meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of meta-edc might be problematic. Click here for more details.
- meta_ae/action_items.py +2 -1
- meta_ae/admin/__init__.py +11 -0
- meta_ae/admin/ae_susar_admin.py +1 -1
- meta_ae/admin/death_report_admin.py +1 -1
- meta_ae/admin/modeladmin_mixins.py +10 -12
- meta_ae/baker_recipes.py +3 -3
- meta_ae/forms/__init__.py +13 -0
- meta_ae/forms/modelform_mixins.py +2 -2
- meta_ae/migrations/0001_initial.py +27 -27
- meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
- meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
- meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
- meta_ae/model_mixins/__init__.py +2 -0
- meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
- meta_ae/model_mixins/death_report_model_mixin.py +3 -3
- meta_ae/models/__init__.py +13 -0
- meta_ae/models/hospitalization.py +3 -3
- meta_ae/pdf_reports/__init__.py +2 -0
- meta_analytics/.DS_Store +0 -0
- meta_analytics/dataframes/__init__.py +24 -0
- meta_analytics/dataframes/get_eos_df.py +1 -2
- meta_analytics/dataframes/get_glucose_df.py +6 -7
- meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
- meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
- meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
- meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
- meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
- meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
- meta_analytics/dataframes/screening/__init__.py +2 -0
- meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
- meta_analytics/dataframes/screening/get_screening_df.py +6 -10
- meta_analytics/dataframes/utils.py +3 -8
- meta_analytics/get_tables.py +1 -2
- meta_analytics/tables/__init__.py +2 -0
- meta_consent/action_items.py +2 -1
- meta_consent/admin/__init__.py +6 -0
- meta_consent/admin/actions/__init__.py +2 -0
- meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
- meta_consent/admin/list_filters.py +2 -2
- meta_consent/admin/modeladmin_mixins.py +3 -4
- meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
- meta_consent/baker_recipes.py +7 -8
- meta_consent/form_validators/__init__.py +2 -0
- meta_consent/forms/__init__.py +7 -0
- meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
- meta_consent/forms/subject_reconsent_form.py +4 -4
- meta_consent/management/commands/create_missing_prescriptions.py +4 -2
- meta_consent/migrations/0001_initial.py +9 -9
- meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
- meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
- meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
- meta_consent/models/__init__.py +9 -0
- meta_consent/models/model_mixins.py +1 -2
- meta_consent/models/signals.py +9 -10
- meta_consent/models/subject_consent.py +1 -1
- meta_consent/models/subject_reconsent.py +3 -3
- meta_dashboard/patterns.py +1 -1
- meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
- meta_dashboard/view_utils/__init__.py +7 -0
- meta_dashboard/view_utils/subject_screening_button.py +9 -16
- meta_dashboard/views/__init__.py +8 -0
- meta_dashboard/views/ae/__init__.py +2 -0
- meta_dashboard/views/ae/ae_listboard_view.py +1 -1
- meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
- meta_dashboard/views/screening/__init__.py +2 -0
- meta_dashboard/views/subject/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/__init__.py +2 -0
- meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
- meta_dashboard/views/subject/listboard/__init__.py +2 -0
- meta_edc/__init__.py +5 -9
- meta_edc/celery.py +1 -1
- meta_edc/celery_live.py +1 -1
- meta_edc/celery_uat.py +1 -1
- meta_edc/management/commands/update_forms_reference.py +10 -12
- meta_edc/settings/debug.py +5 -4
- meta_edc/settings/defaults.py +18 -3
- meta_edc/settings/live.py +3 -1
- meta_edc/settings/logging.py +9 -4
- meta_edc/settings/minimal.py +4 -5
- meta_edc/settings/uat.py +3 -1
- meta_edc/views/__init__.py +2 -0
- meta_edc-1.1.12.dist-info/METADATA +174 -0
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
- meta_edc-1.1.12.dist-info/WHEEL +4 -0
- meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
- meta_pharmacy/admin/__init__.py +5 -0
- meta_pharmacy/admin/substitutions_admin.py +2 -2
- meta_pharmacy/forms/__init__.py +2 -0
- meta_pharmacy/forms/substitutions_form.py +6 -4
- meta_pharmacy/labels/__init__.py +4 -2
- meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
- meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
- meta_pharmacy/labels/label_data.py +1 -2
- meta_pharmacy/labels/print_sheets.py +4 -6
- meta_pharmacy/migrations/0002_initial.py +7 -20
- meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
- meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
- meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
- meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
- meta_pharmacy/models/__init__.py +7 -0
- meta_pharmacy/models/label_data.py +4 -5
- meta_pharmacy/models/substitutions.py +3 -3
- meta_pharmacy/prepare_meta_pharmacy.py +1 -1
- meta_pharmacy/utils/__init__.py +2 -0
- meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
- meta_prn/admin/__init__.py +16 -0
- meta_prn/admin/dm_referral_admin.py +2 -1
- meta_prn/admin/end_of_study_admin.py +6 -7
- meta_prn/admin/loss_to_followup_admin.py +3 -2
- meta_prn/admin/off_study_medication_admin.py +5 -6
- meta_prn/admin/offschedule_admin.py +5 -6
- meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
- meta_prn/admin/offschedule_postnatal_admin.py +7 -7
- meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
- meta_prn/admin/onschedule_admin.py +7 -8
- meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
- meta_prn/admin/pregnancy_notification_admin.py +5 -6
- meta_prn/admin/protocol_incident_admin.py +1 -1
- meta_prn/admin/subject_transfer_admin.py +1 -1
- meta_prn/baker_recipes.py +4 -4
- meta_prn/form_validators/__init__.py +5 -0
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/forms/__init__.py +13 -0
- meta_prn/migrations/0001_initial.py +25 -25
- meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
- meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
- meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
- meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
- meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
- meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
- meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
- meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
- meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
- meta_prn/models/__init__.py +20 -0
- meta_prn/models/offschedule.py +4 -4
- meta_prn/models/protocol_incident.py +1 -1
- meta_prn/models/subject_transfer.py +8 -0
- meta_rando/migrations/0001_initial.py +5 -5
- meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
- meta_reports/__init__.py +2 -0
- meta_reports/admin/__init__.py +16 -0
- meta_reports/admin/dbviews/__init__.py +13 -0
- meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
- meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
- meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
- meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
- meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
- meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
- meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
- meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
- meta_reports/admin/endpoints_admin.py +1 -1
- meta_reports/admin/last_imp_refill_admin.py +9 -9
- meta_reports/admin/list_filters.py +2 -2
- meta_reports/admin/modeladmin_mixins.py +9 -16
- meta_reports/death_report.py +1 -1
- meta_reports/forms/__init__.py +2 -0
- meta_reports/forms/missing_ogtt_note_form.py +2 -3
- meta_reports/management/commands/generate_endpoints.py +5 -4
- meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
- meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
- meta_reports/models/__init__.py +17 -0
- meta_reports/models/dbviews/__init__.py +14 -0
- meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
- meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
- meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
- meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
- meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
- meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
- meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
- meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
- meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
- meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
- meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
- meta_reports/models/endpoints.py +4 -4
- meta_reports/models/last_imp_refill.py +2 -3
- meta_reports/pdf_report.py +2 -2
- meta_reports/tasks.py +1 -1
- meta_screening/admin/__init__.py +8 -0
- meta_screening/admin/fieldsets.py +13 -14
- meta_screening/admin/list_filters.py +6 -4
- meta_screening/admin/screening_part_one_admin.py +1 -2
- meta_screening/admin/screening_part_three_admin.py +2 -3
- meta_screening/admin/screening_part_two_admin.py +7 -10
- meta_screening/admin/subject_refusal_admin.py +5 -3
- meta_screening/admin/subject_screening_admin.py +4 -4
- meta_screening/baker_recipes.py +9 -9
- meta_screening/eligibility/__init__.py +9 -0
- meta_screening/eligibility/eligibility.py +7 -7
- meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
- meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
- meta_screening/form_validators/__init__.py +8 -0
- meta_screening/forms/__init__.py +20 -0
- meta_screening/forms/field_lists.py +16 -17
- meta_screening/forms/screening_part_one_form.py +2 -2
- meta_screening/forms/screening_part_three_form.py +5 -3
- meta_screening/forms/screening_part_two_form.py +1 -5
- meta_screening/forms/subject_refusal_form.py +0 -4
- meta_screening/forms/subject_screening_form.py +0 -4
- meta_screening/migrations/0001_initial.py +15 -15
- meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
- meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
- meta_screening/model_mixins/__init__.py +8 -0
- meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
- meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
- meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
- meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
- meta_screening/models/__init__.py +9 -0
- meta_screening/models/icp_referral.py +5 -5
- meta_screening/models/signals.py +10 -11
- meta_screening/models/subject_refusal.py +1 -1
- meta_screening/models/subject_screening.py +1 -3
- meta_subject/action_items.py +13 -15
- meta_subject/admin/__init__.py +39 -0
- meta_subject/admin/birth_outcome_admin.py +4 -8
- meta_subject/admin/blood_results/__init__.py +9 -0
- meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
- meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
- meta_subject/admin/complications_glycemia_admin.py +1 -1
- meta_subject/admin/delivery_admin.py +7 -10
- meta_subject/admin/diabetes/__init__.py +2 -0
- meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
- meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
- meta_subject/admin/egfr_drop_notification_admin.py +1 -1
- meta_subject/admin/followup_examination_admin.py +10 -9
- meta_subject/admin/followup_vitals_admin.py +4 -5
- meta_subject/admin/glucose_admin.py +2 -4
- meta_subject/admin/glucose_fbg_admin.py +1 -3
- meta_subject/admin/health_economics/__init__.py +2 -0
- meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
- meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
- meta_subject/admin/hepatitis_test_admin.py +1 -1
- meta_subject/admin/list_filters.py +1 -1
- meta_subject/admin/mnsi_admin.py +7 -5
- meta_subject/admin/other_arv_regimens_admin.py +3 -3
- meta_subject/admin/patient_history_admin.py +4 -4
- meta_subject/admin/physical_exam_admin.py +1 -1
- meta_subject/admin/pregnancy_update_admin.py +1 -1
- meta_subject/admin/study_medication_admin.py +8 -15
- meta_subject/admin/subject_requisition_admin.py +1 -1
- meta_subject/admin/subject_visit_admin.py +1 -1
- meta_subject/admin/subject_visit_missed_admin.py +1 -1
- meta_subject/admin/urine_dipstick_test_admin.py +1 -1
- meta_subject/admin/urine_pregnancy_admin.py +1 -1
- meta_subject/baker_recipes.py +15 -15
- meta_subject/form_validators/__init__.py +11 -0
- meta_subject/form_validators/delivery_form_validator.py +2 -3
- meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
- meta_subject/form_validators/dm_followup_form_validator.py +7 -6
- meta_subject/form_validators/glucose_form_validator.py +3 -5
- meta_subject/forms/__init__.py +41 -0
- meta_subject/forms/blood_results/__init__.py +9 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
- meta_subject/forms/diabetes/__init__.py +2 -0
- meta_subject/forms/diabetes/dm_followup_form.py +2 -2
- meta_subject/forms/followup_vitals_form.py +3 -8
- meta_subject/forms/health_economics/__init__.py +2 -0
- meta_subject/forms/next_appointment_form.py +2 -3
- meta_subject/forms/slider_widget.py +1 -1
- meta_subject/forms/study_medication_form.py +11 -8
- meta_subject/management/commands/create_missing_refills.py +3 -3
- meta_subject/management/commands/create_missing_rx.py +1 -1
- meta_subject/management/commands/missed.py +20 -23
- meta_subject/metadata_rules/__init__.py +2 -0
- meta_subject/metadata_rules/predicates.py +25 -32
- meta_subject/migrations/0001_initial.py +61 -61
- meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
- meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
- meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
- meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
- meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
- meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
- meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
- meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
- meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
- meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
- meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
- meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
- meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
- meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
- meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
- meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
- meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
- meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
- meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
- meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
- meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
- meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
- meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
- meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
- meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
- meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
- meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
- meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
- meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
- meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
- meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
- meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
- meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
- meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
- meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
- meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
- meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
- meta_subject/model_mixins/__init__.py +8 -0
- meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
- meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
- meta_subject/models/__init__.py +48 -0
- meta_subject/models/birth_outcomes.py +3 -3
- meta_subject/models/blood_results/__init__.py +11 -0
- meta_subject/models/delivery.py +3 -3
- meta_subject/models/diabetes/__init__.py +2 -0
- meta_subject/models/diabetes/dm_endpoint.py +4 -4
- meta_subject/models/diabetes/dm_followup.py +3 -4
- meta_subject/models/diet_and_lifestyle.py +2 -2
- meta_subject/models/followup_examination.py +11 -11
- meta_subject/models/glucose.py +4 -4
- meta_subject/models/glucose_fbg.py +2 -3
- meta_subject/models/health_economics/__init__.py +2 -0
- meta_subject/models/health_economics/health_economics.py +7 -7
- meta_subject/models/health_economics/health_economics_update.py +2 -1
- meta_subject/models/hepatitis_test.py +2 -2
- meta_subject/models/other_arv_regimens_detail.py +1 -1
- meta_subject/models/patient_history.py +5 -6
- meta_subject/models/physical_exam.py +2 -2
- meta_subject/models/pregnancy_update.py +1 -1
- meta_subject/models/signals.py +14 -12
- meta_subject/models/subject_visit.py +1 -1
- meta_subject/models/urine_dipstick_test.py +1 -1
- meta_subject/models/urine_pregnancy.py +1 -1
- meta_visit_schedule/visit_schedules/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
- meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
- meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
- meta_ae/tests/holidays.csv +0 -15
- meta_ae/tests/tests/test_actions.py +0 -126
- meta_ae/tests/urls.py +0 -10
- meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
- meta_analytics/notebooks/anu.ipynb +0 -95
- meta_analytics/notebooks/appointment_planning.ipynb +0 -329
- meta_analytics/notebooks/arvs.ipynb +0 -103
- meta_analytics/notebooks/cleaning/__init__.py +0 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
- meta_analytics/notebooks/followup_examination.ipynb +0 -141
- meta_analytics/notebooks/hba1c.ipynb +0 -136
- meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
- meta_analytics/notebooks/incidence.ipynb +0 -232
- meta_analytics/notebooks/liver.ipynb +0 -389
- meta_analytics/notebooks/magreth.ipynb +0 -645
- meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
- meta_analytics/notebooks/pharmacy.ipynb +0 -1061
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
- meta_analytics/notebooks/qa.ipynb +0 -273
- meta_analytics/notebooks/steering.ipynb +0 -61
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
- meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
- meta_analytics/notebooks/ven.ipynb +0 -191
- meta_analytics/notebooks/vitals.ipynb +0 -263
- meta_analytics/tests/__init__.py +0 -0
- meta_analytics/tests/test_endpoints_by_date.py +0 -94
- meta_consent/tests/__init__.py +0 -0
- meta_consent/tests/holidays.csv +0 -15
- meta_consent/tests/tests/__init__.py +0 -0
- meta_consent/tests/tests/test_form_validators.py +0 -110
- meta_consent/tests/tests/test_subject_consent.py +0 -10
- meta_consent/tests/urls.py +0 -17
- meta_dashboard/tests/__init__.py +0 -0
- meta_dashboard/tests/admin.py +0 -22
- meta_dashboard/tests/holidays.csv +0 -15
- meta_dashboard/tests/tests/__init__.py +0 -0
- meta_dashboard/tests/urls.py +0 -55
- meta_edc/tests/__init__.py +0 -0
- meta_edc/tests/tests/__init__.py +0 -0
- meta_edc/tests/tests/test_endpoints.py +0 -555
- meta_edc-1.1.8.dist-info/METADATA +0 -767
- meta_edc-1.1.8.dist-info/WHEEL +0 -5
- meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
- meta_edc-1.1.8.dist-info/top_level.txt +0 -20
- meta_labs/tests/__init__.py +0 -0
- meta_labs/tests/test_labs.py +0 -27
- meta_labs/tests/test_reportables.py +0 -70
- meta_labs/tests/urls.py +0 -4
- meta_lists/tests/__init__.py +0 -0
- meta_lists/tests/test_lists.py +0 -8
- meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
- meta_prn/tests/__init__.py +0 -0
- meta_prn/tests/tests/__init__.py +0 -0
- meta_prn/tests/tests/test_actions.py +0 -97
- meta_prn/tests/tests/test_dm_referral.py +0 -203
- meta_prn/tests/tests/test_eos_events.py +0 -134
- meta_prn/tests/tests/test_manager_order.py +0 -14
- meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
- meta_prn/tests/urls.py +0 -10
- meta_rando/tests/__init__.py +0 -0
- meta_rando/tests/tests/__init__.py +0 -0
- meta_rando/tests/tests/test_randomizers.py +0 -57
- meta_reports/tests/__init__.py +0 -0
- meta_reports/tests/test_reports.py +0 -35
- meta_reports/tests/test_sql_gen.py +0 -5
- meta_reports/tests/urls.py +0 -4
- meta_screening/offline_models.py +0 -3
- meta_screening/tests/__init__.py +0 -0
- meta_screening/tests/holidays.csv +0 -15
- meta_screening/tests/meta_test_case_mixin.py +0 -234
- meta_screening/tests/options.py +0 -127
- meta_screening/tests/tests/__init__.py +0 -0
- meta_screening/tests/tests/test_forms.py +0 -404
- meta_screening/tests/tests/test_screening_part_one.py +0 -108
- meta_screening/tests/tests/test_screening_part_three.py +0 -433
- meta_screening/tests/tests/test_screening_part_two.py +0 -84
- meta_sites/tests/__init__.py +0 -0
- meta_sites/tests/test_sites.py +0 -12
- meta_sites/tests/urls.py +0 -4
- meta_stats/__init__.py +0 -0
- meta_stats/incidence.py +0 -16
- meta_stats/models.py +0 -0
- meta_stats/tests/__init__.py +0 -0
- meta_stats/tests/tests/__init__.py +0 -0
- meta_stats/tests/tests/test_incidence.py +0 -10
- meta_subject/tests/__init__.py +0 -0
- meta_subject/tests/holidays.csv +0 -15
- meta_subject/tests/tests/__init__.py +0 -0
- meta_subject/tests/tests/test_egfr.py +0 -234
- meta_subject/tests/tests/test_fixes.py +0 -64
- meta_subject/tests/tests/test_followup.py +0 -52
- meta_subject/tests/tests/test_manager_order.py +0 -11
- meta_subject/tests/tests/test_medication_adherence.py +0 -79
- meta_subject/tests/tests/test_metadata_rules.py +0 -135
- meta_subject/tests/tests/test_mnsi.py +0 -341
- meta_subject/tests/tests/test_next_appointment.py +0 -231
- meta_subject/tests/tests/test_patient_history_form.py +0 -74
- meta_subject/tests/tests/test_physical_exam.py +0 -84
- meta_subject/tests/tests/test_sf12.py +0 -161
- meta_subject/tests/tests/test_study_medication.py +0 -229
- meta_subject/tests/urls.py +0 -24
- meta_visit_schedule/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/__init__.py +0 -0
- meta_visit_schedule/tests/tests/test_schedule.py +0 -181
- meta_visit_schedule/tests/urls.py +0 -4
- tests/__init__.py +0 -0
- tests/etc/randomization_list.csv +0 -241
- tests/etc/randomization_list_phase_three.csv +0 -241
- tests/etc/user-aes-local.key +0 -0
- tests/etc/user-aes-restricted.key +0 -1
- tests/etc/user-rsa-local-private.pem +0 -27
- tests/etc/user-rsa-local-public.pem +0 -9
- tests/etc/user-rsa-restricted-private.pem +0 -27
- tests/etc/user-rsa-restricted-public.pem +0 -9
- tests/etc/user-salt-local.key +0 -0
- tests/etc/user-salt-restricted.key +0 -0
- tests/holidays.csv +0 -15
- tests/test_settings.py +0 -185
- {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
- /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
- /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
|
@@ -1,964 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "code",
|
|
5
|
-
"execution_count": null,
|
|
6
|
-
"id": "0",
|
|
7
|
-
"metadata": {},
|
|
8
|
-
"outputs": [],
|
|
9
|
-
"source": [
|
|
10
|
-
"%%capture\n",
|
|
11
|
-
"import pandas as pd\n",
|
|
12
|
-
"import numpy as np\n",
|
|
13
|
-
"import math\n",
|
|
14
|
-
"import matplotlib.pyplot as plt\n",
|
|
15
|
-
"import scipy.stats as stats\n",
|
|
16
|
-
"\n",
|
|
17
|
-
"from dj_notebook import activate\n",
|
|
18
|
-
"\n",
|
|
19
|
-
"plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
|
|
20
|
-
"# output is suppressed ut normally would spew out all the edc loading messages\n"
|
|
21
|
-
]
|
|
22
|
-
},
|
|
23
|
-
{
|
|
24
|
-
"cell_type": "code",
|
|
25
|
-
"execution_count": null,
|
|
26
|
-
"id": "1",
|
|
27
|
-
"metadata": {},
|
|
28
|
-
"outputs": [],
|
|
29
|
-
"source": [
|
|
30
|
-
"# This notebook is incomplete / not working"
|
|
31
|
-
]
|
|
32
|
-
},
|
|
33
|
-
{
|
|
34
|
-
"cell_type": "code",
|
|
35
|
-
"execution_count": null,
|
|
36
|
-
"id": "2",
|
|
37
|
-
"metadata": {},
|
|
38
|
-
"outputs": [],
|
|
39
|
-
"source": [
|
|
40
|
-
"from edc_analytics.custom_tables import BpTable\n",
|
|
41
|
-
"from edc_analytics.table import Table\n",
|
|
42
|
-
"from meta_screening.models import SubjectScreening\n",
|
|
43
|
-
"from meta_subject.models import PhysicalExam, SubjectVisit\n",
|
|
44
|
-
"from django_pandas.io import read_frame"
|
|
45
|
-
]
|
|
46
|
-
},
|
|
47
|
-
{
|
|
48
|
-
"cell_type": "code",
|
|
49
|
-
"execution_count": null,
|
|
50
|
-
"id": "3",
|
|
51
|
-
"metadata": {},
|
|
52
|
-
"outputs": [],
|
|
53
|
-
"source": [
|
|
54
|
-
"default_columns = [\"id\", \"subject_identifier\", \"report_datetime\", \"visit_code\"]\n",
|
|
55
|
-
"\n",
|
|
56
|
-
"title_row = [] # ???????????????"
|
|
57
|
-
]
|
|
58
|
-
},
|
|
59
|
-
{
|
|
60
|
-
"cell_type": "code",
|
|
61
|
-
"execution_count": null,
|
|
62
|
-
"id": "4",
|
|
63
|
-
"metadata": {},
|
|
64
|
-
"outputs": [],
|
|
65
|
-
"source": [
|
|
66
|
-
"# this step is slow, maybe because it is the first call to the DB\n",
|
|
67
|
-
"qs_screening = SubjectScreening.objects.all()\n",
|
|
68
|
-
"df = read_frame(qs_screening)\n"
|
|
69
|
-
]
|
|
70
|
-
},
|
|
71
|
-
{
|
|
72
|
-
"cell_type": "code",
|
|
73
|
-
"execution_count": null,
|
|
74
|
-
"id": "5",
|
|
75
|
-
"metadata": {},
|
|
76
|
-
"outputs": [],
|
|
77
|
-
"source": [
|
|
78
|
-
"# backup the df\n",
|
|
79
|
-
"df_screen = df.copy()\n",
|
|
80
|
-
"# df = df_screen.copy()\n"
|
|
81
|
-
]
|
|
82
|
-
},
|
|
83
|
-
{
|
|
84
|
-
"cell_type": "code",
|
|
85
|
-
"execution_count": null,
|
|
86
|
-
"id": "6",
|
|
87
|
-
"metadata": {},
|
|
88
|
-
"outputs": [],
|
|
89
|
-
"source": [
|
|
90
|
-
"# convert all to float\n",
|
|
91
|
-
"cols = [\"fbg_value\", \"fbg2_value\", \"ogtt_value\", \"ogtt2_value\", \"converted_fbg_value\", \n",
|
|
92
|
-
" \"converted_fbg2_value\", \"converted_ogtt_value\", \"converted_ogtt2_value\",\n",
|
|
93
|
-
" \"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\",\n",
|
|
94
|
-
" \"waist_circumference\"]\n",
|
|
95
|
-
"df[cols] = df[cols].apply(pd.to_numeric)"
|
|
96
|
-
]
|
|
97
|
-
},
|
|
98
|
-
{
|
|
99
|
-
"cell_type": "code",
|
|
100
|
-
"execution_count": null,
|
|
101
|
-
"id": "7",
|
|
102
|
-
"metadata": {},
|
|
103
|
-
"outputs": [],
|
|
104
|
-
"source": [
|
|
105
|
-
"\n",
|
|
106
|
-
"# condition to include any glucose test\n",
|
|
107
|
-
"cond_glu = (\n",
|
|
108
|
-
" (df['fbg_value'].notna()) | \n",
|
|
109
|
-
" (df['ogtt_value'].notna()) | \n",
|
|
110
|
-
" (df['fbg2_value'].notna()) |\n",
|
|
111
|
-
" (df['ogtt2_value'].notna())\n",
|
|
112
|
-
")\n",
|
|
113
|
-
"\n",
|
|
114
|
-
"# conditions for Male/Female\n",
|
|
115
|
-
"male = (df[\"gender\"]==\"Male\")\n",
|
|
116
|
-
"female = (df[\"gender\"]==\"Female\")\n",
|
|
117
|
-
"\n",
|
|
118
|
-
"# condition for art stable\n",
|
|
119
|
-
"cond_art_stable = (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n"
|
|
120
|
-
]
|
|
121
|
-
},
|
|
122
|
-
{
|
|
123
|
-
"cell_type": "code",
|
|
124
|
-
"execution_count": null,
|
|
125
|
-
"id": "8",
|
|
126
|
-
"metadata": {},
|
|
127
|
-
"outputs": [],
|
|
128
|
-
"source": []
|
|
129
|
-
},
|
|
130
|
-
{
|
|
131
|
-
"cell_type": "code",
|
|
132
|
-
"execution_count": null,
|
|
133
|
-
"id": "9",
|
|
134
|
-
"metadata": {},
|
|
135
|
-
"outputs": [],
|
|
136
|
-
"source": [
|
|
137
|
-
"# lets fix some columns\n",
|
|
138
|
-
"# has_dm fillna with unk\n",
|
|
139
|
-
"df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
|
|
140
|
-
"# lets create a column that summarizes lives_nearby and staying_nearby_12\n",
|
|
141
|
-
"df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
|
|
142
|
-
"\n",
|
|
143
|
-
"\n",
|
|
144
|
-
"# glucose\n",
|
|
145
|
-
"# are all glucose fields filled? YES\n",
|
|
146
|
-
"# for prefix in [\"fbg\", \"ogtt\", \"fbg2\", \"ogtt2\"]:\n",
|
|
147
|
-
"# print(df[(df[f\"{prefix}_value\"].isna()) & (df[f\"converted_{prefix}_value\"].notna())][\"gender\"].count())\n",
|
|
148
|
-
"# print(df[(df[f\"{prefix}_value\"].notna()) & (df[f\"converted_{prefix}_value\"].isna())][\"gender\"].count())\n",
|
|
149
|
-
"\n",
|
|
150
|
-
"# create fbg column\n",
|
|
151
|
-
"df[\"fbg\"] = df[\"converted_fbg_value\"]\n",
|
|
152
|
-
"df.loc[df[\"fbg\"].notna() & df[\"converted_fbg2_value\"].notna(), \"fbg\"] = df[\"converted_fbg2_value\"]\n",
|
|
153
|
-
"\n",
|
|
154
|
-
"# create ogtt column\n",
|
|
155
|
-
"df[\"ogtt\"] = df[\"converted_ogtt_value\"]\n",
|
|
156
|
-
"df.loc[df[\"ogtt\"].notna() & df[\"converted_ogtt2_value\"].notna(), \"ogtt\"] = df[\"converted_ogtt2_value\"]\n"
|
|
157
|
-
]
|
|
158
|
-
},
|
|
159
|
-
{
|
|
160
|
-
"cell_type": "code",
|
|
161
|
-
"execution_count": null,
|
|
162
|
-
"id": "10",
|
|
163
|
-
"metadata": {},
|
|
164
|
-
"outputs": [],
|
|
165
|
-
"source": [
|
|
166
|
-
"# subject SR9E8B4D has eligible part two == No but subject has a glucose value\n",
|
|
167
|
-
"df.loc[(df[\"screening_identifier\"]==\"SR9E8B4D\"), \"eligible_part_two\"] = \"Yes\"\n"
|
|
168
|
-
]
|
|
169
|
-
},
|
|
170
|
-
{
|
|
171
|
-
"cell_type": "code",
|
|
172
|
-
"execution_count": null,
|
|
173
|
-
"id": "11",
|
|
174
|
-
"metadata": {},
|
|
175
|
-
"outputs": [],
|
|
176
|
-
"source": [
|
|
177
|
-
"\n",
|
|
178
|
-
"# condition where subject is eligible P1/P2 and has any type of glucose test\n",
|
|
179
|
-
"cond = ((df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & cond_glu)\n"
|
|
180
|
-
]
|
|
181
|
-
},
|
|
182
|
-
{
|
|
183
|
-
"cell_type": "code",
|
|
184
|
-
"execution_count": null,
|
|
185
|
-
"id": "12",
|
|
186
|
-
"metadata": {},
|
|
187
|
-
"outputs": [],
|
|
188
|
-
"source": [
|
|
189
|
-
"# filter dataframe\n",
|
|
190
|
-
"df = df[cond]\n"
|
|
191
|
-
]
|
|
192
|
-
},
|
|
193
|
-
{
|
|
194
|
-
"cell_type": "code",
|
|
195
|
-
"execution_count": null,
|
|
196
|
-
"id": "13",
|
|
197
|
-
"metadata": {},
|
|
198
|
-
"outputs": [],
|
|
199
|
-
"source": [
|
|
200
|
-
"print(len(df))"
|
|
201
|
-
]
|
|
202
|
-
},
|
|
203
|
-
{
|
|
204
|
-
"cell_type": "code",
|
|
205
|
-
"execution_count": null,
|
|
206
|
-
"id": "14",
|
|
207
|
-
"metadata": {},
|
|
208
|
-
"outputs": [],
|
|
209
|
-
"source": [
|
|
210
|
-
"wc_describe = df[\"waist_circumference\"].describe()\n",
|
|
211
|
-
"\n",
|
|
212
|
-
"# merge with physical exam to get waist circumference if taken at baseline\n",
|
|
213
|
-
"subject_identifiers = list(df[\"subject_identifier\"])\n",
|
|
214
|
-
"\n",
|
|
215
|
-
"qs_subject_visit = SubjectVisit.objects.filter(subject_identifier__in=subject_identifiers)\n",
|
|
216
|
-
"df_subject_visit = read_frame(qs_subject_visit)\n",
|
|
217
|
-
"df_subject_visit.rename(columns={\"id\": \"subject_visit\"}, inplace=True)\n",
|
|
218
|
-
"\n",
|
|
219
|
-
"qs_physical_exam = PhysicalExam.objects.filter(subject_visit__subject_identifier__in=subject_identifiers)\n",
|
|
220
|
-
"df_physical_exam = read_frame(qs_physical_exam)\n",
|
|
221
|
-
"\n",
|
|
222
|
-
"# merge w/ subject visit to get subject_identifier\n",
|
|
223
|
-
"df_physical_exam = pd.merge(df_physical_exam, df_subject_visit[[\"subject_visit\", \"subject_identifier\", \"visit_code\", \"visit_code_sequence\"]], on=\"subject_visit\", how=\"left\")\n",
|
|
224
|
-
"df_physical_exam = df_physical_exam[[\"subject_identifier\", \"visit_code\", \"visit_code_sequence\", \"waist_circumference\"]]\n",
|
|
225
|
-
"\n",
|
|
226
|
-
"df_physical_exam[[\"waist_circumference\"]] = df[[\"waist_circumference\"]].apply(pd.to_numeric)\n",
|
|
227
|
-
"\n",
|
|
228
|
-
"# rename column to waist_circumference_baseline\n",
|
|
229
|
-
"df_physical_exam[\"waist_circumference_baseline\"] = df_physical_exam[\"waist_circumference\"]\n",
|
|
230
|
-
"df_physical_exam.drop(columns=[\"waist_circumference\"])\n",
|
|
231
|
-
"\n",
|
|
232
|
-
"df_physical_exam[[\"waist_circumference_baseline\"]] = df_physical_exam[[\"waist_circumference_baseline\"]].apply(pd.to_numeric)\n",
|
|
233
|
-
"wc_baseline_describe = df_physical_exam[\"waist_circumference_baseline\"].describe()\n",
|
|
234
|
-
"\n",
|
|
235
|
-
"# merge on subject_identifier with main DF\n",
|
|
236
|
-
"df = pd.merge(df, df_physical_exam[[\"subject_identifier\", \"waist_circumference_baseline\"]], on=\"subject_identifier\", how=\"left\")\n",
|
|
237
|
-
"\n",
|
|
238
|
-
"# set waist_circumference=waist_circumference_baseline if `waist_circumference` is none and `waist_circumference_baseline` is not\n",
|
|
239
|
-
"df.loc[(df[\"waist_circumference\"].isna()) & (df[\"waist_circumference_baseline\"].notna()), \"waist_circumference\"] = df[\"waist_circumference_baseline\"]\n",
|
|
240
|
-
"\n",
|
|
241
|
-
"# drop waist_circumference_baseline\n",
|
|
242
|
-
"df.drop(columns=[\"waist_circumference_baseline\"], inplace=True)\n"
|
|
243
|
-
]
|
|
244
|
-
},
|
|
245
|
-
{
|
|
246
|
-
"cell_type": "code",
|
|
247
|
-
"execution_count": null,
|
|
248
|
-
"id": "15",
|
|
249
|
-
"metadata": {},
|
|
250
|
-
"outputs": [],
|
|
251
|
-
"source": [
|
|
252
|
-
"# gender\n",
|
|
253
|
-
"def cell(gender, all=None):\n",
|
|
254
|
-
" cnt = df.loc[gender][\"gender\"].count()\n",
|
|
255
|
-
" if not all:\n",
|
|
256
|
-
" tot = df[\"gender\"].count()\n",
|
|
257
|
-
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
258
|
-
" return f\"{cnt}\"\n",
|
|
259
|
-
"\n",
|
|
260
|
-
"df_gender = pd.DataFrame(columns=default_columns)\n",
|
|
261
|
-
"class GenderTable(Table):\n",
|
|
262
|
-
" def build_table_df(self):\n",
|
|
263
|
-
" pass\n",
|
|
264
|
-
"\n",
|
|
265
|
-
"tbl = Table(df, label=\"Gender\", columns=default_columns, show_ncol_perc=True)\n",
|
|
266
|
-
"# df_gender.loc[0] = [\"Gender\", \"n\", cell(female), cell(male), cell((male | female), all=True)]\n",
|
|
267
|
-
"tbl.table_df\n"
|
|
268
|
-
]
|
|
269
|
-
},
|
|
270
|
-
{
|
|
271
|
-
"cell_type": "code",
|
|
272
|
-
"execution_count": null,
|
|
273
|
-
"id": "16",
|
|
274
|
-
"metadata": {},
|
|
275
|
-
"outputs": [],
|
|
276
|
-
"source": []
|
|
277
|
-
},
|
|
278
|
-
{
|
|
279
|
-
"cell_type": "code",
|
|
280
|
-
"execution_count": null,
|
|
281
|
-
"id": "17",
|
|
282
|
-
"metadata": {},
|
|
283
|
-
"outputs": [],
|
|
284
|
-
"source": [
|
|
285
|
-
"# age\n",
|
|
286
|
-
"agef = df.loc[female][\"age_in_years\"]\n",
|
|
287
|
-
"agem = df.loc[male][\"age_in_years\"]\n",
|
|
288
|
-
"age = df[\"age_in_years\"]\n",
|
|
289
|
-
"# bins\n",
|
|
290
|
-
"bin1 = (df[\"age_in_years\"]>=18) & (df[\"age_in_years\"]<35)\n",
|
|
291
|
-
"bin2 = (df[\"age_in_years\"]>=35) & (df[\"age_in_years\"]<50)\n",
|
|
292
|
-
"bin3 = (df[\"age_in_years\"]>=50) & (df[\"age_in_years\"]<65)\n",
|
|
293
|
-
"bin4 = (df[\"age_in_years\"]>=65)\n",
|
|
294
|
-
"\n",
|
|
295
|
-
"def cell(cond, gender, all=None):\n",
|
|
296
|
-
" cnt = df.loc[gender & cond][\"age_in_years\"].count()\n",
|
|
297
|
-
" if not all:\n",
|
|
298
|
-
" tot = df.loc[cond][\"age_in_years\"].count()\n",
|
|
299
|
-
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
300
|
-
" tot = df[\"age_in_years\"].count()\n",
|
|
301
|
-
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
302
|
-
"\n",
|
|
303
|
-
"df_age = pd.DataFrame(columns=title_row)\n",
|
|
304
|
-
"\n",
|
|
305
|
-
"df_age.loc[0] = [\"Age (years)\", \"n\", agef.count(), agem.count(), age.count()]\n",
|
|
306
|
-
"df_age.loc[1] = [\n",
|
|
307
|
-
" \"\", \"Median (IQR)\",\n",
|
|
308
|
-
" f\"{agef.quantile().astype(int)} ({agef.quantile(0.25).astype(int)}, {agef.quantile(0.75).astype(int)})\",\n",
|
|
309
|
-
" f\"{agem.quantile().astype(int)} ({agem.quantile(0.25).astype(int)}, {agem.quantile(0.75).astype(int)})\",\n",
|
|
310
|
-
" f\"{age.quantile().astype(int)} ({age.quantile(0.25).astype(int)}, {age.quantile(0.75).astype(int)})\",] \n",
|
|
311
|
-
"df_age.loc[2] = [\"\", \"18-34\", cell(female, bin1), cell(male, bin1), cell(bin1, (male | female), all=True)]\n",
|
|
312
|
-
"df_age.loc[3] = [\"\", \"35-49\", cell(female, bin2), cell(male, bin2), cell(bin2, (male | female), all=True)]\n",
|
|
313
|
-
"df_age.loc[4] = [\"\", \"50-64\", cell(female, bin3), cell(male, bin3), cell(bin3, (male | female), all=True)]\n",
|
|
314
|
-
"df_age.loc[5] = [\"\", \"65 and older\", cell(female, bin4), cell(male, bin4), cell(bin4, (male | female), all=True)]\n"
|
|
315
|
-
]
|
|
316
|
-
},
|
|
317
|
-
{
|
|
318
|
-
"cell_type": "code",
|
|
319
|
-
"execution_count": null,
|
|
320
|
-
"id": "18",
|
|
321
|
-
"metadata": {},
|
|
322
|
-
"outputs": [],
|
|
323
|
-
"source": []
|
|
324
|
-
},
|
|
325
|
-
{
|
|
326
|
-
"cell_type": "code",
|
|
327
|
-
"execution_count": null,
|
|
328
|
-
"id": "19",
|
|
329
|
-
"metadata": {},
|
|
330
|
-
"outputs": [],
|
|
331
|
-
"source": [
|
|
332
|
-
"# waist_circumference\n",
|
|
333
|
-
"desc = df[[\"waist_circumference\"]].describe()\n",
|
|
334
|
-
"descf = df[df[\"gender\"]==\"Female\"][[\"waist_circumference\"]].describe()\n",
|
|
335
|
-
"descm = df[df[\"gender\"]==\"Male\"][[\"waist_circumference\"]].describe()\n",
|
|
336
|
-
"\n",
|
|
337
|
-
"f = f\"{descf.loc[\"50%\"].values[0]} ({descf.loc[\"25%\"].values[0]}, {descf.loc[\"75%\"].values[0]})\"\n",
|
|
338
|
-
"m = f\"{descm.loc[\"50%\"].values[0]} ({descm.loc[\"25%\"].values[0]}, {descm.loc[\"75%\"].values[0]})\"\n",
|
|
339
|
-
"all = f\"{desc.loc[\"50%\"].values[0]} ({desc.loc[\"25%\"].values[0]}, {desc.loc[\"75%\"].values[0]})\"\n",
|
|
340
|
-
"\n",
|
|
341
|
-
"df_waist = pd.DataFrame(columns=title_row)\n",
|
|
342
|
-
"\n",
|
|
343
|
-
"df_waist.loc[0] = [\"Waist circumference (cm)\", \"n\", descf.loc[\"count\"].values[0].astype(\"int64\"), descm.loc[\"count\"].values[0].astype(\"int64\"), desc.loc[\"count\"].values[0].astype(\"int64\")]\n",
|
|
344
|
-
"df_waist.loc[1] = [\"\", \"Median (IQR)\", f, m, all]\n"
|
|
345
|
-
]
|
|
346
|
-
},
|
|
347
|
-
{
|
|
348
|
-
"cell_type": "code",
|
|
349
|
-
"execution_count": null,
|
|
350
|
-
"id": "20",
|
|
351
|
-
"metadata": {},
|
|
352
|
-
"outputs": [],
|
|
353
|
-
"source": [
|
|
354
|
-
"# waist_circumference (cont)\n",
|
|
355
|
-
"# Women 88 / Men 102\n",
|
|
356
|
-
"cond_lt_102 = ((df[\"waist_circumference\"]<102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]<88.0) & (df[\"gender\"]==\"Female\"))\n",
|
|
357
|
-
"cond_gte_102 = ((df[\"waist_circumference\"]>=102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]>=88.0) & (df[\"gender\"]==\"Female\"))\n",
|
|
358
|
-
"\n",
|
|
359
|
-
"tot = df[\"waist_circumference\"].count()\n",
|
|
360
|
-
"\n",
|
|
361
|
-
"f_cnt = df[cond_lt_102 & female][\"waist_circumference\"].count()\n",
|
|
362
|
-
"f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
|
|
363
|
-
"m_cnt = df[cond_lt_102 & male][\"waist_circumference\"].count()\n",
|
|
364
|
-
"m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
|
|
365
|
-
"value = f\"{round(df[cond_lt_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_lt_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
|
|
366
|
-
"\n",
|
|
367
|
-
"\n",
|
|
368
|
-
"df_waist.loc[2] = [\"\", \"Women<88 / Men<102\", f, m, value]\n",
|
|
369
|
-
"\n",
|
|
370
|
-
"\n",
|
|
371
|
-
"f_cnt = df[cond_gte_102 & female][\"waist_circumference\"].count()\n",
|
|
372
|
-
"f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
|
|
373
|
-
"m_cnt = df[cond_gte_102 & male][\"waist_circumference\"].count()\n",
|
|
374
|
-
"m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
|
|
375
|
-
"value = f\"{round(df[cond_gte_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_gte_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
|
|
376
|
-
"\n",
|
|
377
|
-
"df_waist.loc[3] = [\"\", \"Women>=88 / Men>=102\", f, m, value]\n",
|
|
378
|
-
" "
|
|
379
|
-
]
|
|
380
|
-
},
|
|
381
|
-
{
|
|
382
|
-
"cell_type": "code",
|
|
383
|
-
"execution_count": null,
|
|
384
|
-
"id": "21",
|
|
385
|
-
"metadata": {},
|
|
386
|
-
"outputs": [],
|
|
387
|
-
"source": [
|
|
388
|
-
"# cond_art\n",
|
|
389
|
-
"\n",
|
|
390
|
-
"def cell(gender, all=None):\n",
|
|
391
|
-
" cnt = df.loc[gender & cond_art_stable][\"gender\"].count()\n",
|
|
392
|
-
" if not all:\n",
|
|
393
|
-
" tot = df.loc[cond_art_stable][\"gender\"].count()\n",
|
|
394
|
-
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
395
|
-
" tot = df[\"gender\"].count()\n",
|
|
396
|
-
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
397
|
-
" \n",
|
|
398
|
-
"df_art = pd.DataFrame(columns=title_row)\n",
|
|
399
|
-
"df_art.loc[0] = [\"Stable on ART\", \"\", cell(female), cell(male), cell((male | female), all=True)]\n"
|
|
400
|
-
]
|
|
401
|
-
},
|
|
402
|
-
{
|
|
403
|
-
"cell_type": "code",
|
|
404
|
-
"execution_count": null,
|
|
405
|
-
"id": "22",
|
|
406
|
-
"metadata": {},
|
|
407
|
-
"outputs": [],
|
|
408
|
-
"source": [
|
|
409
|
-
"# blood pressure\n",
|
|
410
|
-
"# print(len(df[(df[\"sys_blood_pressure_one\"].notna()) & (df[\"dia_blood_pressure_one\"].notna())]))\n",
|
|
411
|
-
"# print(len(df[(df[\"sys_blood_pressure_two\"].notna()) & (df[\"dia_blood_pressure_two\"].notna())]))\n",
|
|
412
|
-
"# print(len(df[(df[\"sys_blood_pressure_avg\"].notna()) & (df[\"dia_blood_pressure_avg\"].notna())]))"
|
|
413
|
-
]
|
|
414
|
-
},
|
|
415
|
-
{
|
|
416
|
-
"cell_type": "code",
|
|
417
|
-
"execution_count": null,
|
|
418
|
-
"id": "23",
|
|
419
|
-
"metadata": {},
|
|
420
|
-
"outputs": [],
|
|
421
|
-
"source": [
|
|
422
|
-
"# blood pressure\n",
|
|
423
|
-
"\n",
|
|
424
|
-
"# df_tmp = df.copy()\n",
|
|
425
|
-
"# tot = len(df_tmp)\n",
|
|
426
|
-
"# print(f\"tot={tot}\")\n",
|
|
427
|
-
"# len(df_tmp[(df_tmp[\"sys_blood_pressure_avg\"].notna()) & (df_tmp[\"dia_blood_pressure_avg\"].notna())])\n",
|
|
428
|
-
"# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
|
|
429
|
-
"# severe_htn_df = df_tmp[severe_htn_cond]\n",
|
|
430
|
-
"# print(f\"severe_htn={len(severe_htn_df)}\")\n",
|
|
431
|
-
"# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
|
|
432
|
-
"\n",
|
|
433
|
-
"# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
|
|
434
|
-
"# htn_df = df_tmp[htn_cond]\n",
|
|
435
|
-
"# print(f\"htn={len(htn_df)}\")\n",
|
|
436
|
-
"# df_tmp.drop(htn_df.index, inplace=True)\n",
|
|
437
|
-
"\n",
|
|
438
|
-
"# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
|
|
439
|
-
"# pre_htn_df = df_tmp[pre_htn_cond]\n",
|
|
440
|
-
"# print(f\"pre_htn={len(pre_htn_df)}\")\n",
|
|
441
|
-
"# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
|
|
442
|
-
"\n",
|
|
443
|
-
"# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
|
|
444
|
-
"# normal_df = df_tmp[normal_cond]\n",
|
|
445
|
-
"# print(f\"normal={len(normal_df)}\")\n",
|
|
446
|
-
"# df_tmp.drop(normal_df.index, inplace=True)\n",
|
|
447
|
-
"\n",
|
|
448
|
-
"# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
|
|
449
|
-
"# low_df = df_tmp[low_cond]\n",
|
|
450
|
-
"# print(f\"low={len(low_df)}\")\n",
|
|
451
|
-
"# df_tmp.drop(low_df.index, inplace=True)\n",
|
|
452
|
-
"\n",
|
|
453
|
-
" \n",
|
|
454
|
-
"# def cell(dfx, gender, all=None, perc=True):\n",
|
|
455
|
-
"# cnt = dfx.loc[gender][\"gender\"].count()\n",
|
|
456
|
-
"# if not all:\n",
|
|
457
|
-
"# tot = df.loc[gender][\"gender\"].count()\n",
|
|
458
|
-
"# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
|
459
|
-
"# tot = df[\"gender\"].count()\n",
|
|
460
|
-
"# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
461
|
-
"\n",
|
|
462
|
-
"# def quantile(gender, colname):\n",
|
|
463
|
-
"# q50 = df.loc[gender][colname].quantile()\n",
|
|
464
|
-
"# q25 = df.loc[gender][colname].quantile(0.25)\n",
|
|
465
|
-
"# q75 = df.loc[gender][colname].quantile(0.75)\n",
|
|
466
|
-
"# return f\"{q50} ({q25}, {q75})\"\n",
|
|
467
|
-
"\n",
|
|
468
|
-
"# df_bp = pd.DataFrame(columns=title_row)\n",
|
|
469
|
-
"# df_bp.loc[0] = [\"Blood pressure at baseline (mmHg)\", \"n\", cell(df_tmp, female), cell(df_tmp, male), cell(df_tmp, (male | female), all=True, perc=False)]\n",
|
|
470
|
-
"# df_bp.loc[1] = [\"\", \"Low (<90/60)\", cell(low_df, female), cell(low_df, male), cell(low_df, (male | female), all=True)]\n",
|
|
471
|
-
"# df_bp.loc[2] = [\"\", \"Normal (<120/80)\", cell(normal_df, female), cell(normal_df, male), cell(normal_df, (male | female), all=True)]\n",
|
|
472
|
-
"# df_bp.loc[3] = [\"\", \"Pre-hypertension (<140/90)\", cell(pre_htn_df, female), cell(pre_htn_df, male), cell(pre_htn_df, (male | female), all=True)]\n",
|
|
473
|
-
"# df_bp.loc[4] = [\"\", \"Hypertension (>=140/90)\", cell(htn_df, female), cell(htn_df, male), cell(htn_df, (male | female), all=True)]\n",
|
|
474
|
-
"# df_bp.loc[5] = [\"\", \"Severe hypertension (>=180/110)\", cell(severe_htn_df, female), cell(severe_htn_df, male), cell(severe_htn_df, (male | female), all=True)]\n",
|
|
475
|
-
"# df_bp.loc[6] = [\"\", \"Systolic - median (IQR)\", quantile(female, \"sys_blood_pressure_avg\"), quantile(male, \"sys_blood_pressure_avg\"), quantile((female | male), \"sys_blood_pressure_avg\")]\n",
|
|
476
|
-
"# df_bp.loc[7] = [\"\", \"Diastolic - median (IQR)\", quantile(female, \"dia_blood_pressure_avg\"), quantile(male, \"dia_blood_pressure_avg\"), quantile((female | male), \"dia_blood_pressure_avg\")]\n",
|
|
477
|
-
"\n"
|
|
478
|
-
]
|
|
479
|
-
},
|
|
480
|
-
{
|
|
481
|
-
"cell_type": "code",
|
|
482
|
-
"execution_count": null,
|
|
483
|
-
"id": "24",
|
|
484
|
-
"metadata": {},
|
|
485
|
-
"outputs": [],
|
|
486
|
-
"source": []
|
|
487
|
-
},
|
|
488
|
-
{
|
|
489
|
-
"cell_type": "code",
|
|
490
|
-
"execution_count": null,
|
|
491
|
-
"id": "25",
|
|
492
|
-
"metadata": {},
|
|
493
|
-
"outputs": [],
|
|
494
|
-
"source": [
|
|
495
|
-
"# columns = [\n",
|
|
496
|
-
"# 'Characteristics', 'Statistics', \"F\", \"M\", 'All', \n",
|
|
497
|
-
"# \"fnum\",\"f_prop\",\"fq25\",\"fq50\",\"fq75\",\n",
|
|
498
|
-
"# \"mnum\",\"m_prop\",\"mq25\",\"mq50\",\"mq75\",\n",
|
|
499
|
-
"# \"q25\",\"q50\",\"q75\",\"tot\"]\n",
|
|
500
|
-
"\n",
|
|
501
|
-
"# class SubjectRow:\n",
|
|
502
|
-
"# def __init__(self, gender, dfx, main_df, iqr_col=None):\n",
|
|
503
|
-
"# self.num = dfx.loc[gender][\"gender\"].count()\n",
|
|
504
|
-
"# self.total = len(main_df.loc[gender])\n",
|
|
505
|
-
"# self.perc = self.num/self.total\n",
|
|
506
|
-
"# if iqr_col:\n",
|
|
507
|
-
"# self.q25, self.q50, self.q75 = dfx.loc[gender][iqr_col].quantile([0.25, 0.50, 0.75])\n",
|
|
508
|
-
"# else:\n",
|
|
509
|
-
"# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan\n",
|
|
510
|
-
"\n",
|
|
511
|
-
"# class MaleRow(SubjectRow):\n",
|
|
512
|
-
"# def __init__(self, dfx, main_df, iqr_col=None):\n",
|
|
513
|
-
"# super().__init__(male, dfx, main_df, iqr_col)\n",
|
|
514
|
-
"\n",
|
|
515
|
-
"# class FemaleRow(SubjectRow):\n",
|
|
516
|
-
"# def __init__(self, dfx, main_df, iqr_col=None):\n",
|
|
517
|
-
"# super().__init__(female, dfx, main_df, iqr_col)\n",
|
|
518
|
-
"\n",
|
|
519
|
-
"# class Row:\n",
|
|
520
|
-
"# def __init__(self, dfx, main_df, label=None, statistic=None, iqr_col=None, columns=None):\n",
|
|
521
|
-
"# self.m = MaleRow(dfx, main_df, iqr_col)\n",
|
|
522
|
-
"# self.f =FemaleRow(dfx, main_df, iqr_col)\n",
|
|
523
|
-
"# self.total = len(main_df)\n",
|
|
524
|
-
"# self.subtotal = len(dfx)\n",
|
|
525
|
-
"# if iqr_col:\n",
|
|
526
|
-
"# self.q25, self.q50, self.q75 = main_df[iqr_col].quantile([0.25, 0.50, 0.75])\n",
|
|
527
|
-
"# else:\n",
|
|
528
|
-
"# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan \n",
|
|
529
|
-
"# self.label = label or \"\"\n",
|
|
530
|
-
"# self.statistic = statistic\n",
|
|
531
|
-
"# self.df = pd.DataFrame(columns=columns)\n",
|
|
532
|
-
"\n",
|
|
533
|
-
"# def with_perc(total=None):\n",
|
|
534
|
-
"# if total:\n",
|
|
535
|
-
"# return f\"{self.num} ({round(self.num/self.total *100, 1)}%)\"\n",
|
|
536
|
-
"# return f\"{self.num} ({round(self.num/self.subtotal *100, 1)}%)\"\n",
|
|
537
|
-
" \n",
|
|
538
|
-
"# def values(self):\n",
|
|
539
|
-
"# if self.statistic==\"n\":\n",
|
|
540
|
-
"# return [\n",
|
|
541
|
-
"# self.label, self.statistic, \"\", \"\", \"\",\n",
|
|
542
|
-
"# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75,\n",
|
|
543
|
-
"# self.m.num, self.m.perc, self.m.q25, self.m.q50, self.m.q75,\n",
|
|
544
|
-
"# self.q25, self.q50, self.q75, \n",
|
|
545
|
-
"# self.total]\n",
|
|
546
|
-
"# return [\n",
|
|
547
|
-
"# self.label, self.statistic, \"\", \"\", \"\", \n",
|
|
548
|
-
"# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75, \n",
|
|
549
|
-
"# self.m.num, self.m.perc,self.m.q25, self.m.q50, self.m.q75, \n",
|
|
550
|
-
"# self.q25, self.q50, self.q75, \n",
|
|
551
|
-
"# self.subtotal]\n",
|
|
552
|
-
"\n",
|
|
553
|
-
"# class Table:\n",
|
|
554
|
-
"\n",
|
|
555
|
-
"# statistic_col = \"Statistics\"\n",
|
|
556
|
-
"# female_col = \"F\"\n",
|
|
557
|
-
"# male_col = \"M\"\n",
|
|
558
|
-
"# all_col = \"All\"\n",
|
|
559
|
-
"# n_sublabel = \"n\"\n",
|
|
560
|
-
"# grand_total_col = \"tot\"\n",
|
|
561
|
-
" \n",
|
|
562
|
-
"# def __init__(self, main_df, label=None, columns=None):\n",
|
|
563
|
-
"# self.main_df = main_df\n",
|
|
564
|
-
"# self.table_df = pd.DataFrame(columns=columns)\n",
|
|
565
|
-
"# self.row_zero = Row(main_df, main_df, label=label, statistic=self.n_sublabel, columns=columns)\n",
|
|
566
|
-
"\n",
|
|
567
|
-
"# self.build_table_df()\n",
|
|
568
|
-
" \n",
|
|
569
|
-
"# # format string cols\n",
|
|
570
|
-
"# self.table_df[self.female_col] = self.table_df.apply(lambda x: self.format_f_col(x), axis=1)\n",
|
|
571
|
-
"# self.table_df[self.male_col] = self.table_df.apply(lambda x: self.format_m_col(x), axis=1)\n",
|
|
572
|
-
"# self.table_df[self.all_col] = self.table_df.apply(lambda x: self.format_all_col(x), axis=1)\n",
|
|
573
|
-
"\n",
|
|
574
|
-
"# def build_table_df(self):\n",
|
|
575
|
-
"# self.table_df.loc[0] = self.row_zero.values()\n",
|
|
576
|
-
"\n",
|
|
577
|
-
"# @property\n",
|
|
578
|
-
"# def formatted_df(self):\n",
|
|
579
|
-
"# return self.table_df[['Characteristics', 'Statistics', \"F\", \"M\", 'All']]\n",
|
|
580
|
-
"\n",
|
|
581
|
-
"# def format_f_col(self, x):\n",
|
|
582
|
-
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
|
583
|
-
"# return f\"{x.fnum}\"\n",
|
|
584
|
-
"# elif pd.notna(x.q25):\n",
|
|
585
|
-
"# return f\"{x.fq50} ({x.fq25},{x.fq75})\"\n",
|
|
586
|
-
"# return f\"{x.fnum} ({round(x.fnum/self.row_zero.f.total *100, 1)}%)\" \n",
|
|
587
|
-
"\n",
|
|
588
|
-
"# def format_m_col(self, x):\n",
|
|
589
|
-
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
|
590
|
-
"# return f\"{x.mnum}\"\n",
|
|
591
|
-
"# elif pd.notna(x.q25):\n",
|
|
592
|
-
"# return f\"{x.mq50} ({x.mq25},{x.mq75})\"\n",
|
|
593
|
-
"# return f\"{x.mnum} ({round(x.mnum/self.row_zero.m.total *100, 1)}%)\" \n",
|
|
594
|
-
"\n",
|
|
595
|
-
"# def format_all_col(self, x):\n",
|
|
596
|
-
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
|
597
|
-
"# return f\"{x.tot}\"\n",
|
|
598
|
-
"# elif pd.notna(x.q25):\n",
|
|
599
|
-
"# return f\"{x.q50} ({x.q25},{x.q75})\"\n",
|
|
600
|
-
"# return f\"{x.tot} ({round(x.tot/self.table_df.loc[0][self.grand_total_col] *100, 1)}%)\" \n",
|
|
601
|
-
"\n",
|
|
602
|
-
"# class BpTable(Table):\n",
|
|
603
|
-
"\n",
|
|
604
|
-
"# sys_col = \"sys_blood_pressure_avg\"\n",
|
|
605
|
-
"# dia_col = \"dia_blood_pressure_avg\"\n",
|
|
606
|
-
"\n",
|
|
607
|
-
"# def build_table_df(self):\n",
|
|
608
|
-
"# self.table_df.loc[0] = self.row_zero.values()\n",
|
|
609
|
-
"# i = 1\n",
|
|
610
|
-
"# for key, dfx in self.get_dfs(self.main_df).items():\n",
|
|
611
|
-
"# self.table_df.loc[i] = Row(dfx, self.main_df, label=\"\", statistic=key, columns=columns).values()\n",
|
|
612
|
-
"# i += 1\n",
|
|
613
|
-
"# self.table_df.loc[i+1] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Systolic - median (IQR)\", iqr_col=\"sys_blood_pressure_avg\", columns=columns).values()\n",
|
|
614
|
-
"# self.table_df.loc[i+2] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Diastolic - median (IQR)\", iqr_col=\"dia_blood_pressure_avg\", columns=columns).values() \n",
|
|
615
|
-
" \n",
|
|
616
|
-
"# def get_dfs(self, main_df):\n",
|
|
617
|
-
"# dfs = {}\n",
|
|
618
|
-
"# df_tmp = main_df.copy()\n",
|
|
619
|
-
"# tot = len(df_tmp)\n",
|
|
620
|
-
"# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
|
|
621
|
-
"# severe_htn_df = df_tmp[severe_htn_cond]\n",
|
|
622
|
-
"# dfs.update({\"Severe hypertension (>=180/110)\": severe_htn_df})\n",
|
|
623
|
-
"# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
|
|
624
|
-
" \n",
|
|
625
|
-
"# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
|
|
626
|
-
"# htn_df = df_tmp[htn_cond]\n",
|
|
627
|
-
"# dfs.update({\"Hypertension (>=140/90)\": htn_df})\n",
|
|
628
|
-
"# df_tmp.drop(htn_df.index, inplace=True)\n",
|
|
629
|
-
" \n",
|
|
630
|
-
"# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
|
|
631
|
-
"# pre_htn_df = df_tmp[pre_htn_cond]\n",
|
|
632
|
-
"# dfs.update({\"Pre-hypertension (<140/90)\": pre_htn_df})\n",
|
|
633
|
-
"# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
|
|
634
|
-
" \n",
|
|
635
|
-
"# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
|
|
636
|
-
"# normal_df = df_tmp[normal_cond]\n",
|
|
637
|
-
"# dfs.update({\"Normal (<120/80)\": normal_df})\n",
|
|
638
|
-
"# df_tmp.drop(normal_df.index, inplace=True)\n",
|
|
639
|
-
" \n",
|
|
640
|
-
"# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
|
|
641
|
-
"# low_df = df_tmp[low_cond]\n",
|
|
642
|
-
"# dfs.update({\"Low (<90/60)\": low_df})\n",
|
|
643
|
-
"# df_tmp.drop(low_df.index, inplace=True)\n",
|
|
644
|
-
"# dfs = dict(reversed(list(dfs.items())))\n",
|
|
645
|
-
"# return dfs\n",
|
|
646
|
-
"\n",
|
|
647
|
-
" \n",
|
|
648
|
-
"\n",
|
|
649
|
-
"tbl = BpTable(df, label=\"Blood pressure at baseline (mmHg)\", columns=columns)\n",
|
|
650
|
-
"tbl.formatted_df\n",
|
|
651
|
-
" "
|
|
652
|
-
]
|
|
653
|
-
},
|
|
654
|
-
{
|
|
655
|
-
"cell_type": "code",
|
|
656
|
-
"execution_count": null,
|
|
657
|
-
"id": "26",
|
|
658
|
-
"metadata": {},
|
|
659
|
-
"outputs": [],
|
|
660
|
-
"source": [
|
|
661
|
-
"tbl.table_df"
|
|
662
|
-
]
|
|
663
|
-
},
|
|
664
|
-
{
|
|
665
|
-
"cell_type": "code",
|
|
666
|
-
"execution_count": null,
|
|
667
|
-
"id": "27",
|
|
668
|
-
"metadata": {},
|
|
669
|
-
"outputs": [],
|
|
670
|
-
"source": [
|
|
671
|
-
"df_bp2"
|
|
672
|
-
]
|
|
673
|
-
},
|
|
674
|
-
{
|
|
675
|
-
"cell_type": "code",
|
|
676
|
-
"execution_count": null,
|
|
677
|
-
"id": "28",
|
|
678
|
-
"metadata": {},
|
|
679
|
-
"outputs": [],
|
|
680
|
-
"source": [
|
|
681
|
-
"# fbg\n",
|
|
682
|
-
"\n",
|
|
683
|
-
"def cell(measure, gender, all=None):\n",
|
|
684
|
-
" if measure == \"<6.1\":\n",
|
|
685
|
-
" cond = (df[\"fbg\"]<6.1)\n",
|
|
686
|
-
" elif measure == \"6.1-6.9\":\n",
|
|
687
|
-
" cond = (df[\"fbg\"]>=6.1) & (df[\"fbg\"]<7.0)\n",
|
|
688
|
-
" elif measure == \">=7.0\":\n",
|
|
689
|
-
" cond = (df[\"fbg\"]>=7.0)\n",
|
|
690
|
-
" else:\n",
|
|
691
|
-
" cond = (df[\"fbg\"].notna())\n",
|
|
692
|
-
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
|
693
|
-
" if not all:\n",
|
|
694
|
-
" tot = df.loc[gender][\"gender\"].count()\n",
|
|
695
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
|
696
|
-
" tot = df[\"gender\"].count()\n",
|
|
697
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
698
|
-
"\n",
|
|
699
|
-
"df_fbg = pd.DataFrame(columns=title_row)\n",
|
|
700
|
-
"df_fbg.loc[0] = [\"FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
|
701
|
-
"df_fbg.loc[1] = [\"\", \"<6.1\", cell(\"<6.1\", female), cell(\"<6.1\", male), cell(\"<6.1\", (male | female), all=True)]\n",
|
|
702
|
-
"df_fbg.loc[2] = [\"\", \"6.1-6.9\", cell(\"6.1-6.9\", female), cell(\"6.1-6.9\", male), cell(\"6.1-6.9\", (male | female), all=True)]\n",
|
|
703
|
-
"df_fbg.loc[3] = [\"\", \"7.0 and above\", cell(\">=7.0\", female), cell(\">=7.0\", male), cell(\">=7.0\", (male | female), all=True)]\n",
|
|
704
|
-
"\n"
|
|
705
|
-
]
|
|
706
|
-
},
|
|
707
|
-
{
|
|
708
|
-
"cell_type": "code",
|
|
709
|
-
"execution_count": null,
|
|
710
|
-
"id": "29",
|
|
711
|
-
"metadata": {},
|
|
712
|
-
"outputs": [],
|
|
713
|
-
"source": [
|
|
714
|
-
"# ogtt\n",
|
|
715
|
-
"\n",
|
|
716
|
-
"def cell(measure, gender, all=None):\n",
|
|
717
|
-
" if measure == \"<7.7\":\n",
|
|
718
|
-
" cond = (df[\"ogtt\"]<7.8)\n",
|
|
719
|
-
" elif measure == \"7.8-11.1\":\n",
|
|
720
|
-
" cond = (df[\"ogtt\"]>=7.8) & (df[\"ogtt\"]<11.1)\n",
|
|
721
|
-
" elif measure == \">=11.1\":\n",
|
|
722
|
-
" cond = (df[\"ogtt\"]>=11.1)\n",
|
|
723
|
-
" elif measure == \"missing\":\n",
|
|
724
|
-
" cond = (df[\"ogtt\"].isna())\n",
|
|
725
|
-
" else:\n",
|
|
726
|
-
" cond = (df[\"ogtt\"].notna() | df[\"ogtt\"].isna())\n",
|
|
727
|
-
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
|
728
|
-
" if not all:\n",
|
|
729
|
-
" tot = df.loc[gender][\"gender\"].count()\n",
|
|
730
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
|
731
|
-
" tot = df[\"gender\"].count()\n",
|
|
732
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
733
|
-
"\n",
|
|
734
|
-
"df_ogtt = pd.DataFrame(columns=title_row)\n",
|
|
735
|
-
"df_ogtt.loc[0] = [\"OGTT (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
|
736
|
-
"df_ogtt.loc[1] = [\"\", \"<7.7\", cell(\"<7.7\", female), cell(\"<7.7\", male), cell(\"<7.7\", (male | female), all=True)]\n",
|
|
737
|
-
"df_ogtt.loc[2] = [\"\", \"7.8-11.1\", cell(\"7.8-11.1\", female), cell(\"7.8-11.1\", male), cell(\"7.8-11.1\", (male | female), all=True)]\n",
|
|
738
|
-
"df_ogtt.loc[3] = [\"\", \"11.1 and above\", cell(\">=11.1\", female), cell(\">=11.1\", male), cell(\">=11.1\", (male | female), all=True)]\n",
|
|
739
|
-
"df_ogtt.loc[4] = [\"\", \"not done\", cell(\"missing\", female), cell(\"missing\", male), cell(\"missing\", (male | female), all=True)]\n"
|
|
740
|
-
]
|
|
741
|
-
},
|
|
742
|
-
{
|
|
743
|
-
"cell_type": "code",
|
|
744
|
-
"execution_count": null,
|
|
745
|
-
"id": "30",
|
|
746
|
-
"metadata": {},
|
|
747
|
-
"outputs": [],
|
|
748
|
-
"source": [
|
|
749
|
-
"# fbg and ogtt\n",
|
|
750
|
-
"\n",
|
|
751
|
-
"def cell(measure, gender, all=None):\n",
|
|
752
|
-
" if measure == \"dm1\":\n",
|
|
753
|
-
" cond = (df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0) & (df[\"ogtt\"].notna())\n",
|
|
754
|
-
" elif measure == \"other\":\n",
|
|
755
|
-
" cond = ~((df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0)) & (df[\"ogtt\"].notna())\n",
|
|
756
|
-
" elif measure == \"ogtt\":\n",
|
|
757
|
-
" cond = (df[\"fbg\"].notna()) & (df[\"ogtt\"].isna())\n",
|
|
758
|
-
" else:\n",
|
|
759
|
-
" cond = (df[\"fbg\"].notna())\n",
|
|
760
|
-
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
|
761
|
-
" if not all:\n",
|
|
762
|
-
" tot = df.loc[gender][\"gender\"].count()\n",
|
|
763
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
|
764
|
-
" tot = df[\"gender\"].count()\n",
|
|
765
|
-
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
|
766
|
-
"\n",
|
|
767
|
-
"df_fbg_ogtt = pd.DataFrame(columns=title_row)\n",
|
|
768
|
-
"df_fbg_ogtt.loc[0] = [\"OGTT & FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
|
769
|
-
"df_fbg_ogtt.loc[1] = [\"\", \"OGTT>=11.1 or FBG>=7.0\", cell(\"dm1\", female), cell(\"dm1\", male), cell(\"dm1\", (male | female), all=True)]\n",
|
|
770
|
-
"df_fbg_ogtt.loc[2] = [\"\", \"other\", cell(\"other\", female), cell(\"other\", male), cell(\"other\", (male | female), all=True)]\n",
|
|
771
|
-
"df_fbg_ogtt.loc[3] = [\"\", \"OGTT not done\", cell(\"ogtt\", female), cell(\"ogtt\", male), cell(\"ogtt\", (male | female), all=True)]\n"
|
|
772
|
-
]
|
|
773
|
-
},
|
|
774
|
-
{
|
|
775
|
-
"cell_type": "code",
|
|
776
|
-
"execution_count": null,
|
|
777
|
-
"id": "31",
|
|
778
|
-
"metadata": {},
|
|
779
|
-
"outputs": [],
|
|
780
|
-
"source": [
|
|
781
|
-
"df_table2 = pd.concat([df_gender, df_age, df_waist, df_art, df_bp, df_fbg, df_ogtt, df_fbg_ogtt], ignore_index=True)\n",
|
|
782
|
-
"df_table2"
|
|
783
|
-
]
|
|
784
|
-
},
|
|
785
|
-
{
|
|
786
|
-
"cell_type": "code",
|
|
787
|
-
"execution_count": null,
|
|
788
|
-
"id": "32",
|
|
789
|
-
"metadata": {},
|
|
790
|
-
"outputs": [],
|
|
791
|
-
"source": [
|
|
792
|
-
"# blood pressure\n",
|
|
793
|
-
"# Blood pressure interested in IQR25, IQR50(median), IQR75\n",
|
|
794
|
-
"df[[\"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\"]].describe()"
|
|
795
|
-
]
|
|
796
|
-
},
|
|
797
|
-
{
|
|
798
|
-
"cell_type": "code",
|
|
799
|
-
"execution_count": null,
|
|
800
|
-
"id": "33",
|
|
801
|
-
"metadata": {},
|
|
802
|
-
"outputs": [],
|
|
803
|
-
"source": [
|
|
804
|
-
"df_table"
|
|
805
|
-
]
|
|
806
|
-
},
|
|
807
|
-
{
|
|
808
|
-
"cell_type": "code",
|
|
809
|
-
"execution_count": null,
|
|
810
|
-
"id": "34",
|
|
811
|
-
"metadata": {},
|
|
812
|
-
"outputs": [],
|
|
813
|
-
"source": [
|
|
814
|
-
"# blood pressure\n"
|
|
815
|
-
]
|
|
816
|
-
},
|
|
817
|
-
{
|
|
818
|
-
"cell_type": "code",
|
|
819
|
-
"execution_count": null,
|
|
820
|
-
"id": "35",
|
|
821
|
-
"metadata": {},
|
|
822
|
-
"outputs": [],
|
|
823
|
-
"source": []
|
|
824
|
-
},
|
|
825
|
-
{
|
|
826
|
-
"cell_type": "code",
|
|
827
|
-
"execution_count": null,
|
|
828
|
-
"id": "36",
|
|
829
|
-
"metadata": {},
|
|
830
|
-
"outputs": [],
|
|
831
|
-
"source": []
|
|
832
|
-
},
|
|
833
|
-
{
|
|
834
|
-
"cell_type": "code",
|
|
835
|
-
"execution_count": null,
|
|
836
|
-
"id": "37",
|
|
837
|
-
"metadata": {},
|
|
838
|
-
"outputs": [],
|
|
839
|
-
"source": []
|
|
840
|
-
},
|
|
841
|
-
{
|
|
842
|
-
"cell_type": "code",
|
|
843
|
-
"execution_count": null,
|
|
844
|
-
"id": "38",
|
|
845
|
-
"metadata": {},
|
|
846
|
-
"outputs": [],
|
|
847
|
-
"source": []
|
|
848
|
-
},
|
|
849
|
-
{
|
|
850
|
-
"cell_type": "code",
|
|
851
|
-
"execution_count": null,
|
|
852
|
-
"id": "39",
|
|
853
|
-
"metadata": {},
|
|
854
|
-
"outputs": [],
|
|
855
|
-
"source": []
|
|
856
|
-
},
|
|
857
|
-
{
|
|
858
|
-
"cell_type": "code",
|
|
859
|
-
"execution_count": null,
|
|
860
|
-
"id": "40",
|
|
861
|
-
"metadata": {},
|
|
862
|
-
"outputs": [],
|
|
863
|
-
"source": [
|
|
864
|
-
"import matplotlib.pyplot as plt\n",
|
|
865
|
-
"import numpy as np\n",
|
|
866
|
-
"import scipy.stats as stats\n",
|
|
867
|
-
"import math\n",
|
|
868
|
-
"import seaborn as sns\n"
|
|
869
|
-
]
|
|
870
|
-
},
|
|
871
|
-
{
|
|
872
|
-
"cell_type": "code",
|
|
873
|
-
"execution_count": null,
|
|
874
|
-
"id": "41",
|
|
875
|
-
"metadata": {},
|
|
876
|
-
"outputs": [],
|
|
877
|
-
"source": [
|
|
878
|
-
"sns.boxplot(x=\"age_in_years\",y=\"gender\", data=df)"
|
|
879
|
-
]
|
|
880
|
-
},
|
|
881
|
-
{
|
|
882
|
-
"cell_type": "code",
|
|
883
|
-
"execution_count": null,
|
|
884
|
-
"id": "42",
|
|
885
|
-
"metadata": {},
|
|
886
|
-
"outputs": [],
|
|
887
|
-
"source": [
|
|
888
|
-
"sns.boxplot(x=\"fbg\",y=\"gender\", data=df)\n"
|
|
889
|
-
]
|
|
890
|
-
},
|
|
891
|
-
{
|
|
892
|
-
"cell_type": "code",
|
|
893
|
-
"execution_count": null,
|
|
894
|
-
"id": "43",
|
|
895
|
-
"metadata": {},
|
|
896
|
-
"outputs": [],
|
|
897
|
-
"source": [
|
|
898
|
-
"sns.boxplot(x=\"ogtt\",y=\"gender\", data=df)\n"
|
|
899
|
-
]
|
|
900
|
-
},
|
|
901
|
-
{
|
|
902
|
-
"cell_type": "code",
|
|
903
|
-
"execution_count": null,
|
|
904
|
-
"id": "44",
|
|
905
|
-
"metadata": {},
|
|
906
|
-
"outputs": [],
|
|
907
|
-
"source": [
|
|
908
|
-
"df[[\"age_in_years\", \"fbg\", \"ogtt\"]].hist()"
|
|
909
|
-
]
|
|
910
|
-
},
|
|
911
|
-
{
|
|
912
|
-
"cell_type": "code",
|
|
913
|
-
"execution_count": null,
|
|
914
|
-
"id": "45",
|
|
915
|
-
"metadata": {},
|
|
916
|
-
"outputs": [],
|
|
917
|
-
"source": [
|
|
918
|
-
"sns.pairplot(df[[\"calculated_bmi_value\", \"fbg\"]])"
|
|
919
|
-
]
|
|
920
|
-
},
|
|
921
|
-
{
|
|
922
|
-
"cell_type": "code",
|
|
923
|
-
"execution_count": null,
|
|
924
|
-
"id": "46",
|
|
925
|
-
"metadata": {},
|
|
926
|
-
"outputs": [],
|
|
927
|
-
"source": [
|
|
928
|
-
"cond = (df[\"fbg\"]>=7.0) & (df[\"fbg\"]<=10.0)\n",
|
|
929
|
-
"sns.displot(df[cond], x=\"fbg\", hue=\"gender\")"
|
|
930
|
-
]
|
|
931
|
-
},
|
|
932
|
-
{
|
|
933
|
-
"cell_type": "code",
|
|
934
|
-
"execution_count": null,
|
|
935
|
-
"id": "47",
|
|
936
|
-
"metadata": {},
|
|
937
|
-
"outputs": [],
|
|
938
|
-
"source": [
|
|
939
|
-
"sns.displot(df, x=\"sys_\", hue=\"gender\")"
|
|
940
|
-
]
|
|
941
|
-
}
|
|
942
|
-
],
|
|
943
|
-
"metadata": {
|
|
944
|
-
"kernelspec": {
|
|
945
|
-
"display_name": "Python 3 (ipykernel)",
|
|
946
|
-
"language": "python",
|
|
947
|
-
"name": "python3"
|
|
948
|
-
},
|
|
949
|
-
"language_info": {
|
|
950
|
-
"codemirror_mode": {
|
|
951
|
-
"name": "ipython",
|
|
952
|
-
"version": 3
|
|
953
|
-
},
|
|
954
|
-
"file_extension": ".py",
|
|
955
|
-
"mimetype": "text/x-python",
|
|
956
|
-
"name": "python",
|
|
957
|
-
"nbconvert_exporter": "python",
|
|
958
|
-
"pygments_lexer": "ipython3",
|
|
959
|
-
"version": "3.12.4"
|
|
960
|
-
}
|
|
961
|
-
},
|
|
962
|
-
"nbformat": 4,
|
|
963
|
-
"nbformat_minor": 5
|
|
964
|
-
}
|