meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,1176 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "# output is suppressed but normally would spew out all the edc loading messages\n",
12
- "\n",
13
- "import os\n",
14
- "from pathlib import Path\n",
15
- "from datetime import datetime\n",
16
- "import pandas as pd\n",
17
- "import numpy as np\n",
18
- "import math\n",
19
- "# import matplotlxib.pyplot as plt\n",
20
- "# import seaborn as sns\n",
21
- "import scipy.stats as stats\n",
22
- "\n",
23
- "from dj_notebook import activate\n",
24
- "\n",
25
- "env_file = os.environ[\"META_ENV\"]\n",
26
- "documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
27
- "report_folder = Path(documents_folder)\n",
28
- "\n",
29
- "plus = activate(dotenv_file=env_file)\n"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "1",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "from meta_screening.models import SubjectScreening\n",
40
- "from django_pandas.io import read_frame\n"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "2",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "cols = [\n",
51
- " f.name\n",
52
- " for f in SubjectScreening._meta.get_fields()\n",
53
- " if f.name\n",
54
- " not in [\n",
55
- " \"contact_number\",\n",
56
- " \"initials\",\n",
57
- " \"hospital_identifier\",\n",
58
- " \"modified\",\n",
59
- " \"user_created\",\n",
60
- " \"user_modified\",\n",
61
- " \"hostname_created\",\n",
62
- " \"hostname_modified\",\n",
63
- " \"device_created\",\n",
64
- " \"device_modified\",\n",
65
- " \"locale_created\",\n",
66
- " \"locale_modified\",\n",
67
- " \"slug\",\n",
68
- " ]\n",
69
- "]\n",
70
- "qs_screening = SubjectScreening.objects.values(*cols).all()\n",
71
- "df = read_frame(qs_screening)"
72
- ]
73
- },
74
- {
75
- "cell_type": "code",
76
- "execution_count": null,
77
- "id": "3",
78
- "metadata": {},
79
- "outputs": [],
80
- "source": [
81
- "df.count()\n"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "id": "4",
88
- "metadata": {},
89
- "outputs": [],
90
- "source": [
91
- "from edc_constants.constants import NO, YES\n",
92
- "df.count()\n",
93
- "df.hiv_pos.value_counts()"
94
- ]
95
- },
96
- {
97
- "cell_type": "code",
98
- "execution_count": null,
99
- "id": "5",
100
- "metadata": {},
101
- "outputs": [],
102
- "source": [
103
- "df = df.drop(df[df[\"hiv_pos\"] == \"No\"].index)\n",
104
- "# df = df.drop(df[df.art_six_months==NO].index)\n",
105
- "# df = df.drop(df[df.on_rx_stable==NO].index)\n",
106
- "df.count()"
107
- ]
108
- },
109
- {
110
- "cell_type": "code",
111
- "execution_count": null,
112
- "id": "6",
113
- "metadata": {},
114
- "outputs": [],
115
- "source": [
116
- "# check for duplicate subjects / there are none\n",
117
- "# df[df.duplicated([\"hospital_identifier\"], keep=False)]\n",
118
- "# len(df)"
119
- ]
120
- },
121
- {
122
- "cell_type": "code",
123
- "execution_count": null,
124
- "id": "7",
125
- "metadata": {},
126
- "outputs": [],
127
- "source": []
128
- },
129
- {
130
- "cell_type": "code",
131
- "execution_count": null,
132
- "id": "8",
133
- "metadata": {},
134
- "outputs": [],
135
- "source": [
136
- "len(df)"
137
- ]
138
- },
139
- {
140
- "cell_type": "code",
141
- "execution_count": null,
142
- "id": "9",
143
- "metadata": {},
144
- "outputs": [],
145
- "source": [
146
- "df_tmp = df.gender.value_counts().to_frame().reset_index()\n",
147
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
148
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
149
- "df_tmp"
150
- ]
151
- },
152
- {
153
- "cell_type": "code",
154
- "execution_count": null,
155
- "id": "10",
156
- "metadata": {},
157
- "outputs": [],
158
- "source": [
159
- "df_tmp = df.has_dm.value_counts(dropna=False).to_frame().reset_index()\n",
160
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
161
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
162
- "df_tmp"
163
- ]
164
- },
165
- {
166
- "cell_type": "code",
167
- "execution_count": null,
168
- "id": "11",
169
- "metadata": {},
170
- "outputs": [],
171
- "source": [
172
- "df_tmp = df[df.has_dm.isna()].gender.value_counts(dropna=False).to_frame().reset_index()\n",
173
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
174
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
175
- "df_tmp"
176
- ]
177
- },
178
- {
179
- "cell_type": "code",
180
- "execution_count": null,
181
- "id": "12",
182
- "metadata": {},
183
- "outputs": [],
184
- "source": [
185
- "cond1 = (df.has_dm==NO) & (df.on_dm_medication==NO)\n",
186
- "df_tmp = df[cond1].gender.value_counts(dropna=False).to_frame().reset_index()\n",
187
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
188
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
189
- "df_tmp"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "id": "13",
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "cond2 = (cond1 & (df.on_rx_stable==YES) & (df.art_six_months==YES) & (df.vl_undetectable==YES))\n",
200
- "df_tmp = df[cond2].gender.value_counts(dropna=False).to_frame().reset_index()\n",
201
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
202
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
203
- "df_tmp"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": null,
209
- "id": "14",
210
- "metadata": {},
211
- "outputs": [],
212
- "source": [
213
- "cond3 = (cond2 & (df.staying_nearby_12==YES) & (df.lives_nearby==YES))\n",
214
- "df_tmp = df[cond3].gender.value_counts(dropna=False).to_frame().reset_index()\n",
215
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
216
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
217
- "df_tmp"
218
- ]
219
- },
220
- {
221
- "cell_type": "code",
222
- "execution_count": null,
223
- "id": "15",
224
- "metadata": {},
225
- "outputs": [],
226
- "source": [
227
- "cond4 = (cond3 & ~(df.pregnant==YES))\n",
228
- "df_tmp = df[cond4].gender.value_counts(dropna=False).to_frame().reset_index()\n",
229
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
230
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
231
- "df_tmp"
232
- ]
233
- },
234
- {
235
- "cell_type": "code",
236
- "execution_count": null,
237
- "id": "16",
238
- "metadata": {},
239
- "outputs": [],
240
- "source": [
241
- "cond5 = (cond4 & (df.congestive_heart_failure==NO) & (df.liver_disease==NO) & (df.alcoholism==NO) & (df.acute_metabolic_acidosis==NO) & (df.renal_function_condition==NO) & (df.tissue_hypoxia_condition==NO) & (df.acute_condition==NO) & (df.metformin_sensitivity==NO))\n",
242
- "\n",
243
- "df_tmp = df[cond5].gender.value_counts(dropna=False).to_frame().reset_index()\n",
244
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
245
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
246
- "df_tmp"
247
- ]
248
- },
249
- {
250
- "cell_type": "code",
251
- "execution_count": null,
252
- "id": "17",
253
- "metadata": {},
254
- "outputs": [],
255
- "source": [
256
- "df[cond5].eligible_part_one.value_counts()"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": null,
262
- "id": "18",
263
- "metadata": {},
264
- "outputs": [],
265
- "source": [
266
- "df[cond5].eligible_part_two.value_counts()\n"
267
- ]
268
- },
269
- {
270
- "cell_type": "code",
271
- "execution_count": null,
272
- "id": "19",
273
- "metadata": {},
274
- "outputs": [],
275
- "source": [
276
- "cond6 = (cond5 & (df.meta_phase_two==NO))\n",
277
- "df_tmp = df[cond6].gender.value_counts(dropna=False).to_frame().reset_index()\n",
278
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
279
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
280
- "df_tmp"
281
- ]
282
- },
283
- {
284
- "cell_type": "code",
285
- "execution_count": null,
286
- "id": "20",
287
- "metadata": {},
288
- "outputs": [],
289
- "source": [
290
- "cond7 = (cond6 & (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df.agree_to_p3==YES))\n",
291
- "df_tmp = df[cond7].gender.value_counts(dropna=False).to_frame().reset_index()\n",
292
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
293
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
294
- "df_tmp"
295
- ]
296
- },
297
- {
298
- "cell_type": "code",
299
- "execution_count": null,
300
- "id": "21",
301
- "metadata": {},
302
- "outputs": [],
303
- "source": []
304
- },
305
- {
306
- "cell_type": "code",
307
- "execution_count": null,
308
- "id": "22",
309
- "metadata": {},
310
- "outputs": [],
311
- "source": [
312
- "cond8 = (cond7 & (df.already_fasted==YES))\n",
313
- "df_tmp = df[cond8].gender.value_counts(dropna=False).to_frame().reset_index()\n",
314
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
315
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
316
- "df_tmp"
317
- ]
318
- },
319
- {
320
- "cell_type": "code",
321
- "execution_count": null,
322
- "id": "23",
323
- "metadata": {},
324
- "outputs": [],
325
- "source": [
326
- "cond9 = (cond7 & (df.already_fasted==NO))\n",
327
- "df_tmp = df[cond9].gender.value_counts(dropna=False).to_frame().reset_index()\n",
328
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
329
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
330
- "df_tmp"
331
- ]
332
- },
333
- {
334
- "cell_type": "code",
335
- "execution_count": null,
336
- "id": "24",
337
- "metadata": {},
338
- "outputs": [],
339
- "source": [
340
- "from edc_model.utils import duration_hm_to_timedelta\n",
341
- "\n",
342
- "# gen fasted variable\n",
343
- "def get_duration_dh_to_timedelta(s):\n",
344
- " if not pd.isna(s[\"fasting_duration_str\"]):\n",
345
- " return duration_hm_to_timedelta(s[\"fasting_duration_str\"])\n",
346
- " return s[\"fasting_duration_str\"]\n",
347
- "\n",
348
- "def get_fasted(s):\n",
349
- " if pd.isna(s[\"fasted_duration_delta\"]) and not has_glucose_value(s):\n",
350
- " return None\n",
351
- " elif pd.isna(s[\"fasted_duration_delta\"]) and has_glucose_value(s):\n",
352
- " return has_glucose_value(s)\n",
353
- " if s[\"fasted_duration_delta\"] <= pd.Timedelta(hours=8):\n",
354
- " return NO\n",
355
- " return YES\n",
356
- "\n",
357
- "def has_glucose_value(s):\n",
358
- " if not pd.isna(s[\"fbg_value\"]):\n",
359
- " return \"FBG only\"\n",
360
- " if not pd.isna(s[\"ogtt_value\"]) and not pd.isna(s[\"fbg_value\"]):\n",
361
- " return \"FBG-OGTT\"\n",
362
- " elif pd.isna(s[\"ogtt_value\"]) and pd.isna(s[\"ogtt2_value\"]) and pd.isna(s[\"fbg_value\"]) and pd.isna(s[\"fbg2_value\"]):\n",
363
- " return False\n",
364
- " return True\n",
365
- "\n",
366
- "df[\"fasted_duration_delta\"] = df.apply(get_duration_dh_to_timedelta, axis=1)\n",
367
- "df[\"fasted\"] = df.apply(get_fasted, axis=1)\n"
368
- ]
369
- },
370
- {
371
- "cell_type": "code",
372
- "execution_count": null,
373
- "id": "25",
374
- "metadata": {},
375
- "outputs": [],
376
- "source": [
377
- "df[(df.subject_identifier.notna()) & (df.subject_identifier.str.len() < 20)].eligible.value_counts()"
378
- ]
379
- },
380
- {
381
- "cell_type": "code",
382
- "execution_count": null,
383
- "id": "26",
384
- "metadata": {},
385
- "outputs": [],
386
- "source": [
387
- "df_tmp = df[cond9 & (df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
388
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
389
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
390
- "df_tmp"
391
- ]
392
- },
393
- {
394
- "cell_type": "code",
395
- "execution_count": null,
396
- "id": "27",
397
- "metadata": {},
398
- "outputs": [],
399
- "source": [
400
- "df_tmp = df[cond9 & ~(df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
401
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
402
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
403
- "df_tmp"
404
- ]
405
- },
406
- {
407
- "cell_type": "code",
408
- "execution_count": null,
409
- "id": "28",
410
- "metadata": {},
411
- "outputs": [],
412
- "source": [
413
- "df[cond9 & ~(df.fasted==YES) & (df.subject_identifier.str.len() < 20)][[\"screening_identifier\", \"subject_identifier\"]]"
414
- ]
415
- },
416
- {
417
- "cell_type": "code",
418
- "execution_count": null,
419
- "id": "29",
420
- "metadata": {},
421
- "outputs": [],
422
- "source": [
423
- "# never returned or not evaluated\n",
424
- "# note some have part three started and 1 even has a fasting duration\n",
425
- "cond10 = (cond9 & (df.eligible_part_three==\"To be determined\"))\n",
426
- "# df[(df.fasted==YES) & cond_eligible].eligible_part_one.value_counts(dropna=False)\n",
427
- "df_tmp = df[cond10].gender.value_counts(dropna=False).to_frame().reset_index()\n",
428
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
429
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
430
- "df_tmp"
431
- ]
432
- },
433
- {
434
- "cell_type": "code",
435
- "execution_count": null,
436
- "id": "30",
437
- "metadata": {},
438
- "outputs": [],
439
- "source": [
440
- "cond11 = (cond7 & (df.fasted==YES))\n",
441
- "df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
442
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
443
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
444
- "df_tmp"
445
- ]
446
- },
447
- {
448
- "cell_type": "code",
449
- "execution_count": null,
450
- "id": "31",
451
- "metadata": {},
452
- "outputs": [],
453
- "source": [
454
- "cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & (df.fasted==NO))\n",
455
- "df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
456
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
457
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
458
- "df_tmp"
459
- ]
460
- },
461
- {
462
- "cell_type": "code",
463
- "execution_count": null,
464
- "id": "32",
465
- "metadata": {},
466
- "outputs": [],
467
- "source": [
468
- "cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & ~(df.fbg_value.isna()))\n",
469
- "df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
470
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
471
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
472
- "df_tmp"
473
- ]
474
- },
475
- {
476
- "cell_type": "code",
477
- "execution_count": null,
478
- "id": "33",
479
- "metadata": {},
480
- "outputs": [],
481
- "source": [
482
- "df_tmp = df.eligible_part_three.value_counts(dropna=False).to_frame().reset_index()\n",
483
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
484
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
485
- "df_tmp"
486
- ]
487
- },
488
- {
489
- "cell_type": "code",
490
- "execution_count": null,
491
- "id": "34",
492
- "metadata": {},
493
- "outputs": [],
494
- "source": [
495
- "df_tmp = df[all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO) & ~(df.fasted==YES) & cond_eligible].gender.value_counts(dropna=False).to_frame().reset_index()\n",
496
- "df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
497
- "df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
498
- "df_tmp\n"
499
- ]
500
- },
501
- {
502
- "cell_type": "code",
503
- "execution_count": null,
504
- "id": "35",
505
- "metadata": {},
506
- "outputs": [],
507
- "source": []
508
- },
509
- {
510
- "cell_type": "code",
511
- "execution_count": null,
512
- "id": "36",
513
- "metadata": {},
514
- "outputs": [],
515
- "source": []
516
- },
517
- {
518
- "cell_type": "code",
519
- "execution_count": null,
520
- "id": "37",
521
- "metadata": {},
522
- "outputs": [],
523
- "source": [
524
- "all_conds = (all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO))\n",
525
- "cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
526
- "df[all_conds & cond_eligible & (df.eligible_part_three.isin([YES, NO]))].gender.value_counts(dropna=False)\n"
527
- ]
528
- },
529
- {
530
- "cell_type": "code",
531
- "execution_count": null,
532
- "id": "38",
533
- "metadata": {},
534
- "outputs": [],
535
- "source": []
536
- },
537
- {
538
- "cell_type": "code",
539
- "execution_count": null,
540
- "id": "39",
541
- "metadata": {},
542
- "outputs": [],
543
- "source": [
544
- "print(len(df[(df[\"ogtt_base_datetime\"].notna()) | (df[\"ogtt2_base_datetime\"].notna())]))\n",
545
- "print(len(df[(df[\"ogtt_datetime\"].notna()) | (df[\"ogtt2_datetime\"].notna())]))\n",
546
- "print(len(df[(df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna())]))\n",
547
- "# len(df[(df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())])\n",
548
- "df[((df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna()) | (df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())) & (df[\"has_dm\"]==\"No\")]\n",
549
- " "
550
- ]
551
- },
552
- {
553
- "cell_type": "code",
554
- "execution_count": null,
555
- "id": "40",
556
- "metadata": {},
557
- "outputs": [],
558
- "source": [
559
- "# counts by site - row, column\n",
560
- "gender_by_site = pd.crosstab(df['site'], df['gender'], margins=True)\n",
561
- "gender_by_site.columns = [\"F (%)\", \"M (%)\", \"(%)\"]\n",
562
- "gender_by_site.index = [\"amana\", \"hindu-mandal\", \"mnazi-moja\", \"mwananyamala\", \"temeke\", \"total (%)\"]\n",
563
- "gender_by_site"
564
- ]
565
- },
566
- {
567
- "cell_type": "code",
568
- "execution_count": null,
569
- "id": "41",
570
- "metadata": {},
571
- "outputs": [],
572
- "source": [
573
- "round(gender_by_site/len(df) , 3) * 100\n"
574
- ]
575
- },
576
- {
577
- "cell_type": "code",
578
- "execution_count": null,
579
- "id": "42",
580
- "metadata": {},
581
- "outputs": [],
582
- "source": [
583
- "\n",
584
- "round(gender_by_site.div(gender_by_site[\"(%)\"], axis=0) , 3) * 100\n"
585
- ]
586
- },
587
- {
588
- "cell_type": "code",
589
- "execution_count": null,
590
- "id": "43",
591
- "metadata": {},
592
- "outputs": [],
593
- "source": [
594
- "# has_dm fillna with unk\n",
595
- "df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
596
- "\n",
597
- "# in_catchment =\n",
598
- "df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
599
- "\n"
600
- ]
601
- },
602
- {
603
- "cell_type": "code",
604
- "execution_count": null,
605
- "id": "44",
606
- "metadata": {},
607
- "outputs": [],
608
- "source": [
609
- "# run crosstabs"
610
- ]
611
- },
612
- {
613
- "cell_type": "code",
614
- "execution_count": null,
615
- "id": "45",
616
- "metadata": {},
617
- "outputs": [],
618
- "source": [
619
- "# crosstab by has_dm, gender\n",
620
- "df_crosstab = pd.crosstab(df['has_dm'], df['gender'], margins=True, dropna=False)\n",
621
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
622
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
623
- "df_crosstab"
624
- ]
625
- },
626
- {
627
- "cell_type": "code",
628
- "execution_count": null,
629
- "id": "46",
630
- "metadata": {},
631
- "outputs": [],
632
- "source": [
633
- "# crosstab by has_dm == Yes by on_dm_medication, gender\n",
634
- "cond = (df[\"has_dm\"]==\"Yes\")\n",
635
- "df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
636
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
637
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
638
- "df_crosstab"
639
- ]
640
- },
641
- {
642
- "cell_type": "code",
643
- "execution_count": null,
644
- "id": "47",
645
- "metadata": {},
646
- "outputs": [],
647
- "source": [
648
- "# crosstab by has_dm == No by on_dm_medication, gender\n",
649
- "cond = (df[\"has_dm\"]==\"No\")\n",
650
- "df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
651
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
652
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
653
- "df_crosstab"
654
- ]
655
- },
656
- {
657
- "cell_type": "code",
658
- "execution_count": null,
659
- "id": "48",
660
- "metadata": {},
661
- "outputs": [],
662
- "source": [
663
- "# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
664
- "cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
665
- "neg_cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & ((df['on_rx_stable']!=\"Yes\") | (df['vl_undetectable']!=\"Yes\") | (df['art_six_months']!=\"Yes\"))\n",
666
- "df_crosstab = pd.crosstab(df[neg_cond]['art_six_months'], df[neg_cond]['gender'], margins=True, dropna=False)\n",
667
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
668
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
669
- "df_crosstab"
670
- ]
671
- },
672
- {
673
- "cell_type": "code",
674
- "execution_count": null,
675
- "id": "49",
676
- "metadata": {},
677
- "outputs": [],
678
- "source": [
679
- "# \"lives_nearby\",\n",
680
- "# \"staying_nearby_12\",\n",
681
- "# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
682
- "cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
683
- "\n",
684
- "df_crosstab = pd.crosstab(df[cond]['in_catchment'], df[cond]['gender'], margins=True, dropna=False)\n",
685
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
686
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
687
- "df_crosstab"
688
- ]
689
- },
690
- {
691
- "cell_type": "code",
692
- "execution_count": null,
693
- "id": "50",
694
- "metadata": {},
695
- "outputs": [],
696
- "source": [
697
- "# crosstab pregnant, gender\n",
698
- "cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True)\n",
699
- "df_crosstab = pd.crosstab(df[cond]['pregnant'], df[cond]['gender'], margins=True, dropna=False)\n",
700
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
701
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
702
- "df_crosstab\n"
703
- ]
704
- },
705
- {
706
- "cell_type": "code",
707
- "execution_count": null,
708
- "id": "51",
709
- "metadata": {},
710
- "outputs": [],
711
- "source": [
712
- "# crosstab on conditions (part two)\n",
713
- "# \"congestive_heart_failure\",\n",
714
- "# \"liver_disease\",\n",
715
- "# \"alcoholism\",\n",
716
- "# \"acute_metabolic_acidosis\",\n",
717
- "# \"renal_function_condition\",\n",
718
- "# \"tissue_hypoxia_condition\",\n",
719
- "# \"acute_condition\",\n",
720
- "# \"metformin_sensitivity\","
721
- ]
722
- },
723
- {
724
- "cell_type": "code",
725
- "execution_count": null,
726
- "id": "52",
727
- "metadata": {},
728
- "outputs": [],
729
- "source": [
730
- "# crosstab (use for any single condition)\n",
731
- "cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True) & (df[\"pregnant\"]!=\"Yes\")\n",
732
- "df_crosstab = pd.crosstab(df[cond]['metformin_sensitivity'], df[cond]['gender'], margins=True, dropna=False)\n",
733
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
734
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
735
- "df_crosstab\n"
736
- ]
737
- },
738
- {
739
- "cell_type": "code",
740
- "execution_count": null,
741
- "id": "53",
742
- "metadata": {},
743
- "outputs": [],
744
- "source": [
745
- "# crosstab meta_phase_two\n",
746
- "cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
747
- " & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
748
- " & (df['in_catchment']==True) \n",
749
- " & (df[\"pregnant\"]!=\"Yes\")\n",
750
- " & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
751
- " & (df[\"liver_disease\"]!=\"Yes\")\n",
752
- " & (df[\"alcoholism\"]!=\"Yes\")\n",
753
- " & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
754
- " & (df[\"renal_function_condition\"]!=\"Yes\")\n",
755
- " & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
756
- " & (df[\"acute_condition\"]!=\"Yes\")\n",
757
- " & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
758
- " )\n",
759
- "df_crosstab = pd.crosstab(df[cond]['meta_phase_two'], df[cond]['gender'], margins=True, dropna=False)\n",
760
- "# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
761
- "# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
762
- "df_crosstab\n"
763
- ]
764
- },
765
- {
766
- "cell_type": "code",
767
- "execution_count": null,
768
- "id": "54",
769
- "metadata": {},
770
- "outputs": [],
771
- "source": [
772
- "# crosstab (use for any single condition)\n",
773
- "cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
774
- " & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
775
- " & (df['in_catchment']==True) \n",
776
- " & (df[\"pregnant\"]!=\"Yes\")\n",
777
- " & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
778
- " & (df[\"liver_disease\"]!=\"Yes\")\n",
779
- " & (df[\"alcoholism\"]!=\"Yes\")\n",
780
- " & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
781
- " & (df[\"renal_function_condition\"]!=\"Yes\")\n",
782
- " & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
783
- " & (df[\"acute_condition\"]!=\"Yes\")\n",
784
- " & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
785
- " & (df[\"meta_phase_two\"]!=\"Yes\")\n",
786
- " )\n",
787
- "len(df[cond])"
788
- ]
789
- },
790
- {
791
- "cell_type": "code",
792
- "execution_count": null,
793
- "id": "55",
794
- "metadata": {},
795
- "outputs": [],
796
- "source": [
797
- "# check against eligible_part_one and two\n",
798
- "\n",
799
- "cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
800
- "print([len(df[cond_eligible]), len(df[cond])])\n"
801
- ]
802
- },
803
- {
804
- "cell_type": "code",
805
- "execution_count": null,
806
- "id": "56",
807
- "metadata": {},
808
- "outputs": [],
809
- "source": [
810
- "cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
811
- "df_crosstab = pd.crosstab(df[cond]['agree_to_p3'], df[cond]['gender'], margins=True, dropna=False)\n",
812
- "df_crosstab\n",
813
- "\n"
814
- ]
815
- },
816
- {
817
- "cell_type": "code",
818
- "execution_count": null,
819
- "id": "57",
820
- "metadata": {},
821
- "outputs": [],
822
- "source": [
823
- "cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
824
- "df_crosstab = pd.crosstab(df[cond]['already_fasted'], df[cond]['gender'], margins=True, dropna=False)\n",
825
- "df_crosstab\n"
826
- ]
827
- },
828
- {
829
- "cell_type": "code",
830
- "execution_count": null,
831
- "id": "58",
832
- "metadata": {},
833
- "outputs": [],
834
- "source": [
835
- "# who returned and had an FBG performed\n",
836
- "cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
837
- "df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
838
- "df_crosstab\n"
839
- ]
840
- },
841
- {
842
- "cell_type": "code",
843
- "execution_count": null,
844
- "id": "59",
845
- "metadata": {},
846
- "outputs": [],
847
- "source": [
848
- "# df_crosstab / len(df[cond & cond2])"
849
- ]
850
- },
851
- {
852
- "cell_type": "code",
853
- "execution_count": null,
854
- "id": "60",
855
- "metadata": {},
856
- "outputs": [],
857
- "source": [
858
- "# of 5616 look at FBG and OGTT counts. Run lines for \n",
859
- "# glucose: fbg_value,fbg2_value,ogtt_value,ogtt2_value,\n",
860
- "# BP: sys_blood_pressure_one, sys_blood_pressure_two,dia_blood_pressure_one, dia_blood_pressure_two \n",
861
- "cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df[\"fbg_value\"].notna())\n",
862
- "\n",
863
- "df_crosstab = pd.crosstab(df[cond]['hba1c_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
864
- "df_crosstab\n"
865
- ]
866
- },
867
- {
868
- "cell_type": "code",
869
- "execution_count": null,
870
- "id": "61",
871
- "metadata": {},
872
- "outputs": [],
873
- "source": []
874
- },
875
- {
876
- "cell_type": "code",
877
- "execution_count": null,
878
- "id": "62",
879
- "metadata": {},
880
- "outputs": [],
881
- "source": [
882
- "# let's look at screening glucose and BP measurements"
883
- ]
884
- },
885
- {
886
- "cell_type": "code",
887
- "execution_count": null,
888
- "id": "63",
889
- "metadata": {},
890
- "outputs": [],
891
- "source": [
892
- "cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
893
- " & (df[\"eligible_part_two\"]==\"Yes\")\n",
894
- " & (df[\"fasted\"]==\"Yes\")\n",
895
- " & ((df['fbg_value'].notna()) | (df['ogtt_value'].notna()) | (df['fbg2_value'].notna()) | (df['ogtt2_value'].notna()))\n",
896
- " )\n"
897
- ]
898
- },
899
- {
900
- "cell_type": "code",
901
- "execution_count": null,
902
- "id": "64",
903
- "metadata": {},
904
- "outputs": [],
905
- "source": [
906
- "cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
907
- " & (df[\"eligible_part_two\"]==\"Yes\")\n",
908
- " & (df[\"fasted\"]==\"Yes\")\n",
909
- " & (df['fbg_value'].notna())\n",
910
- " )\n"
911
- ]
912
- },
913
- {
914
- "cell_type": "code",
915
- "execution_count": null,
916
- "id": "65",
917
- "metadata": {},
918
- "outputs": [],
919
- "source": [
920
- "len(df[cond])"
921
- ]
922
- },
923
- {
924
- "cell_type": "code",
925
- "execution_count": null,
926
- "id": "66",
927
- "metadata": {},
928
- "outputs": [],
929
- "source": [
930
- "cond = cond & (df[\"ogtt_value\"].notna())\n",
931
- "df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
932
- "df_crosstab\n"
933
- ]
934
- },
935
- {
936
- "cell_type": "code",
937
- "execution_count": null,
938
- "id": "67",
939
- "metadata": {},
940
- "outputs": [],
941
- "source": [
942
- "df2 = df[cond]\n",
943
- "df2[\"fbg\"] = df2[\"fbg_value\"]\n",
944
- "df2.loc[df[\"fbg_value\"].notna() & df2[\"fbg2_value\"].notna(), \"fbg\"] = df2[\"fbg2_value\"]\n",
945
- "df2[\"fbg\"] = pd.to_numeric(df2[\"fbg\"])"
946
- ]
947
- },
948
- {
949
- "cell_type": "code",
950
- "execution_count": null,
951
- "id": "68",
952
- "metadata": {},
953
- "outputs": [],
954
- "source": [
955
- "df2[df2[\"fbg2_value\"].notna()][[\"fbg\", \"fbg_value\",\"fbg2_value\"]]"
956
- ]
957
- },
958
- {
959
- "cell_type": "code",
960
- "execution_count": null,
961
- "id": "69",
962
- "metadata": {},
963
- "outputs": [],
964
- "source": [
965
- "df2['fbg'].describe()"
966
- ]
967
- },
968
- {
969
- "cell_type": "code",
970
- "execution_count": null,
971
- "id": "70",
972
- "metadata": {},
973
- "outputs": [],
974
- "source": []
975
- },
976
- {
977
- "cell_type": "code",
978
- "execution_count": null,
979
- "id": "71",
980
- "metadata": {},
981
- "outputs": [],
982
- "source": []
983
- },
984
- {
985
- "cell_type": "code",
986
- "execution_count": null,
987
- "id": "72",
988
- "metadata": {},
989
- "outputs": [],
990
- "source": [
991
- "# PART TWO\n",
992
- "# \"congestive_heart_failure\",\n",
993
- "# \"liver_disease\",\n",
994
- "# \"alcoholism\",\n",
995
- "# \"acute_metabolic_acidosis\",\n",
996
- "# \"renal_function_condition\",\n",
997
- "# \"tissue_hypoxia_condition\",\n",
998
- "# \"acute_condition\",\n",
999
- "# \"metformin_sensitivity\","
1000
- ]
1001
- },
1002
- {
1003
- "cell_type": "code",
1004
- "execution_count": null,
1005
- "id": "73",
1006
- "metadata": {},
1007
- "outputs": [],
1008
- "source": [
1009
- "# part one variables\n",
1010
- "\n",
1011
- "# \"meta_phase_two\",\n",
1012
- "# \"hiv_pos\",\n",
1013
- "# \"art_six_months\",\n",
1014
- "# \"on_rx_stable\",\n",
1015
- "# \"vl_undetectable\",\n",
1016
- "# \"lives_nearby\",\n",
1017
- "# \"staying_nearby_12\",\n",
1018
- "# \"pregnant\",\n"
1019
- ]
1020
- },
1021
- {
1022
- "cell_type": "code",
1023
- "execution_count": null,
1024
- "id": "74",
1025
- "metadata": {},
1026
- "outputs": [],
1027
- "source": []
1028
- },
1029
- {
1030
- "cell_type": "code",
1031
- "execution_count": null,
1032
- "id": "75",
1033
- "metadata": {},
1034
- "outputs": [],
1035
- "source": [
1036
- "# only fasted for 7h\n",
1037
- "df[df.subject_identifier==\"105-30-0164-8\"].to_dict()"
1038
- ]
1039
- },
1040
- {
1041
- "cell_type": "code",
1042
- "execution_count": null,
1043
- "id": "76",
1044
- "metadata": {},
1045
- "outputs": [],
1046
- "source": [
1047
- "df[~(df.subject_identifier.isna())][[\"fasted\", \"fasted_duration_delta\"]]\n"
1048
- ]
1049
- },
1050
- {
1051
- "cell_type": "code",
1052
- "execution_count": null,
1053
- "id": "77",
1054
- "metadata": {},
1055
- "outputs": [],
1056
- "source": []
1057
- },
1058
- {
1059
- "cell_type": "code",
1060
- "execution_count": null,
1061
- "id": "78",
1062
- "metadata": {},
1063
- "outputs": [],
1064
- "source": []
1065
- },
1066
- {
1067
- "cell_type": "code",
1068
- "execution_count": null,
1069
- "id": "79",
1070
- "metadata": {},
1071
- "outputs": [],
1072
- "source": [
1073
- "from meta_prn.models import OnSchedule, OffSchedule, OnScheduleDmReferral, OffScheduleDmReferral\n",
1074
- "df_on_meta = read_frame(OnSchedule.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
1075
- "df_off_meta = read_frame(OffSchedule.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n",
1076
- "df_on = read_frame(OnScheduleDmReferral.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
1077
- "df_off = read_frame(OffScheduleDmReferral.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n"
1078
- ]
1079
- },
1080
- {
1081
- "cell_type": "markdown",
1082
- "id": "80",
1083
- "metadata": {},
1084
- "source": []
1085
- },
1086
- {
1087
- "cell_type": "code",
1088
- "execution_count": null,
1089
- "id": "81",
1090
- "metadata": {},
1091
- "outputs": [],
1092
- "source": [
1093
- "def get_meta_duration(s):\n",
1094
- " meta_off = get_utcnow() if pd.isna(s[\"meta_offschedule_datetime\"]) else s[\"meta_offschedule_datetime\"]\n",
1095
- " return meta_off - s[\"meta_onschedule_datetime\"] \n",
1096
- "\n",
1097
- "def get_dm_duration(s):\n",
1098
- " dm_off = get_utcnow() if pd.isna(s[\"dm_offschedule_datetime\"]) else s[\"dm_offschedule_datetime\"]\n",
1099
- " return dm_off - s[\"dm_onschedule_datetime\"] \n",
1100
- "\n",
1101
- "df_status = pd.merge(df_on_meta, df_off_meta, on=\"subject_identifier\", how=\"left\") \n",
1102
- "df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\"]\n",
1103
- "df_status = df_status.merge(df_on, on=\"subject_identifier\", how=\"left\")\n",
1104
- "df_status = df_status.merge(df_off, on=\"subject_identifier\", how=\"left\")\n",
1105
- "df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\", \"dm_onschedule_datetime\", \"dm_offschedule_datetime\"]\n",
1106
- "df_status[\"meta_duration\"] = df_status.apply(get_meta_duration, axis=1)\n",
1107
- "df_status[\"meta_duration_days\"] = df_status[\"meta_duration\"].dt.days\n",
1108
- "df_status[\"dm_duration\"] = df_status.apply(get_dm_duration, axis=1)\n",
1109
- "df_status[\"dm_duration_days\"] = df_status[\"dm_duration\"].dt.days\n",
1110
- "df_status.to_csv(report_folder / \"meta_schedule_status.csv\", index=False)"
1111
- ]
1112
- },
1113
- {
1114
- "cell_type": "code",
1115
- "execution_count": null,
1116
- "id": "82",
1117
- "metadata": {},
1118
- "outputs": [],
1119
- "source": [
1120
- "df_on = df_on.merge(df_off, on=\"subject_identifier\", how=\"left\")\n"
1121
- ]
1122
- },
1123
- {
1124
- "cell_type": "code",
1125
- "execution_count": null,
1126
- "id": "83",
1127
- "metadata": {},
1128
- "outputs": [],
1129
- "source": [
1130
- "from edc_utils import get_utcnow\n",
1131
- "\n",
1132
- "now = get_utcnow()\n",
1133
- "df_on[\"duration\"] = now - df_on[\"onschedule_datetime\"] "
1134
- ]
1135
- },
1136
- {
1137
- "cell_type": "code",
1138
- "execution_count": null,
1139
- "id": "84",
1140
- "metadata": {},
1141
- "outputs": [],
1142
- "source": [
1143
- "df_on[df_on.duration >= pd.Timedelta(days=182)].to_stata\n"
1144
- ]
1145
- },
1146
- {
1147
- "cell_type": "code",
1148
- "execution_count": null,
1149
- "id": "85",
1150
- "metadata": {},
1151
- "outputs": [],
1152
- "source": []
1153
- }
1154
- ],
1155
- "metadata": {
1156
- "kernelspec": {
1157
- "display_name": "Python 3 (ipykernel)",
1158
- "language": "python",
1159
- "name": "python3"
1160
- },
1161
- "language_info": {
1162
- "codemirror_mode": {
1163
- "name": "ipython",
1164
- "version": 3
1165
- },
1166
- "file_extension": ".py",
1167
- "mimetype": "text/x-python",
1168
- "name": "python",
1169
- "nbconvert_exporter": "python",
1170
- "pygments_lexer": "ipython3",
1171
- "version": "3.12.4"
1172
- }
1173
- },
1174
- "nbformat": 4,
1175
- "nbformat_minor": 5
1176
- }