liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,301 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
7
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
9
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
10
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
11
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
12
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
13
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
14
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
15
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
16
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
17
|
+
from liger_kernel.ops import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops import LigerPolyNormFunction
|
|
19
|
+
from liger_kernel.ops import LigerQwen2VLMRopeFunction
|
|
20
|
+
from liger_kernel.ops import LigerRMSNormFunction
|
|
21
|
+
from liger_kernel.ops import LigerRopeFunction
|
|
22
|
+
from liger_kernel.ops import LigerSiLUMulFunction
|
|
23
|
+
from liger_kernel.ops import LigerSoftmaxFunction
|
|
24
|
+
from liger_kernel.ops import LigerSparsemaxFunction
|
|
25
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
36
|
+
# `weight` and `size_average` are placeholders and not implemented yet
|
|
37
|
+
def liger_cross_entropy(
|
|
38
|
+
input,
|
|
39
|
+
target,
|
|
40
|
+
weight=None,
|
|
41
|
+
size_average=None,
|
|
42
|
+
ignore_index: int = -100,
|
|
43
|
+
reduce=None,
|
|
44
|
+
reduction: str = "mean",
|
|
45
|
+
label_smoothing: float = 0.0,
|
|
46
|
+
lse_square_scale: float = 0.0,
|
|
47
|
+
softcap: Optional[float] = None,
|
|
48
|
+
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
50
|
+
):
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
52
|
+
input,
|
|
53
|
+
target,
|
|
54
|
+
weight,
|
|
55
|
+
ignore_index,
|
|
56
|
+
lse_square_scale,
|
|
57
|
+
label_smoothing,
|
|
58
|
+
reduction,
|
|
59
|
+
softcap,
|
|
60
|
+
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
65
|
+
return loss
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def liger_fused_linear_cross_entropy(
|
|
71
|
+
input,
|
|
72
|
+
weight,
|
|
73
|
+
target,
|
|
74
|
+
bias=None,
|
|
75
|
+
ce_weight=None,
|
|
76
|
+
ignore_index: int = -100,
|
|
77
|
+
lse_square_scale: float = 0.0,
|
|
78
|
+
label_smoothing: float = 0.0,
|
|
79
|
+
reduction: str = "mean",
|
|
80
|
+
softcap: Optional[float] = None,
|
|
81
|
+
return_z_loss: bool = False,
|
|
82
|
+
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
85
|
+
):
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
87
|
+
input,
|
|
88
|
+
weight,
|
|
89
|
+
target,
|
|
90
|
+
bias,
|
|
91
|
+
ce_weight,
|
|
92
|
+
ignore_index,
|
|
93
|
+
lse_square_scale,
|
|
94
|
+
label_smoothing,
|
|
95
|
+
reduction,
|
|
96
|
+
softcap,
|
|
97
|
+
return_z_loss,
|
|
98
|
+
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
104
|
+
return loss
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def liger_fused_linear_jsd(
|
|
110
|
+
student_input,
|
|
111
|
+
student_weight,
|
|
112
|
+
teacher_input,
|
|
113
|
+
teacher_weight,
|
|
114
|
+
shift_labels=None,
|
|
115
|
+
jsd_beta: float = 0.5,
|
|
116
|
+
ignore_index: int = -100,
|
|
117
|
+
temperature: float = 1.0,
|
|
118
|
+
):
|
|
119
|
+
return LigerFusedLinearJSDFunction.apply(
|
|
120
|
+
student_input,
|
|
121
|
+
student_weight,
|
|
122
|
+
teacher_input,
|
|
123
|
+
teacher_weight,
|
|
124
|
+
shift_labels,
|
|
125
|
+
jsd_beta,
|
|
126
|
+
ignore_index,
|
|
127
|
+
temperature,
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def liger_geglu(a, b):
|
|
132
|
+
return LigerGELUMulFunction.apply(a, b)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def liger_group_norm(
|
|
136
|
+
X,
|
|
137
|
+
affine_scaling_weight,
|
|
138
|
+
affine_shifting_bias,
|
|
139
|
+
num_channels,
|
|
140
|
+
num_groups,
|
|
141
|
+
eps,
|
|
142
|
+
):
|
|
143
|
+
return LigerGroupNormFunction.apply(
|
|
144
|
+
X,
|
|
145
|
+
affine_scaling_weight,
|
|
146
|
+
affine_shifting_bias,
|
|
147
|
+
num_channels,
|
|
148
|
+
num_groups,
|
|
149
|
+
eps,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def liger_jsd(
|
|
154
|
+
input,
|
|
155
|
+
target,
|
|
156
|
+
shift_labels=None,
|
|
157
|
+
beta: float = 0.5,
|
|
158
|
+
ignore_index: int = -100,
|
|
159
|
+
):
|
|
160
|
+
return LigerJSDFunction.apply(
|
|
161
|
+
input,
|
|
162
|
+
target,
|
|
163
|
+
shift_labels,
|
|
164
|
+
beta,
|
|
165
|
+
ignore_index,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html#torch.nn.functional.kl_div
|
|
170
|
+
# `size_average` and `mean` are being deprecated in torch API and are placeholders here
|
|
171
|
+
def liger_kl_div(
|
|
172
|
+
input,
|
|
173
|
+
target,
|
|
174
|
+
size_average: bool = True,
|
|
175
|
+
reduce: bool = True,
|
|
176
|
+
reduction: str = "mean",
|
|
177
|
+
log_target: bool = False,
|
|
178
|
+
eps: float = 1e-10,
|
|
179
|
+
):
|
|
180
|
+
# Note: the default reduction in torch is `mean`, but being `batchmean` in Liger
|
|
181
|
+
return LigerKLDivLossFunction.apply(
|
|
182
|
+
input,
|
|
183
|
+
target,
|
|
184
|
+
reduction,
|
|
185
|
+
log_target,
|
|
186
|
+
eps,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
def liger_sparsemax(
|
|
191
|
+
input,
|
|
192
|
+
dim: int = -1,
|
|
193
|
+
):
|
|
194
|
+
return LigerSparsemaxFunction.apply(input, dim)
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
def liger_multi_token_attention(
|
|
198
|
+
scores,
|
|
199
|
+
weight,
|
|
200
|
+
bias=None,
|
|
201
|
+
stride: int = 1,
|
|
202
|
+
padding: int = 0,
|
|
203
|
+
dilation: int = 1,
|
|
204
|
+
groups: int = 1,
|
|
205
|
+
sparse: bool = False,
|
|
206
|
+
):
|
|
207
|
+
"""
|
|
208
|
+
Functional interface for multi-token attention.
|
|
209
|
+
|
|
210
|
+
Args:
|
|
211
|
+
scores: Input tensor of shape (B, C_in, L, L)
|
|
212
|
+
weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
|
|
213
|
+
bias: Optional bias tensor of shape (C_out,)
|
|
214
|
+
stride: Stride for the convolution (default: 1)
|
|
215
|
+
padding: Padding for the convolution (default: 0)
|
|
216
|
+
dilation: Dilation factor for the convolution (default: 1)
|
|
217
|
+
groups: Number of groups for the convolution (default: 1)
|
|
218
|
+
sparse: Specifies if input tensors are expected to be sparse (default: False)
|
|
219
|
+
Returns:
|
|
220
|
+
Output tensor after applying multi-token attention.
|
|
221
|
+
"""
|
|
222
|
+
return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def liger_fused_neighborhood_attention(
|
|
226
|
+
query,
|
|
227
|
+
key,
|
|
228
|
+
value,
|
|
229
|
+
kernel_size: int = 7,
|
|
230
|
+
dilation: int = 1,
|
|
231
|
+
scale: float = None,
|
|
232
|
+
):
|
|
233
|
+
"""
|
|
234
|
+
Liger fused neighborhood attention.
|
|
235
|
+
|
|
236
|
+
paper: https://arxiv.org/pdf/2504.16922
|
|
237
|
+
|
|
238
|
+
Args:
|
|
239
|
+
query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
240
|
+
key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
241
|
+
value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
242
|
+
kernel_size: Size of the neighborhood window (default: 7)
|
|
243
|
+
dilation: Dilation factor for the neighborhood (default: 1)
|
|
244
|
+
scale: Scaling factor for attention scores (default: rsqrt(head_dim))
|
|
245
|
+
|
|
246
|
+
Returns:
|
|
247
|
+
Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
248
|
+
"""
|
|
249
|
+
return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def liger_tvd(
|
|
253
|
+
input,
|
|
254
|
+
target,
|
|
255
|
+
shift_labels=None,
|
|
256
|
+
reduction: str = "mean",
|
|
257
|
+
ignore_index: int = -100,
|
|
258
|
+
):
|
|
259
|
+
return LigerTVDLossFunction.apply(
|
|
260
|
+
input,
|
|
261
|
+
target,
|
|
262
|
+
shift_labels,
|
|
263
|
+
reduction,
|
|
264
|
+
ignore_index,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
def liger_layer_norm(X, W, B, eps):
|
|
269
|
+
return LigerLayerNormFunction.apply(X, W, B, eps)
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
def liger_qwen2vl_mrope(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
|
273
|
+
return LigerQwen2VLMRopeFunction.apply(q, k, cos, sin, mrope_section, unsqueeze_dim)
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
277
|
+
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
285
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
289
|
+
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
def liger_swiglu(a, b):
|
|
293
|
+
return LigerSiLUMulFunction.apply(a, b)
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def liger_softmax(x):
|
|
297
|
+
return LigerSoftmaxFunction.apply(x)
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def liger_dyt(x, alpha, gamma, beta):
|
|
301
|
+
return LigerDyTFunction.apply(x, alpha, gamma, beta)
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|
|
@@ -1,15 +1,64 @@
|
|
|
1
|
-
from
|
|
1
|
+
from typing import Optional
|
|
2
2
|
|
|
3
|
-
|
|
4
|
-
LigerFusedLinearCrossEntropyFunction,
|
|
5
|
-
)
|
|
3
|
+
import torch
|
|
6
4
|
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
7
7
|
|
|
8
|
-
class LigerFusedLinearCrossEntropyLoss(CrossEntropyLoss):
|
|
9
|
-
def __init__(self, *args, **kwargs):
|
|
10
|
-
super(LigerFusedLinearCrossEntropyLoss, self).__init__(*args, **kwargs)
|
|
11
8
|
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
9
|
+
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
ce_weight: Optional[torch.FloatTensor] = None,
|
|
13
|
+
ignore_index: int = -100,
|
|
14
|
+
lse_square_scale: float = 0.0,
|
|
15
|
+
label_smoothing: float = 0.0,
|
|
16
|
+
reduction: str = "mean",
|
|
17
|
+
softcap: Optional[float] = None,
|
|
18
|
+
return_z_loss: bool = False,
|
|
19
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
20
|
+
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
22
|
+
):
|
|
23
|
+
super().__init__()
|
|
24
|
+
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
25
|
+
f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
|
|
15
26
|
)
|
|
27
|
+
assert reduction in {
|
|
28
|
+
"mean",
|
|
29
|
+
"sum",
|
|
30
|
+
"none",
|
|
31
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
32
|
+
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
33
|
+
self.ce_weight = ce_weight
|
|
34
|
+
self.ignore_index = ignore_index
|
|
35
|
+
self.lse_square_scale = lse_square_scale
|
|
36
|
+
self.label_smoothing = label_smoothing
|
|
37
|
+
self.reduction = reduction
|
|
38
|
+
self.softcap = softcap
|
|
39
|
+
self.return_z_loss = return_z_loss
|
|
40
|
+
self.accum_dtype = accum_dtype
|
|
41
|
+
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
43
|
+
|
|
44
|
+
def forward(self, lin_weight, _input, target, bias=None):
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
46
|
+
_input,
|
|
47
|
+
lin_weight,
|
|
48
|
+
target,
|
|
49
|
+
bias,
|
|
50
|
+
self.ce_weight,
|
|
51
|
+
self.ignore_index,
|
|
52
|
+
self.lse_square_scale,
|
|
53
|
+
self.label_smoothing,
|
|
54
|
+
self.reduction,
|
|
55
|
+
self.softcap,
|
|
56
|
+
self.return_z_loss,
|
|
57
|
+
self.accum_dtype,
|
|
58
|
+
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
60
|
+
)
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
62
|
+
return loss
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearJSD(torch.nn.Module):
|
|
9
|
+
r"""Fusing the last linear layer with generalized JSD
|
|
10
|
+
|
|
11
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
12
|
+
the materialization of the large logits tensor.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
jsd_beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
|
16
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
17
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
18
|
+
|
|
19
|
+
Shape:
|
|
20
|
+
- student_input: :math:`(BT, H)`, where B is batch size, T is sequence length, H is hidden dimension.
|
|
21
|
+
- student_weight: :math:`(V, H)`, where V is vocab size.
|
|
22
|
+
- teacher_input: :math:`(BT, H')`, where H' is hidden dimension of the teacher model.
|
|
23
|
+
- teacher_weight: :math:`(V, H')`, where hidden size H and H' can be different.
|
|
24
|
+
- shift_labels: :math:`(BT,)`
|
|
25
|
+
- Output: a scalar.
|
|
26
|
+
|
|
27
|
+
Examples:
|
|
28
|
+
```python
|
|
29
|
+
>>> (B, T, H_s, H_t, V) = (2, 2, 3, 5, 10)
|
|
30
|
+
>>> fused_jsd = LigerFusedLinearJSD(jsd_beta=0.1, temperature=2.0)
|
|
31
|
+
>>> # generate inputs and weights
|
|
32
|
+
>>> student_input = torch.rand(B * T, H_s, device="cuda", requires_grad=True)
|
|
33
|
+
>>> student_lin = torch.nn.Linear(H_s, V, bias=False, device="cuda")
|
|
34
|
+
>>> # teacher input doesn't require grad, hidden_dim can be different from student's
|
|
35
|
+
>>> teacher_input = torch.rand(B * T, H_t, device="cuda")
|
|
36
|
+
>>> teacher_lin = torch.nn.Linear(H_t, V, bias=False, device="cuda")
|
|
37
|
+
>>> output = fused_jsd(student_input, student_lin.weight, teacher_input, teacher_lin.weight)
|
|
38
|
+
>>> output.backward()
|
|
39
|
+
>>>
|
|
40
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context:
|
|
41
|
+
>>>
|
|
42
|
+
>>> # Assume hidden_states, lm_heads and corresponding labels are given
|
|
43
|
+
>>> student_lm_head = torch.nn.Linear(H_s, V, bias=False)
|
|
44
|
+
>>> student_hidden_states = torch.randn(B * T, H_s, requires_grad=True).log_softmax(dim=-1)
|
|
45
|
+
>>> teacher_lm_head = torch.nn.Linear(H_t, V, bias=False)
|
|
46
|
+
>>> teacher_hidden_states = torch.randn(B * T, H_t).log_softmax(dim=-1)
|
|
47
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
48
|
+
>>>
|
|
49
|
+
>>> # Shift so that tokens < n predict n
|
|
50
|
+
>>> shift_student_hidden_states = student_hidden_states[..., :-1, :].contiguous()
|
|
51
|
+
>>> shift_teacher_hidden_states = teacher_hidden_states[..., :-1, :].contiguous()
|
|
52
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
53
|
+
>>>
|
|
54
|
+
>>> # Flatten tokens
|
|
55
|
+
>>> shift_student_hidden_states = shift_student_hidden_states.view(-1, V)
|
|
56
|
+
>>> shift_teacher_hidden_states = shift_teacher_hidden_states.view(-1, V)
|
|
57
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
58
|
+
>>>
|
|
59
|
+
>>> # Calculate loss
|
|
60
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
61
|
+
>>> loss = loss_fct(
|
|
62
|
+
>>> shift_studetn_hidden_states,
|
|
63
|
+
>>> student_lm_head.weight,
|
|
64
|
+
>>> shift_teacher_hidden_states,
|
|
65
|
+
>>> teacher_lm_head.weight,
|
|
66
|
+
>>> shift_labels
|
|
67
|
+
>>> )
|
|
68
|
+
```
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
|
|
72
|
+
super().__init__()
|
|
73
|
+
assert temperature != 0, "temperature cannot be 0."
|
|
74
|
+
self.jsd_beta = jsd_beta
|
|
75
|
+
self.temperature = temperature
|
|
76
|
+
self.ignore_index = ignore_index
|
|
77
|
+
|
|
78
|
+
def forward(
|
|
79
|
+
self,
|
|
80
|
+
student_input: torch.Tensor,
|
|
81
|
+
student_weight: torch.Tensor,
|
|
82
|
+
teacher_input: torch.Tensor,
|
|
83
|
+
teacher_weight: torch.Tensor,
|
|
84
|
+
shift_labels: Optional[torch.LongTensor],
|
|
85
|
+
):
|
|
86
|
+
return LigerFusedLinearJSDFunction.apply(
|
|
87
|
+
student_input,
|
|
88
|
+
student_weight,
|
|
89
|
+
teacher_input,
|
|
90
|
+
teacher_weight,
|
|
91
|
+
shift_labels,
|
|
92
|
+
self.jsd_beta,
|
|
93
|
+
self.ignore_index,
|
|
94
|
+
self.temperature,
|
|
95
|
+
)
|