liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from torch.nn import CrossEntropyLoss
|
|
9
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
10
|
+
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
|
11
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
12
|
+
|
|
13
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def lce_forward_deprecated(
|
|
20
|
+
self,
|
|
21
|
+
input_ids: torch.LongTensor = None,
|
|
22
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
23
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
25
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
26
|
+
labels: Optional[torch.LongTensor] = None,
|
|
27
|
+
use_cache: Optional[bool] = None,
|
|
28
|
+
output_attentions: Optional[bool] = None,
|
|
29
|
+
output_hidden_states: Optional[bool] = None,
|
|
30
|
+
output_router_logits: Optional[bool] = None,
|
|
31
|
+
return_dict: Optional[bool] = None,
|
|
32
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
33
|
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
|
34
|
+
r"""
|
|
35
|
+
Copy paste Mixtral's forward from transformers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
40
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
41
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
42
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
43
|
+
|
|
44
|
+
Returns:
|
|
45
|
+
|
|
46
|
+
Example:
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
50
|
+
|
|
51
|
+
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
52
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
53
|
+
|
|
54
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
55
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
56
|
+
|
|
57
|
+
>>> # Generate
|
|
58
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
59
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
60
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
61
|
+
```"""
|
|
62
|
+
|
|
63
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
64
|
+
output_router_logits = (
|
|
65
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
output_hidden_states = (
|
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
70
|
+
)
|
|
71
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
72
|
+
|
|
73
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
74
|
+
outputs = self.model(
|
|
75
|
+
input_ids=input_ids,
|
|
76
|
+
attention_mask=attention_mask,
|
|
77
|
+
position_ids=position_ids,
|
|
78
|
+
past_key_values=past_key_values,
|
|
79
|
+
inputs_embeds=inputs_embeds,
|
|
80
|
+
use_cache=use_cache,
|
|
81
|
+
output_attentions=output_attentions,
|
|
82
|
+
output_hidden_states=output_hidden_states,
|
|
83
|
+
output_router_logits=output_router_logits,
|
|
84
|
+
return_dict=return_dict,
|
|
85
|
+
cache_position=cache_position,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
hidden_states = outputs[0]
|
|
89
|
+
logits = self.lm_head(hidden_states)
|
|
90
|
+
|
|
91
|
+
loss = None
|
|
92
|
+
if self.training and (labels is not None):
|
|
93
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
94
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
95
|
+
# Flatten the tokens
|
|
96
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
97
|
+
shift_labels = shift_labels.view(-1)
|
|
98
|
+
|
|
99
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
100
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
101
|
+
elif labels is not None:
|
|
102
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
103
|
+
logits = logits.float()
|
|
104
|
+
# Shift so that tokens < n predict n
|
|
105
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
106
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
107
|
+
# Flatten the tokens
|
|
108
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
109
|
+
shift_labels = shift_labels.view(-1)
|
|
110
|
+
# Enable model parallelism
|
|
111
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
112
|
+
|
|
113
|
+
loss_fct = CrossEntropyLoss()
|
|
114
|
+
loss = loss_fct(logits.weight, shift_labels)
|
|
115
|
+
|
|
116
|
+
aux_loss = None
|
|
117
|
+
if output_router_logits:
|
|
118
|
+
aux_loss = load_balancing_loss_func(
|
|
119
|
+
outputs.router_logits if return_dict else outputs[-1],
|
|
120
|
+
self.num_experts,
|
|
121
|
+
self.num_experts_per_tok,
|
|
122
|
+
attention_mask,
|
|
123
|
+
)
|
|
124
|
+
if labels is not None:
|
|
125
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
126
|
+
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
if output_router_logits:
|
|
130
|
+
output = (aux_loss,) + output
|
|
131
|
+
return (loss,) + output if loss is not None else output
|
|
132
|
+
|
|
133
|
+
return MoeCausalLMOutputWithPast(
|
|
134
|
+
loss=loss,
|
|
135
|
+
aux_loss=aux_loss,
|
|
136
|
+
logits=logits,
|
|
137
|
+
past_key_values=outputs.past_key_values,
|
|
138
|
+
hidden_states=outputs.hidden_states,
|
|
139
|
+
attentions=outputs.attentions,
|
|
140
|
+
router_logits=outputs.router_logits,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
145
|
+
# Ignore copy
|
|
146
|
+
def lce_forward(
|
|
147
|
+
self,
|
|
148
|
+
input_ids: torch.LongTensor = None,
|
|
149
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
150
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
151
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
152
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
153
|
+
labels: Optional[torch.LongTensor] = None,
|
|
154
|
+
use_cache: Optional[bool] = None,
|
|
155
|
+
output_attentions: Optional[bool] = None,
|
|
156
|
+
output_hidden_states: Optional[bool] = None,
|
|
157
|
+
output_router_logits: Optional[bool] = None,
|
|
158
|
+
return_dict: Optional[bool] = None,
|
|
159
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
160
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
161
|
+
skip_logits: Optional[bool] = None,
|
|
162
|
+
**kwargs,
|
|
163
|
+
) -> Union[Tuple, LigerMoeCausalLMOutputWithPast]:
|
|
164
|
+
r"""
|
|
165
|
+
Args:
|
|
166
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
167
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
168
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
169
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
170
|
+
|
|
171
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
172
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
173
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
174
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
175
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
176
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
|
|
180
|
+
Example:
|
|
181
|
+
|
|
182
|
+
```python
|
|
183
|
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
184
|
+
|
|
185
|
+
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
186
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
187
|
+
|
|
188
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
189
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
190
|
+
|
|
191
|
+
>>> # Generate
|
|
192
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
193
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
194
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
195
|
+
```"""
|
|
196
|
+
|
|
197
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
198
|
+
output_router_logits = (
|
|
199
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
output_hidden_states = (
|
|
203
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
204
|
+
)
|
|
205
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
206
|
+
|
|
207
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
208
|
+
outputs = self.model(
|
|
209
|
+
input_ids=input_ids,
|
|
210
|
+
attention_mask=attention_mask,
|
|
211
|
+
position_ids=position_ids,
|
|
212
|
+
past_key_values=past_key_values,
|
|
213
|
+
inputs_embeds=inputs_embeds,
|
|
214
|
+
use_cache=use_cache,
|
|
215
|
+
output_attentions=output_attentions,
|
|
216
|
+
output_hidden_states=output_hidden_states,
|
|
217
|
+
output_router_logits=output_router_logits,
|
|
218
|
+
return_dict=return_dict,
|
|
219
|
+
cache_position=cache_position,
|
|
220
|
+
**kwargs,
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
hidden_states = outputs[0]
|
|
224
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
225
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
226
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
227
|
+
|
|
228
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
229
|
+
logits = None
|
|
230
|
+
loss = None
|
|
231
|
+
token_accuracy = None
|
|
232
|
+
|
|
233
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
234
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
235
|
+
|
|
236
|
+
if skip_logits is None:
|
|
237
|
+
# By default, if in training mode, don't materialize logits
|
|
238
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
239
|
+
|
|
240
|
+
# Compute loss
|
|
241
|
+
if skip_logits:
|
|
242
|
+
result = LigerForCausalLMLoss(
|
|
243
|
+
hidden_states=kept_hidden_states,
|
|
244
|
+
lm_head_weight=self.lm_head.weight,
|
|
245
|
+
labels=labels,
|
|
246
|
+
shift_labels=shift_labels,
|
|
247
|
+
hidden_size=self.config.hidden_size,
|
|
248
|
+
**kwargs,
|
|
249
|
+
)
|
|
250
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
251
|
+
|
|
252
|
+
else:
|
|
253
|
+
logits = self.lm_head(kept_hidden_states)
|
|
254
|
+
|
|
255
|
+
loss = None
|
|
256
|
+
if labels is not None or shift_labels is not None:
|
|
257
|
+
loss = self.loss_function(
|
|
258
|
+
logits=logits,
|
|
259
|
+
labels=labels,
|
|
260
|
+
shift_labels=shift_labels,
|
|
261
|
+
vocab_size=self.vocab_size,
|
|
262
|
+
**kwargs,
|
|
263
|
+
)
|
|
264
|
+
aux_loss = None
|
|
265
|
+
if output_router_logits:
|
|
266
|
+
aux_loss = load_balancing_loss_func(
|
|
267
|
+
outputs.router_logits if return_dict else outputs[-1],
|
|
268
|
+
self.num_experts,
|
|
269
|
+
self.num_experts_per_tok,
|
|
270
|
+
attention_mask,
|
|
271
|
+
)
|
|
272
|
+
if labels is not None:
|
|
273
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
274
|
+
|
|
275
|
+
if not return_dict:
|
|
276
|
+
output_tuple = (logits,) + outputs[1:]
|
|
277
|
+
if output_router_logits:
|
|
278
|
+
output_tuple = (aux_loss,) + output_tuple
|
|
279
|
+
if token_accuracy is not None:
|
|
280
|
+
output_tuple = output_tuple + (token_accuracy,)
|
|
281
|
+
return (loss,) + output_tuple if loss is not None else output_tuple
|
|
282
|
+
|
|
283
|
+
# Return custom output class with token_accuracy field
|
|
284
|
+
return LigerMoeCausalLMOutputWithPast(
|
|
285
|
+
loss=loss,
|
|
286
|
+
aux_loss=aux_loss,
|
|
287
|
+
logits=logits,
|
|
288
|
+
past_key_values=outputs.past_key_values,
|
|
289
|
+
hidden_states=outputs.hidden_states,
|
|
290
|
+
attentions=outputs.attentions,
|
|
291
|
+
router_logits=outputs.router_logits if return_dict else outputs[-1],
|
|
292
|
+
token_accuracy=token_accuracy,
|
|
293
|
+
)
|
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from torch.nn import CrossEntropyLoss
|
|
9
|
+
from transformers.cache_utils import Cache
|
|
10
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
11
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
12
|
+
|
|
13
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def lce_forward_deprecated(
|
|
20
|
+
self,
|
|
21
|
+
input_ids: torch.LongTensor = None,
|
|
22
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
23
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
cross_attention_states: Optional[torch.LongTensor] = None,
|
|
25
|
+
cross_attention_mask: Optional[torch.LongTensor] = None,
|
|
26
|
+
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
27
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
28
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
29
|
+
labels: Optional[torch.LongTensor] = None,
|
|
30
|
+
use_cache: Optional[bool] = None,
|
|
31
|
+
output_attentions: Optional[bool] = None,
|
|
32
|
+
output_hidden_states: Optional[bool] = None,
|
|
33
|
+
return_dict: Optional[bool] = None,
|
|
34
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
35
|
+
num_logits_to_keep: int = 0,
|
|
36
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
37
|
+
r"""
|
|
38
|
+
Copy paste mllama forward but replace torch cross entropy with liger fused linear cross entropy
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
43
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
44
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
45
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
46
|
+
num_logits_to_keep (`int`, *optional*):
|
|
47
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
48
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
49
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
50
|
+
Returns:
|
|
51
|
+
Example:
|
|
52
|
+
```python
|
|
53
|
+
>>> from transformers import AutoTokenizer, MllamaForCausalLM
|
|
54
|
+
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
|
|
55
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
|
|
56
|
+
>>> prompt = "If I had to write a haiku, it would be:"
|
|
57
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
58
|
+
>>> # Generate
|
|
59
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
|
|
60
|
+
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
61
|
+
>>> print(result)
|
|
62
|
+
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
|
|
63
|
+
I love the idea of snowflakes gently falling, each one
|
|
64
|
+
```
|
|
65
|
+
"""
|
|
66
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
67
|
+
output_hidden_states = (
|
|
68
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
69
|
+
)
|
|
70
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
71
|
+
|
|
72
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
73
|
+
outputs = self.model(
|
|
74
|
+
input_ids=input_ids,
|
|
75
|
+
cross_attention_states=cross_attention_states,
|
|
76
|
+
attention_mask=attention_mask,
|
|
77
|
+
position_ids=position_ids,
|
|
78
|
+
cross_attention_mask=cross_attention_mask,
|
|
79
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
80
|
+
past_key_values=past_key_values,
|
|
81
|
+
inputs_embeds=inputs_embeds,
|
|
82
|
+
use_cache=use_cache,
|
|
83
|
+
output_attentions=output_attentions,
|
|
84
|
+
output_hidden_states=output_hidden_states,
|
|
85
|
+
return_dict=return_dict,
|
|
86
|
+
cache_position=cache_position,
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
hidden_states = outputs[0]
|
|
90
|
+
|
|
91
|
+
loss = None
|
|
92
|
+
logits = None
|
|
93
|
+
|
|
94
|
+
if self.training and (labels is not None):
|
|
95
|
+
kept_hidden_states = hidden_states[:, -num_logits_to_keep:, :]
|
|
96
|
+
|
|
97
|
+
shift_hidden_states = kept_hidden_states[..., :-1, :].contiguous()
|
|
98
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
99
|
+
|
|
100
|
+
# flatten tokens
|
|
101
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
102
|
+
shift_labels = shift_labels.view(-1)
|
|
103
|
+
|
|
104
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
105
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
106
|
+
|
|
107
|
+
else:
|
|
108
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
|
|
109
|
+
if labels is not None:
|
|
110
|
+
# Shift so that tokens < n predict n
|
|
111
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
112
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
113
|
+
# Flatten the tokens
|
|
114
|
+
loss_fct = CrossEntropyLoss()
|
|
115
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
116
|
+
shift_labels = shift_labels.view(-1)
|
|
117
|
+
# Enable model parallelism
|
|
118
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
119
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
120
|
+
|
|
121
|
+
if not return_dict:
|
|
122
|
+
output = (logits,) + outputs[1:]
|
|
123
|
+
return (loss,) + output if loss is not None else output
|
|
124
|
+
|
|
125
|
+
return CausalLMOutputWithPast(
|
|
126
|
+
loss=loss,
|
|
127
|
+
logits=logits,
|
|
128
|
+
past_key_values=outputs.past_key_values,
|
|
129
|
+
hidden_states=outputs.hidden_states,
|
|
130
|
+
attentions=outputs.attentions,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
135
|
+
def lce_forward(
|
|
136
|
+
self,
|
|
137
|
+
input_ids: torch.LongTensor = None,
|
|
138
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
139
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
140
|
+
cross_attention_states: Optional[torch.LongTensor] = None,
|
|
141
|
+
cross_attention_mask: Optional[torch.LongTensor] = None,
|
|
142
|
+
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
143
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
144
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
145
|
+
labels: Optional[torch.LongTensor] = None,
|
|
146
|
+
use_cache: Optional[bool] = None,
|
|
147
|
+
output_attentions: Optional[bool] = None,
|
|
148
|
+
output_hidden_states: Optional[bool] = None,
|
|
149
|
+
return_dict: Optional[bool] = None,
|
|
150
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
151
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
152
|
+
skip_logits: Optional[bool] = None,
|
|
153
|
+
**kwargs,
|
|
154
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
155
|
+
r"""
|
|
156
|
+
Args:
|
|
157
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
158
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
159
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
160
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
161
|
+
|
|
162
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
163
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
164
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
165
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
166
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
167
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
168
|
+
|
|
169
|
+
Returns:
|
|
170
|
+
|
|
171
|
+
Example:
|
|
172
|
+
|
|
173
|
+
```python
|
|
174
|
+
>>> from transformers import AutoTokenizer, MllamaForCausalLM
|
|
175
|
+
|
|
176
|
+
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
|
|
177
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
|
|
178
|
+
|
|
179
|
+
>>> prompt = "If I had to write a haiku, it would be:"
|
|
180
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
181
|
+
|
|
182
|
+
>>> # Generate
|
|
183
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
|
|
184
|
+
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
185
|
+
>>> print(result)
|
|
186
|
+
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
|
|
187
|
+
I love the idea of snowflakes gently falling, each one
|
|
188
|
+
```
|
|
189
|
+
"""
|
|
190
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
191
|
+
output_hidden_states = (
|
|
192
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
193
|
+
)
|
|
194
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
195
|
+
# Filter out accum_dtype from kwargs for model call as MllamaTextModel doesn't accept it in transformers 4.49.0
|
|
196
|
+
# but preserve it for loss function calls
|
|
197
|
+
model_kwargs = {k: v for k, v in kwargs.items() if k != "accum_dtype"}
|
|
198
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
199
|
+
outputs = self.model(
|
|
200
|
+
input_ids=input_ids,
|
|
201
|
+
cross_attention_states=cross_attention_states,
|
|
202
|
+
attention_mask=attention_mask,
|
|
203
|
+
position_ids=position_ids,
|
|
204
|
+
cross_attention_mask=cross_attention_mask,
|
|
205
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
206
|
+
past_key_values=past_key_values,
|
|
207
|
+
inputs_embeds=inputs_embeds,
|
|
208
|
+
use_cache=use_cache,
|
|
209
|
+
output_attentions=output_attentions,
|
|
210
|
+
output_hidden_states=output_hidden_states,
|
|
211
|
+
return_dict=return_dict,
|
|
212
|
+
cache_position=cache_position,
|
|
213
|
+
**model_kwargs,
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
hidden_states = outputs[0]
|
|
217
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
218
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
219
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
220
|
+
|
|
221
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
222
|
+
logits = None
|
|
223
|
+
loss = None
|
|
224
|
+
token_accuracy = None
|
|
225
|
+
|
|
226
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
227
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
228
|
+
|
|
229
|
+
if skip_logits is None:
|
|
230
|
+
# By default, if in training mode, don't materialize logits
|
|
231
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
232
|
+
|
|
233
|
+
if skip_logits:
|
|
234
|
+
result = LigerForCausalLMLoss(
|
|
235
|
+
hidden_states=kept_hidden_states,
|
|
236
|
+
lm_head_weight=self.lm_head.weight,
|
|
237
|
+
labels=labels,
|
|
238
|
+
shift_labels=shift_labels,
|
|
239
|
+
hidden_size=self.config.hidden_size,
|
|
240
|
+
**kwargs,
|
|
241
|
+
)
|
|
242
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
243
|
+
|
|
244
|
+
else:
|
|
245
|
+
logits = self.lm_head(kept_hidden_states)
|
|
246
|
+
if labels is not None or shift_labels is not None:
|
|
247
|
+
loss = self.loss_function(
|
|
248
|
+
logits=logits,
|
|
249
|
+
labels=labels,
|
|
250
|
+
shift_labels=shift_labels,
|
|
251
|
+
vocab_size=self.config.vocab_size,
|
|
252
|
+
**kwargs,
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
if not return_dict:
|
|
256
|
+
output = (logits,) + outputs[1:]
|
|
257
|
+
output = (loss,) + output if loss is not None else output
|
|
258
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
259
|
+
return output
|
|
260
|
+
|
|
261
|
+
# Return custom output class with token_accuracy field
|
|
262
|
+
return LigerCausalLMOutputWithPast(
|
|
263
|
+
loss=loss,
|
|
264
|
+
logits=logits,
|
|
265
|
+
past_key_values=outputs.past_key_values,
|
|
266
|
+
hidden_states=outputs.hidden_states,
|
|
267
|
+
attentions=outputs.attentions,
|
|
268
|
+
token_accuracy=token_accuracy,
|
|
269
|
+
)
|