liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,126 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import load_balancing_loss_func
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
13
+ from liger_kernel.transformers.model.output_classes import LigerQwen3VLMoeCausalLMOutputWithPast
14
+
15
+
16
+ @can_return_tuple
17
+ def lce_forward(
18
+ self,
19
+ input_ids: torch.LongTensor = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ labels: Optional[torch.LongTensor] = None,
25
+ use_cache: Optional[bool] = None,
26
+ output_attentions: Optional[bool] = None,
27
+ output_hidden_states: Optional[bool] = None,
28
+ return_dict: Optional[bool] = None,
29
+ pixel_values: Optional[torch.Tensor] = None,
30
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
31
+ image_grid_thw: Optional[torch.LongTensor] = None,
32
+ video_grid_thw: Optional[torch.LongTensor] = None,
33
+ rope_deltas: Optional[torch.LongTensor] = None,
34
+ cache_position: Optional[torch.LongTensor] = None,
35
+ second_per_grid_ts: Optional[torch.Tensor] = None,
36
+ skip_logits: Optional[bool] = None,
37
+ **kwargs,
38
+ ) -> Union[Tuple, LigerQwen3VLMoeCausalLMOutputWithPast]:
39
+ """
40
+ Qwen3-VL-MoE forward with fused linear cross entropy support mirroring Qwen3-VL behaviour.
41
+ """
42
+
43
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
44
+ output_hidden_states = (
45
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
46
+ )
47
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
48
+
49
+ outputs = self.model(
50
+ input_ids=input_ids,
51
+ pixel_values=pixel_values,
52
+ pixel_values_videos=pixel_values_videos,
53
+ image_grid_thw=image_grid_thw,
54
+ video_grid_thw=video_grid_thw,
55
+ second_per_grid_ts=second_per_grid_ts,
56
+ position_ids=position_ids,
57
+ attention_mask=attention_mask,
58
+ past_key_values=past_key_values,
59
+ inputs_embeds=inputs_embeds,
60
+ use_cache=use_cache,
61
+ output_attentions=output_attentions,
62
+ output_hidden_states=output_hidden_states,
63
+ return_dict=return_dict,
64
+ cache_position=cache_position,
65
+ **kwargs,
66
+ )
67
+
68
+ hidden_states = outputs[0]
69
+
70
+ shift_labels = kwargs.pop("shift_labels", None)
71
+ loss = None
72
+ logits = None
73
+ token_accuracy = None
74
+
75
+ if skip_logits and labels is None and shift_labels is None:
76
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
77
+
78
+ if skip_logits is None:
79
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
80
+
81
+ if skip_logits:
82
+ result = LigerForCausalLMLoss(
83
+ hidden_states=hidden_states,
84
+ lm_head_weight=self.lm_head.weight,
85
+ labels=labels,
86
+ shift_labels=shift_labels,
87
+ hidden_size=self.config.text_config.hidden_size,
88
+ **kwargs,
89
+ )
90
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
91
+ else:
92
+ logits = self.lm_head(hidden_states)
93
+
94
+ if labels is not None:
95
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
96
+
97
+ # Compute auxiliary load-balancing loss for MoE when requested
98
+ aux_loss = None
99
+ if kwargs.get("output_router_logits", False):
100
+ aux_loss = load_balancing_loss_func(
101
+ outputs.router_logits,
102
+ self.config.text_config.num_experts,
103
+ self.config.text_config.num_experts_per_tok,
104
+ attention_mask,
105
+ )
106
+ # If we computed training loss, add the scaled aux loss to it
107
+ if loss is not None and aux_loss is not None:
108
+ loss = loss + self.config.text_config.router_aux_loss_coef * aux_loss.to(loss.device)
109
+
110
+ if not return_dict:
111
+ output = (logits,) + outputs[1:]
112
+ output = (loss,) + output if loss is not None else output
113
+ output = output + (aux_loss,) if aux_loss is not None else output
114
+ output = output + (token_accuracy,) if token_accuracy is not None else output
115
+ return output
116
+
117
+ return LigerQwen3VLMoeCausalLMOutputWithPast(
118
+ loss=loss,
119
+ logits=logits,
120
+ past_key_values=outputs.past_key_values,
121
+ hidden_states=outputs.hidden_states,
122
+ attentions=outputs.attentions,
123
+ rope_deltas=outputs.rope_deltas,
124
+ aux_loss=aux_loss,
125
+ token_accuracy=token_accuracy,
126
+ )
@@ -0,0 +1,199 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
6
+
7
+ import torch
8
+
9
+ from torch.distributed.fsdp import FullyShardedDataParallel
10
+ from transformers.utils.deprecation import deprecate_kwarg
11
+
12
+ from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
+ from liger_kernel.utils import PEFT_AVAILABLE
17
+
18
+ if TYPE_CHECKING:
19
+ from transformers.cache_utils import Cache
20
+
21
+ if PEFT_AVAILABLE:
22
+ from peft.utils.other import ModulesToSaveWrapper
23
+
24
+
25
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
26
+ def lce_forward(
27
+ self,
28
+ input_ids: torch.LongTensor = None,
29
+ attention_mask: Optional[torch.Tensor] = None,
30
+ position_ids: Optional[torch.LongTensor] = None,
31
+ past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
32
+ inputs_embeds: Optional[torch.FloatTensor] = None,
33
+ labels: Optional[torch.LongTensor] = None,
34
+ use_cache: Optional[bool] = None,
35
+ output_attentions: Optional[bool] = None,
36
+ output_hidden_states: Optional[bool] = None,
37
+ return_dict: Optional[bool] = None,
38
+ cache_position: Optional[torch.LongTensor] = None,
39
+ logits_to_keep: Union[int, torch.Tensor] = 0,
40
+ skip_logits: Optional[bool] = None,
41
+ **kwargs,
42
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
43
+ r"""
44
+ Args:
45
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
46
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
47
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
48
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
49
+
50
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
51
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
52
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
53
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
54
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
55
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
56
+
57
+ Returns:
58
+
59
+ Example:
60
+
61
+ ```python
62
+ >>> from transformers import AutoTokenizer, Smollm3ForCausalLM
63
+
64
+ >>> model = Smollm3ForCausalLM.from_pretrained("HuggingFaceTB/SmolLM3-3B")
65
+ >>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
66
+
67
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
68
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
69
+
70
+ >>> # Generate
71
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
72
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
73
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
74
+ ```"""
75
+
76
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
77
+ output_hidden_states = (
78
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
79
+ )
80
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
81
+
82
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
83
+ outputs = self.model(
84
+ input_ids=input_ids,
85
+ attention_mask=attention_mask,
86
+ position_ids=position_ids,
87
+ past_key_values=past_key_values,
88
+ inputs_embeds=inputs_embeds,
89
+ use_cache=use_cache,
90
+ output_attentions=output_attentions,
91
+ output_hidden_states=output_hidden_states,
92
+ return_dict=return_dict,
93
+ cache_position=cache_position,
94
+ **kwargs,
95
+ )
96
+
97
+ hidden_states = outputs[0]
98
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
99
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
100
+ kept_hidden_states = hidden_states[:, slice_indices, :]
101
+
102
+ shift_labels = kwargs.pop("shift_labels", None)
103
+ logits = None
104
+ loss = None
105
+ token_accuracy = None
106
+
107
+ # if in training mode, don't materialize logits
108
+ if skip_logits and labels is None and shift_labels is None:
109
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
110
+
111
+ if skip_logits is None:
112
+ # By default, if in training mode, don't materialize logits
113
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
114
+
115
+ # Compute loss
116
+ if skip_logits:
117
+ result = lce_maybe_trainable_lm_head(
118
+ self,
119
+ hidden_states=kept_hidden_states,
120
+ hidden_size=self.config.hidden_size,
121
+ labels=labels,
122
+ shift_labels=shift_labels,
123
+ **kwargs,
124
+ )
125
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
126
+
127
+ else:
128
+ logits = self.lm_head(kept_hidden_states)
129
+ if labels is not None or shift_labels is not None:
130
+ loss = self.loss_function(
131
+ logits=logits,
132
+ labels=labels,
133
+ shift_labels=shift_labels,
134
+ vocab_size=self.config.vocab_size,
135
+ **kwargs,
136
+ )
137
+
138
+ if not return_dict:
139
+ output_tuple = (logits,) + outputs[1:]
140
+ output = (loss,) + output_tuple if loss is not None else output_tuple
141
+ output = output + (token_accuracy,) if token_accuracy is not None else output
142
+ return output
143
+
144
+ # Return custom output class with token_accuracy field
145
+ return LigerCausalLMOutputWithPast(
146
+ loss=loss,
147
+ logits=logits,
148
+ past_key_values=outputs.past_key_values,
149
+ hidden_states=outputs.hidden_states,
150
+ attentions=outputs.attentions,
151
+ token_accuracy=token_accuracy,
152
+ )
153
+
154
+
155
+ def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
156
+ lm_head = self.lm_head
157
+
158
+ # Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
159
+ # i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
160
+ # from the unwrapped module.
161
+ # See https://huggingface.co/docs/peft/package_reference/lora for reference.
162
+ if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
163
+ lm_head = lm_head.modules_to_save.default
164
+
165
+ # If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
166
+ # reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
167
+ # so the module entire parameters are summoned and kept in memory during the kernel execution.
168
+ if isinstance(lm_head, FullyShardedDataParallel):
169
+ return _FSDPForwardRedirection()(
170
+ lm_head,
171
+ _liger_for_causal_lm_loss,
172
+ lm_head.module,
173
+ hidden_states,
174
+ hidden_size,
175
+ labels,
176
+ shift_labels,
177
+ **loss_kwargs,
178
+ )
179
+
180
+ # FSDP is not used so we can read the lm_head weights and call the kernel directly
181
+ return _liger_for_causal_lm_loss(
182
+ lm_head=self.lm_head,
183
+ hidden_states=hidden_states,
184
+ hidden_size=hidden_size,
185
+ labels=labels,
186
+ shift_labels=shift_labels,
187
+ **loss_kwargs,
188
+ )
189
+
190
+
191
+ def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
192
+ return LigerForCausalLMLoss(
193
+ hidden_states=hidden_states,
194
+ lm_head_weight=lm_head.weight,
195
+ labels=labels,
196
+ hidden_size=hidden_size,
197
+ shift_labels=shift_labels,
198
+ **loss_kwargs,
199
+ )
@@ -0,0 +1,158 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
8
+ from transformers.processing_utils import Unpack
9
+ from transformers.utils.generic import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+ if TYPE_CHECKING:
14
+ from transformers.cache_utils import Cache
15
+ from transformers.utils.generic import TransformersKwargs
16
+
17
+
18
+ # Forward adapted to enable fused Linear + CE without materializing logits.
19
+ # Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
20
+ @can_return_tuple
21
+ def lce_forward(
22
+ self,
23
+ input_ids: Optional[torch.LongTensor] = None,
24
+ attention_mask: Optional[torch.Tensor] = None,
25
+ position_ids: Optional[torch.LongTensor] = None,
26
+ past_key_values: Optional["Cache"] = None,
27
+ inputs_embeds: Optional[torch.FloatTensor] = None,
28
+ pixel_values: Optional[torch.FloatTensor] = None,
29
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
30
+ image_hidden_states: Optional[torch.FloatTensor] = None,
31
+ labels: Optional[torch.LongTensor] = None,
32
+ use_cache: Optional[bool] = None,
33
+ output_attentions: Optional[bool] = None,
34
+ output_hidden_states: Optional[bool] = None,
35
+ cache_position: Optional[torch.LongTensor] = None,
36
+ return_dict: Optional[bool] = None,
37
+ logits_to_keep: Union[int, torch.Tensor] = 0,
38
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
39
+ **lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
40
+ ) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
41
+ r"""
42
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
43
+ Mask to avoid performing attention on padding pixel indices.
44
+ image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
45
+ The hidden states of the image encoder after modality projection.
46
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
47
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
48
+ config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
49
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> import requests
55
+ >>> import torch
56
+ >>> from PIL import Image
57
+ >>> from io import BytesIO
58
+
59
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
60
+ >>> from transformers.image_utils import load_image
61
+
62
+ >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
63
+ >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
64
+ >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
65
+ >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
66
+
67
+ >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
68
+ >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
69
+
70
+ >>> # Create inputs
71
+ >>> messages = [
72
+ ... {
73
+ ... "role": "user",
74
+ ... "content": [
75
+ ... {"type": "video", "path": path/to/video},
76
+ ... {"type": "text", "text": "What is happening in this video?"},
77
+ ... ]
78
+ ... }
79
+ ... ]
80
+
81
+ >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
82
+
83
+ >>> # Generate
84
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=256)
85
+ >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
86
+
87
+ >>> print(generated_texts)
88
+ ```"""
89
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
90
+ output_hidden_states = (
91
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
92
+ )
93
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
94
+
95
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
96
+ outputs = self.model(
97
+ input_ids=input_ids,
98
+ attention_mask=attention_mask,
99
+ position_ids=position_ids,
100
+ past_key_values=past_key_values,
101
+ inputs_embeds=inputs_embeds,
102
+ pixel_values=pixel_values,
103
+ pixel_attention_mask=pixel_attention_mask,
104
+ image_hidden_states=image_hidden_states,
105
+ use_cache=use_cache,
106
+ output_attentions=output_attentions,
107
+ output_hidden_states=output_hidden_states,
108
+ cache_position=cache_position,
109
+ return_dict=True,
110
+ **lm_kwargs,
111
+ )
112
+
113
+ # Copied from llava.py
114
+ hidden_states = outputs[0]
115
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
116
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
117
+ kept_hidden_states = hidden_states[:, slice_indices, :]
118
+
119
+ shift_labels = lm_kwargs.pop("shift_labels", None)
120
+ logits = None
121
+ loss = None
122
+
123
+ if skip_logits and labels is None and shift_labels is None:
124
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
125
+
126
+ if skip_logits is None:
127
+ # By default, if in training mode, don't materialize logits
128
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
129
+
130
+ if skip_logits:
131
+ loss = LigerForCausalLMLoss(
132
+ hidden_states=kept_hidden_states,
133
+ lm_head_weight=self.lm_head.weight,
134
+ labels=labels,
135
+ shift_labels=shift_labels,
136
+ hidden_size=self.config.text_config.hidden_size,
137
+ **lm_kwargs,
138
+ )
139
+
140
+ else:
141
+ logits = self.lm_head(kept_hidden_states)
142
+ if labels is not None or shift_labels is not None:
143
+ loss = self.loss_function(
144
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
145
+ )
146
+
147
+ if not return_dict:
148
+ output = (logits,) + outputs[1:]
149
+ return (loss,) + output if loss is not None else output
150
+
151
+ return SmolVLMCausalLMOutputWithPast(
152
+ loss=loss,
153
+ logits=logits,
154
+ past_key_values=outputs.past_key_values,
155
+ hidden_states=outputs.hidden_states,
156
+ attentions=outputs.attentions,
157
+ image_hidden_states=outputs.image_hidden_states,
158
+ )