533
|
-
"metadata": {},
|
|
534
|
-
"outputs": [],
|
|
535
|
-
"source": []
|
|
536
|
-
},
|
|
537
|
-
{
|
|
538
|
-
"cell_type": "code",
|
|
539
|
-
"execution_count": null,
|
|
540
|
-
"id": "39",
|
|
541
|
-
"metadata": {},
|
|
542
|
-
"outputs": [],
|
|
543
|
-
"source": [
|
|
544
|
-
"print(len(df[(df[\"ogtt_base_datetime\"].notna()) | (df[\"ogtt2_base_datetime\"].notna())]))\n",
|
|
545
|
-
"print(len(df[(df[\"ogtt_datetime\"].notna()) | (df[\"ogtt2_datetime\"].notna())]))\n",
|
|
546
|
-
"print(len(df[(df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna())]))\n",
|
|
547
|
-
"# len(df[(df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())])\n",
|
|
548
|
-
"df[((df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna()) | (df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())) & (df[\"has_dm\"]==\"No\")]\n",
|
|
549
|
-
" "
|
|
550
|
-
]
|
|
551
|
-
},
|
|
552
|
-
{
|
|
553
|
-
"cell_type": "code",
|
|
554
|
-
"execution_count": null,
|
|
555
|
-
"id": "40",
|
|
556
|
-
"metadata": {},
|
|
557
|
-
"outputs": [],
|
|
558
|
-
"source": [
|
|
559
|
-
"# counts by site - row, column\n",
|
|
560
|
-
"gender_by_site = pd.crosstab(df['site'], df['gender'], margins=True)\n",
|
|
561
|
-
"gender_by_site.columns = [\"F (%)\", \"M (%)\", \"(%)\"]\n",
|
|
562
|
-
"gender_by_site.index = [\"amana\", \"hindu-mandal\", \"mnazi-moja\", \"mwananyamala\", \"temeke\", \"total (%)\"]\n",
|
|
563
|
-
"gender_by_site"
|
|
564
|
-
]
|
|
565
|
-
},
|
|
566
|
-
{
|
|
567
|
-
"cell_type": "code",
|
|
568
|
-
"execution_count": null,
|
|
569
|
-
"id": "41",
|
|
570
|
-
"metadata": {},
|
|
571
|
-
"outputs": [],
|
|
572
|
-
"source": [
|
|
573
|
-
"round(gender_by_site/len(df) , 3) * 100\n"
|
|
574
|
-
]
|
|
575
|
-
},
|
|
576
|
-
{
|
|
577
|
-
"cell_type": "code",
|
|
578
|
-
"execution_count": null,
|
|
579
|
-
"id": "42",
|
|
580
|
-
"metadata": {},
|
|
581
|
-
"outputs": [],
|
|
582
|
-
"source": [
|
|
583
|
-
"\n",
|
|
584
|
-
"round(gender_by_site.div(gender_by_site[\"(%)\"], axis=0) , 3) * 100\n"
|
|
585
|
-
]
|
|
586
|
-
},
|
|
587
|
-
{
|
|
588
|
-
"cell_type": "code",
|
|
589
|
-
"execution_count": null,
|
|
590
|
-
"id": "43",
|
|
591
|
-
"metadata": {},
|
|
592
|
-
"outputs": [],
|
|
593
|
-
"source": [
|
|
594
|
-
"# has_dm fillna with unk\n",
|
|
595
|
-
"df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
|
|
596
|
-
"\n",
|
|
597
|
-
"# in_catchment =\n",
|
|
598
|
-
"df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
|
|
599
|
-
"\n"
|
|
600
|
-
]
|
|
601
|
-
},
|
|
602
|
-
{
|
|
603
|
-
"cell_type": "code",
|
|
604
|
-
"execution_count": null,
|
|
605
|
-
"id": "44",
|
|
606
|
-
"metadata": {},
|
|
607
|
-
"outputs": [],
|
|
608
|
-
"source": [
|
|
609
|
-
"# run crosstabs"
|
|
610
|
-
]
|
|
611
|
-
},
|
|
612
|
-
{
|
|
613
|
-
"cell_type": "code",
|
|
614
|
-
"execution_count": null,
|
|
615
|
-
"id": "45",
|
|
616
|
-
"metadata": {},
|
|
617
|
-
"outputs": [],
|
|
618
|
-
"source": [
|
|
619
|
-
"# crosstab by has_dm, gender\n",
|
|
620
|
-
"df_crosstab = pd.crosstab(df['has_dm'], df['gender'], margins=True, dropna=False)\n",
|
|
621
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
622
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
623
|
-
"df_crosstab"
|
|
624
|
-
]
|
|
625
|
-
},
|
|
626
|
-
{
|
|
627
|
-
"cell_type": "code",
|
|
628
|
-
"execution_count": null,
|
|
629
|
-
"id": "46",
|
|
630
|
-
"metadata": {},
|
|
631
|
-
"outputs": [],
|
|
632
|
-
"source": [
|
|
633
|
-
"# crosstab by has_dm == Yes by on_dm_medication, gender\n",
|
|
634
|
-
"cond = (df[\"has_dm\"]==\"Yes\")\n",
|
|
635
|
-
"df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
636
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
637
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
638
|
-
"df_crosstab"
|
|
639
|
-
]
|
|
640
|
-
},
|
|
641
|
-
{
|
|
642
|
-
"cell_type": "code",
|
|
643
|
-
"execution_count": null,
|
|
644
|
-
"id": "47",
|
|
645
|
-
"metadata": {},
|
|
646
|
-
"outputs": [],
|
|
647
|
-
"source": [
|
|
648
|
-
"# crosstab by has_dm == No by on_dm_medication, gender\n",
|
|
649
|
-
"cond = (df[\"has_dm\"]==\"No\")\n",
|
|
650
|
-
"df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
651
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
652
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
653
|
-
"df_crosstab"
|
|
654
|
-
]
|
|
655
|
-
},
|
|
656
|
-
{
|
|
657
|
-
"cell_type": "code",
|
|
658
|
-
"execution_count": null,
|
|
659
|
-
"id": "48",
|
|
660
|
-
"metadata": {},
|
|
661
|
-
"outputs": [],
|
|
662
|
-
"source": [
|
|
663
|
-
"# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
|
|
664
|
-
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
|
|
665
|
-
"neg_cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & ((df['on_rx_stable']!=\"Yes\") | (df['vl_undetectable']!=\"Yes\") | (df['art_six_months']!=\"Yes\"))\n",
|
|
666
|
-
"df_crosstab = pd.crosstab(df[neg_cond]['art_six_months'], df[neg_cond]['gender'], margins=True, dropna=False)\n",
|
|
667
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
668
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
669
|
-
"df_crosstab"
|
|
670
|
-
]
|
|
671
|
-
},
|
|
672
|
-
{
|
|
673
|
-
"cell_type": "code",
|
|
674
|
-
"execution_count": null,
|
|
675
|
-
"id": "49",
|
|
676
|
-
"metadata": {},
|
|
677
|
-
"outputs": [],
|
|
678
|
-
"source": [
|
|
679
|
-
"# \"lives_nearby\",\n",
|
|
680
|
-
"# \"staying_nearby_12\",\n",
|
|
681
|
-
"# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
|
|
682
|
-
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
|
|
683
|
-
"\n",
|
|
684
|
-
"df_crosstab = pd.crosstab(df[cond]['in_catchment'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
685
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
686
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
687
|
-
"df_crosstab"
|
|
688
|
-
]
|
|
689
|
-
},
|
|
690
|
-
{
|
|
691
|
-
"cell_type": "code",
|
|
692
|
-
"execution_count": null,
|
|
693
|
-
"id": "50",
|
|
694
|
-
"metadata": {},
|
|
695
|
-
"outputs": [],
|
|
696
|
-
"source": [
|
|
697
|
-
"# crosstab pregnant, gender\n",
|
|
698
|
-
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True)\n",
|
|
699
|
-
"df_crosstab = pd.crosstab(df[cond]['pregnant'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
700
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
701
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
702
|
-
"df_crosstab\n"
|
|
703
|
-
]
|
|
704
|
-
},
|
|
705
|
-
{
|
|
706
|
-
"cell_type": "code",
|
|
707
|
-
"execution_count": null,
|
|
708
|
-
"id": "51",
|
|
709
|
-
"metadata": {},
|
|
710
|
-
"outputs": [],
|
|
711
|
-
"source": [
|
|
712
|
-
"# crosstab on conditions (part two)\n",
|
|
713
|
-
"# \"congestive_heart_failure\",\n",
|
|
714
|
-
"# \"liver_disease\",\n",
|
|
715
|
-
"# \"alcoholism\",\n",
|
|
716
|
-
"# \"acute_metabolic_acidosis\",\n",
|
|
717
|
-
"# \"renal_function_condition\",\n",
|
|
718
|
-
"# \"tissue_hypoxia_condition\",\n",
|
|
719
|
-
"# \"acute_condition\",\n",
|
|
720
|
-
"# \"metformin_sensitivity\","
|
|
721
|
-
]
|
|
722
|
-
},
|
|
723
|
-
{
|
|
724
|
-
"cell_type": "code",
|
|
725
|
-
"execution_count": null,
|
|
726
|
-
"id": "52",
|
|
727
|
-
"metadata": {},
|
|
728
|
-
"outputs": [],
|
|
729
|
-
"source": [
|
|
730
|
-
"# crosstab (use for any single condition)\n",
|
|
731
|
-
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True) & (df[\"pregnant\"]!=\"Yes\")\n",
|
|
732
|
-
"df_crosstab = pd.crosstab(df[cond]['metformin_sensitivity'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
733
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
734
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
735
|
-
"df_crosstab\n"
|
|
736
|
-
]
|
|
737
|
-
},
|
|
738
|
-
{
|
|
739
|
-
"cell_type": "code",
|
|
740
|
-
"execution_count": null,
|
|
741
|
-
"id": "53",
|
|
742
|
-
"metadata": {},
|
|
743
|
-
"outputs": [],
|
|
744
|
-
"source": [
|
|
745
|
-
"# crosstab meta_phase_two\n",
|
|
746
|
-
"cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
|
|
747
|
-
" & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
|
|
748
|
-
" & (df['in_catchment']==True) \n",
|
|
749
|
-
" & (df[\"pregnant\"]!=\"Yes\")\n",
|
|
750
|
-
" & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
|
|
751
|
-
" & (df[\"liver_disease\"]!=\"Yes\")\n",
|
|
752
|
-
" & (df[\"alcoholism\"]!=\"Yes\")\n",
|
|
753
|
-
" & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
|
|
754
|
-
" & (df[\"renal_function_condition\"]!=\"Yes\")\n",
|
|
755
|
-
" & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
|
|
756
|
-
" & (df[\"acute_condition\"]!=\"Yes\")\n",
|
|
757
|
-
" & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
|
|
758
|
-
" )\n",
|
|
759
|
-
"df_crosstab = pd.crosstab(df[cond]['meta_phase_two'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
760
|
-
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
|
761
|
-
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
|
762
|
-
"df_crosstab\n"
|
|
763
|
-
]
|
|
764
|
-
},
|
|
765
|
-
{
|
|
766
|
-
"cell_type": "code",
|
|
767
|
-
"execution_count": null,
|
|
768
|
-
"id": "54",
|
|
769
|
-
"metadata": {},
|
|
770
|
-
"outputs": [],
|
|
771
|
-
"source": [
|
|
772
|
-
"# crosstab (use for any single condition)\n",
|
|
773
|
-
"cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
|
|
774
|
-
" & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
|
|
775
|
-
" & (df['in_catchment']==True) \n",
|
|
776
|
-
" & (df[\"pregnant\"]!=\"Yes\")\n",
|
|
777
|
-
" & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
|
|
778
|
-
" & (df[\"liver_disease\"]!=\"Yes\")\n",
|
|
779
|
-
" & (df[\"alcoholism\"]!=\"Yes\")\n",
|
|
780
|
-
" & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
|
|
781
|
-
" & (df[\"renal_function_condition\"]!=\"Yes\")\n",
|
|
782
|
-
" & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
|
|
783
|
-
" & (df[\"acute_condition\"]!=\"Yes\")\n",
|
|
784
|
-
" & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
|
|
785
|
-
" & (df[\"meta_phase_two\"]!=\"Yes\")\n",
|
|
786
|
-
" )\n",
|
|
787
|
-
"len(df[cond])"
|
|
788
|
-
]
|
|
789
|
-
},
|
|
790
|
-
{
|
|
791
|
-
"cell_type": "code",
|
|
792
|
-
"execution_count": null,
|
|
793
|
-
"id": "55",
|
|
794
|
-
"metadata": {},
|
|
795
|
-
"outputs": [],
|
|
796
|
-
"source": [
|
|
797
|
-
"# check against eligible_part_one and two\n",
|
|
798
|
-
"\n",
|
|
799
|
-
"cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
800
|
-
"print([len(df[cond_eligible]), len(df[cond])])\n"
|
|
801
|
-
]
|
|
802
|
-
},
|
|
803
|
-
{
|
|
804
|
-
"cell_type": "code",
|
|
805
|
-
"execution_count": null,
|
|
806
|
-
"id": "56",
|
|
807
|
-
"metadata": {},
|
|
808
|
-
"outputs": [],
|
|
809
|
-
"source": [
|
|
810
|
-
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
811
|
-
"df_crosstab = pd.crosstab(df[cond]['agree_to_p3'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
812
|
-
"df_crosstab\n",
|
|
813
|
-
"\n"
|
|
814
|
-
]
|
|
815
|
-
},
|
|
816
|
-
{
|
|
817
|
-
"cell_type": "code",
|
|
818
|
-
"execution_count": null,
|
|
819
|
-
"id": "57",
|
|
820
|
-
"metadata": {},
|
|
821
|
-
"outputs": [],
|
|
822
|
-
"source": [
|
|
823
|
-
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
824
|
-
"df_crosstab = pd.crosstab(df[cond]['already_fasted'], df[cond]['gender'], margins=True, dropna=False)\n",
|
|
825
|
-
"df_crosstab\n"
|
|
826
|
-
]
|
|
827
|
-
},
|
|
828
|
-
{
|
|
829
|
-
"cell_type": "code",
|
|
830
|
-
"execution_count": null,
|
|
831
|
-
"id": "58",
|
|
832
|
-
"metadata": {},
|
|
833
|
-
"outputs": [],
|
|
834
|
-
"source": [
|
|
835
|
-
"# who returned and had an FBG performed\n",
|
|
836
|
-
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
837
|
-
"df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
|
838
|
-
"df_crosstab\n"
|
|
839
|
-
]
|
|
840
|
-
},
|
|
841
|
-
{
|
|
842
|
-
"cell_type": "code",
|
|
843
|
-
"execution_count": null,
|
|
844
|
-
"id": "59",
|
|
845
|
-
"metadata": {},
|
|
846
|
-
"outputs": [],
|
|
847
|
-
"source": [
|
|
848
|
-
"# df_crosstab / len(df[cond & cond2])"
|
|
849
|
-
]
|
|
850
|
-
},
|
|
851
|
-
{
|
|
852
|
-
"cell_type": "code",
|
|
853
|
-
"execution_count": null,
|
|
854
|
-
"id": "60",
|
|
855
|
-
"metadata": {},
|
|
856
|
-
"outputs": [],
|
|
857
|
-
"source": [
|
|
858
|
-
"# of 5616 look at FBG and OGTT counts. Run lines for \n",
|
|
859
|
-
"# glucose: fbg_value,fbg2_value,ogtt_value,ogtt2_value,\n",
|
|
860
|
-
"# BP: sys_blood_pressure_one, sys_blood_pressure_two,dia_blood_pressure_one, dia_blood_pressure_two \n",
|
|
861
|
-
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df[\"fbg_value\"].notna())\n",
|
|
862
|
-
"\n",
|
|
863
|
-
"df_crosstab = pd.crosstab(df[cond]['hba1c_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
|
864
|
-
"df_crosstab\n"
|
|
865
|
-
]
|
|
866
|
-
},
|
|
867
|
-
{
|
|
868
|
-
"cell_type": "code",
|
|
869
|
-
"execution_count": null,
|
|
870
|
-
"id": "61",
|
|
871
|
-
"metadata": {},
|
|
872
|
-
"outputs": [],
|
|
873
|
-
"source": []
|
|
874
|
-
},
|
|
875
|
-
{
|
|
876
|
-
"cell_type": "code",
|
|
877
|
-
"execution_count": null,
|
|
878
|
-
"id": "62",
|
|
879
|
-
"metadata": {},
|
|
880
|
-
"outputs": [],
|
|
881
|
-
"source": [
|
|
882
|
-
"# let's look at screening glucose and BP measurements"
|
|
883
|
-
]
|
|
884
|
-
},
|
|
885
|
-
{
|
|
886
|
-
"cell_type": "code",
|
|
887
|
-
"execution_count": null,
|
|
888
|
-
"id": "63",
|
|
889
|
-
"metadata": {},
|
|
890
|
-
"outputs": [],
|
|
891
|
-
"source": [
|
|
892
|
-
"cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
|
|
893
|
-
" & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
894
|
-
" & (df[\"fasted\"]==\"Yes\")\n",
|
|
895
|
-
" & ((df['fbg_value'].notna()) | (df['ogtt_value'].notna()) | (df['fbg2_value'].notna()) | (df['ogtt2_value'].notna()))\n",
|
|
896
|
-
" )\n"
|
|
897
|
-
]
|
|
898
|
-
},
|
|
899
|
-
{
|
|
900
|
-
"cell_type": "code",
|
|
901
|
-
"execution_count": null,
|
|
902
|
-
"id": "64",
|
|
903
|
-
"metadata": {},
|
|
904
|
-
"outputs": [],
|
|
905
|
-
"source": [
|
|
906
|
-
"cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
|
|
907
|
-
" & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
|
908
|
-
" & (df[\"fasted\"]==\"Yes\")\n",
|
|
909
|
-
" & (df['fbg_value'].notna())\n",
|
|
910
|
-
" )\n"
|
|
911
|
-
]
|
|
912
|
-
},
|
|
913
|
-
{
|
|
914
|
-
"cell_type": "code",
|
|
915
|
-
"execution_count": null,
|
|
916
|
-
"id": "65",
|
|
917
|
-
"metadata": {},
|
|
918
|
-
"outputs": [],
|
|
919
|
-
"source": [
|
|
920
|
-
"len(df[cond])"
|
|
921
|
-
]
|
|
922
|
-
},
|
|
923
|
-
{
|
|
924
|
-
"cell_type": "code",
|
|
925
|
-
"execution_count": null,
|
|
926
|
-
"id": "66",
|
|
927
|
-
"metadata": {},
|
|
928
|
-
"outputs": [],
|
|
929
|
-
"source": [
|
|
930
|
-
"cond = cond & (df[\"ogtt_value\"].notna())\n",
|
|
931
|
-
"df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
|
932
|
-
"df_crosstab\n"
|
|
933
|
-
]
|
|
934
|
-
},
|
|
935
|
-
{
|
|
936
|
-
"cell_type": "code",
|
|
937
|
-
"execution_count": null,
|
|
938
|
-
"id": "67",
|
|
939
|
-
"metadata": {},
|
|
940
|
-
"outputs": [],
|
|
941
|
-
"source": [
|
|
942
|
-
"df2 = df[cond]\n",
|
|
943
|
-
"df2[\"fbg\"] = df2[\"fbg_value\"]\n",
|
|
944
|
-
"df2.loc[df[\"fbg_value\"].notna() & df2[\"fbg2_value\"].notna(), \"fbg\"] = df2[\"fbg2_value\"]\n",
|
|
945
|
-
"df2[\"fbg\"] = pd.to_numeric(df2[\"fbg\"])"
|
|
946
|
-
]
|
|
947
|
-
},
|
|
948
|
-
{
|
|
949
|
-
"cell_type": "code",
|
|
950
|
-
"execution_count": null,
|
|
951
|
-
"id": "68",
|
|
952
|
-
"metadata": {},
|
|
953
|
-
"outputs": [],
|
|
954
|
-
"source": [
|
|
955
|
-
"df2[df2[\"fbg2_value\"].notna()][[\"fbg\", \"fbg_value\",\"fbg2_value\"]]"
|
|
956
|
-
]
|
|
957
|
-
},
|
|
958
|
-
{
|
|
959
|
-
"cell_type": "code",
|
|
960
|
-
"execution_count": null,
|
|
961
|
-
"id": "69",
|
|
962
|
-
"metadata": {},
|
|
963
|
-
"outputs": [],
|
|
964
|
-
"source": [
|
|
965
|
-
"df2['fbg'].describe()"
|
|
966
|
-
]
|
|
967
|
-
},
|
|
968
|
-
{
|
|
969
|
-
"cell_type": "code",
|
|
970
|
-
"execution_count": null,
|
|
971
|
-
"id": "70",
|
|
972
|
-
"metadata": {},
|
|
973
|
-
"outputs": [],
|
|
974
|
-
"source": []
|
|
975
|
-
},
|
|
976
|
-
{
|
|
977
|
-
"cell_type": "code",
|
|
978
|
-
"execution_count": null,
|
|
979
|
-
"id": "71",
|
|
980
|
-
"metadata": {},
|
|
981
|
-
"outputs": [],
|
|
982
|
-
"source": []
|
|
983
|
-
},
|
|
984
|
-
{
|
|
985
|
-
"cell_type": "code",
|
|
986
|
-
"execution_count": null,
|
|
987
|
-
"id": "72",
|
|
988
|
-
"metadata": {},
|
|
989
|
-
"outputs": [],
|
|
990
|
-
"source": [
|
|
991
|
-
"# PART TWO\n",
|
|
992
|
-
"# \"congestive_heart_failure\",\n",
|
|
993
|
-
"# \"liver_disease\",\n",
|
|
994
|
-
"# \"alcoholism\",\n",
|
|
995
|
-
"# \"acute_metabolic_acidosis\",\n",
|
|
996
|
-
"# \"renal_function_condition\",\n",
|
|
997
|
-
"# \"tissue_hypoxia_condition\",\n",
|
|
998
|
-
"# \"acute_condition\",\n",
|
|
999
|
-
"# \"metformin_sensitivity\","
|
|
1000
|
-
]
|
|
1001
|
-
},
|
|
1002
|
-
{
|
|
1003
|
-
"cell_type": "code",
|
|
1004
|
-
"execution_count": null,
|
|
1005
|
-
"id": "73",
|
|
1006
|
-
"metadata": {},
|
|
1007
|
-
"outputs": [],
|
|
1008
|
-
"source": [
|
|
1009
|
-
"# part one variables\n",
|
|
1010
|
-
"\n",
|
|
1011
|
-
"# \"meta_phase_two\",\n",
|
|
1012
|
-
"# \"hiv_pos\",\n",
|
|
1013
|
-
"# \"art_six_months\",\n",
|
|
1014
|
-
"# \"on_rx_stable\",\n",
|
|
1015
|
-
"# \"vl_undetectable\",\n",
|
|
1016
|
-
"# \"lives_nearby\",\n",
|
|
1017
|
-
"# \"staying_nearby_12\",\n",
|
|
1018
|
-
"# \"pregnant\",\n"
|
|
1019
|
-
]
|
|
1020
|
-
},
|
|
1021
|
-
{
|
|
1022
|
-
"cell_type": "code",
|
|
1023
|
-
"execution_count": null,
|
|
1024
|
-
"id": "74",
|
|
1025
|
-
"metadata": {},
|
|
1026
|
-
"outputs": [],
|
|
1027
|
-
"source": []
|
|
1028
|
-
},
|
|
1029
|
-
{
|
|
1030
|
-
"cell_type": "code",
|
|
1031
|
-
"execution_count": null,
|
|
1032
|
-
"id": "75",
|
|
1033
|
-
"metadata": {},
|
|
1034
|
-
"outputs": [],
|
|
1035
|
-
"source": [
|
|
1036
|
-
"# only fasted for 7h\n",
|
|
1037
|
-
"df[df.subject_identifier==\"105-30-0164-8\"].to_dict()"
|
|
1038
|
-
]
|
|
1039
|
-
},
|
|
1040
|
-
{
|
|
1041
|
-
"cell_type": "code",
|
|
1042
|
-
"execution_count": null,
|
|
1043
|
-
"id": "76",
|
|
1044
|
-
"metadata": {},
|
|
1045
|
-
"outputs": [],
|
|
1046
|
-
"source": [
|
|
1047
|
-
"df[~(df.subject_identifier.isna())][[\"fasted\", \"fasted_duration_delta\"]]\n"
|
|
1048
|
-
]
|
|
1049
|
-
},
|
|
1050
|
-
{
|
|
1051
|
-
"cell_type": "code",
|
|
1052
|
-
"execution_count": null,
|
|
1053
|
-
"id": "77",
|
|
1054
|
-
"metadata": {},
|
|
1055
|
-
"outputs": [],
|
|
1056
|
-
"source": []
|
|
1057
|
-
},
|
|
1058
|
-
{
|
|
1059
|
-
"cell_type": "code",
|
|
1060
|
-
"execution_count": null,
|
|
1061
|
-
"id": "78",
|
|
1062
|
-
"metadata": {},
|
|
1063
|
-
"outputs": [],
|
|
1064
|
-
"source": []
|
|
1065
|
-
},
|
|
1066
|
-
{
|
|
1067
|
-
"cell_type": "code",
|
|
1068
|
-
"execution_count": null,
|
|
1069
|
-
"id": "79",
|
|
1070
|
-
"metadata": {},
|
|
1071
|
-
"outputs": [],
|
|
1072
|
-
"source": [
|
|
1073
|
-
"from meta_prn.models import OnSchedule, OffSchedule, OnScheduleDmReferral, OffScheduleDmReferral\n",
|
|
1074
|
-
"df_on_meta = read_frame(OnSchedule.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
|
|
1075
|
-
"df_off_meta = read_frame(OffSchedule.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n",
|
|
1076
|
-
"df_on = read_frame(OnScheduleDmReferral.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
|
|
1077
|
-
"df_off = read_frame(OffScheduleDmReferral.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n"
|
|
1078
|
-
]
|
|
1079
|
-
},
|
|
1080
|
-
{
|
|
1081
|
-
"cell_type": "markdown",
|
|
1082
|
-
"id": "80",
|
|
1083
|
-
"metadata": {},
|
|
1084
|
-
"source": []
|
|
1085
|
-
},
|
|
1086
|
-
{
|
|
1087
|
-
"cell_type": "code",
|
|
1088
|
-
"execution_count": null,
|
|
1089
|
-
"id": "81",
|
|
1090
|
-
"metadata": {},
|
|
1091
|
-
"outputs": [],
|
|
1092
|
-
"source": [
|
|
1093
|
-
"def get_meta_duration(s):\n",
|
|
1094
|
-
" meta_off = get_utcnow() if pd.isna(s[\"meta_offschedule_datetime\"]) else s[\"meta_offschedule_datetime\"]\n",
|
|
1095
|
-
" return meta_off - s[\"meta_onschedule_datetime\"] \n",
|
|
1096
|
-
"\n",
|
|
1097
|
-
"def get_dm_duration(s):\n",
|
|
1098
|
-
" dm_off = get_utcnow() if pd.isna(s[\"dm_offschedule_datetime\"]) else s[\"dm_offschedule_datetime\"]\n",
|
|
1099
|
-
" return dm_off - s[\"dm_onschedule_datetime\"] \n",
|
|
1100
|
-
"\n",
|
|
1101
|
-
"df_status = pd.merge(df_on_meta, df_off_meta, on=\"subject_identifier\", how=\"left\") \n",
|
|
1102
|
-
"df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\"]\n",
|
|
1103
|
-
"df_status = df_status.merge(df_on, on=\"subject_identifier\", how=\"left\")\n",
|
|
1104
|
-
"df_status = df_status.merge(df_off, on=\"subject_identifier\", how=\"left\")\n",
|
|
1105
|
-
"df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\", \"dm_onschedule_datetime\", \"dm_offschedule_datetime\"]\n",
|
|
1106
|
-
"df_status[\"meta_duration\"] = df_status.apply(get_meta_duration, axis=1)\n",
|
|
1107
|
-
"df_status[\"meta_duration_days\"] = df_status[\"meta_duration\"].dt.days\n",
|
|
1108
|
-
"df_status[\"dm_duration\"] = df_status.apply(get_dm_duration, axis=1)\n",
|
|
1109
|
-
"df_status[\"dm_duration_days\"] = df_status[\"dm_duration\"].dt.days\n",
|
|
1110
|
-
"df_status.to_csv(report_folder / \"meta_schedule_status.csv\", index=False)"
|
|
1111
|
-
]
|
|
1112
|
-
},
|
|
1113
|
-
{
|
|
1114
|
-
"cell_type": "code",
|
|
1115
|
-
"execution_count": null,
|
|
1116
|
-
"id": "82",
|
|
1117
|
-
"metadata": {},
|
|
1118
|
-
"outputs": [],
|
|
1119
|
-
"source": [
|
|
1120
|
-
"df_on = df_on.merge(df_off, on=\"subject_identifier\", how=\"left\")\n"
|
|
1121
|
-
]
|
|
1122
|
-
},
|
|
1123
|
-
{
|
|
1124
|
-
"cell_type": "code",
|
|
1125
|
-
"execution_count": null,
|
|
1126
|
-
"id": "83",
|
|
1127
|
-
"metadata": {},
|
|
1128
|
-
"outputs": [],
|
|
1129
|
-
"source": [
|
|
1130
|
-
"from edc_utils import get_utcnow\n",
|
|
1131
|
-
"\n",
|
|
1132
|
-
"now = get_utcnow()\n",
|
|
1133
|
-
"df_on[\"duration\"] = now - df_on[\"onschedule_datetime\"] "
|
|
1134
|
-
]
|
|
1135
|
-
},
|
|
1136
|
-
{
|
|
1137
|
-
"cell_type": "code",
|
|
1138
|
-
"execution_count": null,
|
|
1139
|
-
"id": "84",
|
|
1140
|
-
"metadata": {},
|
|
1141
|
-
"outputs": [],
|
|
1142
|
-
"source": [
|
|
1143
|
-
"df_on[df_on.duration >= pd.Timedelta(days=182)].to_stata\n"
|
|
1144
|
-
]
|
|
1145
|
-
},
|
|
1146
|
-
{
|
|
1147
|
-
"cell_type": "code",
|
|
1148
|
-
"execution_count": null,
|
|
1149
|
-
"id": "85",
|
|
1150
|
-
"metadata": {},
|
|
1151
|
-
"outputs": [],
|
|
1152
|
-
"source": []
|
|
1153
|
-
}
|
|
1154
|
-
],
|
|
1155
|
-
"metadata": {
|
|
1156
|
-
"kernelspec": {
|
|
1157
|
-
"display_name": "Python 3 (ipykernel)",
|
|
1158
|
-
"language": "python",
|
|
1159
|
-
"name": "python3"
|
|
1160
|
-
},
|
|
1161
|
-
"language_info": {
|
|
1162
|
-
"codemirror_mode": {
|
|
1163
|
-
"name": "ipython",
|
|
1164
|
-
"version": 3
|
|
1165
|
-
},
|
|
1166
|
-
"file_extension": ".py",
|
|
1167
|
-
"mimetype": "text/x-python",
|
|
1168
|
-
"name": "python",
|
|
1169
|
-
"nbconvert_exporter": "python",
|
|
1170
|
-
"pygments_lexer": "ipython3",
|
|
1171
|
-
"version": "3.12.4"
|
|
1172
|
-
}
|
|
1173
|
-
},
|
|
1174
|
-
"nbformat": 4,
|
|
1175
|
-
"nbformat_minor": 5
|
|
1176
|
-
}
|