meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,964 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import pandas as pd\n",
12
- "import numpy as np\n",
13
- "import math\n",
14
- "import matplotlib.pyplot as plt\n",
15
- "import scipy.stats as stats\n",
16
- "\n",
17
- "from dj_notebook import activate\n",
18
- "\n",
19
- "plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
20
- "# output is suppressed ut normally would spew out all the edc loading messages\n"
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": null,
26
- "id": "1",
27
- "metadata": {},
28
- "outputs": [],
29
- "source": [
30
- "# This notebook is incomplete / not working"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "id": "2",
37
- "metadata": {},
38
- "outputs": [],
39
- "source": [
40
- "from edc_analytics.custom_tables import BpTable\n",
41
- "from edc_analytics.table import Table\n",
42
- "from meta_screening.models import SubjectScreening\n",
43
- "from meta_subject.models import PhysicalExam, SubjectVisit\n",
44
- "from django_pandas.io import read_frame"
45
- ]
46
- },
47
- {
48
- "cell_type": "code",
49
- "execution_count": null,
50
- "id": "3",
51
- "metadata": {},
52
- "outputs": [],
53
- "source": [
54
- "default_columns = [\"id\", \"subject_identifier\", \"report_datetime\", \"visit_code\"]\n",
55
- "\n",
56
- "title_row = [] # ???????????????"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "4",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "# this step is slow, maybe because it is the first call to the DB\n",
67
- "qs_screening = SubjectScreening.objects.all()\n",
68
- "df = read_frame(qs_screening)\n"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "5",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "# backup the df\n",
79
- "df_screen = df.copy()\n",
80
- "# df = df_screen.copy()\n"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "id": "6",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "# convert all to float\n",
91
- "cols = [\"fbg_value\", \"fbg2_value\", \"ogtt_value\", \"ogtt2_value\", \"converted_fbg_value\", \n",
92
- " \"converted_fbg2_value\", \"converted_ogtt_value\", \"converted_ogtt2_value\",\n",
93
- " \"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\",\n",
94
- " \"waist_circumference\"]\n",
95
- "df[cols] = df[cols].apply(pd.to_numeric)"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": null,
101
- "id": "7",
102
- "metadata": {},
103
- "outputs": [],
104
- "source": [
105
- "\n",
106
- "# condition to include any glucose test\n",
107
- "cond_glu = (\n",
108
- " (df['fbg_value'].notna()) | \n",
109
- " (df['ogtt_value'].notna()) | \n",
110
- " (df['fbg2_value'].notna()) |\n",
111
- " (df['ogtt2_value'].notna())\n",
112
- ")\n",
113
- "\n",
114
- "# conditions for Male/Female\n",
115
- "male = (df[\"gender\"]==\"Male\")\n",
116
- "female = (df[\"gender\"]==\"Female\")\n",
117
- "\n",
118
- "# condition for art stable\n",
119
- "cond_art_stable = (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "8",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": []
129
- },
130
- {
131
- "cell_type": "code",
132
- "execution_count": null,
133
- "id": "9",
134
- "metadata": {},
135
- "outputs": [],
136
- "source": [
137
- "# lets fix some columns\n",
138
- "# has_dm fillna with unk\n",
139
- "df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
140
- "# lets create a column that summarizes lives_nearby and staying_nearby_12\n",
141
- "df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
142
- "\n",
143
- "\n",
144
- "# glucose\n",
145
- "# are all glucose fields filled? YES\n",
146
- "# for prefix in [\"fbg\", \"ogtt\", \"fbg2\", \"ogtt2\"]:\n",
147
- "# print(df[(df[f\"{prefix}_value\"].isna()) & (df[f\"converted_{prefix}_value\"].notna())][\"gender\"].count())\n",
148
- "# print(df[(df[f\"{prefix}_value\"].notna()) & (df[f\"converted_{prefix}_value\"].isna())][\"gender\"].count())\n",
149
- "\n",
150
- "# create fbg column\n",
151
- "df[\"fbg\"] = df[\"converted_fbg_value\"]\n",
152
- "df.loc[df[\"fbg\"].notna() & df[\"converted_fbg2_value\"].notna(), \"fbg\"] = df[\"converted_fbg2_value\"]\n",
153
- "\n",
154
- "# create ogtt column\n",
155
- "df[\"ogtt\"] = df[\"converted_ogtt_value\"]\n",
156
- "df.loc[df[\"ogtt\"].notna() & df[\"converted_ogtt2_value\"].notna(), \"ogtt\"] = df[\"converted_ogtt2_value\"]\n"
157
- ]
158
- },
159
- {
160
- "cell_type": "code",
161
- "execution_count": null,
162
- "id": "10",
163
- "metadata": {},
164
- "outputs": [],
165
- "source": [
166
- "# subject SR9E8B4D has eligible part two == No but subject has a glucose value\n",
167
- "df.loc[(df[\"screening_identifier\"]==\"SR9E8B4D\"), \"eligible_part_two\"] = \"Yes\"\n"
168
- ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": null,
173
- "id": "11",
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "\n",
178
- "# condition where subject is eligible P1/P2 and has any type of glucose test\n",
179
- "cond = ((df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & cond_glu)\n"
180
- ]
181
- },
182
- {
183
- "cell_type": "code",
184
- "execution_count": null,
185
- "id": "12",
186
- "metadata": {},
187
- "outputs": [],
188
- "source": [
189
- "# filter dataframe\n",
190
- "df = df[cond]\n"
191
- ]
192
- },
193
- {
194
- "cell_type": "code",
195
- "execution_count": null,
196
- "id": "13",
197
- "metadata": {},
198
- "outputs": [],
199
- "source": [
200
- "print(len(df))"
201
- ]
202
- },
203
- {
204
- "cell_type": "code",
205
- "execution_count": null,
206
- "id": "14",
207
- "metadata": {},
208
- "outputs": [],
209
- "source": [
210
- "wc_describe = df[\"waist_circumference\"].describe()\n",
211
- "\n",
212
- "# merge with physical exam to get waist circumference if taken at baseline\n",
213
- "subject_identifiers = list(df[\"subject_identifier\"])\n",
214
- "\n",
215
- "qs_subject_visit = SubjectVisit.objects.filter(subject_identifier__in=subject_identifiers)\n",
216
- "df_subject_visit = read_frame(qs_subject_visit)\n",
217
- "df_subject_visit.rename(columns={\"id\": \"subject_visit\"}, inplace=True)\n",
218
- "\n",
219
- "qs_physical_exam = PhysicalExam.objects.filter(subject_visit__subject_identifier__in=subject_identifiers)\n",
220
- "df_physical_exam = read_frame(qs_physical_exam)\n",
221
- "\n",
222
- "# merge w/ subject visit to get subject_identifier\n",
223
- "df_physical_exam = pd.merge(df_physical_exam, df_subject_visit[[\"subject_visit\", \"subject_identifier\", \"visit_code\", \"visit_code_sequence\"]], on=\"subject_visit\", how=\"left\")\n",
224
- "df_physical_exam = df_physical_exam[[\"subject_identifier\", \"visit_code\", \"visit_code_sequence\", \"waist_circumference\"]]\n",
225
- "\n",
226
- "df_physical_exam[[\"waist_circumference\"]] = df[[\"waist_circumference\"]].apply(pd.to_numeric)\n",
227
- "\n",
228
- "# rename column to waist_circumference_baseline\n",
229
- "df_physical_exam[\"waist_circumference_baseline\"] = df_physical_exam[\"waist_circumference\"]\n",
230
- "df_physical_exam.drop(columns=[\"waist_circumference\"])\n",
231
- "\n",
232
- "df_physical_exam[[\"waist_circumference_baseline\"]] = df_physical_exam[[\"waist_circumference_baseline\"]].apply(pd.to_numeric)\n",
233
- "wc_baseline_describe = df_physical_exam[\"waist_circumference_baseline\"].describe()\n",
234
- "\n",
235
- "# merge on subject_identifier with main DF\n",
236
- "df = pd.merge(df, df_physical_exam[[\"subject_identifier\", \"waist_circumference_baseline\"]], on=\"subject_identifier\", how=\"left\")\n",
237
- "\n",
238
- "# set waist_circumference=waist_circumference_baseline if `waist_circumference` is none and `waist_circumference_baseline` is not\n",
239
- "df.loc[(df[\"waist_circumference\"].isna()) & (df[\"waist_circumference_baseline\"].notna()), \"waist_circumference\"] = df[\"waist_circumference_baseline\"]\n",
240
- "\n",
241
- "# drop waist_circumference_baseline\n",
242
- "df.drop(columns=[\"waist_circumference_baseline\"], inplace=True)\n"
243
- ]
244
- },
245
- {
246
- "cell_type": "code",
247
- "execution_count": null,
248
- "id": "15",
249
- "metadata": {},
250
- "outputs": [],
251
- "source": [
252
- "# gender\n",
253
- "def cell(gender, all=None):\n",
254
- " cnt = df.loc[gender][\"gender\"].count()\n",
255
- " if not all:\n",
256
- " tot = df[\"gender\"].count()\n",
257
- " return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
258
- " return f\"{cnt}\"\n",
259
- "\n",
260
- "df_gender = pd.DataFrame(columns=default_columns)\n",
261
- "class GenderTable(Table):\n",
262
- " def build_table_df(self):\n",
263
- " pass\n",
264
- "\n",
265
- "tbl = Table(df, label=\"Gender\", columns=default_columns, show_ncol_perc=True)\n",
266
- "# df_gender.loc[0] = [\"Gender\", \"n\", cell(female), cell(male), cell((male | female), all=True)]\n",
267
- "tbl.table_df\n"
268
- ]
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": null,
273
- "id": "16",
274
- "metadata": {},
275
- "outputs": [],
276
- "source": []
277
- },
278
- {
279
- "cell_type": "code",
280
- "execution_count": null,
281
- "id": "17",
282
- "metadata": {},
283
- "outputs": [],
284
- "source": [
285
- "# age\n",
286
- "agef = df.loc[female][\"age_in_years\"]\n",
287
- "agem = df.loc[male][\"age_in_years\"]\n",
288
- "age = df[\"age_in_years\"]\n",
289
- "# bins\n",
290
- "bin1 = (df[\"age_in_years\"]>=18) & (df[\"age_in_years\"]<35)\n",
291
- "bin2 = (df[\"age_in_years\"]>=35) & (df[\"age_in_years\"]<50)\n",
292
- "bin3 = (df[\"age_in_years\"]>=50) & (df[\"age_in_years\"]<65)\n",
293
- "bin4 = (df[\"age_in_years\"]>=65)\n",
294
- "\n",
295
- "def cell(cond, gender, all=None):\n",
296
- " cnt = df.loc[gender & cond][\"age_in_years\"].count()\n",
297
- " if not all:\n",
298
- " tot = df.loc[cond][\"age_in_years\"].count()\n",
299
- " return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
300
- " tot = df[\"age_in_years\"].count()\n",
301
- " return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
302
- "\n",
303
- "df_age = pd.DataFrame(columns=title_row)\n",
304
- "\n",
305
- "df_age.loc[0] = [\"Age (years)\", \"n\", agef.count(), agem.count(), age.count()]\n",
306
- "df_age.loc[1] = [\n",
307
- " \"\", \"Median (IQR)\",\n",
308
- " f\"{agef.quantile().astype(int)} ({agef.quantile(0.25).astype(int)}, {agef.quantile(0.75).astype(int)})\",\n",
309
- " f\"{agem.quantile().astype(int)} ({agem.quantile(0.25).astype(int)}, {agem.quantile(0.75).astype(int)})\",\n",
310
- " f\"{age.quantile().astype(int)} ({age.quantile(0.25).astype(int)}, {age.quantile(0.75).astype(int)})\",] \n",
311
- "df_age.loc[2] = [\"\", \"18-34\", cell(female, bin1), cell(male, bin1), cell(bin1, (male | female), all=True)]\n",
312
- "df_age.loc[3] = [\"\", \"35-49\", cell(female, bin2), cell(male, bin2), cell(bin2, (male | female), all=True)]\n",
313
- "df_age.loc[4] = [\"\", \"50-64\", cell(female, bin3), cell(male, bin3), cell(bin3, (male | female), all=True)]\n",
314
- "df_age.loc[5] = [\"\", \"65 and older\", cell(female, bin4), cell(male, bin4), cell(bin4, (male | female), all=True)]\n"
315
- ]
316
- },
317
- {
318
- "cell_type": "code",
319
- "execution_count": null,
320
- "id": "18",
321
- "metadata": {},
322
- "outputs": [],
323
- "source": []
324
- },
325
- {
326
- "cell_type": "code",
327
- "execution_count": null,
328
- "id": "19",
329
- "metadata": {},
330
- "outputs": [],
331
- "source": [
332
- "# waist_circumference\n",
333
- "desc = df[[\"waist_circumference\"]].describe()\n",
334
- "descf = df[df[\"gender\"]==\"Female\"][[\"waist_circumference\"]].describe()\n",
335
- "descm = df[df[\"gender\"]==\"Male\"][[\"waist_circumference\"]].describe()\n",
336
- "\n",
337
- "f = f\"{descf.loc[\"50%\"].values[0]} ({descf.loc[\"25%\"].values[0]}, {descf.loc[\"75%\"].values[0]})\"\n",
338
- "m = f\"{descm.loc[\"50%\"].values[0]} ({descm.loc[\"25%\"].values[0]}, {descm.loc[\"75%\"].values[0]})\"\n",
339
- "all = f\"{desc.loc[\"50%\"].values[0]} ({desc.loc[\"25%\"].values[0]}, {desc.loc[\"75%\"].values[0]})\"\n",
340
- "\n",
341
- "df_waist = pd.DataFrame(columns=title_row)\n",
342
- "\n",
343
- "df_waist.loc[0] = [\"Waist circumference (cm)\", \"n\", descf.loc[\"count\"].values[0].astype(\"int64\"), descm.loc[\"count\"].values[0].astype(\"int64\"), desc.loc[\"count\"].values[0].astype(\"int64\")]\n",
344
- "df_waist.loc[1] = [\"\", \"Median (IQR)\", f, m, all]\n"
345
- ]
346
- },
347
- {
348
- "cell_type": "code",
349
- "execution_count": null,
350
- "id": "20",
351
- "metadata": {},
352
- "outputs": [],
353
- "source": [
354
- "# waist_circumference (cont)\n",
355
- "# Women 88 / Men 102\n",
356
- "cond_lt_102 = ((df[\"waist_circumference\"]<102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]<88.0) & (df[\"gender\"]==\"Female\"))\n",
357
- "cond_gte_102 = ((df[\"waist_circumference\"]>=102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]>=88.0) & (df[\"gender\"]==\"Female\"))\n",
358
- "\n",
359
- "tot = df[\"waist_circumference\"].count()\n",
360
- "\n",
361
- "f_cnt = df[cond_lt_102 & female][\"waist_circumference\"].count()\n",
362
- "f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
363
- "m_cnt = df[cond_lt_102 & male][\"waist_circumference\"].count()\n",
364
- "m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
365
- "value = f\"{round(df[cond_lt_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_lt_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
366
- "\n",
367
- "\n",
368
- "df_waist.loc[2] = [\"\", \"Women<88 / Men<102\", f, m, value]\n",
369
- "\n",
370
- "\n",
371
- "f_cnt = df[cond_gte_102 & female][\"waist_circumference\"].count()\n",
372
- "f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
373
- "m_cnt = df[cond_gte_102 & male][\"waist_circumference\"].count()\n",
374
- "m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
375
- "value = f\"{round(df[cond_gte_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_gte_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
376
- "\n",
377
- "df_waist.loc[3] = [\"\", \"Women>=88 / Men>=102\", f, m, value]\n",
378
- " "
379
- ]
380
- },
381
- {
382
- "cell_type": "code",
383
- "execution_count": null,
384
- "id": "21",
385
- "metadata": {},
386
- "outputs": [],
387
- "source": [
388
- "# cond_art\n",
389
- "\n",
390
- "def cell(gender, all=None):\n",
391
- " cnt = df.loc[gender & cond_art_stable][\"gender\"].count()\n",
392
- " if not all:\n",
393
- " tot = df.loc[cond_art_stable][\"gender\"].count()\n",
394
- " return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
395
- " tot = df[\"gender\"].count()\n",
396
- " return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
397
- " \n",
398
- "df_art = pd.DataFrame(columns=title_row)\n",
399
- "df_art.loc[0] = [\"Stable on ART\", \"\", cell(female), cell(male), cell((male | female), all=True)]\n"
400
- ]
401
- },
402
- {
403
- "cell_type": "code",
404
- "execution_count": null,
405
- "id": "22",
406
- "metadata": {},
407
- "outputs": [],
408
- "source": [
409
- "# blood pressure\n",
410
- "# print(len(df[(df[\"sys_blood_pressure_one\"].notna()) & (df[\"dia_blood_pressure_one\"].notna())]))\n",
411
- "# print(len(df[(df[\"sys_blood_pressure_two\"].notna()) & (df[\"dia_blood_pressure_two\"].notna())]))\n",
412
- "# print(len(df[(df[\"sys_blood_pressure_avg\"].notna()) & (df[\"dia_blood_pressure_avg\"].notna())]))"
413
- ]
414
- },
415
- {
416
- "cell_type": "code",
417
- "execution_count": null,
418
- "id": "23",
419
- "metadata": {},
420
- "outputs": [],
421
- "source": [
422
- "# blood pressure\n",
423
- "\n",
424
- "# df_tmp = df.copy()\n",
425
- "# tot = len(df_tmp)\n",
426
- "# print(f\"tot={tot}\")\n",
427
- "# len(df_tmp[(df_tmp[\"sys_blood_pressure_avg\"].notna()) & (df_tmp[\"dia_blood_pressure_avg\"].notna())])\n",
428
- "# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
429
- "# severe_htn_df = df_tmp[severe_htn_cond]\n",
430
- "# print(f\"severe_htn={len(severe_htn_df)}\")\n",
431
- "# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
432
- "\n",
433
- "# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
434
- "# htn_df = df_tmp[htn_cond]\n",
435
- "# print(f\"htn={len(htn_df)}\")\n",
436
- "# df_tmp.drop(htn_df.index, inplace=True)\n",
437
- "\n",
438
- "# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
439
- "# pre_htn_df = df_tmp[pre_htn_cond]\n",
440
- "# print(f\"pre_htn={len(pre_htn_df)}\")\n",
441
- "# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
442
- "\n",
443
- "# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
444
- "# normal_df = df_tmp[normal_cond]\n",
445
- "# print(f\"normal={len(normal_df)}\")\n",
446
- "# df_tmp.drop(normal_df.index, inplace=True)\n",
447
- "\n",
448
- "# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
449
- "# low_df = df_tmp[low_cond]\n",
450
- "# print(f\"low={len(low_df)}\")\n",
451
- "# df_tmp.drop(low_df.index, inplace=True)\n",
452
- "\n",
453
- " \n",
454
- "# def cell(dfx, gender, all=None, perc=True):\n",
455
- "# cnt = dfx.loc[gender][\"gender\"].count()\n",
456
- "# if not all:\n",
457
- "# tot = df.loc[gender][\"gender\"].count()\n",
458
- "# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
459
- "# tot = df[\"gender\"].count()\n",
460
- "# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
461
- "\n",
462
- "# def quantile(gender, colname):\n",
463
- "# q50 = df.loc[gender][colname].quantile()\n",
464
- "# q25 = df.loc[gender][colname].quantile(0.25)\n",
465
- "# q75 = df.loc[gender][colname].quantile(0.75)\n",
466
- "# return f\"{q50} ({q25}, {q75})\"\n",
467
- "\n",
468
- "# df_bp = pd.DataFrame(columns=title_row)\n",
469
- "# df_bp.loc[0] = [\"Blood pressure at baseline (mmHg)\", \"n\", cell(df_tmp, female), cell(df_tmp, male), cell(df_tmp, (male | female), all=True, perc=False)]\n",
470
- "# df_bp.loc[1] = [\"\", \"Low (<90/60)\", cell(low_df, female), cell(low_df, male), cell(low_df, (male | female), all=True)]\n",
471
- "# df_bp.loc[2] = [\"\", \"Normal (<120/80)\", cell(normal_df, female), cell(normal_df, male), cell(normal_df, (male | female), all=True)]\n",
472
- "# df_bp.loc[3] = [\"\", \"Pre-hypertension (<140/90)\", cell(pre_htn_df, female), cell(pre_htn_df, male), cell(pre_htn_df, (male | female), all=True)]\n",
473
- "# df_bp.loc[4] = [\"\", \"Hypertension (>=140/90)\", cell(htn_df, female), cell(htn_df, male), cell(htn_df, (male | female), all=True)]\n",
474
- "# df_bp.loc[5] = [\"\", \"Severe hypertension (>=180/110)\", cell(severe_htn_df, female), cell(severe_htn_df, male), cell(severe_htn_df, (male | female), all=True)]\n",
475
- "# df_bp.loc[6] = [\"\", \"Systolic - median (IQR)\", quantile(female, \"sys_blood_pressure_avg\"), quantile(male, \"sys_blood_pressure_avg\"), quantile((female | male), \"sys_blood_pressure_avg\")]\n",
476
- "# df_bp.loc[7] = [\"\", \"Diastolic - median (IQR)\", quantile(female, \"dia_blood_pressure_avg\"), quantile(male, \"dia_blood_pressure_avg\"), quantile((female | male), \"dia_blood_pressure_avg\")]\n",
477
- "\n"
478
- ]
479
- },
480
- {
481
- "cell_type": "code",
482
- "execution_count": null,
483
- "id": "24",
484
- "metadata": {},
485
- "outputs": [],
486
- "source": []
487
- },
488
- {
489
- "cell_type": "code",
490
- "execution_count": null,
491
- "id": "25",
492
- "metadata": {},
493
- "outputs": [],
494
- "source": [
495
- "# columns = [\n",
496
- "# 'Characteristics', 'Statistics', \"F\", \"M\", 'All', \n",
497
- "# \"fnum\",\"f_prop\",\"fq25\",\"fq50\",\"fq75\",\n",
498
- "# \"mnum\",\"m_prop\",\"mq25\",\"mq50\",\"mq75\",\n",
499
- "# \"q25\",\"q50\",\"q75\",\"tot\"]\n",
500
- "\n",
501
- "# class SubjectRow:\n",
502
- "# def __init__(self, gender, dfx, main_df, iqr_col=None):\n",
503
- "# self.num = dfx.loc[gender][\"gender\"].count()\n",
504
- "# self.total = len(main_df.loc[gender])\n",
505
- "# self.perc = self.num/self.total\n",
506
- "# if iqr_col:\n",
507
- "# self.q25, self.q50, self.q75 = dfx.loc[gender][iqr_col].quantile([0.25, 0.50, 0.75])\n",
508
- "# else:\n",
509
- "# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan\n",
510
- "\n",
511
- "# class MaleRow(SubjectRow):\n",
512
- "# def __init__(self, dfx, main_df, iqr_col=None):\n",
513
- "# super().__init__(male, dfx, main_df, iqr_col)\n",
514
- "\n",
515
- "# class FemaleRow(SubjectRow):\n",
516
- "# def __init__(self, dfx, main_df, iqr_col=None):\n",
517
- "# super().__init__(female, dfx, main_df, iqr_col)\n",
518
- "\n",
519
- "# class Row:\n",
520
- "# def __init__(self, dfx, main_df, label=None, statistic=None, iqr_col=None, columns=None):\n",
521
- "# self.m = MaleRow(dfx, main_df, iqr_col)\n",
522
- "# self.f =FemaleRow(dfx, main_df, iqr_col)\n",
523
- "# self.total = len(main_df)\n",
524
- "# self.subtotal = len(dfx)\n",
525
- "# if iqr_col:\n",
526
- "# self.q25, self.q50, self.q75 = main_df[iqr_col].quantile([0.25, 0.50, 0.75])\n",
527
- "# else:\n",
528
- "# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan \n",
529
- "# self.label = label or \"\"\n",
530
- "# self.statistic = statistic\n",
531
- "# self.df = pd.DataFrame(columns=columns)\n",
532
- "\n",
533
- "# def with_perc(total=None):\n",
534
- "# if total:\n",
535
- "# return f\"{self.num} ({round(self.num/self.total *100, 1)}%)\"\n",
536
- "# return f\"{self.num} ({round(self.num/self.subtotal *100, 1)}%)\"\n",
537
- " \n",
538
- "# def values(self):\n",
539
- "# if self.statistic==\"n\":\n",
540
- "# return [\n",
541
- "# self.label, self.statistic, \"\", \"\", \"\",\n",
542
- "# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75,\n",
543
- "# self.m.num, self.m.perc, self.m.q25, self.m.q50, self.m.q75,\n",
544
- "# self.q25, self.q50, self.q75, \n",
545
- "# self.total]\n",
546
- "# return [\n",
547
- "# self.label, self.statistic, \"\", \"\", \"\", \n",
548
- "# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75, \n",
549
- "# self.m.num, self.m.perc,self.m.q25, self.m.q50, self.m.q75, \n",
550
- "# self.q25, self.q50, self.q75, \n",
551
- "# self.subtotal]\n",
552
- "\n",
553
- "# class Table:\n",
554
- "\n",
555
- "# statistic_col = \"Statistics\"\n",
556
- "# female_col = \"F\"\n",
557
- "# male_col = \"M\"\n",
558
- "# all_col = \"All\"\n",
559
- "# n_sublabel = \"n\"\n",
560
- "# grand_total_col = \"tot\"\n",
561
- " \n",
562
- "# def __init__(self, main_df, label=None, columns=None):\n",
563
- "# self.main_df = main_df\n",
564
- "# self.table_df = pd.DataFrame(columns=columns)\n",
565
- "# self.row_zero = Row(main_df, main_df, label=label, statistic=self.n_sublabel, columns=columns)\n",
566
- "\n",
567
- "# self.build_table_df()\n",
568
- " \n",
569
- "# # format string cols\n",
570
- "# self.table_df[self.female_col] = self.table_df.apply(lambda x: self.format_f_col(x), axis=1)\n",
571
- "# self.table_df[self.male_col] = self.table_df.apply(lambda x: self.format_m_col(x), axis=1)\n",
572
- "# self.table_df[self.all_col] = self.table_df.apply(lambda x: self.format_all_col(x), axis=1)\n",
573
- "\n",
574
- "# def build_table_df(self):\n",
575
- "# self.table_df.loc[0] = self.row_zero.values()\n",
576
- "\n",
577
- "# @property\n",
578
- "# def formatted_df(self):\n",
579
- "# return self.table_df[['Characteristics', 'Statistics', \"F\", \"M\", 'All']]\n",
580
- "\n",
581
- "# def format_f_col(self, x):\n",
582
- "# if x[self.statistic_col] == self.n_sublabel:\n",
583
- "# return f\"{x.fnum}\"\n",
584
- "# elif pd.notna(x.q25):\n",
585
- "# return f\"{x.fq50} ({x.fq25},{x.fq75})\"\n",
586
- "# return f\"{x.fnum} ({round(x.fnum/self.row_zero.f.total *100, 1)}%)\" \n",
587
- "\n",
588
- "# def format_m_col(self, x):\n",
589
- "# if x[self.statistic_col] == self.n_sublabel:\n",
590
- "# return f\"{x.mnum}\"\n",
591
- "# elif pd.notna(x.q25):\n",
592
- "# return f\"{x.mq50} ({x.mq25},{x.mq75})\"\n",
593
- "# return f\"{x.mnum} ({round(x.mnum/self.row_zero.m.total *100, 1)}%)\" \n",
594
- "\n",
595
- "# def format_all_col(self, x):\n",
596
- "# if x[self.statistic_col] == self.n_sublabel:\n",
597
- "# return f\"{x.tot}\"\n",
598
- "# elif pd.notna(x.q25):\n",
599
- "# return f\"{x.q50} ({x.q25},{x.q75})\"\n",
600
- "# return f\"{x.tot} ({round(x.tot/self.table_df.loc[0][self.grand_total_col] *100, 1)}%)\" \n",
601
- "\n",
602
- "# class BpTable(Table):\n",
603
- "\n",
604
- "# sys_col = \"sys_blood_pressure_avg\"\n",
605
- "# dia_col = \"dia_blood_pressure_avg\"\n",
606
- "\n",
607
- "# def build_table_df(self):\n",
608
- "# self.table_df.loc[0] = self.row_zero.values()\n",
609
- "# i = 1\n",
610
- "# for key, dfx in self.get_dfs(self.main_df).items():\n",
611
- "# self.table_df.loc[i] = Row(dfx, self.main_df, label=\"\", statistic=key, columns=columns).values()\n",
612
- "# i += 1\n",
613
- "# self.table_df.loc[i+1] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Systolic - median (IQR)\", iqr_col=\"sys_blood_pressure_avg\", columns=columns).values()\n",
614
- "# self.table_df.loc[i+2] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Diastolic - median (IQR)\", iqr_col=\"dia_blood_pressure_avg\", columns=columns).values() \n",
615
- " \n",
616
- "# def get_dfs(self, main_df):\n",
617
- "# dfs = {}\n",
618
- "# df_tmp = main_df.copy()\n",
619
- "# tot = len(df_tmp)\n",
620
- "# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
621
- "# severe_htn_df = df_tmp[severe_htn_cond]\n",
622
- "# dfs.update({\"Severe hypertension (>=180/110)\": severe_htn_df})\n",
623
- "# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
624
- " \n",
625
- "# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
626
- "# htn_df = df_tmp[htn_cond]\n",
627
- "# dfs.update({\"Hypertension (>=140/90)\": htn_df})\n",
628
- "# df_tmp.drop(htn_df.index, inplace=True)\n",
629
- " \n",
630
- "# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
631
- "# pre_htn_df = df_tmp[pre_htn_cond]\n",
632
- "# dfs.update({\"Pre-hypertension (<140/90)\": pre_htn_df})\n",
633
- "# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
634
- " \n",
635
- "# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
636
- "# normal_df = df_tmp[normal_cond]\n",
637
- "# dfs.update({\"Normal (<120/80)\": normal_df})\n",
638
- "# df_tmp.drop(normal_df.index, inplace=True)\n",
639
- " \n",
640
- "# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
641
- "# low_df = df_tmp[low_cond]\n",
642
- "# dfs.update({\"Low (<90/60)\": low_df})\n",
643
- "# df_tmp.drop(low_df.index, inplace=True)\n",
644
- "# dfs = dict(reversed(list(dfs.items())))\n",
645
- "# return dfs\n",
646
- "\n",
647
- " \n",
648
- "\n",
649
- "tbl = BpTable(df, label=\"Blood pressure at baseline (mmHg)\", columns=columns)\n",
650
- "tbl.formatted_df\n",
651
- " "
652
- ]
653
- },
654
- {
655
- "cell_type": "code",
656
- "execution_count": null,
657
- "id": "26",
658
- "metadata": {},
659
- "outputs": [],
660
- "source": [
661
- "tbl.table_df"
662
- ]
663
- },
664
- {
665
- "cell_type": "code",
666
- "execution_count": null,
667
- "id": "27",
668
- "metadata": {},
669
- "outputs": [],
670
- "source": [
671
- "df_bp2"
672
- ]
673
- },
674
- {
675
- "cell_type": "code",
676
- "execution_count": null,
677
- "id": "28",
678
- "metadata": {},
679
- "outputs": [],
680
- "source": [
681
- "# fbg\n",
682
- "\n",
683
- "def cell(measure, gender, all=None):\n",
684
- " if measure == \"<6.1\":\n",
685
- " cond = (df[\"fbg\"]<6.1)\n",
686
- " elif measure == \"6.1-6.9\":\n",
687
- " cond = (df[\"fbg\"]>=6.1) & (df[\"fbg\"]<7.0)\n",
688
- " elif measure == \">=7.0\":\n",
689
- " cond = (df[\"fbg\"]>=7.0)\n",
690
- " else:\n",
691
- " cond = (df[\"fbg\"].notna())\n",
692
- " cnt = df.loc[gender & cond][\"gender\"].count()\n",
693
- " if not all:\n",
694
- " tot = df.loc[gender][\"gender\"].count()\n",
695
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
696
- " tot = df[\"gender\"].count()\n",
697
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
698
- "\n",
699
- "df_fbg = pd.DataFrame(columns=title_row)\n",
700
- "df_fbg.loc[0] = [\"FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
701
- "df_fbg.loc[1] = [\"\", \"<6.1\", cell(\"<6.1\", female), cell(\"<6.1\", male), cell(\"<6.1\", (male | female), all=True)]\n",
702
- "df_fbg.loc[2] = [\"\", \"6.1-6.9\", cell(\"6.1-6.9\", female), cell(\"6.1-6.9\", male), cell(\"6.1-6.9\", (male | female), all=True)]\n",
703
- "df_fbg.loc[3] = [\"\", \"7.0 and above\", cell(\">=7.0\", female), cell(\">=7.0\", male), cell(\">=7.0\", (male | female), all=True)]\n",
704
- "\n"
705
- ]
706
- },
707
- {
708
- "cell_type": "code",
709
- "execution_count": null,
710
- "id": "29",
711
- "metadata": {},
712
- "outputs": [],
713
- "source": [
714
- "# ogtt\n",
715
- "\n",
716
- "def cell(measure, gender, all=None):\n",
717
- " if measure == \"<7.7\":\n",
718
- " cond = (df[\"ogtt\"]<7.8)\n",
719
- " elif measure == \"7.8-11.1\":\n",
720
- " cond = (df[\"ogtt\"]>=7.8) & (df[\"ogtt\"]<11.1)\n",
721
- " elif measure == \">=11.1\":\n",
722
- " cond = (df[\"ogtt\"]>=11.1)\n",
723
- " elif measure == \"missing\":\n",
724
- " cond = (df[\"ogtt\"].isna())\n",
725
- " else:\n",
726
- " cond = (df[\"ogtt\"].notna() | df[\"ogtt\"].isna())\n",
727
- " cnt = df.loc[gender & cond][\"gender\"].count()\n",
728
- " if not all:\n",
729
- " tot = df.loc[gender][\"gender\"].count()\n",
730
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
731
- " tot = df[\"gender\"].count()\n",
732
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
733
- "\n",
734
- "df_ogtt = pd.DataFrame(columns=title_row)\n",
735
- "df_ogtt.loc[0] = [\"OGTT (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
736
- "df_ogtt.loc[1] = [\"\", \"<7.7\", cell(\"<7.7\", female), cell(\"<7.7\", male), cell(\"<7.7\", (male | female), all=True)]\n",
737
- "df_ogtt.loc[2] = [\"\", \"7.8-11.1\", cell(\"7.8-11.1\", female), cell(\"7.8-11.1\", male), cell(\"7.8-11.1\", (male | female), all=True)]\n",
738
- "df_ogtt.loc[3] = [\"\", \"11.1 and above\", cell(\">=11.1\", female), cell(\">=11.1\", male), cell(\">=11.1\", (male | female), all=True)]\n",
739
- "df_ogtt.loc[4] = [\"\", \"not done\", cell(\"missing\", female), cell(\"missing\", male), cell(\"missing\", (male | female), all=True)]\n"
740
- ]
741
- },
742
- {
743
- "cell_type": "code",
744
- "execution_count": null,
745
- "id": "30",
746
- "metadata": {},
747
- "outputs": [],
748
- "source": [
749
- "# fbg and ogtt\n",
750
- "\n",
751
- "def cell(measure, gender, all=None):\n",
752
- " if measure == \"dm1\":\n",
753
- " cond = (df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0) & (df[\"ogtt\"].notna())\n",
754
- " elif measure == \"other\":\n",
755
- " cond = ~((df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0)) & (df[\"ogtt\"].notna())\n",
756
- " elif measure == \"ogtt\":\n",
757
- " cond = (df[\"fbg\"].notna()) & (df[\"ogtt\"].isna())\n",
758
- " else:\n",
759
- " cond = (df[\"fbg\"].notna())\n",
760
- " cnt = df.loc[gender & cond][\"gender\"].count()\n",
761
- " if not all:\n",
762
- " tot = df.loc[gender][\"gender\"].count()\n",
763
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
764
- " tot = df[\"gender\"].count()\n",
765
- " return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
766
- "\n",
767
- "df_fbg_ogtt = pd.DataFrame(columns=title_row)\n",
768
- "df_fbg_ogtt.loc[0] = [\"OGTT & FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
769
- "df_fbg_ogtt.loc[1] = [\"\", \"OGTT>=11.1 or FBG>=7.0\", cell(\"dm1\", female), cell(\"dm1\", male), cell(\"dm1\", (male | female), all=True)]\n",
770
- "df_fbg_ogtt.loc[2] = [\"\", \"other\", cell(\"other\", female), cell(\"other\", male), cell(\"other\", (male | female), all=True)]\n",
771
- "df_fbg_ogtt.loc[3] = [\"\", \"OGTT not done\", cell(\"ogtt\", female), cell(\"ogtt\", male), cell(\"ogtt\", (male | female), all=True)]\n"
772
- ]
773
- },
774
- {
775
- "cell_type": "code",
776
- "execution_count": null,
777
- "id": "31",
778
- "metadata": {},
779
- "outputs": [],
780
- "source": [
781
- "df_table2 = pd.concat([df_gender, df_age, df_waist, df_art, df_bp, df_fbg, df_ogtt, df_fbg_ogtt], ignore_index=True)\n",
782
- "df_table2"
783
- ]
784
- },
785
- {
786
- "cell_type": "code",
787
- "execution_count": null,
788
- "id": "32",
789
- "metadata": {},
790
- "outputs": [],
791
- "source": [
792
- "# blood pressure\n",
793
- "# Blood pressure interested in IQR25, IQR50(median), IQR75\n",
794
- "df[[\"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\"]].describe()"
795
- ]
796
- },
797
- {
798
- "cell_type": "code",
799
- "execution_count": null,
800
- "id": "33",
801
- "metadata": {},
802
- "outputs": [],
803
- "source": [
804
- "df_table"
805
- ]
806
- },
807
- {
808
- "cell_type": "code",
809
- "execution_count": null,
810
- "id": "34",
811
- "metadata": {},
812
- "outputs": [],
813
- "source": [
814
- "# blood pressure\n"
815
- ]
816
- },
817
- {
818
- "cell_type": "code",
819
- "execution_count": null,
820
- "id": "35",
821
- "metadata": {},
822
- "outputs": [],
823
- "source": []
824
- },
825
- {
826
- "cell_type": "code",
827
- "execution_count": null,
828
- "id": "36",
829
- "metadata": {},
830
- "outputs": [],
831
- "source": []
832
- },
833
- {
834
- "cell_type": "code",
835
- "execution_count": null,
836
- "id": "37",
837
- "metadata": {},
838
- "outputs": [],
839
- "source": []
840
- },
841
- {
842
- "cell_type": "code",
843
- "execution_count": null,
844
- "id": "38",
845
- "metadata": {},
846
- "outputs": [],
847
- "source": []
848
- },
849
- {
850
- "cell_type": "code",
851
- "execution_count": null,
852
- "id": "39",
853
- "metadata": {},
854
- "outputs": [],
855
- "source": []
856
- },
857
- {
858
- "cell_type": "code",
859
- "execution_count": null,
860
- "id": "40",
861
- "metadata": {},
862
- "outputs": [],
863
- "source": [
864
- "import matplotlib.pyplot as plt\n",
865
- "import numpy as np\n",
866
- "import scipy.stats as stats\n",
867
- "import math\n",
868
- "import seaborn as sns\n"
869
- ]
870
- },
871
- {
872
- "cell_type": "code",
873
- "execution_count": null,
874
- "id": "41",
875
- "metadata": {},
876
- "outputs": [],
877
- "source": [
878
- "sns.boxplot(x=\"age_in_years\",y=\"gender\", data=df)"
879
- ]
880
- },
881
- {
882
- "cell_type": "code",
883
- "execution_count": null,
884
- "id": "42",
885
- "metadata": {},
886
- "outputs": [],
887
- "source": [
888
- "sns.boxplot(x=\"fbg\",y=\"gender\", data=df)\n"
889
- ]
890
- },
891
- {
892
- "cell_type": "code",
893
- "execution_count": null,
894
- "id": "43",
895
- "metadata": {},
896
- "outputs": [],
897
- "source": [
898
- "sns.boxplot(x=\"ogtt\",y=\"gender\", data=df)\n"
899
- ]
900
- },
901
- {
902
- "cell_type": "code",
903
- "execution_count": null,
904
- "id": "44",
905
- "metadata": {},
906
- "outputs": [],
907
- "source": [
908
- "df[[\"age_in_years\", \"fbg\", \"ogtt\"]].hist()"
909
- ]
910
- },
911
- {
912
- "cell_type": "code",
913
- "execution_count": null,
914
- "id": "45",
915
- "metadata": {},
916
- "outputs": [],
917
- "source": [
918
- "sns.pairplot(df[[\"calculated_bmi_value\", \"fbg\"]])"
919
- ]
920
- },
921
- {
922
- "cell_type": "code",
923
- "execution_count": null,
924
- "id": "46",
925
- "metadata": {},
926
- "outputs": [],
927
- "source": [
928
- "cond = (df[\"fbg\"]>=7.0) & (df[\"fbg\"]<=10.0)\n",
929
- "sns.displot(df[cond], x=\"fbg\", hue=\"gender\")"
930
- ]
931
- },
932
- {
933
- "cell_type": "code",
934
- "execution_count": null,
935
- "id": "47",
936
- "metadata": {},
937
- "outputs": [],
938
- "source": [
939
- "sns.displot(df, x=\"sys_\", hue=\"gender\")"
940
- ]
941
- }
942
- ],
943
- "metadata": {
944
- "kernelspec": {
945
- "display_name": "Python 3 (ipykernel)",
946
- "language": "python",
947
- "name": "python3"
948
- },
949
- "language_info": {
950
- "codemirror_mode": {
951
- "name": "ipython",
952
- "version": 3
953
- },
954
- "file_extension": ".py",
955
- "mimetype": "text/x-python",
956
- "name": "python",
957
- "nbconvert_exporter": "python",
958
- "pygments_lexer": "ipython3",
959
- "version": "3.12.4"
960
- }
961
- },
962
- "nbformat": 4,
963
- "nbformat_minor": 5
964
- }