liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,259 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers.modeling_outputs import CausalLMOutputWithPast
10
+ from transformers.utils.deprecation import deprecate_kwarg
11
+
12
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
+
17
+
18
+ def lce_forward_deprecated(
19
+ self,
20
+ input_ids: torch.LongTensor = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ labels: Optional[torch.LongTensor] = None,
26
+ use_cache: Optional[bool] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ return_dict: Optional[bool] = None,
30
+ cache_position: Optional[torch.LongTensor] = None,
31
+ skip_logits: Optional[bool] = None,
32
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
33
+ r"""
34
+ Copy paste Qwen2's forward but replace torch cross entropy with liger fused linear cross entropy
35
+
36
+
37
+ Args:
38
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
40
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
41
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
42
+
43
+ Returns:
44
+
45
+ Example:
46
+
47
+ ```python
48
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
49
+
50
+ >>> model = Qwen2ForCausalLM.from_pretrained("Qwen/Qwen2-1.5B")
51
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B")
52
+
53
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
54
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
55
+
56
+ >>> # Generate
57
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
58
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
59
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
60
+ ```"""
61
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
62
+ output_hidden_states = (
63
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
64
+ )
65
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
66
+
67
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
68
+ outputs = self.model(
69
+ input_ids=input_ids,
70
+ attention_mask=attention_mask,
71
+ position_ids=position_ids,
72
+ past_key_values=past_key_values,
73
+ inputs_embeds=inputs_embeds,
74
+ use_cache=use_cache,
75
+ output_attentions=output_attentions,
76
+ output_hidden_states=output_hidden_states,
77
+ return_dict=return_dict,
78
+ cache_position=cache_position,
79
+ )
80
+
81
+ hidden_states = outputs[0]
82
+
83
+ loss = None
84
+ logits = None
85
+
86
+ if skip_logits and labels is None:
87
+ raise ValueError("skip_logits is True, but labels is None")
88
+
89
+ if skip_logits is None:
90
+ # By default, if in training mode, don't materialize logits
91
+ skip_logits = self.training and labels is not None
92
+
93
+ if self.training and (labels is not None):
94
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
95
+ shift_labels = labels[..., 1:].contiguous()
96
+
97
+ # flatten tokens
98
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
99
+ shift_labels = shift_labels.view(-1)
100
+
101
+ lce = LigerFusedLinearCrossEntropyLoss()
102
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
103
+
104
+ else:
105
+ logits = self.lm_head(hidden_states)
106
+ if labels is not None:
107
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
108
+ logits = logits.float()
109
+ # Shift so that tokens < n predict n
110
+ shift_logits = logits[..., :-1, :].contiguous()
111
+ shift_labels = labels[..., 1:].contiguous()
112
+ # Flatten the tokens
113
+ loss_fct = CrossEntropyLoss()
114
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
115
+ shift_labels = shift_labels.view(-1)
116
+ # Enable model parallelism
117
+ shift_labels = shift_labels.to(shift_logits.device)
118
+ loss = loss_fct(shift_logits, shift_labels)
119
+
120
+ if not return_dict:
121
+ output = (logits,) + outputs[1:]
122
+ return (loss,) + output if loss is not None else output
123
+
124
+ return CausalLMOutputWithPast(
125
+ loss=loss,
126
+ logits=logits,
127
+ past_key_values=outputs.past_key_values,
128
+ hidden_states=outputs.hidden_states,
129
+ attentions=outputs.attentions,
130
+ )
131
+
132
+
133
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
134
+ def lce_forward(
135
+ self,
136
+ input_ids: torch.LongTensor = None,
137
+ attention_mask: Optional[torch.Tensor] = None,
138
+ position_ids: Optional[torch.LongTensor] = None,
139
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
140
+ inputs_embeds: Optional[torch.FloatTensor] = None,
141
+ labels: Optional[torch.LongTensor] = None,
142
+ use_cache: Optional[bool] = None,
143
+ output_attentions: Optional[bool] = None,
144
+ output_hidden_states: Optional[bool] = None,
145
+ return_dict: Optional[bool] = None,
146
+ cache_position: Optional[torch.LongTensor] = None,
147
+ logits_to_keep: Union[int, torch.Tensor] = 0,
148
+ skip_logits: Optional[bool] = None,
149
+ **kwargs,
150
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
151
+ r"""
152
+ Args:
153
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
154
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
155
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
156
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
157
+
158
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
159
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
160
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
161
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
162
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
163
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
164
+
165
+ Returns:
166
+
167
+ Example:
168
+
169
+ ```python
170
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
171
+
172
+ >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
173
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
174
+
175
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
176
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
177
+
178
+ >>> # Generate
179
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
180
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
181
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
182
+ ```"""
183
+
184
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
185
+ output_hidden_states = (
186
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
187
+ )
188
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
189
+
190
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
191
+ outputs = self.model(
192
+ input_ids=input_ids,
193
+ attention_mask=attention_mask,
194
+ position_ids=position_ids,
195
+ past_key_values=past_key_values,
196
+ inputs_embeds=inputs_embeds,
197
+ use_cache=use_cache,
198
+ output_attentions=output_attentions,
199
+ output_hidden_states=output_hidden_states,
200
+ return_dict=return_dict,
201
+ cache_position=cache_position,
202
+ **kwargs,
203
+ )
204
+
205
+ hidden_states = outputs[0]
206
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
207
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
208
+ kept_hidden_states = hidden_states[:, slice_indices, :]
209
+
210
+ shift_labels = kwargs.pop("shift_labels", None)
211
+ logits = None
212
+ loss = None
213
+ token_accuracy = None
214
+
215
+ if skip_logits and labels is None and shift_labels is None:
216
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
217
+
218
+ if skip_logits is None:
219
+ # By default, if in training mode, don't materialize logits
220
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
221
+
222
+ # Compute loss
223
+ if skip_logits:
224
+ result = LigerForCausalLMLoss(
225
+ hidden_states=kept_hidden_states,
226
+ lm_head_weight=self.lm_head.weight,
227
+ labels=labels,
228
+ shift_labels=shift_labels,
229
+ hidden_size=self.config.hidden_size,
230
+ **kwargs,
231
+ )
232
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
233
+
234
+ else:
235
+ logits = self.lm_head(kept_hidden_states)
236
+ if labels is not None or shift_labels is not None:
237
+ loss = self.loss_function(
238
+ logits=logits,
239
+ labels=labels,
240
+ shift_labels=shift_labels,
241
+ vocab_size=self.config.vocab_size,
242
+ **kwargs,
243
+ )
244
+
245
+ if not return_dict:
246
+ output_tuple = (logits,) + outputs[1:]
247
+ output = (loss,) + output_tuple if loss is not None else output_tuple
248
+ output = output + (token_accuracy,) if token_accuracy is not None else output
249
+ return output
250
+
251
+ # Return custom output class with token accuracy field
252
+ return LigerCausalLMOutputWithPast(
253
+ loss=loss,
254
+ logits=logits,
255
+ past_key_values=outputs.past_key_values,
256
+ hidden_states=outputs.hidden_states,
257
+ attentions=outputs.attentions,
258
+ token_accuracy=token_accuracy,
259
+ )
@@ -0,0 +1,163 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen2_5_VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ pixel_values: Optional[torch.Tensor] = None,
29
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
30
+ image_grid_thw: Optional[torch.LongTensor] = None,
31
+ video_grid_thw: Optional[torch.LongTensor] = None,
32
+ rope_deltas: Optional[torch.LongTensor] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ second_per_grid_ts: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, LigerQwen2_5_VLCausalLMOutputWithPast]:
38
+ r"""
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
44
+ The tensors corresponding to the input videos. Pixel values can be obtained using
45
+ [`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
46
+ [`Qwen2_5_VLImageProcessor`] for processing videos.
47
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
48
+ The temporal, height and width of feature shape of each image in LLM.
49
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
50
+ The temporal, height and width of feature shape of each video in LLM.
51
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
52
+ The rope index difference between sequence length and multimodal rope.
53
+ second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
54
+ The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
55
+
56
+ Example:
57
+
58
+ ```python
59
+ >>> from PIL import Image
60
+ >>> import requests
61
+ >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
62
+
63
+ >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
64
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
65
+
66
+ >>> messages = [
67
+ {
68
+ "role": "user",
69
+ "content": [
70
+ {"type": "image"},
71
+ {"type": "text", "text": "What is shown in this image?"},
72
+ ],
73
+ },
74
+ ]
75
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
76
+ >>> image = Image.open(requests.get(url, stream=True).raw)
77
+
78
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
79
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
80
+
81
+ >>> # Generate
82
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
83
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
84
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
85
+ ```"""
86
+
87
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
88
+ output_hidden_states = (
89
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
90
+ )
91
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
92
+
93
+ outputs = self.model(
94
+ input_ids=input_ids,
95
+ pixel_values=pixel_values,
96
+ pixel_values_videos=pixel_values_videos,
97
+ image_grid_thw=image_grid_thw,
98
+ video_grid_thw=video_grid_thw,
99
+ second_per_grid_ts=second_per_grid_ts,
100
+ position_ids=position_ids,
101
+ attention_mask=attention_mask,
102
+ past_key_values=past_key_values,
103
+ inputs_embeds=inputs_embeds,
104
+ use_cache=use_cache,
105
+ output_attentions=output_attentions,
106
+ output_hidden_states=output_hidden_states,
107
+ return_dict=return_dict,
108
+ cache_position=cache_position,
109
+ **kwargs,
110
+ )
111
+
112
+ hidden_states = outputs[0]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ loss = None
116
+ logits = None
117
+ token_accuracy = None
118
+
119
+ if skip_logits and labels is None and shift_labels is None:
120
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
121
+
122
+ if skip_logits is None:
123
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
124
+
125
+ # Compute loss
126
+ if skip_logits:
127
+ result = LigerForCausalLMLoss(
128
+ hidden_states=hidden_states,
129
+ lm_head_weight=self.lm_head.weight,
130
+ labels=labels,
131
+ shift_labels=shift_labels,
132
+ hidden_size=self.config.hidden_size,
133
+ **kwargs,
134
+ )
135
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
136
+ else:
137
+ logits = self.lm_head(hidden_states)
138
+
139
+ loss = None
140
+ if labels is not None or shift_labels is not None:
141
+ loss = self.loss_function(
142
+ logits=logits,
143
+ labels=labels,
144
+ shift_labels=shift_labels,
145
+ vocab_size=self.config.vocab_size,
146
+ )
147
+
148
+ if not return_dict:
149
+ output_tuple = (logits,) + outputs[1:]
150
+ output = (loss,) + output_tuple if loss is not None else output_tuple
151
+ output = output + (token_accuracy,) if token_accuracy is not None else output
152
+ return output
153
+
154
+ # Return Qwen2.5-VL output with token accuracy
155
+ return LigerQwen2_5_VLCausalLMOutputWithPast(
156
+ loss=loss,
157
+ logits=logits,
158
+ past_key_values=outputs.past_key_values,
159
+ hidden_states=outputs.hidden_states,
160
+ attentions=outputs.attentions,
161
+ rope_deltas=outputs.rope_deltas,
162
+ token_accuracy=token_accuracy,
163
+ )
@@ -0,0 +1,159 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen2VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ pixel_values: Optional[torch.Tensor] = None,
29
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
30
+ image_grid_thw: Optional[torch.LongTensor] = None,
31
+ video_grid_thw: Optional[torch.LongTensor] = None,
32
+ rope_deltas: Optional[torch.LongTensor] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ skip_logits: Optional[bool] = None,
35
+ **kwargs,
36
+ ) -> Union[Tuple, LigerQwen2VLCausalLMOutputWithPast]:
37
+ r"""
38
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
40
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
41
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
42
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
43
+ The tensors corresponding to the input videos. Pixel values can be obtained using
44
+ [`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
45
+ [`Qwen2VLImageProcessor`] for processing videos.
46
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
47
+ The temporal, height and width of feature shape of each image in LLM.
48
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
49
+ The temporal, height and width of feature shape of each video in LLM.
50
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
51
+ The rope index difference between sequence length and multimodal rope.
52
+
53
+ Example:
54
+
55
+ ```python
56
+ >>> from PIL import Image
57
+ >>> import requests
58
+ >>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
59
+
60
+ >>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
61
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
62
+
63
+ >>> messages = [
64
+ {
65
+ "role": "user",
66
+ "content": [
67
+ {"type": "image"},
68
+ {"type": "text", "text": "What is shown in this image?"},
69
+ ],
70
+ },
71
+ ]
72
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
73
+ >>> image = Image.open(requests.get(url, stream=True).raw)
74
+
75
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
76
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
77
+
78
+ >>> # Generate
79
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
80
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
81
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
82
+ ```"""
83
+
84
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
85
+ output_hidden_states = (
86
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
87
+ )
88
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
89
+
90
+ outputs = self.model(
91
+ input_ids=input_ids,
92
+ pixel_values=pixel_values,
93
+ pixel_values_videos=pixel_values_videos,
94
+ image_grid_thw=image_grid_thw,
95
+ video_grid_thw=video_grid_thw,
96
+ position_ids=position_ids,
97
+ attention_mask=attention_mask,
98
+ past_key_values=past_key_values,
99
+ inputs_embeds=inputs_embeds,
100
+ use_cache=use_cache,
101
+ output_attentions=output_attentions,
102
+ output_hidden_states=output_hidden_states,
103
+ return_dict=return_dict,
104
+ cache_position=cache_position,
105
+ **kwargs,
106
+ )
107
+
108
+ hidden_states = outputs[0]
109
+
110
+ shift_labels = kwargs.pop("shift_labels", None)
111
+ loss = None
112
+ logits = None
113
+ token_accuracy = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
120
+
121
+ # Compute loss
122
+ if skip_logits:
123
+ result = LigerForCausalLMLoss(
124
+ hidden_states=hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.hidden_size,
129
+ **kwargs,
130
+ )
131
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
132
+ else:
133
+ logits = self.lm_head(hidden_states)
134
+
135
+ loss = None
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
143
+
144
+ if not return_dict:
145
+ output_tuple = (logits,) + outputs[1:]
146
+ output = (loss,) + output_tuple if loss is not None else output_tuple
147
+ output = output + (token_accuracy,) if token_accuracy is not None else output
148
+ return output
149
+
150
+ # Return Qwen2VL output with token accuracy
151
+ return LigerQwen2VLCausalLMOutputWithPast(
152
+ loss=loss,
153
+ logits=logits,
154
+ past_key_values=outputs.past_key_values,
155
+ hidden_states=outputs.hidden_states,
156
+ attentions=outputs.attentions,
157
+ rope_deltas=outputs.rope_deltas,
158
+ token_accuracy=token_accuracy,
159
+ )