meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,958 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%load_ext sql\n",
11
- "%sql mysql+mysqldb://root:cc3721b@127.0.0.1:3306/meta3_production\n",
12
- "\n",
13
- "import pandas as pd\n",
14
- "from dj_notebook import activate\n",
15
- "import numpy as np\n",
16
- "import matplotlib.pyplot as plt\n",
17
- "import seaborn as sns\n",
18
- "\n",
19
- "plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")"
20
- ]
21
- },
22
- {
23
- "cell_type": "code",
24
- "execution_count": null,
25
- "id": "1",
26
- "metadata": {},
27
- "outputs": [],
28
- "source": [
29
- "from meta_screening.models import SubjectScreening\n",
30
- "from django_pandas.io import read_frame\n"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "id": "2",
37
- "metadata": {},
38
- "outputs": [],
39
- "source": [
40
- "qs = SubjectScreening.objects.all()\n",
41
- "df = read_frame(qs)\n"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "3",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": []
51
- },
52
- {
53
- "cell_type": "code",
54
- "execution_count": null,
55
- "id": "4",
56
- "metadata": {},
57
- "outputs": [],
58
- "source": [
59
- "df[\"meta_phase_two\"] = df[\"meta_phase_two\"].apply(lambda x: \"No\" if not x else x)"
60
- ]
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": null,
65
- "id": "5",
66
- "metadata": {},
67
- "outputs": [],
68
- "source": [
69
- "pd.crosstab(df['gender'], 'subjects')"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "6",
76
- "metadata": {},
77
- "outputs": [],
78
- "source": [
79
- "list(df.columns)"
80
- ]
81
- },
82
- {
83
- "cell_type": "code",
84
- "execution_count": null,
85
- "id": "7",
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "gender = pd.crosstab(index=df['gender'], columns=[\"gender\"], margins=True)\n",
90
- "gender.columns = [\"gender\", 'rowtotal']\n",
91
- "gender.index = ['female', 'male', 'coltotal']\n",
92
- "gender"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "8",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "# counts by site - row, column\n",
103
- "gender_by_site = pd.crosstab(df['site'], df['gender'], margins=True)\n",
104
- "gender_by_site.columns = [\"female\", \"male\", \"rowtotal\"]\n",
105
- "gender_by_site.index = [\"amana\", \"hindu-mandal\", \"mnazi-moja\", \"mwananyamala\", \"temeke\", \"coltotal\"]\n",
106
- "gender_by_site"
107
- ]
108
- },
109
- {
110
- "cell_type": "code",
111
- "execution_count": null,
112
- "id": "9",
113
- "metadata": {},
114
- "outputs": [],
115
- "source": [
116
- "# proportion of counts by row, column\n",
117
- "gender_by_site/gender_by_site.loc[\"coltotal\",\"rowtotal\"]"
118
- ]
119
- },
120
- {
121
- "cell_type": "code",
122
- "execution_count": null,
123
- "id": "10",
124
- "metadata": {},
125
- "outputs": [],
126
- "source": [
127
- "# proportion of counts by column\n",
128
- "gender_by_site/gender_by_site.loc[\"coltotal\"]"
129
- ]
130
- },
131
- {
132
- "cell_type": "code",
133
- "execution_count": null,
134
- "id": "11",
135
- "metadata": {},
136
- "outputs": [],
137
- "source": [
138
- "# proportion of counts by row\n",
139
- "prop = gender_by_site.div(gender_by_site[\"rowtotal\"], axis=0)\n",
140
- "prop"
141
- ]
142
- },
143
- {
144
- "cell_type": "code",
145
- "execution_count": null,
146
- "id": "12",
147
- "metadata": {},
148
- "outputs": [],
149
- "source": [
150
- "# stats for female by site => mean=.718, well balanced\n",
151
- "prop['female'].describe()"
152
- ]
153
- },
154
- {
155
- "cell_type": "code",
156
- "execution_count": null,
157
- "id": "13",
158
- "metadata": {},
159
- "outputs": [],
160
- "source": [
161
- "# part one variables\n",
162
- "\n",
163
- "# \"meta_phase_two\",\n",
164
- "# \"hiv_pos\",\n",
165
- "# \"art_six_months\",\n",
166
- "# \"on_rx_stable\",\n",
167
- "# \"vl_undetectable\",\n",
168
- "# \"lives_nearby\",\n",
169
- "# \"staying_nearby_12\",\n",
170
- "# \"pregnant\",\n"
171
- ]
172
- },
173
- {
174
- "cell_type": "code",
175
- "execution_count": null,
176
- "id": "14",
177
- "metadata": {},
178
- "outputs": [],
179
- "source": []
180
- },
181
- {
182
- "cell_type": "code",
183
- "execution_count": null,
184
- "id": "15",
185
- "metadata": {},
186
- "outputs": [],
187
- "source": [
188
- "meta_phase_two = pd.crosstab(index=df['meta_phase_two'], columns=[df[\"eligible\"],df[\"gender\"]], margins=True)\n",
189
- "# meta_phase_two.columns = [\"female\", \"male\", \"rowtotal\"]\n",
190
- "# meta_phase_two.index = [\"no\", \"yes\", \"coltotal\"]\n",
191
- "meta_phase_two"
192
- ]
193
- },
194
- {
195
- "cell_type": "code",
196
- "execution_count": null,
197
- "id": "16",
198
- "metadata": {},
199
- "outputs": [],
200
- "source": [
201
- "on_rx_stable = pd.crosstab(index=df['on_rx_stable'], columns=df[\"gender\"], margins=True)\n",
202
- "on_rx_stable.columns = [\"female\", \"male\", \"rowtotal\"]\n",
203
- "on_rx_stable.index = [\"no\", \"n/a\", \"yes\", \"coltotal\"]\n",
204
- "on_rx_stable"
205
- ]
206
- },
207
- {
208
- "cell_type": "code",
209
- "execution_count": null,
210
- "id": "17",
211
- "metadata": {},
212
- "outputs": [],
213
- "source": [
214
- "on_dm_medication = pd.crosstab(index=df['on_dm_medication'], columns=df[\"gender\"], margins=True)\n",
215
- "on_dm_medication.columns = [\"female\", \"male\", \"rowtotal\"]\n",
216
- "on_dm_medication.index = [\"no\", \"yes\", \"coltotal\"]\n",
217
- "on_dm_medication"
218
- ]
219
- },
220
- {
221
- "cell_type": "code",
222
- "execution_count": null,
223
- "id": "18",
224
- "metadata": {},
225
- "outputs": [],
226
- "source": [
227
- "hiv_pos = pd.crosstab(index=df['hiv_pos'], columns=df[\"gender\"], margins=True)\n",
228
- "hiv_pos.columns = [\"female\", \"male\", \"rowtotal\"]\n",
229
- "hiv_pos.index = [\"no\", \"yes\", \"coltotal\"]\n",
230
- "hiv_pos"
231
- ]
232
- },
233
- {
234
- "cell_type": "code",
235
- "execution_count": null,
236
- "id": "19",
237
- "metadata": {},
238
- "outputs": [],
239
- "source": [
240
- "art_six_months = pd.crosstab(index=df['art_six_months'], columns=df[\"gender\"], margins=True)\n",
241
- "art_six_months.columns = [\"female\", \"male\", \"rowtotal\"]\n",
242
- "art_six_months.index = [\"no\", \"n/a\", \"yes\", \"coltotal\"]\n",
243
- "art_six_months"
244
- ]
245
- },
246
- {
247
- "cell_type": "code",
248
- "execution_count": null,
249
- "id": "20",
250
- "metadata": {},
251
- "outputs": [],
252
- "source": [
253
- "vl_undetectable = pd.crosstab(index=df['vl_undetectable'], columns=df[\"gender\"], margins=True)\n",
254
- "vl_undetectable.columns = [\"female\", \"male\", \"rowtotal\"]\n",
255
- "vl_undetectable.index = [\"no\", \"n/a\", \"yes\", \"coltotal\"]\n",
256
- "vl_undetectable"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": null,
262
- "id": "21",
263
- "metadata": {},
264
- "outputs": [],
265
- "source": [
266
- "lives_nearby = pd.crosstab(index=df['lives_nearby'], columns=df[\"gender\"], margins=True)\n",
267
- "lives_nearby.columns = [\"female\", \"male\", \"rowtotal\"]\n",
268
- "lives_nearby.index = [\"no\", \"yes\", \"coltotal\"]\n",
269
- "lives_nearby"
270
- ]
271
- },
272
- {
273
- "cell_type": "code",
274
- "execution_count": null,
275
- "id": "22",
276
- "metadata": {},
277
- "outputs": [],
278
- "source": [
279
- "staying_nearby_12 = pd.crosstab(index=df['staying_nearby_12'], columns=df[\"gender\"], margins=True)\n",
280
- "staying_nearby_12.columns = [\"female\", \"male\", \"rowtotal\"]\n",
281
- "staying_nearby_12.index = [\"no\", \"yes\", \"coltotal\"]\n",
282
- "staying_nearby_12"
283
- ]
284
- },
285
- {
286
- "cell_type": "code",
287
- "execution_count": null,
288
- "id": "23",
289
- "metadata": {},
290
- "outputs": [],
291
- "source": [
292
- "pregnant = pd.crosstab(index=df['pregnant'], columns=df[\"gender\"], margins=True)\n",
293
- "pregnant.columns = [\"female\", \"male\", \"rowtotal\"]\n",
294
- "pregnant.index = [\"no\", \"n/a\", \"yes\", \"coltotal\"]\n",
295
- "pregnant"
296
- ]
297
- },
298
- {
299
- "cell_type": "code",
300
- "execution_count": null,
301
- "id": "24",
302
- "metadata": {},
303
- "outputs": [],
304
- "source": [
305
- "eligible_part_one = pd.crosstab(index=df['eligible_part_one'], columns=df[\"gender\"], margins=True)\n",
306
- "eligible_part_one.columns = [\"female\", \"male\", \"rowtotal\"]\n",
307
- "eligible_part_one.index = [\"no\", \"yes\", \"coltotal\"]\n",
308
- "eligible_part_one"
309
- ]
310
- },
311
- {
312
- "cell_type": "code",
313
- "execution_count": null,
314
- "id": "25",
315
- "metadata": {},
316
- "outputs": [],
317
- "source": [
318
- "# df_part_one eligible\n",
319
- "# \"meta_phase_two\",\n",
320
- "# \"hiv_pos\",\n",
321
- "# \"art_six_months\",\n",
322
- "# \"on_rx_stable\",\n",
323
- "# \"vl_undetectable\",\n",
324
- "# \"lives_nearby\",\n",
325
- "# \"staying_nearby_12\",\n",
326
- "# \"pregnant\",\n",
327
- "\n",
328
- "df_part_one = df[(df[\"meta_phase_two\"]==\"No\") & (df[\"hiv_pos\"]==\"Yes\") & (df[\"art_six_months\"]==\"Yes\") & (df[\"on_rx_stable\"]==\"Yes\") & (df[\"vl_undetectable\"]==\"Yes\") & (df[\"lives_nearby\"]==\"Yes\") & (df[\"staying_nearby_12\"]==\"Yes\") & (df[\"pregnant\"]!=\"Yes\")]\n",
329
- "len(df_part_one)\n"
330
- ]
331
- },
332
- {
333
- "cell_type": "code",
334
- "execution_count": null,
335
- "id": "26",
336
- "metadata": {},
337
- "outputs": [],
338
- "source": [
339
- "df_p1_eligible = df[df[\"meta_phase_two\"]!=\"Yes\"]['meta_phase_two']"
340
- ]
341
- },
342
- {
343
- "cell_type": "code",
344
- "execution_count": null,
345
- "id": "27",
346
- "metadata": {},
347
- "outputs": [],
348
- "source": [
349
- "# PART TWO\n",
350
- "# \"congestive_heart_failure\",\n",
351
- "# \"liver_disease\",\n",
352
- "# \"alcoholism\",\n",
353
- "# \"acute_metabolic_acidosis\",\n",
354
- "# \"renal_function_condition\",\n",
355
- "# \"tissue_hypoxia_condition\",\n",
356
- "# \"acute_condition\",\n",
357
- "# \"metformin_sensitivity\",\n",
358
- "# \"has_dm\",\n",
359
- "# \"on_dm_medication\","
360
- ]
361
- },
362
- {
363
- "cell_type": "code",
364
- "execution_count": null,
365
- "id": "28",
366
- "metadata": {},
367
- "outputs": [],
368
- "source": [
369
- "\n",
370
- "congestive_heart_failure = pd.crosstab(index=df['congestive_heart_failure'], columns=df[\"gender\"], margins=True)\n",
371
- "congestive_heart_failure.columns = [\"female\", \"male\", \"rowtotal\"]\n",
372
- "congestive_heart_failure.index = [\"no\", \"yes\", \"coltotal\"]\n",
373
- "congestive_heart_failure"
374
- ]
375
- },
376
- {
377
- "cell_type": "code",
378
- "execution_count": null,
379
- "id": "29",
380
- "metadata": {},
381
- "outputs": [],
382
- "source": [
383
- "liver_disease = pd.crosstab(index=df['liver_disease'], columns=df[\"gender\"], margins=True)\n",
384
- "liver_disease.columns = [\"female\", \"male\", \"rowtotal\"]\n",
385
- "liver_disease.index = [\"no\", \"yes\", \"coltotal\"]\n",
386
- "liver_disease"
387
- ]
388
- },
389
- {
390
- "cell_type": "code",
391
- "execution_count": null,
392
- "id": "30",
393
- "metadata": {},
394
- "outputs": [],
395
- "source": [
396
- "alcoholism = pd.crosstab(index=df['alcoholism'], columns=df[\"gender\"], margins=True)\n",
397
- "alcoholism.columns = [\"female\", \"male\", \"rowtotal\"]\n",
398
- "alcoholism.index = [\"no\", \"yes\", \"coltotal\"]\n",
399
- "alcoholism"
400
- ]
401
- },
402
- {
403
- "cell_type": "code",
404
- "execution_count": null,
405
- "id": "31",
406
- "metadata": {},
407
- "outputs": [],
408
- "source": [
409
- "\n",
410
- "acute_metabolic_acidosis = pd.crosstab(index=df['acute_metabolic_acidosis'], columns=df[\"gender\"], margins=True)\n",
411
- "acute_metabolic_acidosis.columns = [\"female\", \"male\", \"rowtotal\"]\n",
412
- "acute_metabolic_acidosis.index = [\"no\", \"yes\", \"coltotal\"]\n",
413
- "acute_metabolic_acidosis"
414
- ]
415
- },
416
- {
417
- "cell_type": "code",
418
- "execution_count": null,
419
- "id": "32",
420
- "metadata": {},
421
- "outputs": [],
422
- "source": [
423
- "\n",
424
- "renal_function_condition = pd.crosstab(index=df['renal_function_condition'], columns=df[\"gender\"], margins=True)\n",
425
- "renal_function_condition.columns = [\"female\", \"male\", \"rowtotal\"]\n",
426
- "renal_function_condition.index = [\"no\", \"yes\", \"coltotal\"]\n",
427
- "renal_function_condition"
428
- ]
429
- },
430
- {
431
- "cell_type": "code",
432
- "execution_count": null,
433
- "id": "33",
434
- "metadata": {},
435
- "outputs": [],
436
- "source": [
437
- "\n",
438
- "tissue_hypoxia_condition = pd.crosstab(index=df['tissue_hypoxia_condition'], columns=df[\"gender\"], margins=True)\n",
439
- "tissue_hypoxia_condition.columns = [\"female\", \"male\", \"rowtotal\"]\n",
440
- "tissue_hypoxia_condition.index = [\"no\", \"yes\", \"coltotal\"]\n",
441
- "tissue_hypoxia_condition"
442
- ]
443
- },
444
- {
445
- "cell_type": "code",
446
- "execution_count": null,
447
- "id": "34",
448
- "metadata": {},
449
- "outputs": [],
450
- "source": [
451
- "\n",
452
- "metformin_sensitivity = pd.crosstab(index=df['metformin_sensitivity'], columns=df[\"gender\"], margins=True)\n",
453
- "metformin_sensitivity.columns = [\"female\", \"male\", \"rowtotal\"]\n",
454
- "metformin_sensitivity.index = [\"no\", \"yes\", \"coltotal\"]\n",
455
- "metformin_sensitivity"
456
- ]
457
- },
458
- {
459
- "cell_type": "code",
460
- "execution_count": null,
461
- "id": "35",
462
- "metadata": {},
463
- "outputs": [],
464
- "source": [
465
- "\n",
466
- "acute_condition = pd.crosstab(index=df['acute_condition'], columns=df[\"gender\"], margins=True)\n",
467
- "acute_condition.columns = [\"female\", \"male\", \"rowtotal\"]\n",
468
- "acute_condition.index = [\"no\", \"yes\", \"coltotal\"]\n",
469
- "acute_condition"
470
- ]
471
- },
472
- {
473
- "cell_type": "code",
474
- "execution_count": null,
475
- "id": "36",
476
- "metadata": {},
477
- "outputs": [],
478
- "source": [
479
- "# has_dm by gender (if not eligible_part_one)\n",
480
- "has_dm = pd.crosstab(index=df[df[\"eligible_part_one\"]==\"Yes\"]['has_dm'], columns=df[\"gender\"], margins=True)\n",
481
- "has_dm.columns = [\"female\", \"male\", \"rowtotal\"]\n",
482
- "has_dm.index = [\"no\", \"yes\", \"coltotal\"]\n",
483
- "has_dm"
484
- ]
485
- },
486
- {
487
- "cell_type": "code",
488
- "execution_count": null,
489
- "id": "37",
490
- "metadata": {},
491
- "outputs": [],
492
- "source": [
493
- "# has_dm by gender, eligible_part_one\n",
494
- "has_dm = pd.crosstab(index=df['has_dm'], columns=[df[\"gender\"],df[\"eligible_part_one\"]], margins=True)\n",
495
- "# has_dm.columns = [\"female\", \"male\", \"rowtotal\"]\n",
496
- "# has_dm.index = [\"no\", \"yes\", \"coltotal\"]\n",
497
- "has_dm"
498
- ]
499
- },
500
- {
501
- "cell_type": "code",
502
- "execution_count": null,
503
- "id": "38",
504
- "metadata": {},
505
- "outputs": [],
506
- "source": [
507
- "# has_dm by gender\n",
508
- "has_dm = pd.crosstab(index=df['has_dm'], columns=df[\"gender\"], margins=True)\n",
509
- "has_dm.columns = [\"female\", \"male\", \"rowtotal\"]\n",
510
- "has_dm.index = [\"no\", \"yes\", \"coltotal\"]\n",
511
- "has_dm"
512
- ]
513
- },
514
- {
515
- "cell_type": "code",
516
- "execution_count": null,
517
- "id": "39",
518
- "metadata": {},
519
- "outputs": [],
520
- "source": [
521
- "has_dm.div(has_dm[\"rowtotal\"], axis=0)"
522
- ]
523
- },
524
- {
525
- "cell_type": "code",
526
- "execution_count": null,
527
- "id": "40",
528
- "metadata": {},
529
- "outputs": [],
530
- "source": [
531
- "has_dm / len(df)"
532
- ]
533
- },
534
- {
535
- "cell_type": "code",
536
- "execution_count": null,
537
- "id": "41",
538
- "metadata": {},
539
- "outputs": [],
540
- "source": [
541
- "df[\"eligible_part_one\"].value_counts()"
542
- ]
543
- },
544
- {
545
- "cell_type": "code",
546
- "execution_count": null,
547
- "id": "42",
548
- "metadata": {},
549
- "outputs": [],
550
- "source": [
551
- "df[\"eligible_part_two\"].value_counts()"
552
- ]
553
- },
554
- {
555
- "cell_type": "code",
556
- "execution_count": null,
557
- "id": "43",
558
- "metadata": {},
559
- "outputs": [],
560
- "source": [
561
- "df[\"eligible_part_three\"].value_counts()"
562
- ]
563
- },
564
- {
565
- "cell_type": "code",
566
- "execution_count": null,
567
- "id": "44",
568
- "metadata": {},
569
- "outputs": [],
570
- "source": [
571
- "df[\"eligible\"].value_counts()"
572
- ]
573
- },
574
- {
575
- "cell_type": "code",
576
- "execution_count": null,
577
- "id": "45",
578
- "metadata": {},
579
- "outputs": [],
580
- "source": [
581
- "df[\"consented\"].value_counts()"
582
- ]
583
- },
584
- {
585
- "cell_type": "code",
586
- "execution_count": null,
587
- "id": "46",
588
- "metadata": {},
589
- "outputs": [],
590
- "source": [
591
- "df[\"eligible\"].value_counts()\n"
592
- ]
593
- },
594
- {
595
- "cell_type": "code",
596
- "execution_count": null,
597
- "id": "47",
598
- "metadata": {},
599
- "outputs": [],
600
- "source": [
601
- "pd.crosstab(index=df['eligible'], columns=df[\"gender\"], margins=True)"
602
- ]
603
- },
604
- {
605
- "cell_type": "code",
606
- "execution_count": null,
607
- "id": "48",
608
- "metadata": {},
609
- "outputs": [],
610
- "source": [
611
- "# let's start here for the consort chart"
612
- ]
613
- },
614
- {
615
- "cell_type": "code",
616
- "execution_count": null,
617
- "id": "49",
618
- "metadata": {},
619
- "outputs": [],
620
- "source": [
621
- "dm1 = df[df[\"meta_phase_two\"]==\"No\"]\n",
622
- "dm1 = pd.crosstab(index=dm1['eligible'], columns=df[\"gender\"], margins=True, dropna=False)\n",
623
- "dm1.columns = [\"female\", \"male\", \"rowtotal\"]\n",
624
- "dm1.index = [\"no\", \"yes\", \"coltotal\"]\n",
625
- "dm1"
626
- ]
627
- },
628
- {
629
- "cell_type": "code",
630
- "execution_count": null,
631
- "id": "50",
632
- "metadata": {},
633
- "outputs": [],
634
- "source": [
635
- "df1 = df[(df[\"meta_phase_two\"]==\"No\")]"
636
- ]
637
- },
638
- {
639
- "cell_type": "code",
640
- "execution_count": null,
641
- "id": "51",
642
- "metadata": {},
643
- "outputs": [],
644
- "source": [
645
- "hiv_pos = pd.crosstab(index=df1['hiv_pos'], columns=df1[\"gender\"], margins=True)\n",
646
- "hiv_pos.columns = [\"female\", \"male\", \"rowtotal\"]\n",
647
- "hiv_pos.index = [\"no\", \"yes\", \"coltotal\"]\n",
648
- "hiv_pos"
649
- ]
650
- },
651
- {
652
- "cell_type": "code",
653
- "execution_count": null,
654
- "id": "52",
655
- "metadata": {},
656
- "outputs": [],
657
- "source": [
658
- "art_six_months = pd.crosstab(index=df1['art_six_months'], columns=df1[\"gender\"], margins=True)\n",
659
- "art_six_months.columns = [\"female\", \"male\", \"rowtotal\"]\n",
660
- "art_six_months.index = [\"no\", \"na\", \"yes\", \"coltotal\"]\n",
661
- "art_six_months"
662
- ]
663
- },
664
- {
665
- "cell_type": "code",
666
- "execution_count": null,
667
- "id": "53",
668
- "metadata": {},
669
- "outputs": [],
670
- "source": [
671
- "on_rx_stable = pd.crosstab(index=df1['on_rx_stable'], columns=df1[\"gender\"], margins=True)\n",
672
- "on_rx_stable.columns = [\"female\", \"male\", \"rowtotal\"]\n",
673
- "on_rx_stable.index = [\"no\", \"na\", \"yes\", \"coltotal\"]\n",
674
- "on_rx_stable"
675
- ]
676
- },
677
- {
678
- "cell_type": "code",
679
- "execution_count": null,
680
- "id": "54",
681
- "metadata": {},
682
- "outputs": [],
683
- "source": [
684
- "vl_undetectable = pd.crosstab(index=df1['vl_undetectable'], columns=df1[\"gender\"], margins=True)\n",
685
- "vl_undetectable.columns = [\"female\", \"male\", \"rowtotal\"]\n",
686
- "vl_undetectable.index = [\"no\", \"na\", \"yes\", \"coltotal\"]\n",
687
- "vl_undetectable"
688
- ]
689
- },
690
- {
691
- "cell_type": "code",
692
- "execution_count": null,
693
- "id": "55",
694
- "metadata": {},
695
- "outputs": [],
696
- "source": [
697
- "len(df1)"
698
- ]
699
- },
700
- {
701
- "cell_type": "code",
702
- "execution_count": null,
703
- "id": "56",
704
- "metadata": {},
705
- "outputs": [],
706
- "source": [
707
- "\n",
708
- "df2 = df1[(df1[\"hiv_pos\"]==\"Yes\") & (df1[\"art_six_months\"]!=\"No\") & (df1[\"on_rx_stable\"]!=\"No\") & (df1[\"vl_undetectable\"]!=\"No\")]\n",
709
- "len(df2)\n"
710
- ]
711
- },
712
- {
713
- "cell_type": "code",
714
- "execution_count": null,
715
- "id": "57",
716
- "metadata": {},
717
- "outputs": [],
718
- "source": [
719
- "dftmp = pd.crosstab(index=df2['eligible'], columns=df2[\"gender\"], margins=True, dropna=False)\n",
720
- "dftmp.columns = [\"female\", \"male\", \"rowtotal\"]\n",
721
- "dftmp.index = [\"no\", \"yes\", \"coltotal\"]\n",
722
- "dftmp"
723
- ]
724
- },
725
- {
726
- "cell_type": "code",
727
- "execution_count": null,
728
- "id": "58",
729
- "metadata": {},
730
- "outputs": [],
731
- "source": [
732
- "# \"lives_nearby\",\n",
733
- "# \"staying_nearby_12\",\n",
734
- "# \"pregnant\",\n",
735
- "\n",
736
- "df3 = df2[(df2[\"lives_nearby\"]==\"Yes\") & (df2[\"staying_nearby_12\"]==\"Yes\")]\n",
737
- "len(df3)\n"
738
- ]
739
- },
740
- {
741
- "cell_type": "code",
742
- "execution_count": null,
743
- "id": "59",
744
- "metadata": {},
745
- "outputs": [],
746
- "source": [
747
- "dftmp = pd.crosstab(index=df3['eligible'], columns=df3[\"gender\"], margins=True, dropna=False)\n",
748
- "dftmp.columns = [\"female\", \"male\", \"rowtotal\"]\n",
749
- "dftmp.index = [\"no\", \"yes\", \"coltotal\"]\n",
750
- "dftmp"
751
- ]
752
- },
753
- {
754
- "cell_type": "code",
755
- "execution_count": null,
756
- "id": "60",
757
- "metadata": {},
758
- "outputs": [],
759
- "source": [
760
- "lives_nearby = pd.crosstab(index=df2['lives_nearby'], columns=df2[\"gender\"], margins=True, dropna=False)\n",
761
- "lives_nearby.columns = [\"female\", \"male\", \"rowtotal\"]\n",
762
- "lives_nearby.index = [\"no\", \"yes\", \"coltotal\"]\n",
763
- "lives_nearby"
764
- ]
765
- },
766
- {
767
- "cell_type": "code",
768
- "execution_count": null,
769
- "id": "61",
770
- "metadata": {},
771
- "outputs": [],
772
- "source": [
773
- "tmp = df2[df2['lives_nearby']==\"Yes\"]\n",
774
- "staying_nearby_12 = pd.crosstab(index=tmp['staying_nearby_12'], columns=tmp[\"gender\"], margins=True, dropna=False)\n",
775
- "staying_nearby_12.columns = [\"female\", \"male\", \"rowtotal\"]\n",
776
- "staying_nearby_12.index = [\"no\", \"yes\", \"coltotal\"]\n",
777
- "staying_nearby_12"
778
- ]
779
- },
780
- {
781
- "cell_type": "code",
782
- "execution_count": null,
783
- "id": "62",
784
- "metadata": {},
785
- "outputs": [],
786
- "source": [
787
- "df4 = df3[(df3[\"pregnant\"]!=\"Yes\")]\n",
788
- "len(df4)\n"
789
- ]
790
- },
791
- {
792
- "cell_type": "code",
793
- "execution_count": null,
794
- "id": "63",
795
- "metadata": {},
796
- "outputs": [],
797
- "source": [
798
- "dftmp = pd.crosstab(index=df4['eligible'], columns=df4[\"gender\"], margins=True, dropna=False)\n",
799
- "dftmp.columns = [\"female\", \"male\", \"rowtotal\"]\n",
800
- "dftmp.index = [\"no\", \"yes\", \"coltotal\"]\n",
801
- "dftmp"
802
- ]
803
- },
804
- {
805
- "cell_type": "code",
806
- "execution_count": null,
807
- "id": "64",
808
- "metadata": {},
809
- "outputs": [],
810
- "source": [
811
- "dftmp = pd.crosstab(index=df4['eligible_part_two'], columns=df4[\"gender\"], margins=True, dropna=True)\n",
812
- "# dftmp.columns = [\"female\", \"male\", \"rowtotal\"]\n",
813
- "# dftmp.index = [\"no\", \"yes\", \"coltotal\"]\n",
814
- "dftmp"
815
- ]
816
- },
817
- {
818
- "cell_type": "code",
819
- "execution_count": null,
820
- "id": "65",
821
- "metadata": {},
822
- "outputs": [],
823
- "source": [
824
- "# \"congestive_heart_failure\",\n",
825
- "# \"liver_disease\",\n",
826
- "# \"alcoholism\",\n",
827
- "# \"acute_metabolic_acidosis\",\n",
828
- "# \"renal_function_condition\",\n",
829
- "# \"tissue_hypoxia_condition\",\n",
830
- "# \"acute_condition\",\n",
831
- "# \"metformin_sensitivity\",\n",
832
- "# \"has_dm\",\n",
833
- "# \"on_dm_medication\","
834
- ]
835
- },
836
- {
837
- "cell_type": "code",
838
- "execution_count": null,
839
- "id": "66",
840
- "metadata": {},
841
- "outputs": [],
842
- "source": [
843
- "tmp1 = pd.crosstab(index=df4['acute_condition'], columns=tmp[\"gender\"], margins=True, dropna=False)\n",
844
- "tmp1.columns = [\"female\", \"male\", \"rowtotal\"]\n",
845
- "# tmp1.index = [\"no\", \"yes\", \"coltotal\"]\n",
846
- "tmp1"
847
- ]
848
- },
849
- {
850
- "cell_type": "code",
851
- "execution_count": null,
852
- "id": "67",
853
- "metadata": {},
854
- "outputs": [],
855
- "source": [
856
- "\n",
857
- "df5 = df4[(df4[\"congestive_heart_failure\"]!=\"Yes\") & (df4[\"liver_disease\"]!=\"Yes\") & (df4[\"alcoholism\"]!=\"Yes\") & (df4[\"acute_metabolic_acidosis\"]!=\"Yes\") & (df4[\"renal_function_condition\"]!=\"Yes\") & (df4[\"tissue_hypoxia_condition\"]!=\"Yes\") & (df4[\"acute_condition\"]!=\"Yes\")]\n",
858
- "len(df5)"
859
- ]
860
- },
861
- {
862
- "cell_type": "code",
863
- "execution_count": null,
864
- "id": "68",
865
- "metadata": {},
866
- "outputs": [],
867
- "source": [
868
- "dftmp = pd.crosstab(index=df5['eligible_part_two'], columns=df5[\"gender\"], margins=True, dropna=True)\n",
869
- "dftmp"
870
- ]
871
- },
872
- {
873
- "cell_type": "code",
874
- "execution_count": null,
875
- "id": "69",
876
- "metadata": {},
877
- "outputs": [],
878
- "source": [
879
- "tmp1 = pd.crosstab(index=df5['on_dm_medication'], columns=tmp[\"gender\"], margins=True, dropna=False)\n",
880
- "tmp1.columns = [\"female\", \"male\", \"rowtotal\"]\n",
881
- "# tmp1.index = [\"no\", \"yes\", \"coltotal\"]\n",
882
- "tmp1"
883
- ]
884
- },
885
- {
886
- "cell_type": "code",
887
- "execution_count": null,
888
- "id": "70",
889
- "metadata": {},
890
- "outputs": [],
891
- "source": [
892
- "df6 = df5[(df5[\"has_dm\"]==\"No\") & (df5[\"on_dm_medication\"]==\"No\") & (df5[\"metformin_sensitivity\"]==\"No\")]\n",
893
- "len(df6)"
894
- ]
895
- },
896
- {
897
- "cell_type": "code",
898
- "execution_count": null,
899
- "id": "71",
900
- "metadata": {},
901
- "outputs": [],
902
- "source": [
903
- "dftmp = pd.crosstab(index=df6['eligible_part_two'], columns=df6[\"gender\"], margins=True, dropna=True)\n",
904
- "dftmp"
905
- ]
906
- },
907
- {
908
- "cell_type": "code",
909
- "execution_count": null,
910
- "id": "72",
911
- "metadata": {},
912
- "outputs": [],
913
- "source": [
914
- "dftmp = pd.crosstab(index=df['eligible_part_two'], columns=df[\"gender\"], margins=True, dropna=True)\n",
915
- "dftmp"
916
- ]
917
- },
918
- {
919
- "cell_type": "code",
920
- "execution_count": null,
921
- "id": "73",
922
- "metadata": {},
923
- "outputs": [],
924
- "source": [
925
- "df['eligible_part_two'].values_count()"
926
- ]
927
- },
928
- {
929
- "cell_type": "code",
930
- "execution_count": null,
931
- "id": "74",
932
- "metadata": {},
933
- "outputs": [],
934
- "source": []
935
- }
936
- ],
937
- "metadata": {
938
- "kernelspec": {
939
- "display_name": "Python 3 (ipykernel)",
940
- "language": "python",
941
- "name": "python3"
942
- },
943
- "language_info": {
944
- "codemirror_mode": {
945
- "name": "ipython",
946
- "version": 3
947
- },
948
- "file_extension": ".py",
949
- "mimetype": "text/x-python",
950
- "name": "python",
951
- "nbconvert_exporter": "python",
952
- "pygments_lexer": "ipython3",
953
- "version": "3.12.2"
954
- }
955
- },
956
- "nbformat": 4,
957
- "nbformat_minor": 5
958
- }