liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
import triton.language as tl
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def _prepare_freqs(freqs_cis: torch.Tensor, seq_len: int, head_dim_half: int):
|
|
7
|
+
# Split or unpack complex frequencies into real and imag parts
|
|
8
|
+
if freqs_cis.is_complex():
|
|
9
|
+
freqs_real = freqs_cis.real
|
|
10
|
+
freqs_imag = freqs_cis.imag
|
|
11
|
+
else:
|
|
12
|
+
# Already split: last dim should be 2*head_dim_half
|
|
13
|
+
if freqs_cis.shape[-1] == 2 * head_dim_half:
|
|
14
|
+
freqs_real = freqs_cis[..., :head_dim_half]
|
|
15
|
+
freqs_imag = freqs_cis[..., head_dim_half:]
|
|
16
|
+
else:
|
|
17
|
+
raise ValueError(
|
|
18
|
+
f"Unexpected freqs_cis shape for non-complex input: {freqs_cis.shape}, expected last dim = {2 * head_dim_half}"
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
# Canonicalize to shape (seq_len, head_dim_half):
|
|
22
|
+
# 1) Ensure the last dimension is head_dim_half
|
|
23
|
+
if freqs_real.shape[-1] != head_dim_half:
|
|
24
|
+
raise ValueError(f"Unexpected last dim for freqs: {freqs_real.shape[-1]} (expected {head_dim_half})")
|
|
25
|
+
# 2) Flatten all leading dims to a single row dimension
|
|
26
|
+
freqs_real = freqs_real.reshape(-1, head_dim_half)
|
|
27
|
+
freqs_imag = freqs_imag.reshape(-1, head_dim_half)
|
|
28
|
+
# 3) If we have fewer rows than seq_len, allow broadcasting when single row
|
|
29
|
+
if freqs_real.shape[0] < seq_len:
|
|
30
|
+
if freqs_real.shape[0] == 1:
|
|
31
|
+
freqs_real = freqs_real.expand(seq_len, -1)
|
|
32
|
+
freqs_imag = freqs_imag.expand(seq_len, -1)
|
|
33
|
+
else:
|
|
34
|
+
raise ValueError(f"Insufficient rows in freqs: {freqs_real.shape[0]} < seq_len={seq_len}")
|
|
35
|
+
# 4) If we have more rows than seq_len (e.g., batch present), take the first seq_len rows
|
|
36
|
+
elif freqs_real.shape[0] > seq_len:
|
|
37
|
+
freqs_real = freqs_real[:seq_len]
|
|
38
|
+
freqs_imag = freqs_imag[:seq_len]
|
|
39
|
+
|
|
40
|
+
return freqs_real, freqs_imag
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def _maybe_to_dtype(t: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
|
44
|
+
return t if t.dtype == dtype else t.to(dtype)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _maybe_contiguous(t: torch.Tensor) -> torch.Tensor:
|
|
48
|
+
return t if t.is_contiguous() else t.contiguous()
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _cast_and_contiguous(q, k, freqs_real, freqs_imag):
|
|
52
|
+
# Choose compute dtype: use fp32 only when inputs are fp32; otherwise keep input dtype for performance
|
|
53
|
+
compute_dtype = torch.float32 if q.dtype == torch.float32 else q.dtype
|
|
54
|
+
|
|
55
|
+
# Make sure q/k share the same dtype before casting to compute dtype
|
|
56
|
+
if k.dtype != q.dtype:
|
|
57
|
+
k = k.to(q.dtype)
|
|
58
|
+
|
|
59
|
+
q = _maybe_contiguous(_maybe_to_dtype(q, compute_dtype))
|
|
60
|
+
k = _maybe_contiguous(_maybe_to_dtype(k, compute_dtype))
|
|
61
|
+
freqs_real = _maybe_contiguous(_maybe_to_dtype(freqs_real, compute_dtype))
|
|
62
|
+
freqs_imag = _maybe_contiguous(_maybe_to_dtype(freqs_imag, compute_dtype))
|
|
63
|
+
return q, k, freqs_real, freqs_imag
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@triton.jit
|
|
67
|
+
def _llama4_rope_kernel(
|
|
68
|
+
q_ptr,
|
|
69
|
+
k_ptr,
|
|
70
|
+
freqs_real_ptr,
|
|
71
|
+
freqs_imag_ptr,
|
|
72
|
+
q_row_stride,
|
|
73
|
+
k_row_stride,
|
|
74
|
+
q_head_stride,
|
|
75
|
+
k_head_stride,
|
|
76
|
+
freqs_row_stride,
|
|
77
|
+
seq_len,
|
|
78
|
+
batch_size,
|
|
79
|
+
imag_sign,
|
|
80
|
+
head_dim_half: tl.constexpr,
|
|
81
|
+
n_q_heads: tl.constexpr,
|
|
82
|
+
n_k_heads: tl.constexpr,
|
|
83
|
+
BLOCK_SIZE: tl.constexpr,
|
|
84
|
+
):
|
|
85
|
+
"""
|
|
86
|
+
H100-optimized RoPE kernel with improved parallelization across heads and dimensions.
|
|
87
|
+
Grid: (batch*seq, head)
|
|
88
|
+
"""
|
|
89
|
+
# 2D grid
|
|
90
|
+
pid_bs = tl.program_id(0) # over batch*seq
|
|
91
|
+
pid_h = tl.program_id(1) # over heads
|
|
92
|
+
|
|
93
|
+
batch_idx = pid_bs // seq_len
|
|
94
|
+
seq_idx = pid_bs % seq_len
|
|
95
|
+
|
|
96
|
+
# Bounds check
|
|
97
|
+
if batch_idx >= batch_size or seq_idx >= seq_len:
|
|
98
|
+
return
|
|
99
|
+
|
|
100
|
+
# Base pointers for this (batch, seq) position
|
|
101
|
+
base_offset = batch_idx * seq_len + seq_idx
|
|
102
|
+
q_base = q_ptr + base_offset * q_row_stride
|
|
103
|
+
k_base = k_ptr + base_offset * k_row_stride
|
|
104
|
+
|
|
105
|
+
# Tiling over dim/2
|
|
106
|
+
for d_start in tl.static_range(0, head_dim_half, BLOCK_SIZE):
|
|
107
|
+
d_indices = d_start + tl.arange(0, BLOCK_SIZE)
|
|
108
|
+
mask_d = d_indices < head_dim_half
|
|
109
|
+
|
|
110
|
+
# Load frequencies once per tile (freqs layout: [seq_len, head_dim_half])
|
|
111
|
+
freq_idx = d_indices
|
|
112
|
+
freqs_real = tl.load(freqs_real_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
|
113
|
+
freqs_imag = tl.load(freqs_imag_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
|
114
|
+
freqs_imag = freqs_imag * imag_sign
|
|
115
|
+
|
|
116
|
+
# Process one query head per program in pid_h
|
|
117
|
+
if pid_h < n_q_heads:
|
|
118
|
+
q_head_ptr = q_base + pid_h * q_head_stride
|
|
119
|
+
q_real = tl.load(q_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
|
120
|
+
q_imag = tl.load(q_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
|
121
|
+
|
|
122
|
+
# Complex multiply with FMAs: (a+ib)*(c+i d) = (a*c - b*d) + i(a*d + b*c)
|
|
123
|
+
new_q_real = tl.math.fma(q_real, freqs_real, -(q_imag * freqs_imag))
|
|
124
|
+
new_q_imag = tl.math.fma(q_real, freqs_imag, q_imag * freqs_real)
|
|
125
|
+
|
|
126
|
+
tl.store(q_head_ptr + d_indices * 2, new_q_real, mask=mask_d)
|
|
127
|
+
tl.store(q_head_ptr + d_indices * 2 + 1, new_q_imag, mask=mask_d)
|
|
128
|
+
|
|
129
|
+
# Process one key head per program in pid_h
|
|
130
|
+
if pid_h < n_k_heads:
|
|
131
|
+
k_head_ptr = k_base + pid_h * k_head_stride
|
|
132
|
+
k_real = tl.load(k_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
|
133
|
+
k_imag = tl.load(k_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
|
134
|
+
|
|
135
|
+
new_k_real = tl.math.fma(k_real, freqs_real, -(k_imag * freqs_imag))
|
|
136
|
+
new_k_imag = tl.math.fma(k_real, freqs_imag, k_imag * freqs_real)
|
|
137
|
+
|
|
138
|
+
tl.store(k_head_ptr + d_indices * 2, new_k_real, mask=mask_d)
|
|
139
|
+
tl.store(k_head_ptr + d_indices * 2 + 1, new_k_imag, mask=mask_d)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def _select_kernel_meta(head_dim_half: int):
|
|
143
|
+
# Heuristic tuning for block size and num_warps
|
|
144
|
+
if head_dim_half >= 256:
|
|
145
|
+
return 128, 8
|
|
146
|
+
if head_dim_half >= 96:
|
|
147
|
+
return 128, 4
|
|
148
|
+
if head_dim_half >= 48:
|
|
149
|
+
return 64, 4
|
|
150
|
+
if head_dim_half >= 24:
|
|
151
|
+
return 32, 2
|
|
152
|
+
return 16, 2
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE: int = None, imag_sign: float = 1.0):
|
|
156
|
+
# Save original dtype for casting back
|
|
157
|
+
original_dtype = q.dtype
|
|
158
|
+
|
|
159
|
+
batch_size, seq_len, n_q_heads, head_dim = q.shape
|
|
160
|
+
_, _, n_k_heads, _ = k.shape
|
|
161
|
+
head_dim_half = head_dim // 2
|
|
162
|
+
|
|
163
|
+
# Prepare frequencies
|
|
164
|
+
freqs_real, freqs_imag = _prepare_freqs(freqs_cis, seq_len, head_dim_half)
|
|
165
|
+
|
|
166
|
+
# Cast to appropriate dtype and make contiguous only when needed
|
|
167
|
+
q, k, freqs_real, freqs_imag = _cast_and_contiguous(q, k, freqs_real, freqs_imag)
|
|
168
|
+
|
|
169
|
+
# H100-optimized meta-params
|
|
170
|
+
if BLOCK_SIZE is None:
|
|
171
|
+
BLOCK_SIZE, num_warps = _select_kernel_meta(head_dim_half)
|
|
172
|
+
else:
|
|
173
|
+
# Provide a default num_warps if caller pins BLOCK_SIZE
|
|
174
|
+
_, num_warps = _select_kernel_meta(head_dim_half)
|
|
175
|
+
|
|
176
|
+
# 2D grid: one program per (batch, seq, head)
|
|
177
|
+
n_heads_max = max(n_q_heads, n_k_heads)
|
|
178
|
+
grid = (batch_size * seq_len, n_heads_max)
|
|
179
|
+
|
|
180
|
+
# Launch kernel
|
|
181
|
+
_llama4_rope_kernel[grid](
|
|
182
|
+
q,
|
|
183
|
+
k,
|
|
184
|
+
freqs_real,
|
|
185
|
+
freqs_imag,
|
|
186
|
+
q.stride(1),
|
|
187
|
+
k.stride(1),
|
|
188
|
+
q.stride(2),
|
|
189
|
+
k.stride(2),
|
|
190
|
+
freqs_real.stride(0),
|
|
191
|
+
seq_len,
|
|
192
|
+
batch_size,
|
|
193
|
+
imag_sign,
|
|
194
|
+
head_dim_half,
|
|
195
|
+
n_q_heads,
|
|
196
|
+
n_k_heads,
|
|
197
|
+
BLOCK_SIZE,
|
|
198
|
+
num_warps=num_warps,
|
|
199
|
+
num_stages=2,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Cast back to original dtype only if it differs from compute dtype
|
|
203
|
+
if q.dtype != original_dtype:
|
|
204
|
+
q = q.to(original_dtype)
|
|
205
|
+
if k.dtype != original_dtype:
|
|
206
|
+
k = k.to(original_dtype)
|
|
207
|
+
|
|
208
|
+
return q, k
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
class LigerLlama4RopeFunction(torch.autograd.Function):
|
|
212
|
+
@staticmethod
|
|
213
|
+
def forward(ctx, q, k, freqs_cis, BLOCK_SIZE: int = None):
|
|
214
|
+
q_out, k_out = llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE, imag_sign=1.0)
|
|
215
|
+
ctx.save_for_backward(freqs_cis.detach() if isinstance(freqs_cis, torch.Tensor) else freqs_cis)
|
|
216
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
|
217
|
+
return q_out, k_out
|
|
218
|
+
|
|
219
|
+
@staticmethod
|
|
220
|
+
def backward(ctx, dq, dk):
|
|
221
|
+
(freqs_cis,) = ctx.saved_tensors
|
|
222
|
+
BLOCK_SIZE = getattr(ctx, "BLOCK_SIZE", None)
|
|
223
|
+
# Use imag_sign=-1.0 for conjugate without materializing a new tensor
|
|
224
|
+
dq_out, dk_out = llama4_rope_forward(dq, dk, freqs_cis, BLOCK_SIZE, imag_sign=-1.0)
|
|
225
|
+
return dq_out, dk_out, None
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
import triton
|
|
4
|
+
import triton.language as tl
|
|
5
|
+
|
|
6
|
+
from torch.nn.modules.utils import _pair
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.softmax import _softmax_forward
|
|
9
|
+
from liger_kernel.ops.sparsemax import _sparsemax_backward
|
|
10
|
+
from liger_kernel.ops.sparsemax import _sparsemax_forward
|
|
11
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
12
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@triton.jit
|
|
16
|
+
def _mask_fwd_kernel(
|
|
17
|
+
scores_ptr,
|
|
18
|
+
out_ptr,
|
|
19
|
+
stride_b,
|
|
20
|
+
stride_m,
|
|
21
|
+
stride_n,
|
|
22
|
+
L,
|
|
23
|
+
mask_val: tl.constexpr,
|
|
24
|
+
BLOCK: tl.constexpr,
|
|
25
|
+
num_warps: tl.constexpr,
|
|
26
|
+
):
|
|
27
|
+
row_block = tl.program_id(0)
|
|
28
|
+
col_block = tl.program_id(1)
|
|
29
|
+
batch_id = tl.program_id(2)
|
|
30
|
+
|
|
31
|
+
row_idx = row_block * BLOCK + tl.arange(0, BLOCK)
|
|
32
|
+
col_idx = col_block * BLOCK + tl.arange(0, BLOCK)
|
|
33
|
+
in_bounds = (row_idx[:, None] < L) & (col_idx[None, :] < L)
|
|
34
|
+
|
|
35
|
+
base = scores_ptr + batch_id * stride_b
|
|
36
|
+
offs = row_idx[:, None] * stride_m + col_idx[None, :] * stride_n
|
|
37
|
+
future = col_idx[None, :] > row_idx[:, None]
|
|
38
|
+
mask_load = in_bounds & ~future
|
|
39
|
+
out = tl.load(base + offs, mask=mask_load, other=mask_val, cache_modifier=".ca")
|
|
40
|
+
tl.store(out_ptr + batch_id * stride_b + offs, out, mask=in_bounds, cache_modifier=".cs")
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@triton.jit
|
|
44
|
+
def _mask_bwd_kernel(
|
|
45
|
+
grad_in_ptr, out_ptr, stride_b, stride_m, stride_n, L, BLOCK: tl.constexpr, num_warps: tl.constexpr
|
|
46
|
+
):
|
|
47
|
+
row_block = tl.program_id(0)
|
|
48
|
+
col_block = tl.program_id(1)
|
|
49
|
+
batch_id = tl.program_id(2)
|
|
50
|
+
|
|
51
|
+
row_idx = row_block * BLOCK + tl.arange(0, BLOCK)
|
|
52
|
+
col_idx = col_block * BLOCK + tl.arange(0, BLOCK)
|
|
53
|
+
in_bounds = (row_idx[:, None] < L) & (col_idx[None, :] < L)
|
|
54
|
+
|
|
55
|
+
base = grad_in_ptr + batch_id * stride_b
|
|
56
|
+
offs = row_idx[:, None] * stride_m + col_idx[None, :] * stride_n
|
|
57
|
+
grad_vals = tl.load(base + offs, mask=in_bounds, other=0.0, cache_modifier=".ca")
|
|
58
|
+
|
|
59
|
+
future = col_idx[None, :] > row_idx[:, None]
|
|
60
|
+
zero = tl.zeros(grad_vals.shape, dtype=grad_vals.dtype)
|
|
61
|
+
out = tl.where(future, zero, grad_vals)
|
|
62
|
+
|
|
63
|
+
tl.store(out_ptr + batch_id * stride_b + offs, out, mask=in_bounds, cache_modifier=".wb")
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _mask_inf_forward(scores: torch.Tensor) -> torch.Tensor:
|
|
67
|
+
*batch, L, _ = scores.shape
|
|
68
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
69
|
+
scores_f = scores.view(N, L, L)
|
|
70
|
+
out = torch.empty_like(scores_f)
|
|
71
|
+
|
|
72
|
+
sb, sm, sn = scores_f.stride(0), scores_f.stride(1), scores_f.stride(2)
|
|
73
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
74
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
75
|
+
_mask_fwd_kernel[grid](scores_f, out, sb, sm, sn, L, mask_val=-1e9, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
76
|
+
return out.view(*batch, L, L)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def _mask_inf_backward(grad: torch.Tensor) -> torch.Tensor:
|
|
80
|
+
*batch, L, _ = grad.shape
|
|
81
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
82
|
+
grad_f = grad.view(N, L, L)
|
|
83
|
+
out = torch.empty_like(grad_f)
|
|
84
|
+
|
|
85
|
+
sb, sm, sn = grad_f.stride(0), grad_f.stride(1), grad_f.stride(2)
|
|
86
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
87
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
88
|
+
_mask_bwd_kernel[grid](grad_f, out, sb, sm, sn, L, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
89
|
+
return out.view(*batch, L, L)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _mask_zero_forward(scores: torch.Tensor) -> torch.Tensor:
|
|
93
|
+
*batch, L, _ = scores.shape
|
|
94
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
95
|
+
scores_f = scores.view(N, L, L)
|
|
96
|
+
out = torch.empty_like(scores_f)
|
|
97
|
+
|
|
98
|
+
sb, sm, sn = scores_f.stride(0), scores_f.stride(1), scores_f.stride(2)
|
|
99
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
100
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
101
|
+
_mask_fwd_kernel[grid](scores_f, out, sb, sm, sn, L, mask_val=0.0, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
102
|
+
return out.view(*batch, L, L)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def _mask_zero_backward(grad: torch.Tensor) -> torch.Tensor:
|
|
106
|
+
*batch, L, _ = grad.shape
|
|
107
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
108
|
+
grad_f = grad.view(N, L, L)
|
|
109
|
+
out = torch.empty_like(grad_f)
|
|
110
|
+
|
|
111
|
+
sb, sm, sn = grad_f.stride(0), grad_f.stride(1), grad_f.stride(2)
|
|
112
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
113
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
114
|
+
_mask_bwd_kernel[grid](grad_f, out, sb, sm, sn, L, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
115
|
+
return out.view(*batch, L, L)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class LigerMultiTokenAttentionFunction(torch.autograd.Function):
|
|
119
|
+
@staticmethod
|
|
120
|
+
@ensure_contiguous
|
|
121
|
+
def forward(ctx, scores, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, sparse=False):
|
|
122
|
+
scores_inf = _mask_inf_forward(scores)
|
|
123
|
+
|
|
124
|
+
out_flat_sparse = None
|
|
125
|
+
activation_output = None
|
|
126
|
+
|
|
127
|
+
ctx.sparse = sparse
|
|
128
|
+
|
|
129
|
+
if sparse:
|
|
130
|
+
if scores_inf.dtype != torch.float32:
|
|
131
|
+
raise RuntimeError("Liger sparse multi-token attention currently only supports fp32 input scores")
|
|
132
|
+
probs_sparse, out_flat_sparse = _sparsemax_forward(scores_inf, dim=-1)
|
|
133
|
+
activation_output = probs_sparse
|
|
134
|
+
ctx.save_for_backward(scores_inf, activation_output, out_flat_sparse, weight, bias)
|
|
135
|
+
ctx.out_flat_sparse_saved = True
|
|
136
|
+
else:
|
|
137
|
+
probs_softmax, _, _, _ = _softmax_forward(scores_inf)
|
|
138
|
+
activation_output = probs_softmax
|
|
139
|
+
ctx.save_for_backward(scores_inf, activation_output, weight, bias)
|
|
140
|
+
ctx.out_flat_sparse_saved = False
|
|
141
|
+
|
|
142
|
+
out_conv = F.conv2d(
|
|
143
|
+
activation_output,
|
|
144
|
+
weight,
|
|
145
|
+
bias,
|
|
146
|
+
stride=stride,
|
|
147
|
+
padding=padding,
|
|
148
|
+
dilation=dilation,
|
|
149
|
+
groups=groups,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
out = _mask_zero_forward(out_conv)
|
|
153
|
+
|
|
154
|
+
ctx.stride = _pair(stride)
|
|
155
|
+
ctx.padding = _pair(padding)
|
|
156
|
+
ctx.dilation = _pair(dilation)
|
|
157
|
+
ctx.groups = groups
|
|
158
|
+
ctx.dim = -1
|
|
159
|
+
|
|
160
|
+
return out
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
@ensure_contiguous
|
|
164
|
+
def backward(ctx, grad_out):
|
|
165
|
+
if ctx.out_flat_sparse_saved:
|
|
166
|
+
scores_inf, activation_output, out_flat_sparse, weight, bias = ctx.saved_tensors
|
|
167
|
+
else:
|
|
168
|
+
scores_inf, activation_output, weight, bias = ctx.saved_tensors
|
|
169
|
+
out_flat_sparse = None
|
|
170
|
+
|
|
171
|
+
use_sparsemax = ctx.sparse
|
|
172
|
+
dim = ctx.dim
|
|
173
|
+
stride, padding, dilation, groups = (ctx.stride, ctx.padding, ctx.dilation, ctx.groups)
|
|
174
|
+
|
|
175
|
+
grad_conv = _mask_zero_backward(grad_out)
|
|
176
|
+
|
|
177
|
+
grad_probs = F.conv_transpose2d(
|
|
178
|
+
grad_conv, weight, None, stride=stride, padding=padding, dilation=dilation, groups=groups
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
grad_weight = torch.nn.grad.conv2d_weight(
|
|
182
|
+
input=activation_output,
|
|
183
|
+
weight_size=weight.shape,
|
|
184
|
+
grad_output=grad_conv,
|
|
185
|
+
stride=stride,
|
|
186
|
+
padding=padding,
|
|
187
|
+
dilation=dilation,
|
|
188
|
+
groups=groups,
|
|
189
|
+
)
|
|
190
|
+
grad_bias = None
|
|
191
|
+
if bias is not None:
|
|
192
|
+
grad_bias = grad_conv.sum(dim=(0, 2, 3))
|
|
193
|
+
|
|
194
|
+
grad_scores_inf = None
|
|
195
|
+
if use_sparsemax:
|
|
196
|
+
if not ctx.out_flat_sparse_saved or out_flat_sparse is None:
|
|
197
|
+
raise RuntimeError("Internal error: Sparse flag is set but sparse tensor was not saved.")
|
|
198
|
+
grad_scores_inf = _sparsemax_backward(grad_probs, out_flat_sparse, dim=dim)
|
|
199
|
+
else:
|
|
200
|
+
grad_probs_cont = grad_probs
|
|
201
|
+
probs_cont = activation_output
|
|
202
|
+
dot = (grad_probs_cont * probs_cont).sum(dim=-1, keepdim=True)
|
|
203
|
+
grad_scores_inf = probs_cont * (grad_probs_cont - dot)
|
|
204
|
+
|
|
205
|
+
grad_scores = _mask_inf_backward(grad_scores_inf)
|
|
206
|
+
|
|
207
|
+
return (grad_scores, grad_weight, grad_bias, None, None, None, None, None)
|