liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -1,33 +1,37 @@
|
|
|
1
|
-
from typing import
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import List
|
|
3
|
+
from typing import Optional
|
|
4
|
+
from typing import Tuple
|
|
5
|
+
from typing import Union
|
|
2
6
|
|
|
3
7
|
import torch
|
|
4
8
|
import torch.nn.functional as F
|
|
9
|
+
|
|
10
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
5
11
|
from torch.nn import CrossEntropyLoss
|
|
6
12
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
7
|
-
from transformers.
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
from transformers.
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
)
|
|
25
|
-
def lce_forward(
|
|
13
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
14
|
+
|
|
15
|
+
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
17
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
19
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
20
|
+
from liger_kernel.utils import PEFT_AVAILABLE
|
|
21
|
+
|
|
22
|
+
if TYPE_CHECKING:
|
|
23
|
+
from transformers.cache_utils import Cache
|
|
24
|
+
|
|
25
|
+
if PEFT_AVAILABLE:
|
|
26
|
+
from peft.utils.other import ModulesToSaveWrapper
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def lce_forward_deprecated(
|
|
26
30
|
self,
|
|
27
31
|
input_ids: torch.LongTensor = None,
|
|
28
32
|
attention_mask: Optional[torch.Tensor] = None,
|
|
29
33
|
position_ids: Optional[torch.LongTensor] = None,
|
|
30
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
34
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
|
31
35
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
32
36
|
labels: Optional[torch.LongTensor] = None,
|
|
33
37
|
use_cache: Optional[bool] = None,
|
|
@@ -35,6 +39,7 @@ def lce_forward(
|
|
|
35
39
|
output_hidden_states: Optional[bool] = None,
|
|
36
40
|
return_dict: Optional[bool] = None,
|
|
37
41
|
cache_position: Optional[torch.LongTensor] = None,
|
|
42
|
+
skip_logits: Optional[bool] = None,
|
|
38
43
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
39
44
|
r"""
|
|
40
45
|
Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -64,19 +69,11 @@ def lce_forward(
|
|
|
64
69
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
65
70
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
66
71
|
```"""
|
|
67
|
-
output_attentions =
|
|
68
|
-
output_attentions
|
|
69
|
-
if output_attentions is not None
|
|
70
|
-
else self.config.output_attentions
|
|
71
|
-
)
|
|
72
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
72
73
|
output_hidden_states = (
|
|
73
|
-
output_hidden_states
|
|
74
|
-
if output_hidden_states is not None
|
|
75
|
-
else self.config.output_hidden_states
|
|
76
|
-
)
|
|
77
|
-
return_dict = (
|
|
78
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
|
74
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
79
75
|
)
|
|
76
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
80
77
|
|
|
81
78
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
82
79
|
outputs = self.model(
|
|
@@ -97,7 +94,15 @@ def lce_forward(
|
|
|
97
94
|
loss = None
|
|
98
95
|
logits = None
|
|
99
96
|
|
|
100
|
-
if
|
|
97
|
+
# if in training mode, don't materialize logits
|
|
98
|
+
if skip_logits and labels is None:
|
|
99
|
+
raise ValueError("skip_logits is True, but labels is None")
|
|
100
|
+
|
|
101
|
+
if skip_logits is None:
|
|
102
|
+
# By default, if in training mode, don't materialize logits
|
|
103
|
+
skip_logits = self.training and labels is not None
|
|
104
|
+
|
|
105
|
+
if skip_logits:
|
|
101
106
|
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
102
107
|
shift_labels = labels[..., 1:].contiguous()
|
|
103
108
|
|
|
@@ -110,18 +115,14 @@ def lce_forward(
|
|
|
110
115
|
|
|
111
116
|
else:
|
|
112
117
|
if self.config.pretraining_tp > 1:
|
|
113
|
-
lm_head_slices = self.lm_head.weight.split(
|
|
114
|
-
|
|
115
|
-
)
|
|
116
|
-
logits = [
|
|
117
|
-
F.linear(hidden_states, lm_head_slices[i])
|
|
118
|
-
for i in range(self.config.pretraining_tp)
|
|
119
|
-
]
|
|
118
|
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
|
119
|
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
120
120
|
logits = torch.cat(logits, dim=-1)
|
|
121
121
|
else:
|
|
122
122
|
logits = self.lm_head(hidden_states)
|
|
123
|
-
logits = logits.float()
|
|
124
123
|
if labels is not None:
|
|
124
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
125
|
+
logits = logits.float()
|
|
125
126
|
# Shift so that tokens < n predict n
|
|
126
127
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
127
128
|
shift_labels = labels[..., 1:].contiguous()
|
|
@@ -144,3 +145,182 @@ def lce_forward(
|
|
|
144
145
|
hidden_states=outputs.hidden_states,
|
|
145
146
|
attentions=outputs.attentions,
|
|
146
147
|
)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
151
|
+
def lce_forward(
|
|
152
|
+
self,
|
|
153
|
+
input_ids: torch.LongTensor = None,
|
|
154
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
155
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
156
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
|
157
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
158
|
+
labels: Optional[torch.LongTensor] = None,
|
|
159
|
+
use_cache: Optional[bool] = None,
|
|
160
|
+
output_attentions: Optional[bool] = None,
|
|
161
|
+
output_hidden_states: Optional[bool] = None,
|
|
162
|
+
return_dict: Optional[bool] = None,
|
|
163
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
164
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
165
|
+
skip_logits: Optional[bool] = None,
|
|
166
|
+
**kwargs,
|
|
167
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
168
|
+
r"""
|
|
169
|
+
Args:
|
|
170
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
171
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
172
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
173
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
174
|
+
|
|
175
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
176
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
177
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
178
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
179
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
180
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
181
|
+
|
|
182
|
+
Returns:
|
|
183
|
+
|
|
184
|
+
Example:
|
|
185
|
+
|
|
186
|
+
```python
|
|
187
|
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
188
|
+
|
|
189
|
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
|
190
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
|
191
|
+
|
|
192
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
193
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
194
|
+
|
|
195
|
+
>>> # Generate
|
|
196
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
197
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
198
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
199
|
+
```"""
|
|
200
|
+
|
|
201
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
202
|
+
output_hidden_states = (
|
|
203
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
204
|
+
)
|
|
205
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
206
|
+
|
|
207
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
208
|
+
outputs = self.model(
|
|
209
|
+
input_ids=input_ids,
|
|
210
|
+
attention_mask=attention_mask,
|
|
211
|
+
position_ids=position_ids,
|
|
212
|
+
past_key_values=past_key_values,
|
|
213
|
+
inputs_embeds=inputs_embeds,
|
|
214
|
+
use_cache=use_cache,
|
|
215
|
+
output_attentions=output_attentions,
|
|
216
|
+
output_hidden_states=output_hidden_states,
|
|
217
|
+
return_dict=return_dict,
|
|
218
|
+
cache_position=cache_position,
|
|
219
|
+
**kwargs,
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
hidden_states = outputs[0]
|
|
223
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
224
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
225
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
226
|
+
|
|
227
|
+
if self.config.pretraining_tp > 1:
|
|
228
|
+
raise Exception("Liger Kernel does not support pretraining_tp!!")
|
|
229
|
+
|
|
230
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
231
|
+
logits = None
|
|
232
|
+
loss = None
|
|
233
|
+
token_accuracy = None
|
|
234
|
+
|
|
235
|
+
# if in training mode, don't materialize logits
|
|
236
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
237
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
238
|
+
|
|
239
|
+
if skip_logits is None:
|
|
240
|
+
# By default, if in training mode, don't materialize logits
|
|
241
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
242
|
+
|
|
243
|
+
# Compute loss
|
|
244
|
+
if skip_logits:
|
|
245
|
+
result = lce_maybe_trainable_lm_head(
|
|
246
|
+
self,
|
|
247
|
+
hidden_states=kept_hidden_states,
|
|
248
|
+
hidden_size=self.config.hidden_size,
|
|
249
|
+
labels=labels,
|
|
250
|
+
shift_labels=shift_labels,
|
|
251
|
+
**kwargs,
|
|
252
|
+
)
|
|
253
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
254
|
+
else:
|
|
255
|
+
logits = self.lm_head(kept_hidden_states)
|
|
256
|
+
if labels is not None or shift_labels is not None:
|
|
257
|
+
loss = self.loss_function(
|
|
258
|
+
logits=logits,
|
|
259
|
+
labels=labels,
|
|
260
|
+
shift_labels=shift_labels,
|
|
261
|
+
vocab_size=self.config.vocab_size,
|
|
262
|
+
**kwargs,
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
if not return_dict:
|
|
266
|
+
output = (logits,) + outputs[1:]
|
|
267
|
+
output = ((loss,) + output) if loss is not None else output
|
|
268
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
269
|
+
return output
|
|
270
|
+
|
|
271
|
+
# Return custom output class with token_accuracy field
|
|
272
|
+
return LigerCausalLMOutputWithPast(
|
|
273
|
+
loss=loss,
|
|
274
|
+
logits=logits,
|
|
275
|
+
past_key_values=outputs.past_key_values,
|
|
276
|
+
hidden_states=outputs.hidden_states,
|
|
277
|
+
attentions=outputs.attentions,
|
|
278
|
+
token_accuracy=token_accuracy,
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
283
|
+
lm_head = self.lm_head
|
|
284
|
+
|
|
285
|
+
# Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
|
|
286
|
+
# i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
|
|
287
|
+
# from the unwrapped module.
|
|
288
|
+
# See https://huggingface.co/docs/peft/package_reference/lora for reference.
|
|
289
|
+
if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
|
|
290
|
+
lm_head = lm_head.modules_to_save.default
|
|
291
|
+
|
|
292
|
+
# If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
|
|
293
|
+
# reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
|
|
294
|
+
# so the module entire parameters are summoned and kept in memory during the kernel execution.
|
|
295
|
+
if isinstance(lm_head, FullyShardedDataParallel):
|
|
296
|
+
return _FSDPForwardRedirection()(
|
|
297
|
+
lm_head,
|
|
298
|
+
_liger_for_causal_lm_loss,
|
|
299
|
+
lm_head.module,
|
|
300
|
+
hidden_states,
|
|
301
|
+
hidden_size,
|
|
302
|
+
labels,
|
|
303
|
+
shift_labels,
|
|
304
|
+
**loss_kwargs,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
# FSDP is not used so we can read the lm_head weights and call the kernel directly
|
|
308
|
+
return _liger_for_causal_lm_loss(
|
|
309
|
+
lm_head=self.lm_head,
|
|
310
|
+
hidden_states=hidden_states,
|
|
311
|
+
hidden_size=hidden_size,
|
|
312
|
+
labels=labels,
|
|
313
|
+
shift_labels=shift_labels,
|
|
314
|
+
**loss_kwargs,
|
|
315
|
+
)
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
319
|
+
return LigerForCausalLMLoss(
|
|
320
|
+
hidden_states=hidden_states,
|
|
321
|
+
lm_head_weight=lm_head.weight,
|
|
322
|
+
labels=labels,
|
|
323
|
+
hidden_size=hidden_size,
|
|
324
|
+
shift_labels=shift_labels,
|
|
325
|
+
**loss_kwargs,
|
|
326
|
+
)
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.cache_utils import Cache
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
**kwargs,
|
|
30
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
31
|
+
r"""
|
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
|
|
39
|
+
```python
|
|
40
|
+
>>> from transformers import AutoTokenizer, Llama4ForCausalLM
|
|
41
|
+
|
|
42
|
+
>>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
43
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
44
|
+
|
|
45
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
46
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
47
|
+
|
|
48
|
+
>>> # Generate
|
|
49
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
50
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
51
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
52
|
+
```"""
|
|
53
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
54
|
+
output_hidden_states = (
|
|
55
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
|
+
)
|
|
57
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
58
|
+
|
|
59
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
60
|
+
outputs = self.model(
|
|
61
|
+
input_ids=input_ids,
|
|
62
|
+
attention_mask=attention_mask,
|
|
63
|
+
position_ids=position_ids,
|
|
64
|
+
past_key_values=past_key_values,
|
|
65
|
+
inputs_embeds=inputs_embeds,
|
|
66
|
+
use_cache=use_cache,
|
|
67
|
+
output_attentions=output_attentions,
|
|
68
|
+
output_hidden_states=output_hidden_states,
|
|
69
|
+
return_dict=True,
|
|
70
|
+
cache_position=cache_position,
|
|
71
|
+
**kwargs,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
hidden_states = outputs[0]
|
|
75
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
76
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
77
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
78
|
+
|
|
79
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
80
|
+
logits = None
|
|
81
|
+
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
84
|
+
# Compute loss
|
|
85
|
+
if self.training and (labels is not None or shift_labels is not None):
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
87
|
+
hidden_states=kept_hidden_states,
|
|
88
|
+
lm_head_weight=self.lm_head.weight,
|
|
89
|
+
labels=labels,
|
|
90
|
+
shift_labels=shift_labels,
|
|
91
|
+
hidden_size=self.config.hidden_size,
|
|
92
|
+
**kwargs,
|
|
93
|
+
)
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
95
|
+
|
|
96
|
+
else: # if in inference mode materialize logits
|
|
97
|
+
logits = self.lm_head(kept_hidden_states)
|
|
98
|
+
if labels is not None or shift_labels is not None:
|
|
99
|
+
loss = self.loss_function(
|
|
100
|
+
logits=logits,
|
|
101
|
+
labels=labels,
|
|
102
|
+
shift_labels=shift_labels,
|
|
103
|
+
vocab_size=self.config.vocab_size,
|
|
104
|
+
**kwargs,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
if not return_dict:
|
|
108
|
+
output = (logits,) + outputs[1:]
|
|
109
|
+
output = ((loss,) + output) if loss is not None else output
|
|
110
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
111
|
+
return output
|
|
112
|
+
|
|
113
|
+
# Return custom output class with token_accuracy field
|
|
114
|
+
return LigerCausalLMOutputWithPast(
|
|
115
|
+
loss=loss,
|
|
116
|
+
logits=logits,
|
|
117
|
+
past_key_values=outputs.past_key_values,
|
|
118
|
+
hidden_states=outputs.hidden_states,
|
|
119
|
+
attentions=outputs.attentions,
|
|
120
|
+
token_accuracy=token_accuracy,
|
|
121
|
+
)
|