liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -1,33 +1,37 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
2
6
 
3
7
  import torch
4
8
  import torch.nn.functional as F
9
+
10
+ from torch.distributed.fsdp import FullyShardedDataParallel
5
11
  from torch.nn import CrossEntropyLoss
6
12
  from transformers.modeling_outputs import CausalLMOutputWithPast
7
- from transformers.models.llama.modeling_llama import (
8
- _CONFIG_FOR_DOC,
9
- LLAMA_INPUTS_DOCSTRING,
10
- )
11
- from transformers.utils import (
12
- add_start_docstrings_to_model_forward,
13
- replace_return_docstrings,
14
- )
15
-
16
- from liger_kernel.transformers.fused_linear_cross_entropy import (
17
- LigerFusedLinearCrossEntropyLoss,
18
- )
19
-
20
-
21
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
22
- @replace_return_docstrings(
23
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
- )
25
- def lce_forward(
13
+ from transformers.utils.deprecation import deprecate_kwarg
14
+
15
+ from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
16
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
17
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
18
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
19
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
20
+ from liger_kernel.utils import PEFT_AVAILABLE
21
+
22
+ if TYPE_CHECKING:
23
+ from transformers.cache_utils import Cache
24
+
25
+ if PEFT_AVAILABLE:
26
+ from peft.utils.other import ModulesToSaveWrapper
27
+
28
+
29
+ def lce_forward_deprecated(
26
30
  self,
27
31
  input_ids: torch.LongTensor = None,
28
32
  attention_mask: Optional[torch.Tensor] = None,
29
33
  position_ids: Optional[torch.LongTensor] = None,
30
- past_key_values: Optional[List[torch.FloatTensor]] = None,
34
+ past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
31
35
  inputs_embeds: Optional[torch.FloatTensor] = None,
32
36
  labels: Optional[torch.LongTensor] = None,
33
37
  use_cache: Optional[bool] = None,
@@ -35,6 +39,7 @@ def lce_forward(
35
39
  output_hidden_states: Optional[bool] = None,
36
40
  return_dict: Optional[bool] = None,
37
41
  cache_position: Optional[torch.LongTensor] = None,
42
+ skip_logits: Optional[bool] = None,
38
43
  ) -> Union[Tuple, CausalLMOutputWithPast]:
39
44
  r"""
40
45
  Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
@@ -64,19 +69,11 @@ def lce_forward(
64
69
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
65
70
  "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
66
71
  ```"""
67
- output_attentions = (
68
- output_attentions
69
- if output_attentions is not None
70
- else self.config.output_attentions
71
- )
72
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
72
73
  output_hidden_states = (
73
- output_hidden_states
74
- if output_hidden_states is not None
75
- else self.config.output_hidden_states
76
- )
77
- return_dict = (
78
- return_dict if return_dict is not None else self.config.use_return_dict
74
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
79
75
  )
76
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
77
 
81
78
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
82
79
  outputs = self.model(
@@ -97,7 +94,15 @@ def lce_forward(
97
94
  loss = None
98
95
  logits = None
99
96
 
100
- if self.training:
97
+ # if in training mode, don't materialize logits
98
+ if skip_logits and labels is None:
99
+ raise ValueError("skip_logits is True, but labels is None")
100
+
101
+ if skip_logits is None:
102
+ # By default, if in training mode, don't materialize logits
103
+ skip_logits = self.training and labels is not None
104
+
105
+ if skip_logits:
101
106
  shift_hidden_states = hidden_states[..., :-1, :].contiguous()
102
107
  shift_labels = labels[..., 1:].contiguous()
103
108
 
@@ -110,18 +115,14 @@ def lce_forward(
110
115
 
111
116
  else:
112
117
  if self.config.pretraining_tp > 1:
113
- lm_head_slices = self.lm_head.weight.split(
114
- self.vocab_size // self.config.pretraining_tp, dim=0
115
- )
116
- logits = [
117
- F.linear(hidden_states, lm_head_slices[i])
118
- for i in range(self.config.pretraining_tp)
119
- ]
118
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
119
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
120
120
  logits = torch.cat(logits, dim=-1)
121
121
  else:
122
122
  logits = self.lm_head(hidden_states)
123
- logits = logits.float()
124
123
  if labels is not None:
124
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
125
+ logits = logits.float()
125
126
  # Shift so that tokens < n predict n
126
127
  shift_logits = logits[..., :-1, :].contiguous()
127
128
  shift_labels = labels[..., 1:].contiguous()
@@ -144,3 +145,182 @@ def lce_forward(
144
145
  hidden_states=outputs.hidden_states,
145
146
  attentions=outputs.attentions,
146
147
  )
148
+
149
+
150
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
151
+ def lce_forward(
152
+ self,
153
+ input_ids: torch.LongTensor = None,
154
+ attention_mask: Optional[torch.Tensor] = None,
155
+ position_ids: Optional[torch.LongTensor] = None,
156
+ past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
157
+ inputs_embeds: Optional[torch.FloatTensor] = None,
158
+ labels: Optional[torch.LongTensor] = None,
159
+ use_cache: Optional[bool] = None,
160
+ output_attentions: Optional[bool] = None,
161
+ output_hidden_states: Optional[bool] = None,
162
+ return_dict: Optional[bool] = None,
163
+ cache_position: Optional[torch.LongTensor] = None,
164
+ logits_to_keep: Union[int, torch.Tensor] = 0,
165
+ skip_logits: Optional[bool] = None,
166
+ **kwargs,
167
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
168
+ r"""
169
+ Args:
170
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
171
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
172
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
173
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
174
+
175
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
176
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
177
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
178
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
179
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
180
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
181
+
182
+ Returns:
183
+
184
+ Example:
185
+
186
+ ```python
187
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
188
+
189
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
190
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
191
+
192
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
193
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
194
+
195
+ >>> # Generate
196
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
197
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
198
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
199
+ ```"""
200
+
201
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
202
+ output_hidden_states = (
203
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
204
+ )
205
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
206
+
207
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
208
+ outputs = self.model(
209
+ input_ids=input_ids,
210
+ attention_mask=attention_mask,
211
+ position_ids=position_ids,
212
+ past_key_values=past_key_values,
213
+ inputs_embeds=inputs_embeds,
214
+ use_cache=use_cache,
215
+ output_attentions=output_attentions,
216
+ output_hidden_states=output_hidden_states,
217
+ return_dict=return_dict,
218
+ cache_position=cache_position,
219
+ **kwargs,
220
+ )
221
+
222
+ hidden_states = outputs[0]
223
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
224
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
225
+ kept_hidden_states = hidden_states[:, slice_indices, :]
226
+
227
+ if self.config.pretraining_tp > 1:
228
+ raise Exception("Liger Kernel does not support pretraining_tp!!")
229
+
230
+ shift_labels = kwargs.pop("shift_labels", None)
231
+ logits = None
232
+ loss = None
233
+ token_accuracy = None
234
+
235
+ # if in training mode, don't materialize logits
236
+ if skip_logits and labels is None and shift_labels is None:
237
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
238
+
239
+ if skip_logits is None:
240
+ # By default, if in training mode, don't materialize logits
241
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
242
+
243
+ # Compute loss
244
+ if skip_logits:
245
+ result = lce_maybe_trainable_lm_head(
246
+ self,
247
+ hidden_states=kept_hidden_states,
248
+ hidden_size=self.config.hidden_size,
249
+ labels=labels,
250
+ shift_labels=shift_labels,
251
+ **kwargs,
252
+ )
253
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
254
+ else:
255
+ logits = self.lm_head(kept_hidden_states)
256
+ if labels is not None or shift_labels is not None:
257
+ loss = self.loss_function(
258
+ logits=logits,
259
+ labels=labels,
260
+ shift_labels=shift_labels,
261
+ vocab_size=self.config.vocab_size,
262
+ **kwargs,
263
+ )
264
+
265
+ if not return_dict:
266
+ output = (logits,) + outputs[1:]
267
+ output = ((loss,) + output) if loss is not None else output
268
+ output = output + (token_accuracy,) if token_accuracy is not None else output
269
+ return output
270
+
271
+ # Return custom output class with token_accuracy field
272
+ return LigerCausalLMOutputWithPast(
273
+ loss=loss,
274
+ logits=logits,
275
+ past_key_values=outputs.past_key_values,
276
+ hidden_states=outputs.hidden_states,
277
+ attentions=outputs.attentions,
278
+ token_accuracy=token_accuracy,
279
+ )
280
+
281
+
282
+ def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
283
+ lm_head = self.lm_head
284
+
285
+ # Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
286
+ # i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
287
+ # from the unwrapped module.
288
+ # See https://huggingface.co/docs/peft/package_reference/lora for reference.
289
+ if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
290
+ lm_head = lm_head.modules_to_save.default
291
+
292
+ # If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
293
+ # reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
294
+ # so the module entire parameters are summoned and kept in memory during the kernel execution.
295
+ if isinstance(lm_head, FullyShardedDataParallel):
296
+ return _FSDPForwardRedirection()(
297
+ lm_head,
298
+ _liger_for_causal_lm_loss,
299
+ lm_head.module,
300
+ hidden_states,
301
+ hidden_size,
302
+ labels,
303
+ shift_labels,
304
+ **loss_kwargs,
305
+ )
306
+
307
+ # FSDP is not used so we can read the lm_head weights and call the kernel directly
308
+ return _liger_for_causal_lm_loss(
309
+ lm_head=self.lm_head,
310
+ hidden_states=hidden_states,
311
+ hidden_size=hidden_size,
312
+ labels=labels,
313
+ shift_labels=shift_labels,
314
+ **loss_kwargs,
315
+ )
316
+
317
+
318
+ def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
319
+ return LigerForCausalLMLoss(
320
+ hidden_states=hidden_states,
321
+ lm_head_weight=lm_head.weight,
322
+ labels=labels,
323
+ hidden_size=hidden_size,
324
+ shift_labels=shift_labels,
325
+ **loss_kwargs,
326
+ )
@@ -0,0 +1,121 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.cache_utils import Cache
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ **kwargs,
30
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
31
+ r"""
32
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
34
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
35
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
36
+
37
+ Example:
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, Llama4ForCausalLM
41
+
42
+ >>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
44
+
45
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
46
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
47
+
48
+ >>> # Generate
49
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
50
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
52
+ ```"""
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_hidden_states = (
55
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
+ )
57
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
58
+
59
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
60
+ outputs = self.model(
61
+ input_ids=input_ids,
62
+ attention_mask=attention_mask,
63
+ position_ids=position_ids,
64
+ past_key_values=past_key_values,
65
+ inputs_embeds=inputs_embeds,
66
+ use_cache=use_cache,
67
+ output_attentions=output_attentions,
68
+ output_hidden_states=output_hidden_states,
69
+ return_dict=True,
70
+ cache_position=cache_position,
71
+ **kwargs,
72
+ )
73
+
74
+ hidden_states = outputs[0]
75
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
76
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
77
+ kept_hidden_states = hidden_states[:, slice_indices, :]
78
+
79
+ shift_labels = kwargs.pop("shift_labels", None)
80
+ logits = None
81
+ loss = None
82
+ token_accuracy = None
83
+
84
+ # Compute loss
85
+ if self.training and (labels is not None or shift_labels is not None):
86
+ result = LigerForCausalLMLoss(
87
+ hidden_states=kept_hidden_states,
88
+ lm_head_weight=self.lm_head.weight,
89
+ labels=labels,
90
+ shift_labels=shift_labels,
91
+ hidden_size=self.config.hidden_size,
92
+ **kwargs,
93
+ )
94
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
95
+
96
+ else: # if in inference mode materialize logits
97
+ logits = self.lm_head(kept_hidden_states)
98
+ if labels is not None or shift_labels is not None:
99
+ loss = self.loss_function(
100
+ logits=logits,
101
+ labels=labels,
102
+ shift_labels=shift_labels,
103
+ vocab_size=self.config.vocab_size,
104
+ **kwargs,
105
+ )
106
+
107
+ if not return_dict:
108
+ output = (logits,) + outputs[1:]
109
+ output = ((loss,) + output) if loss is not None else output
110
+ output = output + (token_accuracy,) if token_accuracy is not None else output
111
+ return output
112
+
113
+ # Return custom output class with token_accuracy field
114
+ return LigerCausalLMOutputWithPast(
115
+ loss=loss,
116
+ logits=logits,
117
+ past_key_values=outputs.past_key_values,
118
+ hidden_states=outputs.hidden_states,
119
+ attentions=outputs.attentions,
120
+ token_accuracy=token_accuracy,
121
+ )