meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,645 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import os\n",
12
- "import pandas as pd\n",
13
- "import numpy as np\n",
14
- "from dj_notebook import activate\n",
15
- "from pathlib import Path\n",
16
- "\n",
17
- "env_file = os.environ[\"META_ENV\"]\n",
18
- "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
19
- "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
20
- "plus = activate(dotenv_file=env_file)\n"
21
- ]
22
- },
23
- {
24
- "cell_type": "code",
25
- "execution_count": null,
26
- "id": "1",
27
- "metadata": {},
28
- "outputs": [],
29
- "source": [
30
- "\"\"\"\n",
31
- "Magreth data request\n",
32
- "* Medication adherence statistics\n",
33
- "* Median (interquartile) age of the cohort\n",
34
- "* Median follow-up duration and range\n",
35
- "\"\"\""
36
- ]
37
- },
38
- {
39
- "cell_type": "code",
40
- "execution_count": null,
41
- "id": "2",
42
- "metadata": {},
43
- "outputs": [],
44
- "source": [
45
- "from meta_consent.models import SubjectConsent\n",
46
- "from edc_pdutils.dataframes import get_subject_consent, get_subject_visit, get_eos\n",
47
- "from edc_constants.constants import FEMALE, MALE\n",
48
- "from edc_pdutils.dataframes import get_crf\n",
49
- "from datetime import datetime"
50
- ]
51
- },
52
- {
53
- "cell_type": "code",
54
- "execution_count": null,
55
- "id": "3",
56
- "metadata": {},
57
- "outputs": [],
58
- "source": [
59
- "cutoff_datetime = datetime(2025, 2,1, 0, 0, 0)"
60
- ]
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": null,
65
- "id": "4",
66
- "metadata": {},
67
- "outputs": [],
68
- "source": [
69
- "df_consent = get_subject_consent(model_cls=SubjectConsent)"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "5",
76
- "metadata": {},
77
- "outputs": [],
78
- "source": [
79
- "# df_consent"
80
- ]
81
- },
82
- {
83
- "cell_type": "code",
84
- "execution_count": null,
85
- "id": "6",
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "df_consent.gender.value_counts()"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": null,
95
- "id": "7",
96
- "metadata": {},
97
- "outputs": [],
98
- "source": [
99
- "df_consent.age_in_years.describe()\n"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "8",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "df_visit = get_subject_visit(\"meta_subject.subjectvisit\")\n",
110
- "df_visit = df_visit[df_visit.visit_datetime < pd.Timestamp(cutoff_datetime)]\n",
111
- "df_visit.reset_index(drop=True, inplace=True)"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "9",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "df_visit.dtypes"
122
- ]
123
- },
124
- {
125
- "cell_type": "code",
126
- "execution_count": null,
127
- "id": "10",
128
- "metadata": {},
129
- "outputs": [],
130
- "source": [
131
- "\n",
132
- "df_eos = get_eos(\"meta_prn.endofstudy\")\n",
133
- "df_visit = df_visit.merge(df_eos[[\"subject_identifier\", \"offstudy_datetime\", \"offstudy_reason\"]], on=\"subject_identifier\", how=\"left\")\n"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": null,
139
- "id": "11",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "def get_cells_for_categorical(df:pd.DataFrame, col:str, categories:list[str]|None=None, arm:str|None=None)->list[str]:\n",
144
- " if arm:\n",
145
- " n = len(df[(df['assignment']==arm) & (df[col].notna())])\n",
146
- " counts = df[(df['assignment'] == arm) & (df[col].notna())][col].value_counts()\n",
147
- " percentages = df[(df['assignment'] == arm) & (df[col].notna())][col].value_counts(normalize=True) * 100\n",
148
- " else:\n",
149
- " n = len(df[(df[col].notna())])\n",
150
- " counts = df[(df[col].notna())][col].value_counts()\n",
151
- " percentages = df[(df[col].notna())][col].value_counts(normalize=True) * 100\n",
152
- " cells = [n]\n",
153
- " for cat in categories:\n",
154
- " cells.append(f\"{counts.get(cat, 0)} ({percentages.get(cat, 0):.1f}%)\",)\n",
155
- " return cells\n",
156
- "\n",
157
- "def get_cells_for_continuous(df)->list[str]:\n",
158
- " \"\"\" From describe(), format 3 cells as:\n",
159
- "\n",
160
- " +======================+\n",
161
- " | 930 |\n",
162
- " +----------------------+\n",
163
- " | 127.69(16.84) |\n",
164
- " +----------------------+\n",
165
- " | 127.00(82.00–183.00) |\n",
166
- " +----------------------+\n",
167
- " \"\"\"\n",
168
- " return [\n",
169
- " f\"{int(df['count'])}\",\n",
170
- " f\"{df['mean']:.2f}({df['std']:.2f})\",\n",
171
- " f\"{df['50%']:.2f}({df['min']:.2f}–{df['max']:.2f})\"\n",
172
- " ]\n",
173
- "\n",
174
- "def get_formatted_rows(df, col:str|None=None):\n",
175
- " \"\"\"Returns 5 columns\"\"\"\n",
176
- "\n",
177
- " df = df[df[col].notna()].copy()\n",
178
- " df_all = df[col].describe()\n",
179
- "\n",
180
- " return {\n",
181
- " # 'Timepoint': ['Baseline', '', '', 'Endline', '', ''],\n",
182
- " 'Statistics': ['n', 'Mean(sd)', 'Median(min-max)'],\n",
183
- " 'All': [\n",
184
- " *get_cells_for_continuous(df_all),\n",
185
- " ],\n",
186
- " }\n",
187
- "\n",
188
- "def get_formatted_rows_mf(df, col:str|None=None):\n",
189
- " \"\"\"Returns 5 columns\"\"\"\n",
190
- "\n",
191
- " df = df[df[col].notna()].copy()\n",
192
- " df_all = df[col].describe()\n",
193
- "\n",
194
- " return {\n",
195
- " # 'Timepoint': ['Baseline', '', '', 'Endline', '', ''],\n",
196
- " 'Statistics': ['n', 'Mean(sd)', 'Median(min-max)'],\n",
197
- " 'All': [\n",
198
- " *get_cells_for_continuous(df_all),\n",
199
- " ],\n",
200
- " 'Female': [\n",
201
- " *get_cells_for_continuous(df[df.gender==FEMALE][col].describe()),\n",
202
- " ],\n",
203
- " 'Male': [\n",
204
- " *get_cells_for_continuous(df[df.gender==MALE][col].describe()),\n",
205
- " ],\n",
206
- " }\n"
207
- ]
208
- },
209
- {
210
- "cell_type": "code",
211
- "execution_count": null,
212
- "id": "12",
213
- "metadata": {},
214
- "outputs": [],
215
- "source": [
216
- "def days_on_study(s):\n",
217
- " return (s[\"endline_visit_datetime\"] - s[\"baseline_datetime\"]).days\n",
218
- "df_visit[\"days_on_study\"] = df_visit.apply(days_on_study, axis=1)"
219
- ]
220
- },
221
- {
222
- "cell_type": "code",
223
- "execution_count": null,
224
- "id": "13",
225
- "metadata": {},
226
- "outputs": [],
227
- "source": [
228
- "df_visit[\"months_on_study\"] = df_visit[\"days_on_study\"]/30"
229
- ]
230
- },
231
- {
232
- "cell_type": "code",
233
- "execution_count": null,
234
- "id": "14",
235
- "metadata": {},
236
- "outputs": [],
237
- "source": [
238
- "\n",
239
- "\n",
240
- "# ALL\n",
241
- "\n",
242
- "table1a = {'Category': ['Age at consent', '', '']}\n",
243
- "table1a.update({\n",
244
- " 'Parameter': ['Age (Years)', '', ''],\n",
245
- " **get_formatted_rows_mf(df_consent, \"age_in_years\"),\n",
246
- "\n",
247
- "})\n",
248
- "\n",
249
- "# all\n",
250
- "df_months = df_visit[(df_visit.visit_code<=1480.9)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
251
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
252
- "table1 = {'Category': ['Follow-up (main)', '', '']}\n",
253
- "table1.update({\n",
254
- " 'Parameter': ['>= 0m', '', ''],\n",
255
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
256
- "})\n",
257
- "\n",
258
- "# reach at least 12m\n",
259
- "table2a = {'Category': ['', '', '']}\n",
260
- "df_months = df_visit[(df_visit.visit_code>=1120.0) & (df_visit.visit_code<=1480.9)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
261
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
262
- "table2a.update({\n",
263
- " 'Parameter': ['>= 12m', '', ''],\n",
264
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
265
- "})\n",
266
- "\n",
267
- "# reach at least 24m\n",
268
- "table2b = {'Category': ['', '', '']}\n",
269
- "df_months = df_visit[(df_visit.visit_code>=1240.0) & (df_visit.visit_code<=1480.9)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
270
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
271
- "table2b.update({\n",
272
- " 'Parameter': ['>= 24m', '', ''],\n",
273
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
274
- "})\n",
275
- "\n",
276
- "# reach at least 36m\n",
277
- "table3a = {'Category': ['', '', '']}\n",
278
- "df_months = df_visit[(df_visit.visit_code>=1360.0) & (df_visit.visit_code<=1480.9)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
279
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
280
- "table3a.update({\n",
281
- " 'Parameter': ['>= 36m', '', ''],\n",
282
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
283
- "})\n",
284
- "\n",
285
- "# reach at least 36m\n",
286
- "table3b = {'Category': ['', '', '']}\n",
287
- "df_months = df_visit[(df_visit.visit_code>1360.0) & (df_visit.visit_code<=1480.9)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
288
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
289
- "table3b.update({\n",
290
- " 'Parameter': ['> 36m', '', ''],\n",
291
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
292
- "})\n",
293
- "\n",
294
- "# reach at least 48m\n",
295
- "table3c = {'Category': ['', '', '']}\n",
296
- "df_months = df_visit[(df_visit.visit_code==1480.0)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
297
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
298
- "table3c.update({\n",
299
- " 'Parameter': ['48m', '', ''],\n",
300
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
301
- "})\n",
302
- "\n",
303
- "table4 = {'Category': ['Pregnancy cohort', '', '']}\n",
304
- "df_months = df_visit[(df_visit.visit_code>=2000.0) & (df_visit.visit_code<3000.0)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
305
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
306
- "table4.update({\n",
307
- " 'Parameter': ['months', '', ''],\n",
308
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
309
- "})\n",
310
- "\n",
311
- "table5 = {'Category': ['Diabetes cohort', '', '']}\n",
312
- "df_months = df_visit[(df_visit.visit_code>=3000.0)].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
313
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
314
- "table5.update({\n",
315
- " 'Parameter': ['months', '', ''],\n",
316
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
317
- "})\n",
318
- "\n",
319
- "# NOTE: this may need to be the delta from baseline to offstudy_datetime instead of to endline_visit_datetime\n",
320
- "table6 = {'Category': ['Offstudy (main)', '', '']}\n",
321
- "df_months = df_visit[(df_visit.offstudy_datetime.notna())].groupby(by=['subject_identifier'])[\"months_on_study\"].max().to_frame().reset_index()\n",
322
- "df_months = df_months.merge(df_consent[['subject_identifier', 'gender']], on='subject_identifier', how='left')\n",
323
- "table6.update({\n",
324
- " 'Parameter': ['months', '', ''],\n",
325
- " **get_formatted_rows_mf(df_months, \"months_on_study\")\n",
326
- "})\n",
327
- "\n",
328
- "\n",
329
- "table1a_df = pd.DataFrame(table1a)\n",
330
- "table1_df = pd.DataFrame(table1)\n",
331
- "table2a_df = pd.DataFrame(table2a)\n",
332
- "table2b_df = pd.DataFrame(table2b)\n",
333
- "table3a_df = pd.DataFrame(table3a)\n",
334
- "table3b_df = pd.DataFrame(table3b)\n",
335
- "table3c_df = pd.DataFrame(table3c)\n",
336
- "table4_df = pd.DataFrame(table4)\n",
337
- "table5_df = pd.DataFrame(table5)\n",
338
- "table6_df = pd.DataFrame(table6)\n",
339
- "table_df = pd.concat([table1a_df, table1_df, table2a_df, table2b_df, table3a_df, table3b_df, table3c_df, table4_df, table5_df, table6_df])\n",
340
- "\n",
341
- "# export as csv\n",
342
- "path = analysis_folder / 'meta3_magreth_followup.csv'\n",
343
- "table_df.to_csv(path_or_buf=path, index=False)\n",
344
- "\n"
345
- ]
346
- },
347
- {
348
- "cell_type": "code",
349
- "execution_count": null,
350
- "id": "15",
351
- "metadata": {},
352
- "outputs": [],
353
- "source": [
354
- "from tabulate import tabulate\n",
355
- "\n",
356
- "table_formatted = tabulate(table_df, headers='keys', tablefmt='grid')\n",
357
- "\n",
358
- "path = analysis_folder / 'meta3_magreth_followup.txt'\n",
359
- "with open(path, 'w') as file:\n",
360
- " file.write(table_formatted)\n",
361
- "\n",
362
- "print(table_formatted)\n"
363
- ]
364
- },
365
- {
366
- "cell_type": "code",
367
- "execution_count": null,
368
- "id": "16",
369
- "metadata": {},
370
- "outputs": [],
371
- "source": []
372
- },
373
- {
374
- "cell_type": "code",
375
- "execution_count": null,
376
- "id": "17",
377
- "metadata": {},
378
- "outputs": [],
379
- "source": [
380
- "# medical adherence"
381
- ]
382
- },
383
- {
384
- "cell_type": "code",
385
- "execution_count": null,
386
- "id": "18",
387
- "metadata": {},
388
- "outputs": [],
389
- "source": [
390
- "df_adherence = get_crf(model=\"meta_subject.medicationadherence\", subject_visit_model=\"meta_subject.subjectvisit\")\n",
391
- "df_adherence = df_adherence[df_adherence.visit_datetime < pd.Timestamp(cutoff_datetime)]\n",
392
- "df_adherence.reset_index(drop=True, inplace=True)\n"
393
- ]
394
- },
395
- {
396
- "cell_type": "code",
397
- "execution_count": null,
398
- "id": "19",
399
- "metadata": {},
400
- "outputs": [],
401
- "source": [
402
- "df_adherence = df_adherence.merge(df_consent[['subject_identifier', 'gender', \"age_in_years\"]], on='subject_identifier', how='left')"
403
- ]
404
- },
405
- {
406
- "cell_type": "code",
407
- "execution_count": null,
408
- "id": "20",
409
- "metadata": {},
410
- "outputs": [],
411
- "source": [
412
- "# calculate mean per subject by visit\n",
413
- "mean_visual_score_by_visit = df_adherence.groupby(by=['subject_identifier', 'visit_code'])['visual_score_confirmed'].mean().to_frame().reset_index()\n",
414
- "# merge w/ consent\n",
415
- "mean_visual_score_by_visit = mean_visual_score_by_visit.merge(df_consent[['subject_identifier', 'gender', 'age_in_years']], on='subject_identifier', how='left')\n",
416
- "\n",
417
- "# calculate mean of means\n",
418
- "mean_visual_score_confirmed = df_adherence.groupby(by=['subject_identifier'])['visual_score_confirmed'].mean().to_frame().reset_index()\n",
419
- "# merge w/ consent\n",
420
- "mean_visual_score_confirmed = mean_visual_score_confirmed.merge(df_consent[['subject_identifier', 'gender', 'age_in_years']], on='subject_identifier', how='left')\n"
421
- ]
422
- },
423
- {
424
- "cell_type": "code",
425
- "execution_count": null,
426
- "id": "21",
427
- "metadata": {},
428
- "outputs": [],
429
- "source": [
430
- "#\n",
431
- "table0 = {'Category': ['', '', '']}\n",
432
- "table0.update({\n",
433
- " 'Parameter': ['at 2 weeks (%)', '', ''],\n",
434
- " **get_formatted_rows_mf(mean_visual_score_by_visit[mean_visual_score_by_visit.visit_code==1005.0], \"visual_score_confirmed\")\n",
435
- "})\n",
436
- "\n",
437
- "table1 = {'Category': ['', '', '']}\n",
438
- "table1.update({\n",
439
- " 'Parameter': ['at 12m (%)', '', ''],\n",
440
- " **get_formatted_rows_mf(mean_visual_score_by_visit[mean_visual_score_by_visit.visit_code==1120.0], \"visual_score_confirmed\")\n",
441
- "})\n",
442
- "\n",
443
- "table2 = {'Category': ['', '', '']}\n",
444
- "table2.update({\n",
445
- " 'Parameter': ['at 24m (%)', '', ''],\n",
446
- " **get_formatted_rows_mf(mean_visual_score_by_visit[mean_visual_score_by_visit.visit_code==1240.0], \"visual_score_confirmed\")\n",
447
- "})\n",
448
- "\n",
449
- "table3 = {'Category': ['', '', '']}\n",
450
- "table3.update({\n",
451
- " 'Parameter': ['at 36m (%)', '', ''],\n",
452
- " **get_formatted_rows_mf(mean_visual_score_by_visit[mean_visual_score_by_visit.visit_code==1360.0], \"visual_score_confirmed\")\n",
453
- "})\n",
454
- "\n",
455
- "table4 = {'Category': ['', '', '']}\n",
456
- "table4.update({\n",
457
- " 'Parameter': ['at 48m (%)', '', ''],\n",
458
- " **get_formatted_rows_mf(mean_visual_score_by_visit[mean_visual_score_by_visit.visit_code==1480.0], \"visual_score_confirmed\")\n",
459
- "})\n",
460
- "\n",
461
- "#\n",
462
- "table5 = {'Category': ['Adherence', '', '']}\n",
463
- "table5.update({\n",
464
- " 'Parameter': ['mean of means %', '', ''],\n",
465
- " **get_formatted_rows_mf(mean_visual_score_confirmed, \"visual_score_confirmed\")\n",
466
- "})\n"
467
- ]
468
- },
469
- {
470
- "cell_type": "code",
471
- "execution_count": null,
472
- "id": "22",
473
- "metadata": {},
474
- "outputs": [],
475
- "source": [
476
- "\n",
477
- "table0_df = pd.DataFrame(table0)\n",
478
- "table1_df = pd.DataFrame(table1)\n",
479
- "table2_df = pd.DataFrame(table2)\n",
480
- "table3_df = pd.DataFrame(table3)\n",
481
- "table4_df = pd.DataFrame(table4)\n",
482
- "table5_df = pd.DataFrame(table5)\n",
483
- "table_df = pd.concat([table1a_df, table5_df, table0_df, table1_df, table2_df, table3_df, table4_df])\n",
484
- "table_df\n"
485
- ]
486
- },
487
- {
488
- "cell_type": "code",
489
- "execution_count": null,
490
- "id": "23",
491
- "metadata": {},
492
- "outputs": [],
493
- "source": [
494
- "table = tabulate(table_df, headers='keys', tablefmt='grid')\n",
495
- "path = analysis_folder / 'meta3_magreth_adherence.csv'\n",
496
- "table_df.to_csv(path_or_buf=path, index=False)\n",
497
- "\n",
498
- "path = analysis_folder / 'meta3_magreth_adherence.txt'\n",
499
- "with open(path, 'w') as file:\n",
500
- " file.write(table)\n"
501
- ]
502
- },
503
- {
504
- "cell_type": "code",
505
- "execution_count": null,
506
- "id": "24",
507
- "metadata": {},
508
- "outputs": [],
509
- "source": [
510
- "df = df_adherence.copy()\n",
511
- "df.set_index('visit_datetime', inplace=True)\n",
512
- "\n"
513
- ]
514
- },
515
- {
516
- "cell_type": "code",
517
- "execution_count": null,
518
- "id": "25",
519
- "metadata": {},
520
- "outputs": [],
521
- "source": [
522
- "correlation = df[['pill_count', 'visual_score_confirmed']].corr()\n",
523
- "print(correlation)"
524
- ]
525
- },
526
- {
527
- "cell_type": "code",
528
- "execution_count": null,
529
- "id": "26",
530
- "metadata": {},
531
- "outputs": [],
532
- "source": [
533
- "df[['pill_count']].plot()"
534
- ]
535
- },
536
- {
537
- "cell_type": "code",
538
- "execution_count": null,
539
- "id": "27",
540
- "metadata": {},
541
- "outputs": [],
542
- "source": [
543
- "df1 = df[df.visit_code_sequence==0].groupby(\"visit_code\")[\"visual_score_confirmed\"].mean().to_frame().reset_index()\n",
544
- "df1.set_index('visit_code', inplace=True)\n"
545
- ]
546
- },
547
- {
548
- "cell_type": "code",
549
- "execution_count": null,
550
- "id": "28",
551
- "metadata": {},
552
- "outputs": [],
553
- "source": [
554
- "import matplotlib.pyplot as plt\n",
555
- "import seaborn as sns\n",
556
- "plt.figure(figsize=(10, 6))\n",
557
- "sns.scatterplot(x='visit_code', y='visual_score_confirmed', data=df1)\n",
558
- "plt.title('Scatter Plot Visual Score Confirmed')\n",
559
- "plt.xlabel('visit')\n",
560
- "plt.ylabel('Visual Score Confirmed')\n",
561
- "plt.show()\n"
562
- ]
563
- },
564
- {
565
- "cell_type": "code",
566
- "execution_count": null,
567
- "id": "29",
568
- "metadata": {},
569
- "outputs": [],
570
- "source": [
571
- "df1 = df.groupby(\"visit_code\")[\"visual_score_confirmed\"].mean()\n"
572
- ]
573
- },
574
- {
575
- "cell_type": "code",
576
- "execution_count": null,
577
- "id": "30",
578
- "metadata": {},
579
- "outputs": [],
580
- "source": [
581
- "df1"
582
- ]
583
- },
584
- {
585
- "cell_type": "code",
586
- "execution_count": null,
587
- "id": "31",
588
- "metadata": {},
589
- "outputs": [],
590
- "source": [
591
- "df2 = df_adherence.copy()\n",
592
- "df2.set_index('visit_code', inplace=True)\n",
593
- "df2.sort_values(by='visit_code', inplace=True)\n",
594
- "mean_pill_count = df[df.visit_code_sequence==0].groupby(\"visit_code\")[\"pill_count\"].mean().to_frame().reset_index()\n",
595
- "\n"
596
- ]
597
- },
598
- {
599
- "cell_type": "code",
600
- "execution_count": null,
601
- "id": "32",
602
- "metadata": {},
603
- "outputs": [],
604
- "source": [
605
- "import matplotlib.pyplot as plt\n",
606
- "plt.figure(figsize=(10, 6))\n",
607
- "plt.plot(mean_pill_count['visit_code'], mean_pill_count['pill_count'], marker='o')\n",
608
- "plt.title('Pill count')\n",
609
- "plt.xlabel('visit_code')\n",
610
- "plt.ylabel('pills')\n",
611
- "plt.xlim(1000, 1400)\n",
612
- "plt.show()\n"
613
- ]
614
- },
615
- {
616
- "cell_type": "code",
617
- "execution_count": null,
618
- "id": "33",
619
- "metadata": {},
620
- "outputs": [],
621
- "source": []
622
- }
623
- ],
624
- "metadata": {
625
- "kernelspec": {
626
- "display_name": "Python 3",
627
- "language": "python",
628
- "name": "python3"
629
- },
630
- "language_info": {
631
- "codemirror_mode": {
632
- "name": "ipython",
633
- "version": 2
634
- },
635
- "file_extension": ".py",
636
- "mimetype": "text/x-python",
637
- "name": "python",
638
- "nbconvert_exporter": "python",
639
- "pygments_lexer": "ipython2",
640
- "version": "2.7.6"
641
- }
642
- },
643
- "nbformat": 4,
644
- "nbformat_minor": 5
645
- }