meta-edc 1.1.8__py3-none-any.whl → 1.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of meta-edc might be problematic. Click here for more details.

Files changed (475) hide show
  1. meta_ae/action_items.py +2 -1
  2. meta_ae/admin/__init__.py +11 -0
  3. meta_ae/admin/ae_susar_admin.py +1 -1
  4. meta_ae/admin/death_report_admin.py +1 -1
  5. meta_ae/admin/modeladmin_mixins.py +10 -12
  6. meta_ae/baker_recipes.py +3 -3
  7. meta_ae/forms/__init__.py +13 -0
  8. meta_ae/forms/modelform_mixins.py +2 -2
  9. meta_ae/migrations/0001_initial.py +27 -27
  10. meta_ae/migrations/0006_aelocalreview_aesponsorreview.py +5 -5
  11. meta_ae/migrations/0022_historicalhospitalization_hospitalization.py +5 -13
  12. meta_ae/migrations/0023_alter_aefollowup_action_identifier_and_more.py +2017 -0
  13. meta_ae/model_mixins/__init__.py +2 -0
  14. meta_ae/model_mixins/ae_review_model_mixin.py +6 -6
  15. meta_ae/model_mixins/death_report_model_mixin.py +3 -3
  16. meta_ae/models/__init__.py +13 -0
  17. meta_ae/models/hospitalization.py +3 -3
  18. meta_ae/pdf_reports/__init__.py +2 -0
  19. meta_analytics/.DS_Store +0 -0
  20. meta_analytics/dataframes/__init__.py +24 -0
  21. meta_analytics/dataframes/get_eos_df.py +1 -2
  22. meta_analytics/dataframes/get_glucose_df.py +6 -7
  23. meta_analytics/dataframes/get_glucose_fbg_df.py +2 -3
  24. meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +1 -2
  25. meta_analytics/dataframes/get_last_imp_visits_df.py +5 -6
  26. meta_analytics/dataframes/glucose_endpoints/__init__.py +2 -0
  27. meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +13 -20
  28. meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +9 -10
  29. meta_analytics/dataframes/screening/__init__.py +2 -0
  30. meta_analytics/dataframes/screening/get_glucose_tested_only_df.py +1 -2
  31. meta_analytics/dataframes/screening/get_screening_df.py +6 -10
  32. meta_analytics/dataframes/utils.py +3 -8
  33. meta_analytics/get_tables.py +1 -2
  34. meta_analytics/tables/__init__.py +2 -0
  35. meta_consent/action_items.py +2 -1
  36. meta_consent/admin/__init__.py +6 -0
  37. meta_consent/admin/actions/__init__.py +2 -0
  38. meta_consent/admin/actions/create_missing_prescriptions.py +1 -1
  39. meta_consent/admin/list_filters.py +2 -2
  40. meta_consent/admin/modeladmin_mixins.py +3 -4
  41. meta_consent/admin/subject_consent_v1_ext_admin.py +2 -2
  42. meta_consent/baker_recipes.py +7 -8
  43. meta_consent/form_validators/__init__.py +2 -0
  44. meta_consent/forms/__init__.py +7 -0
  45. meta_consent/forms/subject_consent_v1_ext_form.py +2 -3
  46. meta_consent/forms/subject_reconsent_form.py +4 -4
  47. meta_consent/management/commands/create_missing_prescriptions.py +4 -2
  48. meta_consent/migrations/0001_initial.py +9 -9
  49. meta_consent/migrations/0024_historicalsubjectconsentv1.py +3 -8
  50. meta_consent/migrations/0026_historicalsubjectconsentv1ext_subjectconsentv1ext.py +5 -14
  51. meta_consent/migrations/0032_alter_historicalsubjectconsent_device_created_and_more.py +678 -0
  52. meta_consent/models/__init__.py +9 -0
  53. meta_consent/models/model_mixins.py +1 -2
  54. meta_consent/models/signals.py +9 -10
  55. meta_consent/models/subject_consent.py +1 -1
  56. meta_consent/models/subject_reconsent.py +3 -3
  57. meta_dashboard/patterns.py +1 -1
  58. meta_dashboard/templatetags/meta_dashboard_extras.py +1 -1
  59. meta_dashboard/view_utils/__init__.py +7 -0
  60. meta_dashboard/view_utils/subject_screening_button.py +9 -16
  61. meta_dashboard/views/__init__.py +8 -0
  62. meta_dashboard/views/ae/__init__.py +2 -0
  63. meta_dashboard/views/ae/ae_listboard_view.py +1 -1
  64. meta_dashboard/views/ae/death_report_listboard_view.py +1 -1
  65. meta_dashboard/views/screening/__init__.py +2 -0
  66. meta_dashboard/views/subject/__init__.py +2 -0
  67. meta_dashboard/views/subject/dashboard/__init__.py +2 -0
  68. meta_dashboard/views/subject/dashboard/dashboard_view.py +1 -1
  69. meta_dashboard/views/subject/listboard/__init__.py +2 -0
  70. meta_edc/__init__.py +5 -9
  71. meta_edc/celery.py +1 -1
  72. meta_edc/celery_live.py +1 -1
  73. meta_edc/celery_uat.py +1 -1
  74. meta_edc/management/commands/update_forms_reference.py +10 -12
  75. meta_edc/settings/debug.py +5 -4
  76. meta_edc/settings/defaults.py +18 -3
  77. meta_edc/settings/live.py +3 -1
  78. meta_edc/settings/logging.py +9 -4
  79. meta_edc/settings/minimal.py +4 -5
  80. meta_edc/settings/uat.py +3 -1
  81. meta_edc/views/__init__.py +2 -0
  82. meta_edc-1.1.12.dist-info/METADATA +174 -0
  83. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/RECORD +413 -526
  84. meta_edc-1.1.12.dist-info/WHEEL +4 -0
  85. meta_lists/migrations/0020_alter_abnormalfootappearanceobservations_extra_value_and_more.py +404 -0
  86. meta_pharmacy/admin/__init__.py +5 -0
  87. meta_pharmacy/admin/substitutions_admin.py +2 -2
  88. meta_pharmacy/forms/__init__.py +2 -0
  89. meta_pharmacy/forms/substitutions_form.py +6 -4
  90. meta_pharmacy/labels/__init__.py +4 -2
  91. meta_pharmacy/labels/draw_label_for_subject_with_barcode.py +1 -2
  92. meta_pharmacy/labels/draw_label_with_test_data.py +2 -2
  93. meta_pharmacy/labels/label_data.py +1 -2
  94. meta_pharmacy/labels/print_sheets.py +4 -6
  95. meta_pharmacy/migrations/0002_initial.py +7 -20
  96. meta_pharmacy/migrations/0003_auto_20240909_2335.py +3 -2
  97. meta_pharmacy/migrations/0006_lotnumber_label.py +5 -14
  98. meta_pharmacy/migrations/0008_remove_lotnumber_medication_and_more.py +5 -6
  99. meta_pharmacy/migrations/0010_alter_historicallabeldata_device_created_and_more.py +382 -0
  100. meta_pharmacy/models/__init__.py +7 -0
  101. meta_pharmacy/models/label_data.py +4 -5
  102. meta_pharmacy/models/substitutions.py +3 -3
  103. meta_pharmacy/prepare_meta_pharmacy.py +1 -1
  104. meta_pharmacy/utils/__init__.py +2 -0
  105. meta_pharmacy/utils/update_initial_pharmacy_data.py +1 -1
  106. meta_prn/admin/__init__.py +16 -0
  107. meta_prn/admin/dm_referral_admin.py +2 -1
  108. meta_prn/admin/end_of_study_admin.py +6 -7
  109. meta_prn/admin/loss_to_followup_admin.py +3 -2
  110. meta_prn/admin/off_study_medication_admin.py +5 -6
  111. meta_prn/admin/offschedule_admin.py +5 -6
  112. meta_prn/admin/offschedule_dm_referral_admin.py +6 -6
  113. meta_prn/admin/offschedule_postnatal_admin.py +7 -7
  114. meta_prn/admin/offschedule_pregnancy_admin.py +8 -7
  115. meta_prn/admin/onschedule_admin.py +7 -8
  116. meta_prn/admin/onschedule_dm_referral_admin.py +6 -7
  117. meta_prn/admin/pregnancy_notification_admin.py +5 -6
  118. meta_prn/admin/protocol_incident_admin.py +1 -1
  119. meta_prn/admin/subject_transfer_admin.py +1 -1
  120. meta_prn/baker_recipes.py +4 -4
  121. meta_prn/form_validators/__init__.py +5 -0
  122. meta_prn/form_validators/end_of_study.py +2 -2
  123. meta_prn/forms/__init__.py +13 -0
  124. meta_prn/migrations/0001_initial.py +25 -25
  125. meta_prn/migrations/0017_auto_20220307_1929.py +5 -5
  126. meta_prn/migrations/0018_auto_20220309_2106.py +9 -9
  127. meta_prn/migrations/0021_auto_20220316_2147.py +13 -13
  128. meta_prn/migrations/0022_auto_20220318_0133.py +9 -9
  129. meta_prn/migrations/0032_historicalegfrnotification_egfrnotification.py +5 -13
  130. meta_prn/migrations/0038_alter_endofstudy_delivery_date_and_more.py +5 -13
  131. meta_prn/migrations/0041_endofstudy_transfer_date_and_more.py +5 -13
  132. meta_prn/migrations/0057_historicalonscheduledmreferral_and_more.py +13 -38
  133. meta_prn/migrations/0067_alter_offschedule_managers_and_more.py +2557 -0
  134. meta_prn/models/__init__.py +20 -0
  135. meta_prn/models/offschedule.py +4 -4
  136. meta_prn/models/protocol_incident.py +1 -1
  137. meta_prn/models/subject_transfer.py +8 -0
  138. meta_rando/migrations/0001_initial.py +5 -5
  139. meta_rando/migrations/0006_alter_historicalrandomizationlist_allocated_user_and_more.py +130 -0
  140. meta_reports/__init__.py +2 -0
  141. meta_reports/admin/__init__.py +16 -0
  142. meta_reports/admin/dbviews/__init__.py +13 -0
  143. meta_reports/admin/dbviews/glucose_summary_admin.py +6 -6
  144. meta_reports/admin/dbviews/imp_substitutions_admin.py +12 -11
  145. meta_reports/admin/dbviews/missing_screening_ogtt_admin/__init__.py +5 -0
  146. meta_reports/admin/dbviews/missing_screening_ogtt_admin/note_model_admin.py +27 -3
  147. meta_reports/admin/dbviews/missing_screening_ogtt_admin/unmanaged_model_admin.py +6 -6
  148. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/__init__.py +2 -0
  149. meta_reports/admin/dbviews/on_study_missing_lab_values_admin/unmanaged_model_admin.py +0 -3
  150. meta_reports/admin/dbviews/on_study_missing_values_admin/__init__.py +2 -0
  151. meta_reports/admin/dbviews/patient_history_missing_baseline_cd4_admin.py +8 -8
  152. meta_reports/admin/dbviews/unattended_three_in_row2_admin.py +6 -6
  153. meta_reports/admin/dbviews/unattended_three_in_row_admin.py +5 -5
  154. meta_reports/admin/dbviews/unattended_two_in_row_admin.py +5 -5
  155. meta_reports/admin/endpoints_admin.py +1 -1
  156. meta_reports/admin/last_imp_refill_admin.py +9 -9
  157. meta_reports/admin/list_filters.py +2 -2
  158. meta_reports/admin/modeladmin_mixins.py +9 -16
  159. meta_reports/death_report.py +1 -1
  160. meta_reports/forms/__init__.py +2 -0
  161. meta_reports/forms/missing_ogtt_note_form.py +2 -3
  162. meta_reports/management/commands/generate_endpoints.py +5 -4
  163. meta_reports/migrations/0035_historicalmissingogttnote_missingogttnote.py +5 -14
  164. meta_reports/migrations/0059_alter_endpoints_created_and_more.py +161 -0
  165. meta_reports/models/__init__.py +17 -0
  166. meta_reports/models/dbviews/__init__.py +14 -0
  167. meta_reports/models/dbviews/glucose_summary/__init__.py +2 -0
  168. meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +4 -5
  169. meta_reports/models/dbviews/imp_substitutions/__init__.py +2 -0
  170. meta_reports/models/dbviews/imp_substitutions/view_definition.py +1 -1
  171. meta_reports/models/dbviews/missing_screening_ogtt/__init__.py +2 -0
  172. meta_reports/models/dbviews/missing_screening_ogtt/note_model.py +1 -1
  173. meta_reports/models/dbviews/missing_screening_ogtt/unmanaged_model.py +4 -3
  174. meta_reports/models/dbviews/on_study_missing_lab_values/__init__.py +2 -0
  175. meta_reports/models/dbviews/on_study_missing_lab_values/qa_cases.py +13 -11
  176. meta_reports/models/dbviews/on_study_missing_values/__init__.py +2 -0
  177. meta_reports/models/dbviews/on_study_missing_values/qa_cases.py +18 -0
  178. meta_reports/models/dbviews/patient_history_missing_baseline_cd4/__init__.py +2 -0
  179. meta_reports/models/dbviews/unattended_three_in_row/__init__.py +2 -0
  180. meta_reports/models/dbviews/unattended_three_in_row2/__init__.py +2 -0
  181. meta_reports/models/dbviews/unattended_two_in_row/__init__.py +2 -0
  182. meta_reports/models/endpoints.py +4 -4
  183. meta_reports/models/last_imp_refill.py +2 -3
  184. meta_reports/pdf_report.py +2 -2
  185. meta_reports/tasks.py +1 -1
  186. meta_screening/admin/__init__.py +8 -0
  187. meta_screening/admin/fieldsets.py +13 -14
  188. meta_screening/admin/list_filters.py +6 -4
  189. meta_screening/admin/screening_part_one_admin.py +1 -2
  190. meta_screening/admin/screening_part_three_admin.py +2 -3
  191. meta_screening/admin/screening_part_two_admin.py +7 -10
  192. meta_screening/admin/subject_refusal_admin.py +5 -3
  193. meta_screening/admin/subject_screening_admin.py +4 -4
  194. meta_screening/baker_recipes.py +9 -9
  195. meta_screening/eligibility/__init__.py +9 -0
  196. meta_screening/eligibility/eligibility.py +7 -7
  197. meta_screening/eligibility/eligibility_part_three/__init__.py +2 -0
  198. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +8 -8
  199. meta_screening/eligibility/eligibility_part_three/eligibility_part_three_phase_three.py +13 -14
  200. meta_screening/form_validators/__init__.py +8 -0
  201. meta_screening/forms/__init__.py +20 -0
  202. meta_screening/forms/field_lists.py +16 -17
  203. meta_screening/forms/screening_part_one_form.py +2 -2
  204. meta_screening/forms/screening_part_three_form.py +5 -3
  205. meta_screening/forms/screening_part_two_form.py +1 -5
  206. meta_screening/forms/subject_refusal_form.py +0 -4
  207. meta_screening/forms/subject_screening_form.py +0 -4
  208. meta_screening/migrations/0001_initial.py +15 -15
  209. meta_screening/migrations/0010_auto_20191106_0828.py +5 -5
  210. meta_screening/migrations/0068_alter_historicalscreeningpartone_acute_condition_and_more.py +1579 -0
  211. meta_screening/model_mixins/__init__.py +8 -0
  212. meta_screening/model_mixins/eligibility_model_mixin.py +5 -3
  213. meta_screening/model_mixins/part_one_fields_model_mixin.py +5 -9
  214. meta_screening/model_mixins/part_three_fields_model_mixin.py +5 -6
  215. meta_screening/model_mixins/part_two_fields_model_mixin.py +18 -16
  216. meta_screening/models/__init__.py +9 -0
  217. meta_screening/models/icp_referral.py +5 -5
  218. meta_screening/models/signals.py +10 -11
  219. meta_screening/models/subject_refusal.py +1 -1
  220. meta_screening/models/subject_screening.py +1 -3
  221. meta_subject/action_items.py +13 -15
  222. meta_subject/admin/__init__.py +39 -0
  223. meta_subject/admin/birth_outcome_admin.py +4 -8
  224. meta_subject/admin/blood_results/__init__.py +9 -0
  225. meta_subject/admin/blood_results/blood_results_fbc_admin.py +1 -1
  226. meta_subject/admin/blood_results/blood_results_hba1c_admin.py +1 -1
  227. meta_subject/admin/blood_results/blood_results_ins_admin.py +1 -1
  228. meta_subject/admin/blood_results/blood_results_lft_admin.py +1 -1
  229. meta_subject/admin/blood_results/blood_results_lipids_admin.py +1 -1
  230. meta_subject/admin/blood_results/blood_results_rft_admin.py +3 -5
  231. meta_subject/admin/complications_glycemia_admin.py +1 -1
  232. meta_subject/admin/delivery_admin.py +7 -10
  233. meta_subject/admin/diabetes/__init__.py +2 -0
  234. meta_subject/admin/diabetes/dm_endpoint_admin.py +2 -2
  235. meta_subject/admin/diabetes/dm_followup_admin.py +3 -2
  236. meta_subject/admin/egfr_drop_notification_admin.py +1 -1
  237. meta_subject/admin/followup_examination_admin.py +10 -9
  238. meta_subject/admin/followup_vitals_admin.py +4 -5
  239. meta_subject/admin/glucose_admin.py +2 -4
  240. meta_subject/admin/glucose_fbg_admin.py +1 -3
  241. meta_subject/admin/health_economics/__init__.py +2 -0
  242. meta_subject/admin/health_economics/health_economics_simple_admin.py +1 -1
  243. meta_subject/admin/health_economics/health_economics_update_admin.py +1 -1
  244. meta_subject/admin/hepatitis_test_admin.py +1 -1
  245. meta_subject/admin/list_filters.py +1 -1
  246. meta_subject/admin/mnsi_admin.py +7 -5
  247. meta_subject/admin/other_arv_regimens_admin.py +3 -3
  248. meta_subject/admin/patient_history_admin.py +4 -4
  249. meta_subject/admin/physical_exam_admin.py +1 -1
  250. meta_subject/admin/pregnancy_update_admin.py +1 -1
  251. meta_subject/admin/study_medication_admin.py +8 -15
  252. meta_subject/admin/subject_requisition_admin.py +1 -1
  253. meta_subject/admin/subject_visit_admin.py +1 -1
  254. meta_subject/admin/subject_visit_missed_admin.py +1 -1
  255. meta_subject/admin/urine_dipstick_test_admin.py +1 -1
  256. meta_subject/admin/urine_pregnancy_admin.py +1 -1
  257. meta_subject/baker_recipes.py +15 -15
  258. meta_subject/form_validators/__init__.py +11 -0
  259. meta_subject/form_validators/delivery_form_validator.py +2 -3
  260. meta_subject/form_validators/dm_endpoint_form_validator.py +1 -1
  261. meta_subject/form_validators/dm_followup_form_validator.py +7 -6
  262. meta_subject/form_validators/glucose_form_validator.py +3 -5
  263. meta_subject/forms/__init__.py +41 -0
  264. meta_subject/forms/blood_results/__init__.py +9 -0
  265. meta_subject/forms/blood_results/blood_results_rft_form.py +1 -2
  266. meta_subject/forms/diabetes/__init__.py +2 -0
  267. meta_subject/forms/diabetes/dm_followup_form.py +2 -2
  268. meta_subject/forms/followup_vitals_form.py +3 -8
  269. meta_subject/forms/health_economics/__init__.py +2 -0
  270. meta_subject/forms/next_appointment_form.py +2 -3
  271. meta_subject/forms/slider_widget.py +1 -1
  272. meta_subject/forms/study_medication_form.py +11 -8
  273. meta_subject/management/commands/create_missing_refills.py +3 -3
  274. meta_subject/management/commands/create_missing_rx.py +1 -1
  275. meta_subject/management/commands/missed.py +20 -23
  276. meta_subject/metadata_rules/__init__.py +2 -0
  277. meta_subject/metadata_rules/predicates.py +25 -32
  278. meta_subject/migrations/0001_initial.py +61 -61
  279. meta_subject/migrations/0002_auto_20191021_0353.py +5 -5
  280. meta_subject/migrations/0012_auto_20200118_2334.py +5 -5
  281. meta_subject/migrations/0014_auto_20200120_1622.py +5 -5
  282. meta_subject/migrations/0018_coronakap_historicalcoronakap.py +5 -5
  283. meta_subject/migrations/0033_auto_20200516_2356.py +5 -5
  284. meta_subject/migrations/0038_auto_20200520_0020.py +5 -5
  285. meta_subject/migrations/0040_auto_20200527_2155.py +1 -1
  286. meta_subject/migrations/0045_auto_20200530_1801.py +1 -1
  287. meta_subject/migrations/0051_auto_20200617_2117.py +5 -5
  288. meta_subject/migrations/0063_auto_20210715_0337.py +5 -5
  289. meta_subject/migrations/0066_auto_20210721_0335.py +9 -9
  290. meta_subject/migrations/0067_auto_20210726_0340.py +5 -5
  291. meta_subject/migrations/0068_auto_20210728_1809.py +5 -5
  292. meta_subject/migrations/0072_auto_20210805_1545.py +7 -7
  293. meta_subject/migrations/0073_auto_20210809_0055.py +5 -5
  294. meta_subject/migrations/0077_auto_20210809_2323.py +3 -3
  295. meta_subject/migrations/0082_auto_20210823_1612.py +3 -3
  296. meta_subject/migrations/0083_auto_20210823_1620.py +3 -3
  297. meta_subject/migrations/0088_auto_20210924_0027.py +5 -5
  298. meta_subject/migrations/0090_auto_20210924_0424.py +5 -5
  299. meta_subject/migrations/0093_auto_20211117_0352.py +5 -5
  300. meta_subject/migrations/0095_auto_20220128_1719.py +5 -5
  301. meta_subject/migrations/0098_auto_20220309_2106.py +5 -5
  302. meta_subject/migrations/0101_auto_20220316_2147.py +13 -13
  303. meta_subject/migrations/0115_historicalegfrnotification_egfrnotification.py +5 -13
  304. meta_subject/migrations/0164_dmreferralfollowup_historicaldmreferralfollowup.py +5 -5
  305. meta_subject/migrations/0172_remove_historicalbloodresultsglu_action_item_and_more.py +1 -2
  306. meta_subject/migrations/0177_alter_bloodresultslft_alp_value_and_more.py +1 -2
  307. meta_subject/migrations/0178_historicalhealtheconomicsupdate_and_more.py +5 -14
  308. meta_subject/migrations/0186_healtheconomicsupdate_singleton_field_and_more.py +1 -2
  309. meta_subject/migrations/0187_dmdiagnosis_historicaldmdiagnosis_dmdxresult_and_more.py +5 -14
  310. meta_subject/migrations/0188_historicaldmdxresult_dmdxresult.py +5 -14
  311. meta_subject/migrations/0209_remove_historicaldmdxresult_dm_diagnosis_and_more.py +1 -2
  312. meta_subject/migrations/0216_historicalnextappointment_nextappointment.py +5 -6
  313. meta_subject/migrations/0220_historicalbloodresultsgludummy_bloodresultsgludummy.py +5 -14
  314. meta_subject/migrations/0227_alter_followupvitals_waist_circumference_comment_and_more.py +97 -0
  315. meta_subject/migrations/0228_bloodresultshba1c_hba1c_datetime_and_more.py +9297 -0
  316. meta_subject/model_mixins/__init__.py +8 -0
  317. meta_subject/model_mixins/search_slug_model_mixin.py +1 -2
  318. meta_subject/model_mixins/vitals_fields_model_mixin.py +1 -1
  319. meta_subject/models/__init__.py +48 -0
  320. meta_subject/models/birth_outcomes.py +3 -3
  321. meta_subject/models/blood_results/__init__.py +11 -0
  322. meta_subject/models/delivery.py +3 -3
  323. meta_subject/models/diabetes/__init__.py +2 -0
  324. meta_subject/models/diabetes/dm_endpoint.py +4 -4
  325. meta_subject/models/diabetes/dm_followup.py +3 -4
  326. meta_subject/models/diet_and_lifestyle.py +2 -2
  327. meta_subject/models/followup_examination.py +11 -11
  328. meta_subject/models/glucose.py +4 -4
  329. meta_subject/models/glucose_fbg.py +2 -3
  330. meta_subject/models/health_economics/__init__.py +2 -0
  331. meta_subject/models/health_economics/health_economics.py +7 -7
  332. meta_subject/models/health_economics/health_economics_update.py +2 -1
  333. meta_subject/models/hepatitis_test.py +2 -2
  334. meta_subject/models/other_arv_regimens_detail.py +1 -1
  335. meta_subject/models/patient_history.py +5 -6
  336. meta_subject/models/physical_exam.py +2 -2
  337. meta_subject/models/pregnancy_update.py +1 -1
  338. meta_subject/models/signals.py +14 -12
  339. meta_subject/models/subject_visit.py +1 -1
  340. meta_subject/models/urine_dipstick_test.py +1 -1
  341. meta_subject/models/urine_pregnancy.py +1 -1
  342. meta_visit_schedule/visit_schedules/__init__.py +2 -0
  343. meta_visit_schedule/visit_schedules/phase_three/__init__.py +2 -0
  344. meta_visit_schedule/visit_schedules/phase_three/schedule.py +2 -2
  345. meta_visit_schedule/visit_schedules/phase_three/schedule_dm_referral.py +1 -2
  346. meta_visit_schedule/visit_schedules/phase_three/schedule_pregnancy.py +1 -2
  347. meta_ae/tests/holidays.csv +0 -15
  348. meta_ae/tests/tests/test_actions.py +0 -126
  349. meta_ae/tests/urls.py +0 -10
  350. meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
  351. meta_analytics/notebooks/anu.ipynb +0 -95
  352. meta_analytics/notebooks/appointment_planning.ipynb +0 -329
  353. meta_analytics/notebooks/arvs.ipynb +0 -103
  354. meta_analytics/notebooks/cleaning/__init__.py +0 -0
  355. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +0 -227
  356. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +0 -353
  357. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +0 -435
  358. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +0 -656
  359. meta_analytics/notebooks/followup_examination.ipynb +0 -141
  360. meta_analytics/notebooks/hba1c.ipynb +0 -136
  361. meta_analytics/notebooks/hiv_regimens.ipynb +0 -429
  362. meta_analytics/notebooks/incidence.ipynb +0 -232
  363. meta_analytics/notebooks/liver.ipynb +0 -389
  364. meta_analytics/notebooks/magreth.ipynb +0 -645
  365. meta_analytics/notebooks/monitoring_report.ipynb +0 -1834
  366. meta_analytics/notebooks/pharmacy.ipynb +0 -1061
  367. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +0 -306
  368. meta_analytics/notebooks/qa.ipynb +0 -273
  369. meta_analytics/notebooks/steering.ipynb +0 -61
  370. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +0 -1176
  371. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +0 -519
  372. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +0 -964
  373. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +0 -296
  374. meta_analytics/notebooks/undiagnosed/screening.ipynb +0 -273
  375. meta_analytics/notebooks/undiagnosed/screening2.ipynb +0 -958
  376. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +0 -958
  377. meta_analytics/notebooks/ven.ipynb +0 -191
  378. meta_analytics/notebooks/vitals.ipynb +0 -263
  379. meta_analytics/tests/__init__.py +0 -0
  380. meta_analytics/tests/test_endpoints_by_date.py +0 -94
  381. meta_consent/tests/__init__.py +0 -0
  382. meta_consent/tests/holidays.csv +0 -15
  383. meta_consent/tests/tests/__init__.py +0 -0
  384. meta_consent/tests/tests/test_form_validators.py +0 -110
  385. meta_consent/tests/tests/test_subject_consent.py +0 -10
  386. meta_consent/tests/urls.py +0 -17
  387. meta_dashboard/tests/__init__.py +0 -0
  388. meta_dashboard/tests/admin.py +0 -22
  389. meta_dashboard/tests/holidays.csv +0 -15
  390. meta_dashboard/tests/tests/__init__.py +0 -0
  391. meta_dashboard/tests/urls.py +0 -55
  392. meta_edc/tests/__init__.py +0 -0
  393. meta_edc/tests/tests/__init__.py +0 -0
  394. meta_edc/tests/tests/test_endpoints.py +0 -555
  395. meta_edc-1.1.8.dist-info/METADATA +0 -767
  396. meta_edc-1.1.8.dist-info/WHEEL +0 -5
  397. meta_edc-1.1.8.dist-info/licenses/AUTHORS.rst +0 -8
  398. meta_edc-1.1.8.dist-info/top_level.txt +0 -20
  399. meta_labs/tests/__init__.py +0 -0
  400. meta_labs/tests/test_labs.py +0 -27
  401. meta_labs/tests/test_reportables.py +0 -70
  402. meta_labs/tests/urls.py +0 -4
  403. meta_lists/tests/__init__.py +0 -0
  404. meta_lists/tests/test_lists.py +0 -8
  405. meta_pharmacy/notebooks/pharmacy.ipynb +0 -41
  406. meta_prn/tests/__init__.py +0 -0
  407. meta_prn/tests/tests/__init__.py +0 -0
  408. meta_prn/tests/tests/test_actions.py +0 -97
  409. meta_prn/tests/tests/test_dm_referral.py +0 -203
  410. meta_prn/tests/tests/test_eos_events.py +0 -134
  411. meta_prn/tests/tests/test_manager_order.py +0 -14
  412. meta_prn/tests/tests/test_pregnancy_notification.py +0 -93
  413. meta_prn/tests/urls.py +0 -10
  414. meta_rando/tests/__init__.py +0 -0
  415. meta_rando/tests/tests/__init__.py +0 -0
  416. meta_rando/tests/tests/test_randomizers.py +0 -57
  417. meta_reports/tests/__init__.py +0 -0
  418. meta_reports/tests/test_reports.py +0 -35
  419. meta_reports/tests/test_sql_gen.py +0 -5
  420. meta_reports/tests/urls.py +0 -4
  421. meta_screening/offline_models.py +0 -3
  422. meta_screening/tests/__init__.py +0 -0
  423. meta_screening/tests/holidays.csv +0 -15
  424. meta_screening/tests/meta_test_case_mixin.py +0 -234
  425. meta_screening/tests/options.py +0 -127
  426. meta_screening/tests/tests/__init__.py +0 -0
  427. meta_screening/tests/tests/test_forms.py +0 -404
  428. meta_screening/tests/tests/test_screening_part_one.py +0 -108
  429. meta_screening/tests/tests/test_screening_part_three.py +0 -433
  430. meta_screening/tests/tests/test_screening_part_two.py +0 -84
  431. meta_sites/tests/__init__.py +0 -0
  432. meta_sites/tests/test_sites.py +0 -12
  433. meta_sites/tests/urls.py +0 -4
  434. meta_stats/__init__.py +0 -0
  435. meta_stats/incidence.py +0 -16
  436. meta_stats/models.py +0 -0
  437. meta_stats/tests/__init__.py +0 -0
  438. meta_stats/tests/tests/__init__.py +0 -0
  439. meta_stats/tests/tests/test_incidence.py +0 -10
  440. meta_subject/tests/__init__.py +0 -0
  441. meta_subject/tests/holidays.csv +0 -15
  442. meta_subject/tests/tests/__init__.py +0 -0
  443. meta_subject/tests/tests/test_egfr.py +0 -234
  444. meta_subject/tests/tests/test_fixes.py +0 -64
  445. meta_subject/tests/tests/test_followup.py +0 -52
  446. meta_subject/tests/tests/test_manager_order.py +0 -11
  447. meta_subject/tests/tests/test_medication_adherence.py +0 -79
  448. meta_subject/tests/tests/test_metadata_rules.py +0 -135
  449. meta_subject/tests/tests/test_mnsi.py +0 -341
  450. meta_subject/tests/tests/test_next_appointment.py +0 -231
  451. meta_subject/tests/tests/test_patient_history_form.py +0 -74
  452. meta_subject/tests/tests/test_physical_exam.py +0 -84
  453. meta_subject/tests/tests/test_sf12.py +0 -161
  454. meta_subject/tests/tests/test_study_medication.py +0 -229
  455. meta_subject/tests/urls.py +0 -24
  456. meta_visit_schedule/tests/__init__.py +0 -0
  457. meta_visit_schedule/tests/tests/__init__.py +0 -0
  458. meta_visit_schedule/tests/tests/test_schedule.py +0 -181
  459. meta_visit_schedule/tests/urls.py +0 -4
  460. tests/__init__.py +0 -0
  461. tests/etc/randomization_list.csv +0 -241
  462. tests/etc/randomization_list_phase_three.csv +0 -241
  463. tests/etc/user-aes-local.key +0 -0
  464. tests/etc/user-aes-restricted.key +0 -1
  465. tests/etc/user-rsa-local-private.pem +0 -27
  466. tests/etc/user-rsa-local-public.pem +0 -9
  467. tests/etc/user-rsa-restricted-private.pem +0 -27
  468. tests/etc/user-rsa-restricted-public.pem +0 -9
  469. tests/etc/user-salt-local.key +0 -0
  470. tests/etc/user-salt-restricted.key +0 -0
  471. tests/holidays.csv +0 -15
  472. tests/test_settings.py +0 -185
  473. {meta_edc-1.1.8.dist-info → meta_edc-1.1.12.dist-info}/licenses/LICENSE +0 -0
  474. /meta_ae/tests/__init__.py → /meta_subject/management/__init__py.py +0 -0
  475. /meta_ae/tests/tests/__init__.py → /meta_subject/management/commands/__init__py.py +0 -0
@@ -1,1834 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "%%capture\n",
11
- "import os\n",
12
- "from pathlib import Path\n",
13
- "\n",
14
- "import pandas as pd\n",
15
- "from dj_notebook import activate\n",
16
- "import numpy as np\n",
17
- "from django_pandas.io import read_frame\n",
18
- "\n",
19
- "env_file = os.environ[\"META_ENV\"]\n",
20
- "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
21
- "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
22
- "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
23
- "plus = activate(dotenv_file=env_file)\n",
24
- "pd.set_option('future.no_silent_downcasting', True)"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "id": "1",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "import pdfkit\n",
35
- "from typing import Callable\n",
36
- "from datetime import date\n",
37
- "from edc_pdutils.dataframes import get_subject_visit\n",
38
- "from meta_visit_schedule.constants import MONTH15, MONTH18, MONTH21, MONTH27, MONTH30, MONTH33, MONTH39\n",
39
- "from meta_analytics.dataframes import GlucoseEndpointsByDate\n",
40
- "from scipy.stats import chi2\n",
41
- "from great_tables import loc, style, md\n",
42
- "from meta_analytics.dataframes import get_eos_df\n",
43
- "from meta_analytics.utils import df_as_great_table, df_as_great_table2\n",
44
- "from meta_prn.models import LossToFollowup\n",
45
- "from edc_visit_schedule.models import SubjectScheduleHistory\n",
46
- "from edc_appointment.analytics import get_appointment_df\n",
47
- "from edc_appointment.constants import NEW_APPT, CANCELLED_APPT, ONTIME_APPT, MISSED_APPT\n",
48
- "from meta_consent.models import SubjectConsentV1Ext\n",
49
- "from meta_analytics.dataframes import get_glucose_df, get_screening_df\n",
50
- "\n",
51
- "from edc_appointment.constants import SCHEDULED_APPT, UNSCHEDULED_APPT # noqa\n",
52
- "from edc_constants.constants import YES # noqa"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": null,
58
- "id": "2",
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "html_data = []\n",
63
- "data_download_date = date(2025, 6, 30)\n",
64
- "cutoff_date = date(2025, 6, 30)\n",
65
- "end_of_trial_date = date(2026, 7, 1)\n",
66
- "document_title = f\"<h2>Monitoring Report: {cutoff_date.strftime('%B %Y')}</h2><h5>Data Download: {data_download_date.strftime('%d %B %Y')}</h5>\"\n",
67
- "study_title = 'META3 - Metformin treatment for diabetes prevention in Africa'\n",
68
- "pdf_filename = f\"monitoring_report_{cutoff_date.strftime('%Y%m%d')}.pdf\"\n"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "3",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "# 105-30-0288-5 should also be late excluded based on the haemoglobin 4.8 presented at baseline\n",
79
- "\n",
80
- "df_visit = get_subject_visit(\"meta_subject.subjectvisit\")\n",
81
- "df_visit_1691 = df_visit.copy()\n",
82
- "\n",
83
- "late_exlusion_offstudy_reasons = [\n",
84
- " 'Patient fulfilled late exclusion criteria (due to abnormal blood values or raised blood pressure at enrolment']\n",
85
- "df_eos = get_eos_df()\n",
86
- "df_eos_1691 = df_eos.copy()\n",
87
- "df_eos_excluded = (\n",
88
- " df_eos\n",
89
- " .query(\"offstudy_reason.isin(@late_exlusion_offstudy_reasons)\")\n",
90
- " .copy()\n",
91
- " .reset_index()\n",
92
- ")\n",
93
- "df_visit = (\n",
94
- " df_visit\n",
95
- " .merge(df_eos_excluded[[\"subject_identifier\", \"offstudy_datetime\", \"offstudy_reason\"]], on=\"subject_identifier\",\n",
96
- " how=\"left\", indicator=True)\n",
97
- " .query(\"_merge=='left_only'\")\n",
98
- " .drop(columns=[\"_merge\"])\n",
99
- ")\n",
100
- "\n",
101
- "df_visit = df_visit[df_visit.appt_datetime.dt.date <= cutoff_date]\n",
102
- "\n",
103
- "df_appointments = get_appointment_df()\n",
104
- "df_appointments[\"site_id\"] = df_appointments.site_id.astype(str)\n",
105
- "df_appointments_1691 = df_appointments.copy()\n",
106
- "df_appointments = (\n",
107
- " df_appointments\n",
108
- " .merge(df_eos_excluded[[\"subject_identifier\", \"offstudy_datetime\", \"offstudy_reason\"]], on=\"subject_identifier\",\n",
109
- " how=\"left\", indicator=True)\n",
110
- " .query(\"_merge=='left_only'\")\n",
111
- " .drop(columns=[\"_merge\"])\n",
112
- ")\n",
113
- "\n",
114
- "cls = GlucoseEndpointsByDate()\n",
115
- "cls.run()\n",
116
- "df_endpoint = cls.endpoint_only_df.copy()\n",
117
- "df_glucose = get_glucose_df()\n",
118
- "# df_glucose_fbg = get_glucose_fbg_df()\n",
119
- "# df_glucose = pd.concat([df_glucose, df_glucose_fbg])\n",
120
- "\n",
121
- "\n",
122
- "enrolled = df_visit.copy()\n",
123
- "enrolled[\"site_id\"] = enrolled[\"site_id\"].astype(str)\n",
124
- "enrolled_pivot = (\n",
125
- " enrolled\n",
126
- " .query(\"visit_code==1000.0\").groupby([\"site_id\"])\n",
127
- " .size()\n",
128
- " .reset_index()\n",
129
- " .pivot_table(columns=\"site_id\", values=0, observed=True)\n",
130
- ")\n",
131
- "enrolled_pivot.columns.name = \"\"\n",
132
- "enrolled_pivot[\"total\"] = enrolled_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1)"
133
- ]
134
- },
135
- {
136
- "cell_type": "code",
137
- "execution_count": null,
138
- "id": "4",
139
- "metadata": {},
140
- "outputs": [],
141
- "source": [
142
- "# before late exclusion\n",
143
- "df_visit_orig = df_visit_1691[df_visit_1691.appt_datetime.dt.date <= cutoff_date]\n",
144
- "enrolled_1691 = df_visit_1691.copy()\n",
145
- "enrolled_1691[\"site_id\"] = enrolled_1691[\"site_id\"].astype(str)\n",
146
- "enrolled_1691_pivot = (\n",
147
- " enrolled_1691\n",
148
- " .query(\"visit_code==1000.0\").groupby([\"site_id\"])\n",
149
- " .size()\n",
150
- " .reset_index()\n",
151
- " .pivot_table(columns=\"site_id\", values=0, observed=True)\n",
152
- ")\n",
153
- "enrolled_1691_pivot.columns.name = \"\"\n",
154
- "enrolled_1691_pivot[\"total\"] = enrolled_1691_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1)\n",
155
- "\n",
156
- "# df_eos_1691\n",
157
- "# df_appointments_1691\n",
158
- "\n"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "id": "5",
165
- "metadata": {},
166
- "outputs": [],
167
- "source": [
168
- "column_headers = {\"label\": \"Label\", \"visit_code\": \"Visit code\", \"10\": \"Hindu Mandal\", \"20\": \"Amana\", \"30\": \"Temeke\",\n",
169
- " \"40\": \"Mwananyamala\", \"60\": \"Mnazi Moja\", \"total\": \"Total\"}\n",
170
- "column_headers_with_str = {\"label\": \"Label\", \"10_str\": \"Hindu Mandal\", \"20_str\": \"Amana\", \"30_str\": \"Temeke\",\n",
171
- " \"40_str\": \"Mwananyamala\", \"60_str\": \"Mnazi Moja\", \"total_str\": \"Total\"}"
172
- ]
173
- },
174
- {
175
- "cell_type": "code",
176
- "execution_count": null,
177
- "id": "6",
178
- "metadata": {},
179
- "outputs": [],
180
- "source": [
181
- "# Table 1a Visits completed to date\n",
182
- "\n",
183
- "df_tbl1 = df_visit[(df_visit.visit_code_sequence == 0) & (df_visit.appt_timing == ONTIME_APPT) & ~(\n",
184
- " df_visit.appt_status.isin([NEW_APPT, CANCELLED_APPT]))].groupby(\n",
185
- " by=[\"visit_code\", \"site_id\"]).size().to_frame().reset_index()\n",
186
- "\n",
187
- "df_tbl1.columns = [\"visit_code\", \"site_id\", \"visits\"]\n",
188
- "df1 = df_tbl1.pivot(index=\"visit_code\", columns=\"site_id\", values=\"visits\").reset_index()\n",
189
- "df1.columns.name = None\n",
190
- "df1.columns = ['visit_code', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
191
- "df1['total'] = df1[['10', '20', '30', '40', '60']].sum(axis=1)\n",
192
- "df1.fillna(0, inplace=True)\n",
193
- "df_attended = df1.copy().reset_index(drop=True)\n",
194
- "df_attended = df_attended.fillna(0.0)"
195
- ]
196
- },
197
- {
198
- "cell_type": "code",
199
- "execution_count": null,
200
- "id": "7",
201
- "metadata": {},
202
- "outputs": [],
203
- "source": [
204
- "gt = df_as_great_table(\n",
205
- " df_attended[[\"visit_code\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]],\n",
206
- " title=\"Table 1a: Visits completed to date\"\n",
207
- ")\n",
208
- "gt = (\n",
209
- " gt\n",
210
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
211
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
212
- " .cols_align(align=\"left\", columns=[\"visit_code\"])\n",
213
- " .data_color(\n",
214
- " columns=[\"visit_code\"],\n",
215
- " palette=[\"lavender\", \"thistle\"],\n",
216
- " domain=[2000, 5000],\n",
217
- " na_color=\"white\"\n",
218
- " )\n",
219
- " .tab_source_note(\n",
220
- " source_note=f\"Excludes visit reports submitted for participants eventually withdrawn on late exclusion criteria.\")\n",
221
- ")\n",
222
- "html_data.append(gt.as_raw_html())\n",
223
- "gt.show()"
224
- ]
225
- },
226
- {
227
- "cell_type": "code",
228
- "execution_count": null,
229
- "id": "8",
230
- "metadata": {},
231
- "outputs": [],
232
- "source": [
233
- "# Table 1b Total scheduled appointments\n",
234
- "df_appt_pivot = (\n",
235
- " df_appointments.query(\"appt_reason==@SCHEDULED_APPT\")\n",
236
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
237
- " .query(\"_merge=='left_only'\")\n",
238
- " .drop(columns=[\"_merge\"])\n",
239
- " .reset_index(drop=True)\n",
240
- " .groupby([\"visit_code\", \"site_id\"])\n",
241
- " .size()\n",
242
- " .to_frame()\n",
243
- " .reset_index()\n",
244
- " .pivot(index=\"visit_code\", columns=\"site_id\", values=0)\n",
245
- " .reset_index()\n",
246
- " .fillna(0)\n",
247
- ")\n",
248
- "\n",
249
- "df_appt_pivot[\"total\"] = df_appt_pivot.iloc[:, 1:].sum(axis=1)\n",
250
- "df_appt_pivot.columns.name = None\n",
251
- "gt = df_as_great_table(\n",
252
- " df_appt_pivot,\n",
253
- " title=\"Table 1b: Total appointments\",\n",
254
- " subtitle=\"Total possible appointments not including unscheduled appointments\"\n",
255
- "\n",
256
- ")\n",
257
- "gt = (\n",
258
- " gt\n",
259
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
260
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
261
- " .cols_align(align=\"left\", columns=[\"visit_code\"])\n",
262
- " .data_color(\n",
263
- " columns=[\"visit_code\"],\n",
264
- " palette=[\"lavender\", \"thistle\"],\n",
265
- " domain=[2000, 5000],\n",
266
- " na_color=\"white\"\n",
267
- " )\n",
268
- ")\n",
269
- "html_data.append(gt.as_raw_html())\n",
270
- "gt.show()"
271
- ]
272
- },
273
- {
274
- "cell_type": "code",
275
- "execution_count": null,
276
- "id": "9",
277
- "metadata": {},
278
- "outputs": [],
279
- "source": [
280
- "# Table 1c Past scheduled appointments -- no information provided\n",
281
- "df_appt_pivot = (\n",
282
- " df_appointments.query(\n",
283
- " \"appt_datetime<@cutoff_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status.isin([@NEW_APPT])\")\n",
284
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
285
- " .query(\"_merge=='left_only'\")\n",
286
- " .drop(columns=[\"_merge\"])\n",
287
- " .reset_index(drop=True)\n",
288
- " .groupby([\"visit_code\", \"site_id\"])\n",
289
- " .size()\n",
290
- " .to_frame()\n",
291
- " .reset_index()\n",
292
- " .pivot(index=\"visit_code\", columns=\"site_id\", values=0)\n",
293
- " .reset_index()\n",
294
- " .fillna(0)\n",
295
- ")\n",
296
- "df_appt_pivot[\"total\"] = df_appt_pivot.iloc[:, 1:].sum(axis=1)\n",
297
- "df_appt_pivot.columns.name = None\n",
298
- "gt = df_as_great_table(\n",
299
- " df_appt_pivot,\n",
300
- " title=\"Table 1c: Past appointments not attended/not reported\",\n",
301
- " subtitle=\"Expected by now but no information provided by site\",\n",
302
- ")\n",
303
- "gt = (\n",
304
- " gt\n",
305
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
306
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
307
- " .cols_align(align=\"left\", columns=[\"visit_code\"])\n",
308
- " .data_color(\n",
309
- " columns=[\"visit_code\"],\n",
310
- " palette=[\"lavender\", \"thistle\"],\n",
311
- " domain=[2000, 5000],\n",
312
- " na_color=\"white\"\n",
313
- " )\n",
314
- " .tab_source_note(source_note=f\"Scheduled appointment date is before {cutoff_date.strftime('%d %B %Y')}.\")\n",
315
- ")\n",
316
- "html_data.append(gt.as_raw_html())\n",
317
- "gt.show()"
318
- ]
319
- },
320
- {
321
- "cell_type": "code",
322
- "execution_count": null,
323
- "id": "10",
324
- "metadata": {},
325
- "outputs": [],
326
- "source": [
327
- "# Table 1d Unscheduled appointments\n",
328
- "df_appt = (\n",
329
- " df_appointments.query(\"appt_reason==@UNSCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status!=@NEW_APPT\")\n",
330
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
331
- " .query(\"_merge=='left_only'\")\n",
332
- " .drop(columns=[\"_merge\"])\n",
333
- " .reset_index(drop=True)\n",
334
- " .copy()\n",
335
- " .reset_index(drop=True)\n",
336
- ")\n",
337
- "df_appt['visit_code'] = df_appt['visit_code'].astype(int)\n",
338
- "df_appt['visit_code'] = df_appt['visit_code'].astype(str)\n",
339
- "\n",
340
- "subjects_with_unscheduled = df_appt.subject_identifier.nunique()\n",
341
- "\n",
342
- "df_appt_pivot = (\n",
343
- " df_appt\n",
344
- " .groupby([\"visit_code\", \"site_id\"])\n",
345
- " .size()\n",
346
- " .to_frame()\n",
347
- " .reset_index()\n",
348
- " .pivot(index=\"visit_code\", columns=\"site_id\", values=0)\n",
349
- " .reset_index()\n",
350
- " .fillna(0)\n",
351
- ")\n",
352
- "df_appt_pivot[\"total\"] = df_appt_pivot.iloc[:, 1:].sum(axis=1)\n",
353
- "df_appt_pivot.columns.name = None\n",
354
- "df_appt_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]] = df_appt_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]].astype(\n",
355
- " 'float64')\n",
356
- "\n",
357
- "# add totals row\n",
358
- "sum_row = df_appt_pivot.select_dtypes(include='float64').sum()\n",
359
- "sum_row['visit_code'] = 'Total'\n",
360
- "sum_row_df = pd.DataFrame(sum_row).T\n",
361
- "df_appt_pivot = pd.concat([df_appt_pivot, sum_row_df], axis=0).reset_index(drop=True)\n",
362
- "\n",
363
- "gt = df_as_great_table(\n",
364
- " df_appt_pivot,\n",
365
- " title=\"Table 1d: Unscheduled appointments\",\n",
366
- " subtitle=\"Appointments with sequence>0 grouped by visit code\",\n",
367
- ")\n",
368
- "gt = (\n",
369
- " gt\n",
370
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
371
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
372
- " .cols_align(align=\"left\", columns=[\"visit_code\"])\n",
373
- " .data_color(\n",
374
- " columns=[\"visit_code\"],\n",
375
- " palette=[\"lavender\", \"thistle\"],\n",
376
- " domain=[2000, 5000],\n",
377
- " na_color=\"white\"\n",
378
- " )\n",
379
- " .fmt_number(columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"], decimals=0)\n",
380
- " .tab_source_note(source_note=f\"{subjects_with_unscheduled} participants had at least one unscheduled appointment.\")\n",
381
- ")\n",
382
- "html_data.append(gt.as_raw_html())\n",
383
- "gt.show()"
384
- ]
385
- },
386
- {
387
- "cell_type": "code",
388
- "execution_count": null,
389
- "id": "11",
390
- "metadata": {},
391
- "outputs": [],
392
- "source": [
393
- "# Table 1e Future scheduled appointments\n",
394
- "df_appt_pivot = (\n",
395
- " df_appointments.query(\n",
396
- " \"@cutoff_date<=appt_datetime<@end_of_trial_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status.isin([@NEW_APPT])\")\n",
397
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
398
- " .query(\"_merge=='left_only'\")\n",
399
- " .drop(columns=[\"_merge\"])\n",
400
- " .reset_index(drop=True)\n",
401
- " .groupby([\"visit_code\", \"site_id\"])\n",
402
- " .size()\n",
403
- " .to_frame()\n",
404
- " .reset_index()\n",
405
- " .pivot(index=\"visit_code\", columns=\"site_id\", values=0)\n",
406
- " .reset_index()\n",
407
- " .fillna(0)\n",
408
- ")\n",
409
- "df_appt_pivot[\"total\"] = df_appt_pivot.iloc[:, 1:].sum(axis=1)\n",
410
- "df_appt_pivot.columns.name = None\n",
411
- "gt = df_as_great_table(\n",
412
- " df_appt_pivot,\n",
413
- " title=\"Table 1e: Future appointments\",\n",
414
- ")\n",
415
- "gt = (\n",
416
- " gt\n",
417
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
418
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
419
- " .cols_align(align=\"left\", columns=[\"visit_code\"])\n",
420
- " .data_color(\n",
421
- " columns=[\"visit_code\"],\n",
422
- " palette=[\"lavender\", \"thistle\"],\n",
423
- " domain=[2000, 5000],\n",
424
- " na_color=\"white\"\n",
425
- " )\n",
426
- " .fmt_number(columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"], decimals=0)\n",
427
- " .tab_source_note(\n",
428
- " source_note=f\"Scheduled appointment date is on or after {cutoff_date.strftime('%d %B %Y')} and before {end_of_trial_date.strftime('%d %B %Y')}.\")\n",
429
- ")\n",
430
- "html_data.append(gt.as_raw_html())\n",
431
- "gt.show()"
432
- ]
433
- },
434
- {
435
- "cell_type": "code",
436
- "execution_count": null,
437
- "id": "12",
438
- "metadata": {},
439
- "outputs": [],
440
- "source": [
441
- "# Table 2 Visits Missed to Date as % of Visits Attended + Visits Missed\n",
442
- "subject_count = (\n",
443
- " df_visit\n",
444
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
445
- " .query(\"_merge=='left_only'\")\n",
446
- " .drop(columns=[\"_merge\"])\n",
447
- " .reset_index(drop=True)\n",
448
- " .query(\"visit_code_sequence==0 and appt_timing==@MISSED_APPT and ~appt_status.isin([@NEW_APPT, @CANCELLED_APPT])\")\n",
449
- ").subject_identifier.nunique()\n",
450
- "df_tbl = (\n",
451
- " df_visit[(df_visit.visit_code_sequence == 0) & (df_visit.appt_timing == MISSED_APPT) & ~(\n",
452
- " df_visit.appt_status.isin([NEW_APPT, CANCELLED_APPT]))]\n",
453
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
454
- " .query(\"_merge=='left_only'\")\n",
455
- " .drop(columns=[\"_merge\"])\n",
456
- " .reset_index(drop=True)\n",
457
- " .groupby(by=[\"visit_code\", \"site_id\"])\n",
458
- " .size()\n",
459
- " .to_frame()\n",
460
- " .reset_index()\n",
461
- ")\n",
462
- "df_tbl.columns = [\"visit_code\", \"site_id\", \"visits\"]\n",
463
- "df_tbl_pivot = df_tbl.pivot(index=\"visit_code\", columns=\"site_id\", values=\"visits\").reset_index()\n",
464
- "df_tbl_pivot.columns.name = None\n",
465
- "df_tbl_pivot.columns = ['visit_code', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
466
- "df_tbl_pivot['total'] = df_tbl_pivot[['10', '20', '30', '40', '60']].sum(axis=1)\n",
467
- "df_missed = (\n",
468
- " df_tbl_pivot\n",
469
- " .fillna(0)\n",
470
- " .copy()\n",
471
- " .set_index([\"visit_code\"])\n",
472
- ")\n",
473
- "\n",
474
- "df_attended_display = df_attended.copy()\n",
475
- "df_attended_display = (\n",
476
- " df_attended_display\n",
477
- " .set_index([\"visit_code\"])\n",
478
- ")\n",
479
- "\n",
480
- "attended_and_missed = df_attended_display + df_missed\n",
481
- "attended_and_missed = (\n",
482
- " attended_and_missed\n",
483
- " .fillna(0)\n",
484
- " .reset_index()\n",
485
- " .set_index([\"visit_code\"])\n",
486
- ")\n",
487
- "\n",
488
- "attended_and_missed_perc = df_missed / attended_and_missed\n",
489
- "attended_and_missed_perc = (\n",
490
- " attended_and_missed_perc\n",
491
- " .fillna(0)\n",
492
- " .reset_index()\n",
493
- " .set_index([\"visit_code\"])\n",
494
- ")\n",
495
- "\n",
496
- "df_result = df_missed.merge(attended_and_missed_perc, on=[\"visit_code\"], suffixes=(\"\", \"_perc\"))\n",
497
- "for col in [\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]:\n",
498
- " col_perc = f\"{col}_perc\"\n",
499
- " df_result[col] = df_result.apply(lambda x: f\"{x[col]} ({x[col_perc] * 100:.2f})\", axis=1)\n",
500
- "df_result = df_result.reset_index().sort_values(by=[\"visit_code\"], ascending=True)\n",
501
- "df_result = df_result.fillna(0.0)"
502
- ]
503
- },
504
- {
505
- "cell_type": "code",
506
- "execution_count": null,
507
- "id": "13",
508
- "metadata": {},
509
- "outputs": [],
510
- "source": [
511
- "df_table = df_result[[\"visit_code\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]].copy()\n",
512
- "gt = df_as_great_table(\n",
513
- " df_table,\n",
514
- " title=\"Table 2a: Visits Missed to Date\",\n",
515
- " subtitle=\"as % of Visits Attended + Visits Missed\"\n",
516
- ")\n",
517
- "gt = (\n",
518
- " gt\n",
519
- " .cols_label({k: v for k, v in column_headers.items() if k != \"label\"})\n",
520
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
521
- " .cols_align(align=\"left\", columns=[\"visit_code\", \"label\"])\n",
522
- " .tab_style(\n",
523
- " style=[style.fill(color=\"snow\"), style.text(color=\"black\")],\n",
524
- " locations=loc.body(\n",
525
- " columns=[0],\n",
526
- " rows=list(range(0, len(df_table))),\n",
527
- " ),\n",
528
- " )\n",
529
- " .tab_source_note(source_note=f\"{subject_count} participants had at least one missed visit.\")\n",
530
- "\n",
531
- ")\n",
532
- "html_data.append(gt.as_raw_html())\n",
533
- "gt.show()\n"
534
- ]
535
- },
536
- {
537
- "cell_type": "code",
538
- "execution_count": null,
539
- "id": "14",
540
- "metadata": {},
541
- "outputs": [],
542
- "source": [
543
- "# Table 2b: Number of missed visits by participant\n",
544
- "subject_count = (\n",
545
- " df_visit\n",
546
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
547
- " .query(\"_merge=='left_only'\")\n",
548
- " .drop(columns=[\"_merge\"])\n",
549
- " .reset_index(drop=True)\n",
550
- " .query(\"visit_code_sequence==0 and appt_timing==@MISSED_APPT and ~appt_status.isin([@NEW_APPT, @CANCELLED_APPT])\")\n",
551
- ").subject_identifier.nunique()\n",
552
- "df_tbl = (\n",
553
- " df_visit[(df_visit.visit_code_sequence == 0) & (df_visit.appt_timing == MISSED_APPT) & ~(\n",
554
- " df_visit.appt_status.isin([NEW_APPT, CANCELLED_APPT]))]\n",
555
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", indicator=True)\n",
556
- " .query(\"_merge=='left_only'\")\n",
557
- " .drop(columns=[\"_merge\"])\n",
558
- " .reset_index(drop=True)\n",
559
- " .groupby(by=[\"subject_identifier\", \"site_id\"])\n",
560
- " .size()\n",
561
- " .to_frame()\n",
562
- " .reset_index()\n",
563
- ")\n",
564
- "df_tbl.columns = [\"subject_identifier\", \"site_id\", \"missed_count\"]\n",
565
- "df_tbl[\"category\"] = pd.cut(df_tbl[\"missed_count\"], bins=[0, 1, 3, 5, 7, 100],\n",
566
- " labels=[\"Missed at least 1\", \"2 to 3\", \"4 to 5\", \"6 to 7\", \"missed more than 7\"])\n",
567
- "df_tbl_pivot = df_tbl.pivot_table(index=\"category\", columns=\"site_id\", values=\"missed_count\", observed=False,\n",
568
- " aggfunc=\"count\").reset_index()\n",
569
- "\n",
570
- "df_tbl_pivot['total'] = df_tbl_pivot.select_dtypes(include='int').sum(axis=1, skipna=True)\n",
571
- "\n",
572
- "sum_row = df_tbl_pivot.select_dtypes(include='int64').sum()\n",
573
- "sum_row['category'] = 'Total'\n",
574
- "\n",
575
- "df_tbl_pivot = (\n",
576
- " pd.concat([df_tbl_pivot, sum_row.to_frame().T], axis=0)\n",
577
- " .rename(columns={10: \"10\", 20: \"20\", 30: \"30\", 40: \"40\", 60: \"60\"})\n",
578
- ")\n",
579
- "\n",
580
- "gt = df_as_great_table(\n",
581
- " df_tbl_pivot,\n",
582
- " title=\"Table 2b: Number of participants who missed one or more visits\",\n",
583
- ")\n",
584
- "gt = (\n",
585
- " gt\n",
586
- " .cols_label(\n",
587
- " {\"category\": \"Category\", **{k: v for k, v in column_headers.items() if k not in [\"visit_code\", \"label\"]}})\n",
588
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
589
- " .cols_align(align=\"left\", columns=[\"category\"])\n",
590
- " .tab_style(\n",
591
- " style=[style.fill(color=\"snow\"), style.text(color=\"black\")],\n",
592
- " locations=loc.body(\n",
593
- " columns=[0],\n",
594
- " rows=list(range(0, len(df_table))),\n",
595
- " ),\n",
596
- " )\n",
597
- ")\n",
598
- "html_data.append(gt.as_raw_html())\n",
599
- "gt.show()\n",
600
- "\n"
601
- ]
602
- },
603
- {
604
- "cell_type": "code",
605
- "execution_count": null,
606
- "id": "15",
607
- "metadata": {},
608
- "outputs": [],
609
- "source": [
610
- "# func for tables 3,4,5\n",
611
- "def get_row_df(row_df: pd.DataFrame, label: str = None, **kwargs) -> pd.DataFrame:\n",
612
- " row_df = row_df.groupby(by=[\"site_id\"]).site_id.count().to_frame(name=\"n\")\n",
613
- " row_df[\"label\"] = label\n",
614
- " row_df = row_df.reset_index()\n",
615
- " row_df = row_df.pivot(index=\"label\", values=\"n\", columns=\"site_id\").reset_index()\n",
616
- " row_df.columns.name = \"\"\n",
617
- " all_sites = [10, 20, 30, 40, 60]\n",
618
- " for site in all_sites:\n",
619
- " if site not in row_df.columns:\n",
620
- " row_df[site] = None\n",
621
- " row_df = row_df.reset_index(drop=True)\n",
622
- " return row_df\n",
623
- "\n",
624
- "\n",
625
- "def get_table_df(\n",
626
- " df_source: pd.DataFrame,\n",
627
- " visit_code: float | None = None,\n",
628
- " month_label: str | None = None,\n",
629
- " visit_codes: list[float] | None = None,\n",
630
- " get_row_func: Callable | None = None,\n",
631
- " category_labels: list[str] | None = None,\n",
632
- ") -> pd.DataFrame:\n",
633
- " get_row_df_func = get_row_func or get_row_df\n",
634
- " if visit_code:\n",
635
- " df_month = df_source[df_source.visit_code == visit_code].copy()\n",
636
- " elif visit_codes:\n",
637
- " df_month = df_source[df_source.visit_code.isin(visit_codes)].copy()\n",
638
- " elif month_label:\n",
639
- " df_month = df_source.copy()\n",
640
- "\n",
641
- " row_df = df_month.copy()\n",
642
- " table_df = get_row_df_func(row_df, \"Total (n)\", category_labels=category_labels)\n",
643
- "\n",
644
- " row_df = df_month.query(\"ogtt_value<7.8 and fbg_value<6.1\").copy()\n",
645
- " table_df = pd.concat([table_df, get_row_df_func(row_df, \"OGTT <7.8; FBG <6.1\", category_labels=category_labels)])\n",
646
- "\n",
647
- " row_df = df_month[(df_month.ogtt_value < 7.8) & (df_month.fbg_value >= 6.1) & (df_month.fbg_value < 7.0)].copy()\n",
648
- " table_df = pd.concat(\n",
649
- " [table_df, get_row_df_func(row_df, \"OGTT <7.8; FBG >=6.1 <7.0\", category_labels=category_labels)])\n",
650
- "\n",
651
- " row_df = df_month[(df_month.ogtt_value < 7.8) & (df_month.fbg_value >= 7.0)].copy()\n",
652
- " table_df = pd.concat([table_df, get_row_df_func(row_df, \"OGTT <7.8; FBG >=7.0\", category_labels=category_labels)])\n",
653
- "\n",
654
- " row_df = df_month[(df_month.ogtt_value >= 7.8) & (df_month.ogtt_value < 11.1) & (df_month.fbg_value < 6.1)].copy()\n",
655
- " table_df = pd.concat(\n",
656
- " [table_df, get_row_df_func(row_df, \"OGTT ≥7.8 to <11.1; FBG <6.1\", category_labels=category_labels)])\n",
657
- "\n",
658
- " row_df = df_month[(df_month.ogtt_value >= 7.8) & (df_month.ogtt_value < 11.1) & (df_month.fbg_value >= 6.1) & (\n",
659
- " df_month.fbg_value < 7.0)].copy()\n",
660
- " table_df = pd.concat(\n",
661
- " [table_df, get_row_df_func(row_df, \"OGTT ≥7.8 to <11.1; FBG >=6.1 <7.0\", category_labels=category_labels)])\n",
662
- "\n",
663
- " row_df = df_month[(df_month.ogtt_value >= 7.8) & (df_month.ogtt_value < 11.1) & (df_month.fbg_value >= 7.0)].copy()\n",
664
- " table_df = pd.concat(\n",
665
- " [table_df, get_row_df_func(row_df, \"OGTT ≥7.8 to <11.1; FBG >=7.0\", category_labels=category_labels)])\n",
666
- "\n",
667
- " row_df = df_month[(df_month.ogtt_value >= 11.1) & (df_month.fbg_value < 6.1)].copy()\n",
668
- " table_df = pd.concat([table_df, get_row_df_func(row_df, \"OGTT ≥11.1; FBG <6.1\", category_labels=category_labels)])\n",
669
- "\n",
670
- " row_df = df_month[(df_month.ogtt_value >= 11.1) & (df_month.fbg_value >= 6.1) & (df_month.fbg_value < 7.0)].copy()\n",
671
- " table_df = pd.concat(\n",
672
- " [table_df, get_row_df_func(row_df, \"OGTT ≥11.1; FBG >=6.1 <7.0\", category_labels=category_labels)])\n",
673
- "\n",
674
- " row_df = df_month[(df_month.ogtt_value >= 11.1) & (df_month.fbg_value >= 7.0)].copy()\n",
675
- " table_df = pd.concat([table_df, get_row_df_func(row_df, \"OGTT ≥11.1; FBG >=7.0\", category_labels=category_labels)])\n",
676
- "\n",
677
- " row_df = df_month[(df_month.ogtt_value.isna())].copy()\n",
678
- " table_df = pd.concat([table_df, get_row_df_func(row_df, \"Missing OGTT\", category_labels=category_labels)])\n",
679
- " return table_df\n",
680
- "\n",
681
- "\n",
682
- "def format_table_df(tbl_df, add_totals: bool | None = None):\n",
683
- " \"\"\"Pivot on site\"\"\"\n",
684
- " add_totals = True if add_totals is None else add_totals\n",
685
- " tbl_df = tbl_df.fillna(0.0)\n",
686
- " tbl_df[\"total\"] = tbl_df.iloc[:, 1:].sum(axis=1)\n",
687
- " tbl_df = tbl_df.reset_index(drop=True)\n",
688
- "\n",
689
- " if add_totals:\n",
690
- " df_last = tbl_df[1:].sum().to_frame()\n",
691
- " df_last.loc[\"label\"] = np.nan\n",
692
- " df_last = df_last.reset_index()\n",
693
- " df_last.columns = [\"label\", \"value\"]\n",
694
- " df_last = df_last.pivot_table(columns=\"label\", values=\"value\").reset_index(drop=True)\n",
695
- " df_last.columns.name = \"\"\n",
696
- " df_last[\"label\"] = \"Totals\"\n",
697
- "\n",
698
- " tbl_df = pd.concat([tbl_df, df_last])\n",
699
- " tbl_df = tbl_df.reset_index(drop=True)\n",
700
- "\n",
701
- " tbl_df.columns = [\"label\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]\n",
702
- "\n",
703
- " for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]:\n",
704
- " tbl_df[f\"{site}_perc\"] = (tbl_df[site] / tbl_df.iloc[0][site]) * 100 if tbl_df.iloc[0][site] > 0 else 0\n",
705
- " tbl_df[f\"{site}_perc_str\"] = tbl_df[f\"{site}_perc\"].map('{:.1f}'.format)\n",
706
- "\n",
707
- " for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]:\n",
708
- " tbl_df[f\"{site}_str\"] = tbl_df[[f\"{site}\", f\"{site}_perc_str\"]].apply(lambda x: ' ('.join(x.astype(str)),\n",
709
- " axis=1)\n",
710
- " tbl_df[f\"{site}_str\"] = tbl_df[f\"{site}_str\"] + \")\"\n",
711
- "\n",
712
- " cols = [\"label\", *[f\"{site}_str\" for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]]]\n",
713
- " tbl_df1 = tbl_df[cols]\n",
714
- " tbl_df1.loc[tbl_df.label == \"Total (n)\"] = tbl_df.iloc[0][\n",
715
- " [\"label\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]].to_list()\n",
716
- " return tbl_df1\n",
717
- "\n",
718
- "\n",
719
- "def format_table_with_bmi_df(tbl_df, add_totals: bool | None = None, category_labels: list[str] = None):\n",
720
- " \"\"\"Pivot on BMI categories\"\"\"\n",
721
- "\n",
722
- " add_totals = True if add_totals is None else add_totals\n",
723
- " tbl_df = tbl_df.fillna(0.0)\n",
724
- " tbl_df[\"total\"] = tbl_df.iloc[:, 1:].sum(axis=1)\n",
725
- " tbl_df = tbl_df.reset_index(drop=True)\n",
726
- "\n",
727
- " if add_totals:\n",
728
- " df_last = tbl_df[1:].sum().to_frame()\n",
729
- " df_last.loc[\"label\"] = np.nan\n",
730
- " df_last = df_last.reset_index()\n",
731
- " df_last.columns = [\"label\", \"value\"]\n",
732
- " df_last = df_last.pivot_table(columns=\"label\", values=\"value\").reset_index(drop=True)\n",
733
- " df_last.columns.name = \"\"\n",
734
- " df_last[\"label\"] = \"Totals\"\n",
735
- "\n",
736
- " tbl_df = pd.concat([tbl_df, df_last])\n",
737
- " tbl_df = tbl_df.reset_index(drop=True)\n",
738
- "\n",
739
- " tbl_df.columns = [\"label\", *category_labels, \"total\"]\n",
740
- "\n",
741
- " for label in [*category_labels, \"total\"]:\n",
742
- " tbl_df[f\"{label}_perc\"] = (tbl_df[label] / tbl_df.iloc[0][label]) * 100 if tbl_df.iloc[0][label] > 0 else 0\n",
743
- " tbl_df[f\"{label}_perc_str\"] = tbl_df[f\"{label}_perc\"].map('{:.1f}'.format)\n",
744
- "\n",
745
- " for cat in [*category_labels, \"total\"]:\n",
746
- " tbl_df[f\"{label}_str\"] = tbl_df[[f\"{label}\", f\"{label}_perc_str\"]].apply(lambda x: ' ('.join(x.astype(str)),\n",
747
- " axis=1)\n",
748
- " tbl_df[f\"{label}_str\"] = tbl_df[f\"{label}_str\"] + \")\"\n",
749
- "\n",
750
- " cols = [\"label\", *[f\"{label}_str\" for label in [*category_labels, \"total\"]]]\n",
751
- " tbl_df1 = tbl_df[cols]\n",
752
- " tbl_df1.loc[tbl_df.label == \"Total (n)\"] = tbl_df.iloc[0][[\"label\", *category_labels, \"total\"]].to_list()\n",
753
- " return tbl_df1\n",
754
- "\n",
755
- "\n",
756
- "def get_row_by_df(row_df: pd.DataFrame, label: str, category_labels: list[str]) -> pd.DataFrame:\n",
757
- " # if label not in category_labels:\n",
758
- " # raise ValueError(f\"Invalid label. Expected one of {category_labels}. Got {label}.\")\n",
759
- " row_df = row_df.groupby(by=[\"site_id\"]).site_id.count().to_frame(name=\"n\")\n",
760
- " row_df[\"label\"] = label\n",
761
- " row_df = row_df.reset_index()\n",
762
- " row_df = row_df.pivot(index=\"label\", values=\"n\", columns=\"site_id\").reset_index()\n",
763
- " row_df.columns.name = \"\"\n",
764
- "\n",
765
- " for label in category_labels:\n",
766
- " if label not in row_df.columns:\n",
767
- " row_df[label] = None\n",
768
- " row_df = row_df.reset_index(drop=True)\n",
769
- " return row_df"
770
- ]
771
- },
772
- {
773
- "cell_type": "code",
774
- "execution_count": null,
775
- "id": "16",
776
- "metadata": {},
777
- "outputs": [],
778
- "source": [
779
- "def get_fbg_value(r):\n",
780
- " if not pd.isna(r[\"converted_fbg2_value\"]):\n",
781
- " return r[\"converted_fbg2_value\"]\n",
782
- " return r[\"converted_fbg_value\"]\n",
783
- "\n",
784
- "\n",
785
- "def get_ogtt_value(r):\n",
786
- " if not pd.isna(r[\"converted_ogtt2_value\"]):\n",
787
- " return r[\"converted_ogtt2_value\"]\n",
788
- " return r[\"converted_ogtt_value\"]\n"
789
- ]
790
- },
791
- {
792
- "cell_type": "code",
793
- "execution_count": null,
794
- "id": "17",
795
- "metadata": {},
796
- "outputs": [],
797
- "source": [
798
- "# Table 3: OGTT and FBG at Enrolment\n",
799
- "\n",
800
- "subjects = df_visit.subject_identifier.unique()\n",
801
- "df_screening = get_screening_df().query(\"consented==True and subject_identifier.isin(@subjects)\")\n",
802
- "df_screening[\"visit_code\"] = \"Enrol\"\n",
803
- "df_screening[\"fbg_value\"] = df_screening.apply(get_fbg_value, axis=1)\n",
804
- "df_screening[\"ogtt_value\"] = df_screening.apply(get_ogtt_value, axis=1)\n",
805
- "df_screening[\"site_id\"] = df_screening.site.astype(int)\n",
806
- "df_screening = df_screening.drop(columns=[\"site\"])\n",
807
- "df_table3 = get_table_df(df_screening, month_label=\"enrol\")\n",
808
- "df_table3 = format_table_df(df_table3)\n",
809
- "df_table3 = df_table3.fillna(0.0)\n",
810
- "gt = df_as_great_table(df_table3, title=\"Table 3a: OGTT and FBG at Screening / Enrolment\")\n",
811
- "\n",
812
- "column_headers_enrol = {k: v for k, v in column_headers_with_str.items() if k not in \"visit_code\"}\n",
813
- "gt = (\n",
814
- " gt\n",
815
- " .cols_label(column_headers_enrol)\n",
816
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
817
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
818
- " .cols_width(cases={\"label\": \"35%\"})\n",
819
- " .tab_source_note(source_note=\"Excluding patients eventually withdrawn for `late exclusion` criteria\")\n",
820
- ")\n",
821
- "html_data.append(gt.as_raw_html())\n",
822
- "gt.show()\n"
823
- ]
824
- },
825
- {
826
- "cell_type": "code",
827
- "execution_count": null,
828
- "id": "18",
829
- "metadata": {},
830
- "outputs": [],
831
- "source": [
832
- "# bmi_categories:\n",
833
- "# 1 calculated_bmi_value<25\n",
834
- "# 2 calculated_bmi_value>=25 & calculated_bmi_value<30\n",
835
- "# 3 calculated_bmi_value>=30\n",
836
- "\n",
837
- "\n",
838
- "# subjects = df_visit.subject_identifier.unique()\n",
839
- "# df_screening = get_screening_df().query(\"consented==True and subject_identifier.isin(@subjects)\")\n",
840
- "# df_screening[\"visit_code\"] = \"Enrol\"\n",
841
- "# df_screening[\"fbg_value\"] = df_screening.apply(get_fbg_value, axis=1)\n",
842
- "# df_screening[\"ogtt_value\"] = df_screening.apply(get_ogtt_value, axis=1)\n",
843
- "# df_screening[\"site_id\"] = df_screening.site.astype(int)\n",
844
- "# df_screening = df_screening.drop(columns=[\"site\"])\n",
845
- "# df_screening[\"bmi\"] = pd.NA\n",
846
- "# df_screening.loc[df_screening[\"calculated_bmi_value\"] < 25.0, \"bmi\"] = \"bmi<25\"\n",
847
- "# df_screening.loc[(df_screening[\"calculated_bmi_value\"]>=25.0) & (df_screening[\"calculated_bmi_value\"] < 30.0), \"bmi\"] = \"25<=bmi<30\"\n",
848
- "# df_screening.loc[df_screening[\"calculated_bmi_value\"] > 30.0, \"bmi\"] = \"bmi>30\"\n",
849
- "#\n",
850
- "# category_labels = [ \"bmi<25\", \"25<=bmi<30\", \"bmi>=30\", \"Total (n)\"]\n",
851
- "# df_table3 = get_table_df(df_screening, month_label=\"enrol\", get_row_func=get_row_by_df, category_labels=category_labels)\n",
852
- "# df_table3 = format_table_with_bmi_df(df_table3, category_labels=category_labels)\n",
853
- "# df_table3 = df_table3.fillna(0.0)\n",
854
- "# gt = df_as_great_table(df_table3, title=\"Table 3b: OGTT/FBG by BMI at Screening / Enrolment\")\n",
855
- "# column_headers_enrol = {\"bmi<25_str\":\"bmi<25\", \"25<=bmi<30_str\":\"25<=bmi<30\", \"bmi>30_str\":\"bmi>30\", \"total_str\": \"total\"}\n",
856
- "# gt = (\n",
857
- "# gt\n",
858
- "# .cols_label(column_headers_enrol)\n",
859
- "# .cols_align(align=\"center\", columns=[\"bmi<25_str\", \"25<=bmi<30_str\", \"bmi>30_str\", \"total_str\"])\n",
860
- "# .cols_align(align=\"left\", columns=[\"label\"])\n",
861
- "# .cols_width(cases={\"label\": \"35%\"})\n",
862
- "# .tab_source_note(source_note=\"Excluding patients eventually withdrawn for `late exclusion` criteria\")\n",
863
- "# )\n",
864
- "# html_data.append(gt.as_raw_html())\n",
865
- "# gt.show()\n",
866
- "\n"
867
- ]
868
- },
869
- {
870
- "cell_type": "code",
871
- "execution_count": null,
872
- "id": "19",
873
- "metadata": {},
874
- "outputs": [],
875
- "source": [
876
- "[col for col in df_screening.columns if \"bmi\" in col]"
877
- ]
878
- },
879
- {
880
- "cell_type": "code",
881
- "execution_count": null,
882
- "id": "20",
883
- "metadata": {},
884
- "outputs": [],
885
- "source": [
886
- "# Table 4: OGTT and FBG at 12-month visit\n",
887
- "df_table3 = get_table_df(df_glucose, visit_codes=[1120.0])\n",
888
- "df_table3 = format_table_df(df_table3)\n",
889
- "df_table3 = df_table3.fillna(0.0)\n",
890
- "gt = df_as_great_table(df_table3, title=\"Table 4: OGTT and FBG at 12-month visit\")\n",
891
- "gt = (\n",
892
- " gt\n",
893
- " .cols_label(column_headers_with_str)\n",
894
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
895
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
896
- " .cols_width(cases={\"label\": \"35%\"})\n",
897
- ")\n",
898
- "html_data.append(gt.as_raw_html())\n",
899
- "gt.show()\n"
900
- ]
901
- },
902
- {
903
- "cell_type": "code",
904
- "execution_count": null,
905
- "id": "21",
906
- "metadata": {},
907
- "outputs": [],
908
- "source": [
909
- "# Table 5: OGTT and FBG at 24-month visit\n",
910
- "df_table4 = get_table_df(df_glucose, 1240.0)\n",
911
- "df_table4 = format_table_df(df_table4)\n",
912
- "df_table4 = df_table4.fillna(0.0)\n",
913
- "gt = df_as_great_table(df_table4, title=\"Table 5: OGTT and FBG at 24-month visit\")\n",
914
- "gt = (\n",
915
- " gt\n",
916
- " .cols_label(column_headers_with_str)\n",
917
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
918
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
919
- " .cols_width(cases={\"label\": \"35%\"})\n",
920
- ")\n",
921
- "html_data.append(gt.as_raw_html())\n",
922
- "gt.show()"
923
- ]
924
- },
925
- {
926
- "cell_type": "code",
927
- "execution_count": null,
928
- "id": "22",
929
- "metadata": {},
930
- "outputs": [],
931
- "source": [
932
- "# Table 6: OGTT and FBG at 36-month visit\n",
933
- "df_table5 = get_table_df(df_glucose, 1360.0)\n",
934
- "df_table5 = format_table_df(df_table5)\n",
935
- "df_table5 = df_table5.fillna(0.0)\n",
936
- "gt = df_as_great_table(df_table5, title=\"Table 6: OGTT and FBG at 36-month visit\")\n",
937
- "gt = (\n",
938
- " gt\n",
939
- " .cols_label(column_headers_with_str)\n",
940
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
941
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
942
- " .cols_width(cases={\"label\": \"35%\"})\n",
943
- ")\n",
944
- "html_data.append(gt.as_raw_html())\n",
945
- "gt.show()"
946
- ]
947
- },
948
- {
949
- "cell_type": "code",
950
- "execution_count": null,
951
- "id": "23",
952
- "metadata": {},
953
- "outputs": [],
954
- "source": [
955
- "# Table 7: Any OGTT>11.1 ever\n",
956
- "row_df = df_glucose[df_glucose.ogtt_value >= 11.1].copy()\n",
957
- "table_df = get_row_df(row_df, \"Total (n)\")\n",
958
- "df_table6 = format_table_df(table_df)\n",
959
- "df_table = df_table6[:1].fillna(0.0).copy().reset_index(drop=True)\n",
960
- "gt = df_as_great_table(df_table, title=\"Table 7: Any OGTT>11.1 ever\")\n",
961
- "gt = (\n",
962
- " gt\n",
963
- " .cols_label(column_headers_with_str)\n",
964
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
965
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
966
- " .cols_width(cases={\"label\": \"35%\"})\n",
967
- ")\n",
968
- "html_data.append(gt.as_raw_html())\n",
969
- "gt.show()"
970
- ]
971
- },
972
- {
973
- "cell_type": "code",
974
- "execution_count": null,
975
- "id": "24",
976
- "metadata": {},
977
- "outputs": [],
978
- "source": [
979
- "# func for table 7\n",
980
- "def get_table7_df(df_source: pd.DataFrame, visit_code: float) -> pd.DataFrame:\n",
981
- " df_month = df_source[(df_source.visit_code >= visit_code) & (df_source.visit_code <= visit_code + 0.9)].copy()\n",
982
- "\n",
983
- " row_df = df_month.copy()\n",
984
- " table_df = get_row_df(row_df, \"Total (n)\")\n",
985
- "\n",
986
- " row_df = df_month[(df_month.fbg_value < 6.1)].copy()\n",
987
- " table_df = pd.concat([table_df, get_row_df(row_df, \"FBG <6.1\")])\n",
988
- "\n",
989
- " row_df = df_month[(df_month.fbg_value >= 6.1) & (df_month.fbg_value < 7.0)].copy()\n",
990
- " table_df = pd.concat([table_df, get_row_df(row_df, \"FBG >=6.1 <7.0\")])\n",
991
- "\n",
992
- " row_df = df_month[(df_month.fbg_value >= 7.0)].copy()\n",
993
- " table_df = pd.concat([table_df, get_row_df(row_df, \"FBG >=7.0\")])\n",
994
- " return table_df"
995
- ]
996
- },
997
- {
998
- "cell_type": "code",
999
- "execution_count": null,
1000
- "id": "25",
1001
- "metadata": {},
1002
- "outputs": [],
1003
- "source": [
1004
- "# Table 8: Interim FBG results\n",
1005
- "df_table7 = get_table7_df(df_glucose, 1150.0)\n",
1006
- "df_table7 = format_table_df(df_table7, add_totals=False)\n",
1007
- "df_table7[\"visit_code\"] = MONTH15\n",
1008
- "\n",
1009
- "df_table71 = get_table7_df(df_glucose, 1180.0)\n",
1010
- "df_table71 = format_table_df(df_table71, add_totals=False)\n",
1011
- "df_table71[\"visit_code\"] = MONTH18\n",
1012
- "\n",
1013
- "df_table72 = get_table7_df(df_glucose, 1210.0)\n",
1014
- "df_table72 = format_table_df(df_table72, add_totals=False)\n",
1015
- "df_table72[\"visit_code\"] = MONTH21\n",
1016
- "\n",
1017
- "df_table73 = get_table7_df(df_glucose, 1270.0)\n",
1018
- "df_table73 = format_table_df(df_table73, add_totals=False)\n",
1019
- "df_table73[\"visit_code\"] = MONTH27\n",
1020
- "\n",
1021
- "df_table74 = get_table7_df(df_glucose, 1300.0)\n",
1022
- "df_table74 = format_table_df(df_table74, add_totals=False)\n",
1023
- "df_table74[\"visit_code\"] = MONTH30\n",
1024
- "\n",
1025
- "df_table75 = get_table7_df(df_glucose, 1330.0)\n",
1026
- "df_table75 = format_table_df(df_table75, add_totals=False)\n",
1027
- "df_table75[\"visit_code\"] = MONTH33\n",
1028
- "\n",
1029
- "df_table76 = get_table7_df(df_glucose, 1390.0)\n",
1030
- "df_table76 = format_table_df(df_table76, add_totals=False)\n",
1031
- "df_table76[\"visit_code\"] = MONTH39\n",
1032
- "\n",
1033
- "df_table = pd.concat([df_table7, df_table71, df_table72, df_table73, df_table74, df_table75, df_table76])\n",
1034
- "df_table = df_table.reset_index(drop=True)\n",
1035
- "df_table = df_table.fillna(0.0)"
1036
- ]
1037
- },
1038
- {
1039
- "cell_type": "code",
1040
- "execution_count": null,
1041
- "id": "26",
1042
- "metadata": {},
1043
- "outputs": [],
1044
- "source": [
1045
- "column_headers_with_str = {\"visit_code\": \"Visit Code\", **column_headers_with_str}\n",
1046
- "gt = df_as_great_table2(df_table, title=\"Table 8: Interim FBG results\")\n",
1047
- "gt = (\n",
1048
- " gt\n",
1049
- " .cols_label(column_headers_with_str)\n",
1050
- " .cols_move_to_start(columns=\"visit_code\")\n",
1051
- " .cols_align(align=\"center\", columns=[\"10_str\", \"20_str\", \"30_str\", \"40_str\", \"60_str\", \"total_str\"])\n",
1052
- " .cols_align(align=\"left\", columns=[\"visit_code\", \"label\"])\n",
1053
- " .cols_width(cases={\"label\": \"15%\"})\n",
1054
- " .tab_style(\n",
1055
- " style=[\n",
1056
- " style.text(color=\"black\", weight=\"bold\"),\n",
1057
- " style.fill(color=\"lightgray\")\n",
1058
- " ],\n",
1059
- " locations=loc.row_groups()\n",
1060
- " )\n",
1061
- ")\n",
1062
- "html_data.append(gt.as_raw_html())\n",
1063
- "gt.show()"
1064
- ]
1065
- },
1066
- {
1067
- "cell_type": "code",
1068
- "execution_count": null,
1069
- "id": "27",
1070
- "metadata": {},
1071
- "outputs": [],
1072
- "source": [
1073
- "# Table 9: Primary Endpoint met\n",
1074
- "df_endpoint_grp = df_endpoint.groupby(by=[\"site_id\", \"endpoint_label\"]).size().to_frame().reset_index()\n",
1075
- "df_endpoint_grp.columns = [\"site_id\", \"label\", \"endpoints\"]\n",
1076
- "df_endpoint_pivot = df_endpoint_grp.pivot_table(index=\"label\", columns=\"site_id\", values=\"endpoints\").reset_index()\n",
1077
- "df_endpoint_pivot.columns.name = \"\"\n",
1078
- "df_endpoint_pivot.columns = ['label', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
1079
- "df_endpoint_pivot.loc[len(df_endpoint_pivot)] = df_endpoint_pivot[['10', '20', '30', '40', '60']].sum().to_dict()\n",
1080
- "df_endpoint_pivot.at[len(df_endpoint_pivot) - 1, 'label'] = 'Total'\n",
1081
- "df_endpoint_pivot['total'] = df_endpoint_pivot[['10', '20', '30', '40', '60']].sum(axis=1)\n",
1082
- "df_endpoint_pivot = df_endpoint_pivot.fillna(0.0)\n",
1083
- "\n",
1084
- "gt = df_as_great_table(\n",
1085
- " df_endpoint_pivot,\n",
1086
- " title=\"Table 9a: Primary Endpoint met\"\n",
1087
- ")\n",
1088
- "gt = (\n",
1089
- " gt\n",
1090
- " .cols_label({k: v for k, v in column_headers.items() if k not in [\"visit_code\"]})\n",
1091
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
1092
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
1093
- " .cols_width(cases={\"label\": \"25%\"})\n",
1094
- ")\n",
1095
- "html_data.append(gt.as_raw_html())\n",
1096
- "gt.show()"
1097
- ]
1098
- },
1099
- {
1100
- "cell_type": "code",
1101
- "execution_count": null,
1102
- "id": "28",
1103
- "metadata": {},
1104
- "outputs": [],
1105
- "source": [
1106
- "#read_frame(SubjectScheduleHistory.objects.filter(offschedule_model=\"meta_prn.offschedule\"), verbose=False).rename(columns={\"site\": \"site_id\"})"
1107
- ]
1108
- },
1109
- {
1110
- "cell_type": "code",
1111
- "execution_count": null,
1112
- "id": "29",
1113
- "metadata": {},
1114
- "outputs": [],
1115
- "source": [
1116
- "from great_tables import html\n",
1117
- "\n",
1118
- "# Table 9b: Primary Endpoint no EOS or DM Referral\n",
1119
- "df_subjecthistory = read_frame(\n",
1120
- " SubjectScheduleHistory.objects.filter(offschedule_model=\"meta_prn.offschedule\", offschedule_datetime__isnull=False),\n",
1121
- " verbose=False).rename(columns={\"site\": \"site_id\"})\n",
1122
- "df_subjecthistory[\"site_id\"] = df_subjecthistory[\"site_id\"].astype(str)\n",
1123
- "df_endpoint_no_off = df_endpoint.merge(df_subjecthistory[[\"subject_identifier\", \"offschedule_datetime\"]],\n",
1124
- " on=[\"subject_identifier\"], how=\"left\")\n",
1125
- "df_endpoint_grp = df_endpoint_no_off.query(\"offschedule_datetime.isna()\").groupby(\n",
1126
- " by=[\"site_id\", \"endpoint_label\"]).size().to_frame().reset_index()\n",
1127
- "df_endpoint_grp.columns = [\"site_id\", \"label\", \"endpoints\"]\n",
1128
- "df_endpoint_pivot = df_endpoint_grp.pivot_table(index=\"label\", columns=\"site_id\", values=\"endpoints\").reset_index()\n",
1129
- "df_endpoint_pivot.columns.name = \"\"\n",
1130
- "df_endpoint_pivot.columns = ['label', *[str(col) for col in df_endpoint_pivot.columns if col != \"label\"]]\n",
1131
- "for col in [c for c in ['label', \"10\", \"20\", \"30\", \"40\", \"60\"] if str(c) not in df_endpoint_pivot.columns]:\n",
1132
- " df_endpoint_pivot[str(col)] = np.nan\n",
1133
- "df_endpoint_pivot.columns = ['label', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
1134
- "df_endpoint_pivot.loc[len(df_endpoint_pivot)] = df_endpoint_pivot[['10', '20', '30', '40', '60']].sum().to_dict()\n",
1135
- "df_endpoint_pivot.at[len(df_endpoint_pivot) - 1, 'label'] = 'Total'\n",
1136
- "df_endpoint_pivot['total'] = df_endpoint_pivot[['10', '20', '30', '40', '60']].sum(axis=1)\n",
1137
- "df_endpoint_pivot = df_endpoint_pivot.fillna(0.0)\n",
1138
- "subjects = df_endpoint_no_off.query(\"offschedule_datetime.isna()\").subject_identifier.to_list()\n",
1139
- "\n",
1140
- "gt = df_as_great_table(\n",
1141
- " df_endpoint_pivot,\n",
1142
- " title=\"Table 9b: Primary Endpoint met -- participant not referred\"\n",
1143
- ")\n",
1144
- "gt = (\n",
1145
- " gt\n",
1146
- " .cols_label({k: v for k, v in column_headers.items() if k not in [\"visit_code\"]})\n",
1147
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
1148
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
1149
- " .cols_width(cases={\"label\": \"25%\"})\n",
1150
- " .tab_source_note(source_note=html(\"<BR>\".join(subjects)))\n",
1151
- ")\n",
1152
- "html_data.append(gt.as_raw_html())\n",
1153
- "gt.show()"
1154
- ]
1155
- },
1156
- {
1157
- "cell_type": "code",
1158
- "execution_count": null,
1159
- "id": "30",
1160
- "metadata": {},
1161
- "outputs": [],
1162
- "source": []
1163
- },
1164
- {
1165
- "cell_type": "code",
1166
- "execution_count": null,
1167
- "id": "31",
1168
- "metadata": {},
1169
- "outputs": [],
1170
- "source": [
1171
- "# Table 10: Incident Rate per 1000 person years\n",
1172
- "\n",
1173
- "def get_df_main(df_visit: pd.DataFrame, lower_days: float | None = None, upper_days: float | None = None):\n",
1174
- " if not lower_days:\n",
1175
- " lower_days = -1\n",
1176
- " cutoff_datetime = df_visit.query(\"@lower_days<followup_days<=@upper_days\").visit_datetime.max()\n",
1177
- " # exclude subjects for this reason\n",
1178
- " offstudy_reasons = [\n",
1179
- " 'Patient fulfilled late exclusion criteria (due to abnormal blood values or raised blood pressure at enrolment']\n",
1180
- "\n",
1181
- " df_eos = get_eos_df()\n",
1182
- " df_eos_excluded = (\n",
1183
- " df_eos\n",
1184
- " .query(\"followup_days>@lower_days and followup_days<=@upper_days and offstudy_reason.isin(@offstudy_reasons)\")\n",
1185
- " .copy()\n",
1186
- " .reset_index()\n",
1187
- " )\n",
1188
- " df_visit_final = (\n",
1189
- " df_visit.query(\"@lower_days<followup_days<=@upper_days and reason!='missed' and visit_code<2000.0\")\n",
1190
- " .merge(df_eos_excluded[[\"subject_identifier\"]], on=\"subject_identifier\", how=\"left\", suffixes=(\"\", \"_y\"),\n",
1191
- " indicator=True)\n",
1192
- " .query(\"_merge=='left_only'\")\n",
1193
- " .drop(columns=[\"_merge\"])\n",
1194
- " )\n",
1195
- " df_main = (\n",
1196
- " df_visit_final\n",
1197
- " .groupby(by=[\"subject_identifier\"])[[\"baseline_datetime\", \"visit_datetime\", \"followup_days\"]]\n",
1198
- " .max()\n",
1199
- " .reset_index()\n",
1200
- " )\n",
1201
- "\n",
1202
- " df_main = (\n",
1203
- " df_main\n",
1204
- " .merge(\n",
1205
- " df_endpoint.query(\"days_to_endpoint>@lower_days\")[\n",
1206
- " [\"subject_identifier\", \"endpoint_label\", \"endpoint_type\", \"days_to_endpoint\"]],\n",
1207
- " how=\"left\",\n",
1208
- " on=[\"subject_identifier\"])\n",
1209
- " .reset_index(drop=True)\n",
1210
- " )\n",
1211
- " if lower_days >= 365.25:\n",
1212
- " df_main[\"followup_days\"] = df_main[\"followup_days\"] - lower_days\n",
1213
- " df_main[\"followup_years\"] = df_main[\"followup_days\"] / 365.25\n",
1214
- " return df_main, len(df_main), len(\n",
1215
- " df_main.query(\"@lower_days<days_to_endpoint<=@upper_days and endpoint_label.notna()\"))\n",
1216
- "\n",
1217
- "\n",
1218
- "def get_rate_and_ci(events, person_years_total):\n",
1219
- " lower_ci = (chi2.ppf(0.025, 2 * events) / (2 * person_years_total)) * 1000\n",
1220
- " upper_ci = (chi2.ppf(0.975, 2 * (events + 1)) / (2 * person_years_total)) * 1000\n",
1221
- " return events / person_years_total * 1000, lower_ci, upper_ci\n",
1222
- "\n",
1223
- "\n",
1224
- "def get_incidence_data(term: str, lower_days: float, upper_days: float):\n",
1225
- " data = {}\n",
1226
- " df_main, subjects, events = get_df_main(df_visit, lower_days=lower_days, upper_days=upper_days)\n",
1227
- " person_years_total = df_main.followup_years.sum()\n",
1228
- " data.update({term: [person_years_total, subjects, events, *get_rate_and_ci(events, person_years_total)]})\n",
1229
- " return data"
1230
- ]
1231
- },
1232
- {
1233
- "cell_type": "code",
1234
- "execution_count": null,
1235
- "id": "32",
1236
- "metadata": {},
1237
- "outputs": [],
1238
- "source": [
1239
- "incidence_data = {}\n",
1240
- "incidence_data.update(get_incidence_data(\"total\", lower_days=-1, upper_days=10000))\n",
1241
- "incidence_data.update(get_incidence_data(\"0-1 years\", lower_days=-1, upper_days=365.25))\n",
1242
- "incidence_data.update(get_incidence_data(\"1-2 years\", lower_days=365.25, upper_days=2 * 365.25))\n",
1243
- "incidence_data.update(get_incidence_data(\"2-3 years\", lower_days=2 * 365.25, upper_days=3 * 365.25))\n",
1244
- "incidence_data.update(get_incidence_data(\"3+ years\", lower_days=3 * 365.25, upper_days=10 * 365.25))\n",
1245
- "data = dict(label=[], person_years=[], subjects=[], failures=[], rate=[], lower_ci=[], upper_ci=[])\n",
1246
- "for k in incidence_data:\n",
1247
- " data[\"label\"].append(k)\n",
1248
- "\n",
1249
- "for v in incidence_data.values():\n",
1250
- " data[\"person_years\"].append(v[0])\n",
1251
- " data[\"subjects\"].append(v[1])\n",
1252
- " data[\"failures\"].append(v[2])\n",
1253
- " data[\"rate\"].append(v[3])\n",
1254
- " data[\"lower_ci\"].append(v[4])\n",
1255
- " data[\"upper_ci\"].append(v[5])\n",
1256
- "\n",
1257
- "df_table9 = pd.DataFrame(data={k: v for k, v in data.items() if k != \"subjects\"})"
1258
- ]
1259
- },
1260
- {
1261
- "cell_type": "code",
1262
- "execution_count": null,
1263
- "id": "33",
1264
- "metadata": {},
1265
- "outputs": [],
1266
- "source": [
1267
- "gt = df_as_great_table(\n",
1268
- " df_table9,\n",
1269
- " title=\"Table 10: Incident Rate per 1000 person years\",\n",
1270
- " subtitle=md(\"using randomisation to diabetes/last seen\"),\n",
1271
- ")\n",
1272
- "gt = gt.fmt_number(columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"], decimals=2)\n",
1273
- "gt = (gt\n",
1274
- " .cols_label(\n",
1275
- " {\"label\": \"Label\", \"person_years\": \"Person years\", \"failures\": \"Failures\", \"rate\": \"Rate\", \"lower_ci\": \"Lower\",\n",
1276
- " \"upper_ci\": \"Upper\"})\n",
1277
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
1278
- " .cols_align(align=\"center\", columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"])\n",
1279
- " .tab_spanner(\n",
1280
- " label=\"95%CI\",\n",
1281
- " columns=[\"lower_ci\", \"upper_ci\"],\n",
1282
- ")\n",
1283
- " .tab_source_note(source_note=\"Excluding patients withdrawn for `late exclusion` criteria\")\n",
1284
- " )\n",
1285
- "gt.show()\n",
1286
- "html_data.append(gt.as_raw_html())"
1287
- ]
1288
- },
1289
- {
1290
- "cell_type": "code",
1291
- "execution_count": null,
1292
- "id": "34",
1293
- "metadata": {},
1294
- "outputs": [],
1295
- "source": [
1296
- "# Table 11: Proportion meeting primary endpoint\n",
1297
- "df_table10 = pd.DataFrame(data=data)\n",
1298
- "df_table10[\"proportion\"] = df_table10[\"failures\"] / df_table10[\"subjects\"] * 100\n",
1299
- "gt = df_as_great_table(\n",
1300
- " df_table10[[\"label\", \"subjects\", 'failures', \"proportion\"]],\n",
1301
- " title=\"Table 11: Proportion meeting primary endpoint\",\n",
1302
- ")\n",
1303
- "gt = (\n",
1304
- " gt\n",
1305
- " .fmt_number(columns=[\"failures\", \"proportion\"], decimals=2)\n",
1306
- " .cols_label({\"label\": \"Label\", \"subjects\": \"Participants\", \"failures\": \"Failures\", \"proportion\": \"%\"})\n",
1307
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
1308
- " .cols_align(align=\"center\", columns=[\"subjects\", \"failures\", \"proportion\"])\n",
1309
- " .tab_source_note(source_note=\"Excluding patients withdrawn for `late exclusion` criteria\")\n",
1310
- ")\n",
1311
- "html_data.append(gt.as_raw_html())\n",
1312
- "gt.show()\n"
1313
- ]
1314
- },
1315
- {
1316
- "cell_type": "code",
1317
- "execution_count": null,
1318
- "id": "35",
1319
- "metadata": {},
1320
- "outputs": [],
1321
- "source": []
1322
- },
1323
- {
1324
- "cell_type": "code",
1325
- "execution_count": null,
1326
- "id": "36",
1327
- "metadata": {},
1328
- "outputs": [],
1329
- "source": [
1330
- "# Table 11a: End of Study Table (for those who have completed an end of study form)\n",
1331
- "df_eos = get_eos_df()\n",
1332
- "offstudy_reasons = {\n",
1333
- " \"Delivered / Completed followup from pregnancy\": \"Pregnancy\",\n",
1334
- " \"Patient completed 36 months of follow-up\": \"Completed 36m\",\n",
1335
- " \"Patient developed diabetes\": \"Developed diabetes\",\n",
1336
- " \"Other reason (specify below)\": \"Other\",\n",
1337
- " \"Patient fulfilled late exclusion criteria (due to abnormal blood values or raised blood pressure at enrolment\": \"Late exclusion\",\n",
1338
- " \"Patient has been transferred to another health centre\": \"Transferred out\",\n",
1339
- " \"Patient is withdrawn on CLINICAL grounds ...\": \"Withdrawal: Clinical grounds\",\n",
1340
- " \"Patient lost to follow-up\": \"LTFU\",\n",
1341
- " \"Patient reported/known to have died\": \"Died\",\n",
1342
- " \"Patient withdrew consent to participate further\": \"Withdrawal: Consent\",\n",
1343
- "}\n",
1344
- "df_eos[\"offstudy_reason\"] = df_eos[\"offstudy_reason\"].map(offstudy_reasons)\n",
1345
- "df_eos[\"offstudy_reason\"] = pd.Categorical(df_eos[\"offstudy_reason\"],\n",
1346
- " categories=sorted(list(offstudy_reasons.values())), ordered=True)\n",
1347
- "df_eos[\"site_id\"] = df_eos[\"site_id\"].astype(str)\n",
1348
- "df_eos_pivot = (\n",
1349
- " df_eos\n",
1350
- " .groupby(by=[\"offstudy_reason\", \"site_id\"], observed=True)\n",
1351
- " .size()\n",
1352
- " .reset_index()\n",
1353
- " .pivot_table(index=\"offstudy_reason\", columns=\"site_id\", values=0, observed=True)\n",
1354
- " .fillna(0)\n",
1355
- " .astype(int)\n",
1356
- " .reset_index()\n",
1357
- ")\n",
1358
- "df_eos_pivot[\"total\"] = df_eos_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1)\n",
1359
- "df_eos_pivot.columns.name = \"\"\n",
1360
- "sum_row = df_eos_pivot.select_dtypes(include='int64').sum()\n",
1361
- "sum_row['offstudy_reason'] = 'Total'\n",
1362
- "sum_row_df = pd.DataFrame(sum_row).T\n",
1363
- "enrolled_1691_pivot[\"offstudy_reason\"] = \"Enrolled\"\n",
1364
- "enrolled_1691_pivot = enrolled_1691_pivot[[*df_eos_pivot.columns]]\n",
1365
- "df_eos_pivot = pd.concat([enrolled_1691_pivot, df_eos_pivot, sum_row_df], ignore_index=True)\n",
1366
- "\n",
1367
- "gt = df_as_great_table(\n",
1368
- " df_eos_pivot,\n",
1369
- " title=\"Table 12a: End of study report\",\n",
1370
- " subtitle=md(\"for those who have completed an End of study report\"),\n",
1371
- ")\n",
1372
- "gt = (\n",
1373
- " gt\n",
1374
- " .cols_label(\n",
1375
- " {\"offstudy_reason\": \"Reason\", **{k: v for k, v in column_headers.items() if k not in [\"visit_code\", \"label\"]}})\n",
1376
- " .cols_align(align=\"left\", columns=[\"offstudy_reason\"])\n",
1377
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
1378
- " .tab_style(\n",
1379
- " style=[style.fill(color=\"snow\"), style.text(color=\"black\")],\n",
1380
- " locations=loc.body(\n",
1381
- " columns=[0],\n",
1382
- " rows=[len(df_eos_pivot) - 1]),\n",
1383
- " )\n",
1384
- " .tab_style(\n",
1385
- " style=[style.fill(color=\"lightblue\"), style.text(color=\"black\")],\n",
1386
- " locations=loc.body(\n",
1387
- " columns=[\"10\", \"20\", \"30\", \"40\", \"60\"],\n",
1388
- " rows=[len(df_eos_pivot) - 1],\n",
1389
- " ),\n",
1390
- " )\n",
1391
- " .tab_style(\n",
1392
- " style=[style.fill(color=\"lightgreen\"), style.text(color=\"black\")],\n",
1393
- " locations=loc.body(\n",
1394
- " columns=[\"total\"],\n",
1395
- " rows=[len(df_eos_pivot) - 1],\n",
1396
- " ),\n",
1397
- " )\n",
1398
- " .tab_style(\n",
1399
- " style=[style.fill(color=\"snow\"), style.text(color=\"black\")],\n",
1400
- " locations=loc.body(\n",
1401
- " columns=[\"offstudy_reason\"],\n",
1402
- " rows=[0],\n",
1403
- " ),\n",
1404
- " )\n",
1405
- ")\n",
1406
- "html_data.append(gt.as_raw_html())\n",
1407
- "gt.show()\n"
1408
- ]
1409
- },
1410
- {
1411
- "cell_type": "code",
1412
- "execution_count": null,
1413
- "id": "37",
1414
- "metadata": {},
1415
- "outputs": [],
1416
- "source": []
1417
- },
1418
- {
1419
- "cell_type": "code",
1420
- "execution_count": null,
1421
- "id": "38",
1422
- "metadata": {},
1423
- "outputs": [],
1424
- "source": [
1425
- "# Table 12b: Study status\n",
1426
- "def get_schedule_df(df_subjecthistory: pd.DataFrame, onschedule_model: str, offschedule_model: str,\n",
1427
- " mode: str) -> pd.DataFrame:\n",
1428
- " columns = {k: f\"{k}_{mode}\" for k in [\"10\", \"20\", \"30\", \"40\", \"60\"]}\n",
1429
- " df_schedule = (\n",
1430
- " df_subjecthistory\n",
1431
- " .query(\n",
1432
- " f\"onschedule_model==@onschedule_model and offschedule_model==@offschedule_model and offschedule_datetime.{'isna' if mode == 'on' else 'notna'}()\")\n",
1433
- " .groupby(by=[\"onschedule_model\", \"site_id\"])\n",
1434
- " .size()\n",
1435
- " .reset_index()\n",
1436
- " .pivot_table(index=\"onschedule_model\", columns=\"site_id\", values=0, observed=True)\n",
1437
- " .reset_index()\n",
1438
- " .rename(columns={\"onschedule_model\": \"schedule\", **columns})\n",
1439
- " .fillna(0)\n",
1440
- " .copy()\n",
1441
- " )\n",
1442
- " df_schedule.columns.name = \"\"\n",
1443
- " return df_schedule\n",
1444
- "\n",
1445
- "\n",
1446
- "df_subjecthistory = read_frame(SubjectScheduleHistory.objects.all(), verbose=False).rename(columns={\"site\": \"site_id\"})\n",
1447
- "df_subjecthistory[\"site_id\"] = df_subjecthistory[\"site_id\"].astype(str)\n",
1448
- "\n",
1449
- "df_on = pd.concat([\n",
1450
- " get_schedule_df(df_subjecthistory, 'meta_prn.onschedule', 'meta_prn.offschedule', \"on\"),\n",
1451
- " get_schedule_df(df_subjecthistory, 'meta_prn.onscheduledmreferral', 'meta_prn.offscheduledmreferral', \"on\"),\n",
1452
- " get_schedule_df(df_subjecthistory, 'meta_prn.onschedulepregnancy', 'meta_prn.offschedulepregnancy', \"on\"),\n",
1453
- "])\n",
1454
- "\n",
1455
- "df_on = (\n",
1456
- " df_on\n",
1457
- " .fillna(0)\n",
1458
- " .reset_index(drop=True)\n",
1459
- ")\n",
1460
- "\n",
1461
- "df_off = pd.concat([\n",
1462
- " get_schedule_df(df_subjecthistory, 'meta_prn.onschedule', 'meta_prn.offschedule', \"off\"),\n",
1463
- " get_schedule_df(df_subjecthistory, 'meta_prn.onscheduledmreferral', 'meta_prn.offscheduledmreferral', \"off\"),\n",
1464
- " get_schedule_df(df_subjecthistory, 'meta_prn.onschedulepregnancy', 'meta_prn.offschedulepregnancy', \"off\"),\n",
1465
- "])\n",
1466
- "df_off = (\n",
1467
- " df_off\n",
1468
- " .fillna(0)\n",
1469
- " .reset_index(drop=True)\n",
1470
- ")\n",
1471
- "\n",
1472
- "df_status = pd.merge(df_on, df_off, on=[\"schedule\"], how=\"outer\")\n",
1473
- "columns = []\n",
1474
- "for ele in [[f\"{x}_on\", f\"{x}_off\"] for x in [\"10\", \"20\", \"30\", \"40\", \"60\"]]:\n",
1475
- " columns.extend(ele)\n",
1476
- "df_status = df_status[[\"schedule\", *columns]]\n",
1477
- "df_status[\"total_on\"] = df_status[[col for col in columns if \"on\" in col]].sum(axis=1)\n",
1478
- "df_status[\"total_off\"] = df_status[[col for col in columns if \"off\" in col]].sum(axis=1)\n",
1479
- "df_status[\"total\"] = df_status[columns].sum(axis=1)\n",
1480
- "df_status[\"schedule\"] = df_status.schedule.map(\n",
1481
- " {\"meta_prn.onschedule\": \"Main trial\", \"meta_prn.onscheduledmreferral\": \"Diabetes\",\n",
1482
- " \"meta_prn.onschedulepregnancy\": \"Pregnancy\"})\n",
1483
- "\n",
1484
- "gt = df_as_great_table(\n",
1485
- " df_status,\n",
1486
- " title=\"Table 12b: Study status\",\n",
1487
- " subtitle=md(\"Calculated from Offschedule form; not End of study report\"),\n",
1488
- ")\n",
1489
- "# gt = gt.fmt_number(columns=[\"person_years\", \"failures\", \"rate\", \"lower_ci\", \"upper_ci\"], decimals=0)\n",
1490
- "gt = (gt\n",
1491
- " .tab_source_note(\n",
1492
- " source_note=(\n",
1493
- " \"Note: Offschedule form is always submitted before the End of study report. \"\n",
1494
- " \"When the Offschedule form is submitted, future appointments for the schedule are removed and \"\n",
1495
- " \"the site staff are actioned to submit the End of study report.\"\n",
1496
- " )\n",
1497
- ")\n",
1498
- " .cols_label({\n",
1499
- " \"10_on\": \"On\", \"10_off\": \"Off\",\n",
1500
- " \"20_on\": \"On\", \"20_off\": \"Off\",\n",
1501
- " \"30_on\": \"On\", \"30_off\": \"Off\",\n",
1502
- " \"40_on\": \"On\", \"40_off\": \"Off\",\n",
1503
- " \"60_on\": \"On\", \"60_off\": \"Off\",\n",
1504
- " \"total_on\": \"On\", \"total_off\": \"Off\",\n",
1505
- " \"schedule\": \"Schedule\", \"total\": \"Total\"})\n",
1506
- " .cols_align(align=\"center\")\n",
1507
- " .cols_align(align=\"left\", columns=[\"label\"])\n",
1508
- " .tab_spanner(\n",
1509
- " label=\"Hindu mandal\",\n",
1510
- " columns=[\"10_on\", \"10_off\"],\n",
1511
- ")\n",
1512
- " .tab_spanner(\n",
1513
- " label=\"Amana\",\n",
1514
- " columns=[\"20_on\", \"20_off\"],\n",
1515
- ")\n",
1516
- " .tab_spanner(\n",
1517
- " label=\"Temeke\",\n",
1518
- " columns=[\"30_on\", \"30_off\"],\n",
1519
- ")\n",
1520
- " .tab_spanner(\n",
1521
- " label=\"Mwananyamala\",\n",
1522
- " columns=[\"40_on\", \"40_off\"],\n",
1523
- ")\n",
1524
- " .tab_spanner(\n",
1525
- " label=\"Mnazi Moja\",\n",
1526
- " columns=[\"60_on\", \"60_off\"],\n",
1527
- ")\n",
1528
- " .tab_spanner(\n",
1529
- " label=\"Total\",\n",
1530
- " columns=[\"total_on\", \"total_off\"],\n",
1531
- ")\n",
1532
- " .tab_style(\n",
1533
- " style=[style.fill(color=\"lightblue\"), style.text(color=\"black\")],\n",
1534
- " locations=loc.body(\n",
1535
- " columns=[\"10_off\", \"20_off\", \"30_off\", \"40_off\", \"60_off\"],\n",
1536
- " rows=list(range(0, 1)),\n",
1537
- " ),\n",
1538
- ")\n",
1539
- " .tab_style(\n",
1540
- " style=[style.fill(color=\"lightgreen\"), style.text(color=\"black\")],\n",
1541
- " locations=loc.body(\n",
1542
- " columns=[\"total_off\"],\n",
1543
- " rows=list(range(0, 1)),\n",
1544
- " ),\n",
1545
- ")\n",
1546
- " .fmt_number(columns=[*[c for c in df_status.columns if c not in [\"schedule\"]]], decimals=0)\n",
1547
- " )\n",
1548
- "html_data.append(gt.as_raw_html())\n",
1549
- "gt.show()"
1550
- ]
1551
- },
1552
- {
1553
- "cell_type": "code",
1554
- "execution_count": null,
1555
- "id": "39",
1556
- "metadata": {},
1557
- "outputs": [],
1558
- "source": [
1559
- "# off schedule no eos\n",
1560
- "\n",
1561
- "subjects_preg_dm = df_subjecthistory[~(df_subjecthistory.offschedule_datetime.isna()) & (\n",
1562
- " df_subjecthistory.schedule_name != \"schedule\")].subject_identifier\n",
1563
- "\n",
1564
- "df_subjecthistory[\n",
1565
- " ~(df_subjecthistory.subject_identifier.isin(df_eos_1691.subject_identifier))].sort_values(\n",
1566
- " by=[\"subject_identifier\", \"onschedule_datetime\"])"
1567
- ]
1568
- },
1569
- {
1570
- "cell_type": "code",
1571
- "execution_count": null,
1572
- "id": "40",
1573
- "metadata": {},
1574
- "outputs": [],
1575
- "source": []
1576
- },
1577
- {
1578
- "cell_type": "code",
1579
- "execution_count": null,
1580
- "id": "41",
1581
- "metadata": {},
1582
- "outputs": [],
1583
- "source": [
1584
- "# Table 13: Loss to Follow Up\n",
1585
- "df_ltfu = read_frame(LossToFollowup.objects.all(), verbose=False).rename(columns={\"site\": \"site_id\"})\n",
1586
- "df_ltfu_pivot = (\n",
1587
- " df_ltfu\n",
1588
- " .groupby(by=[\"loss_category\", \"site_id\"], observed=True, dropna=False)\n",
1589
- " .size()\n",
1590
- " .reset_index()\n",
1591
- " .pivot_table(index=\"loss_category\", columns=\"site_id\", values=0, observed=True, dropna=False)\n",
1592
- " .fillna(0)\n",
1593
- " .astype(int)\n",
1594
- " .reset_index()\n",
1595
- ")\n",
1596
- "df_ltfu_pivot[\"total\"] = df_eos_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1)\n",
1597
- "df_ltfu_pivot.columns.name = \"\"\n",
1598
- "sum_row = df_ltfu_pivot.select_dtypes(include='int64').sum()\n",
1599
- "sum_row['loss_category'] = 'Total'\n",
1600
- "sum_row_df = pd.DataFrame(sum_row).T\n",
1601
- "df_ltfu_pivot = pd.concat([df_ltfu_pivot, sum_row_df], ignore_index=True)\n",
1602
- "df_ltfu_pivot\n"
1603
- ]
1604
- },
1605
- {
1606
- "cell_type": "code",
1607
- "execution_count": null,
1608
- "id": "42",
1609
- "metadata": {},
1610
- "outputs": [],
1611
- "source": [
1612
- "# Table 13c: End of study report not submitted\n",
1613
- "\n",
1614
- "df1 = (\n",
1615
- " df_status\n",
1616
- " .query(\"schedule=='Main trial'\")[[col for col in columns if \"off\" in col]]\n",
1617
- " .rename(columns=dict(zip([col for col in columns if \"off\" in col], [\"10\", \"20\", \"30\", \"40\", \"60\"])))\n",
1618
- " .reset_index(drop=True)\n",
1619
- ")\n",
1620
- "df2 = (\n",
1621
- " df_eos_pivot\n",
1622
- " .query(\"offstudy_reason=='Total'\")[[\"10\", \"20\", \"30\", \"40\", \"60\"]]\n",
1623
- " .reset_index(drop=True)\n",
1624
- ")\n",
1625
- "\n",
1626
- "df_eos_not_reported = df1 - df2\n",
1627
- "df_eos_not_reported[\"schedule\"] = 'Main trial'\n",
1628
- "df_eos_not_reported[\"total\"] = df_eos_not_reported[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1)\n",
1629
- "df_eos_not_reported = df_eos_not_reported[[\"schedule\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]]\n",
1630
- "\n",
1631
- "gt = df_as_great_table(\n",
1632
- " df_eos_not_reported,\n",
1633
- " title=\"Table 13c: End of study report not submitted\",\n",
1634
- " subtitle=md(\"End of study report expected based on Offschedule form\"),\n",
1635
- ")\n",
1636
- "gt = (\n",
1637
- " gt\n",
1638
- " .cols_label(\n",
1639
- " {\"schedule\": \"Schedule\", **{k: v for k, v in column_headers.items() if k not in [\"visit_code\", \"label\"]}})\n",
1640
- " .cols_align(align=\"left\", columns=[\"schedule\"])\n",
1641
- " .cols_align(align=\"center\", columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
1642
- " .tab_style(\n",
1643
- " style=[style.fill(color=\"snow\"), style.text(color=\"black\")],\n",
1644
- " locations=loc.body(\n",
1645
- " columns=[0],\n",
1646
- " rows=[len(df_eos_pivot) - 1]),\n",
1647
- " )\n",
1648
- " .tab_style(\n",
1649
- " style=[style.fill(color=\"lightblue\"), style.text(color=\"black\")],\n",
1650
- " locations=loc.body(\n",
1651
- " columns=[\"10\", \"20\", \"30\", \"40\", \"60\"],\n",
1652
- " rows=[len(df_eos_pivot) - 1],\n",
1653
- " ),\n",
1654
- " )\n",
1655
- " .tab_style(\n",
1656
- " style=[style.fill(color=\"lightgreen\"), style.text(color=\"black\")],\n",
1657
- " locations=loc.body(\n",
1658
- " columns=[\"total\"],\n",
1659
- " rows=[len(df_eos_pivot) - 1],\n",
1660
- " ),\n",
1661
- " )\n",
1662
- ")\n",
1663
- "html_data.append(gt.as_raw_html())\n",
1664
- "gt.show()\n"
1665
- ]
1666
- },
1667
- {
1668
- "cell_type": "code",
1669
- "execution_count": null,
1670
- "id": "43",
1671
- "metadata": {},
1672
- "outputs": [],
1673
- "source": [
1674
- "# Table 14: Baseline Sample"
1675
- ]
1676
- },
1677
- {
1678
- "cell_type": "code",
1679
- "execution_count": null,
1680
- "id": "44",
1681
- "metadata": {},
1682
- "outputs": [],
1683
- "source": [
1684
- "# Table 15: Consented to extended followup\n",
1685
- "df_consented = (\n",
1686
- " read_frame(SubjectConsentV1Ext.objects.all(), verbose=False)\n",
1687
- " .query(\"agrees_to_extension==@YES\")\n",
1688
- " .rename(columns={\"site\": \"site_id\"})\n",
1689
- ")\n",
1690
- "df_consented[\"site_id\"] = df_consented.site_id.astype(str)\n",
1691
- "df_consented[\"month\"] = df_consented.report_datetime.dt.strftime(\"%m\")\n",
1692
- "df_consented[\"year\"] = df_consented.report_datetime.dt.strftime(\"%Y\")\n",
1693
- "df_consented_grp = (\n",
1694
- " df_consented.groupby(by=[\"site_id\", \"year\", \"month\"]).\n",
1695
- " size()\n",
1696
- " .reset_index()\n",
1697
- " .sort_values(by=[\"site_id\", \"year\", \"month\"], ascending=True)\n",
1698
- " .reset_index(drop=True)\n",
1699
- ")\n",
1700
- "df_consented_pivot = (\n",
1701
- " df_consented_grp\n",
1702
- " .pivot_table(index=[\"year\", \"month\"], columns=\"site_id\", values=0, aggfunc=\"sum\")\n",
1703
- " .reset_index()\n",
1704
- " .fillna(0)\n",
1705
- ")\n",
1706
- "if \"60\" not in df_consented_pivot.columns:\n",
1707
- " df_consented_pivot[\"60\"] = 0.0 * len(df_consented_pivot)\n",
1708
- "df_consented_pivot.columns.name = \"\"\n",
1709
- "df_consented_pivot[\"year\"] = df_consented_pivot[\"year\"].astype(str)\n",
1710
- "df_consented_pivot[\"month\"] = df_consented_pivot[\"month\"].astype(str)\n",
1711
- "\n",
1712
- "sum_row = df_consented_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum()\n",
1713
- "sum_row['year'] = \"Total\"\n",
1714
- "sum_row['month'] = \"\"\n",
1715
- "df_consented_pivot = pd.concat([df_consented_pivot, sum_row.to_frame().T], ignore_index=True)\n",
1716
- "df_consented_pivot[\"total\"] = df_consented_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].sum(axis=1).astype(int)\n",
1717
- "df_consented_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]] = df_consented_pivot[[\"10\", \"20\", \"30\", \"40\", \"60\"]].astype(int)\n",
1718
- "gt = df_as_great_table2(\n",
1719
- " df_consented_pivot,\n",
1720
- " title=\"Table 15: Consented to extended followup\",\n",
1721
- " rowname_col=\"month\",\n",
1722
- " groupname_col=\"year\",\n",
1723
- ")\n",
1724
- "gt = (\n",
1725
- " gt\n",
1726
- " .cols_label({\"year\": \"Year\", \"month\": \"Month\",\n",
1727
- " **{k: v for k, v in column_headers.items() if k not in [\"visit_code\", \"label\"]}})\n",
1728
- " .cols_align(align=\"center\")\n",
1729
- " .fmt_number(columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"], decimals=0)\n",
1730
- " .tab_stubhead(label=\"Consented\")\n",
1731
- " .tab_style(\n",
1732
- " style=[\n",
1733
- " style.text(color=\"black\", weight=\"bold\"),\n",
1734
- " style.fill(color=\"lightgray\")\n",
1735
- " ],\n",
1736
- " locations=loc.row_groups()\n",
1737
- " )\n",
1738
- ")\n",
1739
- "html_data.append(gt.as_raw_html())\n",
1740
- "gt.show()"
1741
- ]
1742
- },
1743
- {
1744
- "cell_type": "code",
1745
- "execution_count": null,
1746
- "id": "45",
1747
- "metadata": {},
1748
- "outputs": [],
1749
- "source": []
1750
- },
1751
- {
1752
- "cell_type": "code",
1753
- "execution_count": null,
1754
- "id": "46",
1755
- "metadata": {},
1756
- "outputs": [],
1757
- "source": [
1758
- "# gather raw html\n",
1759
- "raw_html = [f'<div class=\"page-break\">{s}</div>' for s in html_data]\n",
1760
- "style_css = \"\"\"\n",
1761
- "<style>\n",
1762
- " .page-break {\n",
1763
- " page-break-inside: avoid; /* Always add page break before this element */\n",
1764
- " }\n",
1765
- " .table-header {\n",
1766
- " font-weight: bold;\n",
1767
- " font-size: 18px;\n",
1768
- " text-align: center;\n",
1769
- " border-bottom: None;\n",
1770
- " }\n",
1771
- "</style>\n",
1772
- "\"\"\"\n",
1773
- "raw_html = ''.join(raw_html)\n",
1774
- "raw_html = f'<!DOCTYPE html>\\n<html lang=\"en\">\\n{style_css}\\n<head>\\n<meta charset=\"utf-8\"/>\\n</head>\\n<body>\\n' + document_title + raw_html + '\\n</body>\\n</html>\\n'"
1775
- ]
1776
- },
1777
- {
1778
- "cell_type": "code",
1779
- "execution_count": null,
1780
- "id": "47",
1781
- "metadata": {},
1782
- "outputs": [],
1783
- "source": [
1784
- "# render html to PDF\n",
1785
- "pdfkit.from_string(raw_html, str(analysis_folder / pdf_filename),\n",
1786
- " options={\n",
1787
- " 'footer-center': 'Page [page] of [topage]',\n",
1788
- " 'footer-font-size': '8',\n",
1789
- " 'footer-spacing': '5',\n",
1790
- " 'encoding': \"UTF-8\",\n",
1791
- " 'margin-top': '10mm',\n",
1792
- " 'margin-right': '15mm',\n",
1793
- " 'margin-bottom': '15mm',\n",
1794
- " 'margin-left': '15mm',\n",
1795
- " 'header-center': study_title,\n",
1796
- " 'header-font-size': '6',\n",
1797
- " 'header-spacing': '0',\n",
1798
- " 'disable-javascript': None,\n",
1799
- " 'no-outline': None,\n",
1800
- " },\n",
1801
- " verbose=True)"
1802
- ]
1803
- },
1804
- {
1805
- "cell_type": "code",
1806
- "execution_count": null,
1807
- "id": "48",
1808
- "metadata": {},
1809
- "outputs": [],
1810
- "source": []
1811
- }
1812
- ],
1813
- "metadata": {
1814
- "kernelspec": {
1815
- "display_name": "Python 3 (ipykernel)",
1816
- "language": "python",
1817
- "name": "python3"
1818
- },
1819
- "language_info": {
1820
- "codemirror_mode": {
1821
- "name": "ipython",
1822
- "version": 3
1823
- },
1824
- "file_extension": ".py",
1825
- "mimetype": "text/x-python",
1826
- "name": "python",
1827
- "nbconvert_exporter": "python",
1828
- "pygments_lexer": "ipython3",
1829
- "version": "3.12.4"
1830
- }
1831
- },
1832
- "nbformat": 4,
1833
- "nbformat_minor": 5
1834
- }