liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +307 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +63 -0
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +383 -114
- liger_kernel/ops/dyt.py +160 -0
- liger_kernel/ops/experimental/embedding.py +141 -0
- liger_kernel/ops/experimental/mm_int8int2.py +349 -0
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
- liger_kernel/ops/fused_linear_jsd.py +228 -0
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +66 -64
- liger_kernel/ops/group_norm.py +306 -0
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +201 -0
- liger_kernel/ops/kl_div.py +262 -0
- liger_kernel/ops/layer_norm.py +320 -0
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +484 -88
- liger_kernel/ops/rope.py +122 -117
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +68 -65
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +82 -3
- liger_kernel/transformers/__init__.py +218 -6
- liger_kernel/transformers/auto_model.py +38 -0
- liger_kernel/transformers/cross_entropy.py +52 -7
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +26 -0
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +301 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
- liger_kernel/transformers/fused_linear_jsd.py +95 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +6 -7
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +70 -0
- liger_kernel/transformers/kl_div.py +12 -0
- liger_kernel/transformers/layer_norm.py +24 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +261 -0
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +332 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +221 -41
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +145 -0
- liger_kernel/transformers/model/mixtral.py +293 -0
- liger_kernel/transformers/model/mllama.py +269 -0
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +433 -0
- liger_kernel/transformers/model/phi3.py +120 -0
- liger_kernel/transformers/model/qwen2.py +259 -0
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +159 -0
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2816 -21
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +75 -5
- liger_kernel/transformers/rope.py +47 -3
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +62 -6
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/trainer_integration.py +2 -45
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -5
- liger_kernel/utils.py +96 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
- liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,228 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops.jsd import _jsd_kernel
|
|
7
|
+
from liger_kernel.ops.utils import amp_custom_bwd
|
|
8
|
+
from liger_kernel.ops.utils import amp_custom_fwd
|
|
9
|
+
from liger_kernel.ops.utils import element_mul_kernel
|
|
10
|
+
from liger_kernel.ops.utils import is_hip
|
|
11
|
+
from liger_kernel.utils import infer_device
|
|
12
|
+
|
|
13
|
+
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
|
|
14
|
+
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
|
|
15
|
+
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
|
|
16
|
+
MAX_FUSED_SIZE = 4096 if infer_device() == "xpu" else 65536 // 2
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def fused_linear_jsd_forward(
|
|
20
|
+
student_input,
|
|
21
|
+
student_weight,
|
|
22
|
+
teacher_input,
|
|
23
|
+
teacher_weight,
|
|
24
|
+
shift_labels,
|
|
25
|
+
jsd_beta,
|
|
26
|
+
ignore_index,
|
|
27
|
+
has_label,
|
|
28
|
+
temperature,
|
|
29
|
+
):
|
|
30
|
+
device = student_input.device
|
|
31
|
+
dtype = student_input.dtype
|
|
32
|
+
|
|
33
|
+
# inputs have shape: BT x H
|
|
34
|
+
# materialized activations will have shape: BT x V
|
|
35
|
+
# the increase in memory = BT x V
|
|
36
|
+
# reduction can be achieved by partitioning the number of tokens BT into smaller chunks.
|
|
37
|
+
# for ex: if we were to achieve the same memory consumption as BT x H, then the chunk size should be:
|
|
38
|
+
# inc_factor = (V+H-1)//H, chunk_size = (BT + inc_factor - 1)//inc_factor
|
|
39
|
+
# for ex: BT = 4096*4, V = 32000, H = 4096 ==> inc_factor = 8, chunk_size = 2048
|
|
40
|
+
BT, H = student_input.shape
|
|
41
|
+
V = student_weight.shape[0]
|
|
42
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
43
|
+
|
|
44
|
+
inc_factor = triton.cdiv(V, H) # (V + H - 1) // H
|
|
45
|
+
chunk_size = triton.next_power_of_2(triton.cdiv(BT, inc_factor)) # (BT + inc_factor - 1) // inc_factor
|
|
46
|
+
num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
|
|
47
|
+
|
|
48
|
+
grad_weight = torch.zeros_like(student_weight, device=device) if student_weight.requires_grad else None
|
|
49
|
+
grad_input = torch.zeros_like(student_input)
|
|
50
|
+
# we use fp32 for loss accumulator
|
|
51
|
+
loss_1d = torch.zeros((BT, V), dtype=torch.float32, device=device)
|
|
52
|
+
|
|
53
|
+
if has_label:
|
|
54
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item()
|
|
55
|
+
else:
|
|
56
|
+
n_non_ignore = BT
|
|
57
|
+
|
|
58
|
+
for chunk_id in range(num_chunks):
|
|
59
|
+
start_idx = chunk_id * chunk_size
|
|
60
|
+
end_idx = min((chunk_id + 1) * chunk_size, BT)
|
|
61
|
+
|
|
62
|
+
# chunk both inputs, shape: chunk_size x H
|
|
63
|
+
student_input_chunk = student_input[start_idx:end_idx]
|
|
64
|
+
teacher_input_chunk = teacher_input[start_idx:end_idx]
|
|
65
|
+
|
|
66
|
+
# shape: chunk_size x V
|
|
67
|
+
# For anything starting from logits to the final JSD loss, we do computation
|
|
68
|
+
# in FP32 to avoid losing numerical stability.
|
|
69
|
+
student_logits_chunk = (student_input_chunk @ student_weight.t()).to(torch.float32)
|
|
70
|
+
teacher_logits_chunk = (teacher_input_chunk @ teacher_weight.t()).to(torch.float32)
|
|
71
|
+
chunk_n_rows = student_logits_chunk.shape[0]
|
|
72
|
+
|
|
73
|
+
# unreduced loss
|
|
74
|
+
loss_1d_slice = loss_1d[start_idx:end_idx] # chunk_size
|
|
75
|
+
# log-softmax with temperature
|
|
76
|
+
student_logits_chunk = student_logits_chunk / temperature
|
|
77
|
+
teacher_logits_chunk = teacher_logits_chunk / temperature
|
|
78
|
+
student_prob_chunk = torch.log_softmax(student_logits_chunk, dim=-1)
|
|
79
|
+
teacher_prob_chunk = torch.log_softmax(teacher_logits_chunk, dim=-1)
|
|
80
|
+
|
|
81
|
+
# ensure _input and target are contiguous
|
|
82
|
+
student_prob_chunk = student_prob_chunk.contiguous()
|
|
83
|
+
teacher_prob_chunk = teacher_prob_chunk.contiguous()
|
|
84
|
+
|
|
85
|
+
# Here we calculate the gradient of prob_chunk in place so we can save memory.
|
|
86
|
+
_jsd_kernel[(chunk_n_rows,)](
|
|
87
|
+
X_ptr=student_prob_chunk,
|
|
88
|
+
X_stride=student_prob_chunk.stride(-2),
|
|
89
|
+
Y_ptr=teacher_prob_chunk,
|
|
90
|
+
Y_stride=teacher_prob_chunk.stride(-2),
|
|
91
|
+
loss_ptr=loss_1d_slice,
|
|
92
|
+
loss_stride=loss_1d_slice.stride(-2),
|
|
93
|
+
dX_ptr=student_prob_chunk,
|
|
94
|
+
dX_stride=student_prob_chunk.stride(-2),
|
|
95
|
+
label_ptr=(
|
|
96
|
+
shift_labels[start_idx:end_idx] if has_label else torch.empty(1, device=device)
|
|
97
|
+
), # dummy ptr if no label
|
|
98
|
+
beta=jsd_beta,
|
|
99
|
+
n_non_ignore=n_non_ignore,
|
|
100
|
+
ignore_index=ignore_index,
|
|
101
|
+
n_cols=V,
|
|
102
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
103
|
+
HAS_LABEL=has_label,
|
|
104
|
+
)
|
|
105
|
+
loss_1d[start_idx:end_idx] = loss_1d_slice
|
|
106
|
+
# gradients of prob_chunk in place, shape: chunk_size x V
|
|
107
|
+
# gradients of logits_chunk in place, shape: chunk_size x V
|
|
108
|
+
student_logits_chunk = (
|
|
109
|
+
student_prob_chunk
|
|
110
|
+
- torch.softmax(student_logits_chunk, dim=-1)
|
|
111
|
+
* student_prob_chunk.sum(dim=-1, keepdim=True).broadcast_to(student_prob_chunk.shape)
|
|
112
|
+
) / temperature
|
|
113
|
+
# now we traverse back to grad w.r.t. input to `lm_head` and grad
|
|
114
|
+
# w.r.t. `lm_head` which should be computed in original dtype
|
|
115
|
+
student_logits_chunk = student_logits_chunk.to(dtype)
|
|
116
|
+
grad_input[start_idx:end_idx] = student_logits_chunk @ student_weight
|
|
117
|
+
|
|
118
|
+
if grad_weight is not None:
|
|
119
|
+
grad_weight.add_(student_logits_chunk.t() @ student_input_chunk)
|
|
120
|
+
|
|
121
|
+
loss = torch.sum(loss_1d)
|
|
122
|
+
return loss, grad_input, grad_weight
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def fused_linear_jsd_backward(grad_output, grad_input, grad_weight):
|
|
126
|
+
# If JSD is the last layer, grad_output is 1.0. Skip the mul to save time
|
|
127
|
+
if torch.ne(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
128
|
+
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
|
|
129
|
+
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
|
|
130
|
+
BT, H = grad_input.shape
|
|
131
|
+
n_rows = BT
|
|
132
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
|
|
133
|
+
|
|
134
|
+
element_mul_kernel[(n_rows,)](
|
|
135
|
+
grad_input,
|
|
136
|
+
grad_input.stride(-2),
|
|
137
|
+
grad_output,
|
|
138
|
+
H,
|
|
139
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
140
|
+
num_warps=32 if not is_hip() else 16,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
# handle grad_weight
|
|
144
|
+
if grad_weight is not None:
|
|
145
|
+
V, H = grad_weight.shape
|
|
146
|
+
n_rows = V
|
|
147
|
+
|
|
148
|
+
element_mul_kernel[(n_rows,)](
|
|
149
|
+
grad_weight,
|
|
150
|
+
grad_weight.stride(-2),
|
|
151
|
+
grad_output,
|
|
152
|
+
H,
|
|
153
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
154
|
+
num_warps=32 if not is_hip() else 16,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
return grad_input, grad_weight
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class LigerFusedLinearJSDFunction(torch.autograd.Function):
|
|
161
|
+
"""
|
|
162
|
+
Fusing the last linear layer with generalized JSD
|
|
163
|
+
|
|
164
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
165
|
+
the materialization of the large logits tensor. Since JSD is the last layer, we can
|
|
166
|
+
compute the gradient at the forward pass.
|
|
167
|
+
"""
|
|
168
|
+
|
|
169
|
+
@staticmethod
|
|
170
|
+
@amp_custom_fwd
|
|
171
|
+
def forward(
|
|
172
|
+
ctx,
|
|
173
|
+
student_input: torch.Tensor,
|
|
174
|
+
student_weight: torch.Tensor,
|
|
175
|
+
teacher_input: torch.Tensor,
|
|
176
|
+
teacher_weight: torch.Tensor,
|
|
177
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
178
|
+
jsd_beta: float = 0.5,
|
|
179
|
+
ignore_index: int = -100,
|
|
180
|
+
temperature: float = 1.0,
|
|
181
|
+
):
|
|
182
|
+
"""
|
|
183
|
+
Args:
|
|
184
|
+
|
|
185
|
+
student_input (torch.tensor): input of the last projection layer in student model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
186
|
+
student_weight (torch.tensor): the last projection layer in student model, with shape (V, H), where V is vocab size
|
|
187
|
+
teacher_input (torch.tensor): input of the last projection layer in teacher model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
188
|
+
teacher_weight (torch.tensor): the last projection layer in teacher model, with shape (V, H), where V is vocab size
|
|
189
|
+
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
|
190
|
+
jsd_beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
|
191
|
+
ignore_index (int): the index to ignore. Default: -100
|
|
192
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
193
|
+
|
|
194
|
+
Returns:
|
|
195
|
+
loss (torch.Tensor): generalized JSD
|
|
196
|
+
"""
|
|
197
|
+
has_label = False
|
|
198
|
+
if shift_labels is not None:
|
|
199
|
+
assert shift_labels.shape == (teacher_input.shape[0],), (
|
|
200
|
+
f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
201
|
+
)
|
|
202
|
+
shift_labels = shift_labels.contiguous()
|
|
203
|
+
has_label = True
|
|
204
|
+
|
|
205
|
+
loss, grad_input, grad_weight = fused_linear_jsd_forward(
|
|
206
|
+
student_input,
|
|
207
|
+
student_weight,
|
|
208
|
+
teacher_input,
|
|
209
|
+
teacher_weight,
|
|
210
|
+
shift_labels,
|
|
211
|
+
jsd_beta,
|
|
212
|
+
ignore_index,
|
|
213
|
+
has_label,
|
|
214
|
+
temperature,
|
|
215
|
+
)
|
|
216
|
+
# downcast to dtype and store for backward
|
|
217
|
+
ctx.save_for_backward(
|
|
218
|
+
grad_input.detach(),
|
|
219
|
+
grad_weight.detach() if grad_weight is not None else None,
|
|
220
|
+
)
|
|
221
|
+
return loss
|
|
222
|
+
|
|
223
|
+
@staticmethod
|
|
224
|
+
@amp_custom_bwd
|
|
225
|
+
def backward(ctx, grad_output):
|
|
226
|
+
(grad_input, grad_weight) = ctx.saved_tensors
|
|
227
|
+
grad_input, grad_weight = fused_linear_jsd_backward(grad_output, grad_input, grad_weight)
|
|
228
|
+
return (grad_input, grad_weight, None, None, None, None, None, None)
|