liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,416 @@
1
+ import math
2
+ import operator
3
+
4
+ import torch
5
+ import triton
6
+ import triton.language as tl
7
+
8
+ from liger_kernel.ops.utils import calculate_settings
9
+ from liger_kernel.ops.utils import compare_version
10
+ from liger_kernel.ops.utils import ensure_contiguous
11
+ from liger_kernel.ops.utils import torch_to_triton_dtype
12
+ from liger_kernel.utils import get_npu_multi_processor_count
13
+ from liger_kernel.utils import is_npu_available
14
+
15
+ if compare_version("triton", operator.ge, "3.0.0") and not is_npu_available():
16
+ try:
17
+ # typical import path with dispatch available
18
+ from triton.language.extra.libdevice import rsqrt
19
+ except ModuleNotFoundError:
20
+ # for working with NGC containers
21
+ from triton.language.extra.cuda.libdevice import rsqrt
22
+ else:
23
+ from triton.language.math import rsqrt
24
+
25
+
26
+ _CASTING_MODE_NONE: tl.constexpr = tl.constexpr(-1)
27
+ _CASTING_MODE_LLAMA: tl.constexpr = tl.constexpr(0)
28
+ _CASTING_MODE_GEMMA: tl.constexpr = tl.constexpr(1)
29
+
30
+
31
+ @triton.jit
32
+ def _fused_add_rms_norm_forward_kernel(
33
+ Y_ptr,
34
+ Y_row_stride,
35
+ S_ptr, # output residual
36
+ S_row_stride,
37
+ X_ptr,
38
+ X_row_stride,
39
+ R_ptr, # input residual
40
+ R_row_stride,
41
+ W_ptr,
42
+ W_row_stride,
43
+ RSTD_ptr,
44
+ RSTD_row_stride,
45
+ n_cols,
46
+ eps,
47
+ offset,
48
+ casting_mode: tl.constexpr, # constexpr so the `if` blocks can be optimized out
49
+ BLOCK_SIZE: tl.constexpr,
50
+ ):
51
+ """
52
+ This kernel computes the following:
53
+ 1. hidden_states = residual + hidden_states
54
+ 2. residual = hidden_states
55
+ 3. hidden_states = rmsnorm(hidden_states)
56
+
57
+ This is a commonly used pattern in the decoder layers of LLMs.
58
+ Some examples:
59
+ 1. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/qwen3/modeling_qwen3.py#L271
60
+ 2. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/llama4/modeling_llama4.py#L393
61
+
62
+ This kernel is inspired by the rms_norm forward kernel, and is adapted to support the residual addition in the forward pass.
63
+ The backward pass is also adapted to support the residual addition in the backward pass.
64
+ """
65
+
66
+ row_idx = tl.program_id(0).to(tl.int64)
67
+ col_offsets = tl.arange(0, BLOCK_SIZE)
68
+ mask = col_offsets < n_cols
69
+
70
+ Y_ptr += row_idx * Y_row_stride
71
+ S_ptr += row_idx * S_row_stride
72
+ X_ptr += row_idx * X_row_stride
73
+ R_ptr += row_idx * R_row_stride
74
+ RSTD_ptr += row_idx * RSTD_row_stride
75
+
76
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
77
+ R_row = tl.load(R_ptr + col_offsets, mask=mask, other=0)
78
+ S_row = X_row + R_row
79
+ tl.store(S_ptr + col_offsets, S_row, mask=mask)
80
+ S_row_dtype = S_row.dtype
81
+ W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
82
+
83
+ # On Llama, only rstd is computed on fp32
84
+ if casting_mode == _CASTING_MODE_LLAMA:
85
+ S_row = S_row.to(tl.float32)
86
+
87
+ # Gemma computes everything on fp32, and then casts back the output to the original dtype
88
+ if casting_mode == _CASTING_MODE_GEMMA:
89
+ W_row = W_row.to(tl.float32)
90
+ S_row = S_row.to(tl.float32)
91
+
92
+ if casting_mode == _CASTING_MODE_NONE:
93
+ eps = eps.to(S_row_dtype)
94
+ offset = offset.to(S_row_dtype)
95
+
96
+ mean_square = tl.sum(S_row * S_row, axis=0) / n_cols
97
+ rstd = rsqrt(mean_square + eps)
98
+
99
+ # We can save time by caching rms with minimal memory overhead
100
+ # because rms is much smaller compared to X_row, as rms is for each row.
101
+ # However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
102
+ tl.store(RSTD_ptr, rstd)
103
+
104
+ S_row = S_row * rstd
105
+
106
+ # On Llama, the multiplication with the weight is done on the original dtype
107
+ if casting_mode == _CASTING_MODE_LLAMA:
108
+ S_row = S_row.to(S_row_dtype)
109
+
110
+ Y_row = S_row * (offset + W_row)
111
+
112
+ if casting_mode == _CASTING_MODE_GEMMA:
113
+ Y_row = Y_row.to(S_row_dtype)
114
+
115
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
116
+
117
+
118
+ @triton.jit
119
+ def _fused_add_rms_norm_backward_kernel(
120
+ dY_ptr,
121
+ dY_row_stride,
122
+ dS_out_ptr,
123
+ dS_out_row_stride,
124
+ dX_ptr,
125
+ dX_row_stride,
126
+ X_ptr,
127
+ X_row_stride,
128
+ X_dtype: tl.constexpr,
129
+ W_ptr,
130
+ W_row_stride,
131
+ RSTD_ptr,
132
+ RSTD_row_stride,
133
+ dW_ptr,
134
+ dW_row_stride,
135
+ n_rows,
136
+ n_cols,
137
+ offset,
138
+ rows_per_program: tl.constexpr,
139
+ casting_mode: tl.constexpr,
140
+ BLOCK_SIZE: tl.constexpr,
141
+ has_dS_out: tl.constexpr,
142
+ ):
143
+ """
144
+ This kernel is adapted from the rms_norm backward kernel, and is adapted to support the residual
145
+ addition in the backward pass. For the following code pattern:
146
+ 1. hidden_states = residual + hidden_states
147
+ 2. residual = hidden_states
148
+ 3. hidden_states = rmsnorm(hidden_states)
149
+
150
+ The gradient of hidden_states and residual comes out be exactly same. The value of this gradient is
151
+ the sum of the gradient of the hidden_states in step 3 and the gradient of the residual in step 2.
152
+
153
+ The backward pass computation logic is same as the rms_norm backward kernel, except that the gradient
154
+ of the hidden_states in step 3 and the gradient of the residual in step 2 are summed up.
155
+ """
156
+
157
+ row_block_id = tl.program_id(0).to(tl.int64)
158
+ row_start = row_block_id * rows_per_program
159
+ row_end = min((row_block_id + 1) * rows_per_program, n_rows)
160
+ col_offsets = tl.arange(0, BLOCK_SIZE)
161
+ mask = col_offsets < n_cols
162
+
163
+ dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
164
+
165
+ dY_ptr += row_start * dY_row_stride
166
+ dX_ptr += row_start * dX_row_stride
167
+ if has_dS_out:
168
+ dS_out_ptr += row_start * dS_out_row_stride
169
+
170
+ X_ptr += row_start * X_row_stride
171
+ RSTD_ptr += row_start
172
+
173
+ W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
174
+ W_row = W_row + offset
175
+
176
+ for _ in range(row_start, row_end):
177
+ dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0)
178
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
179
+
180
+ # Get cached rms
181
+ rstd_row = tl.load(RSTD_ptr)
182
+
183
+ X_row = X_row.to(tl.float32)
184
+
185
+ # Different bacward graphs for different casting modes
186
+ if casting_mode == _CASTING_MODE_LLAMA:
187
+ m = (dY_row * W_row).to(tl.float32)
188
+
189
+ elif casting_mode == _CASTING_MODE_GEMMA:
190
+ dY_row = dY_row.to(tl.float32)
191
+ m = dY_row * W_row
192
+ else:
193
+ m = dY_row * W_row
194
+
195
+ dX_row = rstd_row * m
196
+
197
+ if has_dS_out:
198
+ dS_out_row = tl.load(dS_out_ptr + col_offsets, mask=mask, other=0.0)
199
+ dX_row += (rstd_row) * (
200
+ -(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
201
+ ) + dS_out_row
202
+ dS_out_ptr += dS_out_row_stride
203
+ else:
204
+ dX_row += (rstd_row) * (-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row)
205
+
206
+ # calculate the gradient of W
207
+ if casting_mode == _CASTING_MODE_LLAMA:
208
+ dW_row += dY_row * (X_row * rstd_row).to(X_dtype)
209
+ else:
210
+ # here X_row is already in fp32 (see previous if block)
211
+ dW_row += dY_row * (X_row * rstd_row)
212
+
213
+ tl.store(dX_ptr + col_offsets, dX_row.to(X_dtype), mask=mask)
214
+
215
+ dY_ptr += dY_row_stride
216
+ dX_ptr += dX_row_stride
217
+ X_ptr += X_row_stride
218
+ RSTD_ptr += RSTD_row_stride
219
+
220
+ tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
221
+
222
+
223
+ _str_to_casting_mode = {
224
+ "llama": _CASTING_MODE_LLAMA.value,
225
+ "gemma": _CASTING_MODE_GEMMA.value,
226
+ "none": _CASTING_MODE_NONE.value,
227
+ }
228
+
229
+
230
+ def fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode):
231
+ if not isinstance(casting_mode, int):
232
+ assert casting_mode in _str_to_casting_mode, f"Invalid casting mode: {casting_mode}"
233
+ casting_mode = _str_to_casting_mode[casting_mode]
234
+ else:
235
+ assert casting_mode in _str_to_casting_mode.values(), f"Invalid casting mode: {casting_mode}"
236
+
237
+ shape = X.shape
238
+ dim = shape[-1]
239
+ X = X.view(-1, dim)
240
+ R = R.view(-1, dim)
241
+ n_rows, n_cols = X.shape
242
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
243
+
244
+ Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
245
+ S = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
246
+ # RSTD is to cache rstd for each row
247
+ # RSTD is always computed/stored in fp32 if we are using Llama or Gemma casting mode
248
+ rstd_dtype = torch.float32 if casting_mode in (_CASTING_MODE_LLAMA.value, _CASTING_MODE_GEMMA.value) else X.dtype
249
+ RSTD = torch.empty(n_rows, dtype=rstd_dtype, device=X.device)
250
+
251
+ # Check constraints.
252
+ assert X.shape[1] == W.shape[0], "Incompatible hidden size dimension between tensor1.shape[1] and tensor2.shape[0]"
253
+
254
+ # XPU-specific optimization
255
+ kernel_args = {}
256
+ if X.device.type == "xpu":
257
+ kernel_args["grf_mode"] = "large"
258
+
259
+ # TODO: add _block_fused_add_rms_norm_forward_kernel
260
+ _fused_add_rms_norm_forward_kernel[(n_rows,)](
261
+ Y,
262
+ Y.stride(0),
263
+ S,
264
+ S.stride(0),
265
+ X,
266
+ X.stride(0),
267
+ R,
268
+ R.stride(0),
269
+ W,
270
+ W.stride(0),
271
+ RSTD,
272
+ RSTD.stride(0),
273
+ n_cols,
274
+ eps,
275
+ offset,
276
+ casting_mode,
277
+ BLOCK_SIZE=BLOCK_SIZE,
278
+ num_warps=num_warps,
279
+ **kernel_args, # XPU-specific optimization
280
+ )
281
+
282
+ return Y.view(*shape), S.view(*shape), RSTD, BLOCK_SIZE, num_warps, casting_mode
283
+
284
+
285
+ def fused_add_rms_norm_backward(dY, dS_out, S, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warps, in_place):
286
+ shape = dY.shape
287
+ dim = shape[-1]
288
+ dY = dY.view(-1, dim)
289
+ dS_out = dS_out.view(-1, dim)
290
+ S = S.view(-1, dim)
291
+ n_rows, n_cols = dY.shape
292
+
293
+ sm_count = 1
294
+ if S.device.type == "cuda":
295
+ sm_count = torch.cuda.get_device_properties(S.device).multi_processor_count
296
+ elif S.device.type == "xpu":
297
+ sm_count = torch.xpu.get_device_properties(S.device).gpu_eu_count
298
+ elif S.device.type == "npu":
299
+ sm_count = get_npu_multi_processor_count()
300
+
301
+ # fp32 for numerical stability especially.
302
+ _dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
303
+
304
+ if n_cols > BLOCK_SIZE:
305
+ raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
306
+ rows_per_program = math.ceil(n_rows / sm_count)
307
+ grid = (sm_count,)
308
+
309
+ if in_place is True:
310
+ dX = dY
311
+ else:
312
+ dX = torch.empty_like(dY)
313
+
314
+ # XPU-specific optimization
315
+ kernel_args = {}
316
+ if S.device.type == "xpu":
317
+ kernel_args["grf_mode"] = "large"
318
+
319
+ # TODO: add _block_fused_add_rms_norm_backward_kernel
320
+ _fused_add_rms_norm_backward_kernel[grid](
321
+ dY,
322
+ dY.stride(0),
323
+ dS_out,
324
+ dS_out.stride(0),
325
+ dX,
326
+ dX.stride(0),
327
+ S,
328
+ S.stride(0),
329
+ torch_to_triton_dtype[S.dtype],
330
+ W,
331
+ W.stride(0),
332
+ RSTD,
333
+ RSTD.stride(0),
334
+ _dW,
335
+ _dW.stride(0),
336
+ n_rows,
337
+ n_cols,
338
+ offset,
339
+ rows_per_program,
340
+ casting_mode,
341
+ BLOCK_SIZE=BLOCK_SIZE,
342
+ num_warps=num_warps,
343
+ has_dS_out=dS_out is not None,
344
+ **kernel_args, # XPU-specific optimization
345
+ )
346
+
347
+ dX = dX.view(*shape)
348
+ dW = _dW.sum(dim=0).to(W.dtype)
349
+
350
+ return dX, dX, dW # dR is equal to dX
351
+
352
+
353
+ class LigerFusedAddRMSNormFunction(torch.autograd.Function):
354
+ """
355
+ Performs a fused operation that first adds a residual tensor to the hidden_states tensor (`X`), then applies RMSNorm (Root Mean Square Normalization) to the result using the weight tensor `W`, with optional offset and casting mode.
356
+
357
+ This class implements the following sequence, commonly used in transformer decoder layers:
358
+ 1. hidden_states = residual + hidden_states
359
+ 2. residual = hidden_states (after addition)
360
+ 3. hidden_states = rmsnorm(hidden_states)
361
+
362
+ Both the normalized hidden_states and the updated residual are returned as outputs.
363
+
364
+ Some models use an 'offset' to shift the weight tensor `W` by a constant value. For example, Gemma
365
+ uses an offset of 1.0, so the computation becomes `(X / RMS(X)) * (W + 1.0)` instead of the usual
366
+ `(X / RMS(X)) * W`. You can pass the offset value as an argument to the forward function.
367
+
368
+ In addition, different models cast their inputs at different places during RMSNorm computation. For
369
+ example, Gemma casts everything to fp32 before starting the computation, while Llama casts only the
370
+ inverse RMS to fp32. You can specify the casting mode using the `casting_mode` argument. We currently
371
+ support the following casting modes (they match HuggingFace Transformers' implementations):
372
+ - 'llama': matches the Llama implementation, where only the inverse RMS is computed on fp32.
373
+ - 'gemma': matches the Gemma implementation, where everything is cast to fp32, then computed, then cast back to the original dtype.
374
+ - 'none': no casting is done. The computation is done in the original dtype. This saves memory and is slightly faster, but has more error w.r.t. the original implementation.
375
+
376
+ The `in_place` option determines whether to modify dY in-place to store dX. This defaults to `True` to save memory.
377
+ """
378
+
379
+ @staticmethod
380
+ @ensure_contiguous
381
+ def forward(ctx, X, R, W, eps, offset=0.0, casting_mode="llama", in_place=False):
382
+ """
383
+ X: (B, T, H) or (BxT, H)
384
+ W: (H,)
385
+ """
386
+ # TODO: add row_mode
387
+ Y, S, RSTD, BLOCK_SIZE, num_warps, casting_mode = fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode)
388
+ ctx.offset = offset
389
+ ctx.casting_mode = casting_mode
390
+ ctx.in_place = in_place
391
+ ctx.BLOCK_SIZE = BLOCK_SIZE
392
+ ctx.num_warps = num_warps
393
+ ctx.save_for_backward(S, W, RSTD)
394
+ return Y, S
395
+
396
+ @staticmethod
397
+ @ensure_contiguous
398
+ def backward(ctx, dY, dS_out):
399
+ """
400
+ Y: (B, T, H) or (BxT, H)
401
+ """
402
+ S, W, RSTD = ctx.saved_tensors
403
+ dX, dR, dW = fused_add_rms_norm_backward(
404
+ dY,
405
+ dS_out,
406
+ S,
407
+ W,
408
+ RSTD,
409
+ ctx.offset,
410
+ ctx.casting_mode,
411
+ ctx.BLOCK_SIZE,
412
+ ctx.num_warps,
413
+ ctx.in_place,
414
+ )
415
+
416
+ return dX, dR, dW, None, None, None, None, None