liger-kernel-nightly 0.0.1.dev20240819184814__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +366 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +307 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +63 -0
  18. liger_kernel/ops/__init__.py +141 -0
  19. liger_kernel/ops/backends/README.md +151 -0
  20. liger_kernel/ops/backends/__init__.py +13 -0
  21. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  22. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  23. liger_kernel/ops/backends/registry.py +61 -0
  24. liger_kernel/ops/cross_entropy.py +383 -114
  25. liger_kernel/ops/dyt.py +160 -0
  26. liger_kernel/ops/experimental/embedding.py +141 -0
  27. liger_kernel/ops/experimental/mm_int8int2.py +349 -0
  28. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  29. liger_kernel/ops/fused_linear_cross_entropy.py +346 -132
  30. liger_kernel/ops/fused_linear_jsd.py +228 -0
  31. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  32. liger_kernel/ops/geglu.py +66 -64
  33. liger_kernel/ops/group_norm.py +306 -0
  34. liger_kernel/ops/grpo_loss.py +312 -0
  35. liger_kernel/ops/jsd.py +201 -0
  36. liger_kernel/ops/kl_div.py +262 -0
  37. liger_kernel/ops/layer_norm.py +320 -0
  38. liger_kernel/ops/llama4_rope.py +225 -0
  39. liger_kernel/ops/multi_token_attention.py +207 -0
  40. liger_kernel/ops/poly_norm.py +390 -0
  41. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  42. liger_kernel/ops/rms_norm.py +484 -88
  43. liger_kernel/ops/rope.py +122 -117
  44. liger_kernel/ops/softmax.py +201 -0
  45. liger_kernel/ops/sparsemax.py +179 -0
  46. liger_kernel/ops/swiglu.py +68 -65
  47. liger_kernel/ops/tiled_mlp.py +136 -0
  48. liger_kernel/ops/tvd.py +207 -0
  49. liger_kernel/ops/utils.py +82 -3
  50. liger_kernel/transformers/__init__.py +218 -6
  51. liger_kernel/transformers/auto_model.py +38 -0
  52. liger_kernel/transformers/cross_entropy.py +52 -7
  53. liger_kernel/transformers/dyt.py +22 -0
  54. liger_kernel/transformers/experimental/__init__.py +5 -0
  55. liger_kernel/transformers/experimental/embedding.py +26 -0
  56. liger_kernel/transformers/fsdp.py +55 -0
  57. liger_kernel/transformers/functional.py +301 -0
  58. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  59. liger_kernel/transformers/fused_linear_cross_entropy.py +59 -10
  60. liger_kernel/transformers/fused_linear_jsd.py +95 -0
  61. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  62. liger_kernel/transformers/geglu.py +6 -7
  63. liger_kernel/transformers/group_norm.py +50 -0
  64. liger_kernel/transformers/grpo_loss.py +153 -0
  65. liger_kernel/transformers/jsd.py +70 -0
  66. liger_kernel/transformers/kl_div.py +12 -0
  67. liger_kernel/transformers/layer_norm.py +24 -0
  68. liger_kernel/transformers/llama4_rope.py +93 -0
  69. liger_kernel/transformers/model/falcon_h1.py +122 -0
  70. liger_kernel/transformers/model/gemma.py +261 -0
  71. liger_kernel/transformers/model/gemma2.py +283 -0
  72. liger_kernel/transformers/model/gemma3.py +332 -0
  73. liger_kernel/transformers/model/glm4.py +141 -0
  74. liger_kernel/transformers/model/glm4v.py +163 -0
  75. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  76. liger_kernel/transformers/model/gpt_oss.py +211 -0
  77. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  78. liger_kernel/transformers/model/internvl.py +157 -0
  79. liger_kernel/transformers/model/llama.py +221 -41
  80. liger_kernel/transformers/model/llama4.py +121 -0
  81. liger_kernel/transformers/model/llava.py +344 -0
  82. liger_kernel/transformers/model/loss_utils.py +95 -0
  83. liger_kernel/transformers/model/mistral.py +145 -0
  84. liger_kernel/transformers/model/mixtral.py +293 -0
  85. liger_kernel/transformers/model/mllama.py +269 -0
  86. liger_kernel/transformers/model/olmo2.py +141 -0
  87. liger_kernel/transformers/model/olmo3.py +142 -0
  88. liger_kernel/transformers/model/output_classes.py +147 -0
  89. liger_kernel/transformers/model/paligemma.py +433 -0
  90. liger_kernel/transformers/model/phi3.py +120 -0
  91. liger_kernel/transformers/model/qwen2.py +259 -0
  92. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  93. liger_kernel/transformers/model/qwen2_vl.py +159 -0
  94. liger_kernel/transformers/model/qwen3.py +136 -0
  95. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  96. liger_kernel/transformers/model/qwen3_next.py +146 -0
  97. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  98. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  99. liger_kernel/transformers/model/smollm3.py +199 -0
  100. liger_kernel/transformers/model/smolvlm.py +158 -0
  101. liger_kernel/transformers/monkey_patch.py +2816 -21
  102. liger_kernel/transformers/multi_token_attention.py +64 -0
  103. liger_kernel/transformers/poly_norm.py +42 -0
  104. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  105. liger_kernel/transformers/rms_norm.py +75 -5
  106. liger_kernel/transformers/rope.py +47 -3
  107. liger_kernel/transformers/softmax.py +12 -0
  108. liger_kernel/transformers/sparsemax.py +16 -0
  109. liger_kernel/transformers/swiglu.py +62 -6
  110. liger_kernel/transformers/tiled_mlp.py +133 -0
  111. liger_kernel/transformers/trainer/__init__.py +4 -0
  112. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  113. liger_kernel/transformers/trainer_integration.py +2 -45
  114. liger_kernel/transformers/tvd.py +13 -0
  115. liger_kernel/triton/__init__.py +1 -3
  116. liger_kernel/triton/monkey_patch.py +1 -5
  117. liger_kernel/utils.py +96 -0
  118. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/METADATA +447 -0
  119. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/NOTICE +58 -0
  120. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  121. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +1 -1
  122. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/METADATA +0 -21
  123. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/NOTICE +0 -4
  124. liger_kernel_nightly-0.0.1.dev20240819184814.dist-info/RECORD +0 -27
  125. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  126. {liger_kernel_nightly-0.0.1.dev20240819184814.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,332 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from transformers.cache_utils import Cache
9
+ from transformers.cache_utils import HybridCache
10
+ from transformers.utils import logging
11
+
12
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
+ from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
17
+
18
+ logger = logging.get_logger(__name__)
19
+
20
+
21
+ def causal_forward(
22
+ self,
23
+ input_ids: torch.LongTensor = None,
24
+ attention_mask: Optional[torch.Tensor] = None,
25
+ position_ids: Optional[torch.LongTensor] = None,
26
+ past_key_values: Optional[HybridCache] = None,
27
+ inputs_embeds: Optional[torch.FloatTensor] = None,
28
+ labels: Optional[torch.LongTensor] = None,
29
+ use_cache: Optional[bool] = None,
30
+ output_attentions: Optional[bool] = None,
31
+ output_hidden_states: Optional[bool] = None,
32
+ return_dict: Optional[bool] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ logits_to_keep: Union[int, torch.Tensor] = 0,
35
+ skip_logits: Optional[bool] = None,
36
+ **loss_kwargs,
37
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
38
+ r"""
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+
44
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
45
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
46
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
47
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
48
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
49
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
50
+
51
+ Returns:
52
+
53
+ Example:
54
+
55
+ ```python
56
+ >>> from transformers import AutoTokenizer, Gemma3ForCausalLM
57
+
58
+ >>> model = Gemma3ForCausalLM.from_pretrained("google/gemma-2-9b")
59
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
60
+
61
+ >>> prompt = "What is your favorite condiment?"
62
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
63
+
64
+ >>> # Generate
65
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
66
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
67
+ "What is your favorite condiment?"
68
+ ```"""
69
+
70
+ if self.training and self.config._attn_implementation != "eager":
71
+ logger.warning_once(
72
+ "It is strongly recommended to train Gemma3 models with the `eager` attention implementation "
73
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
74
+ )
75
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
76
+ output_hidden_states = (
77
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
78
+ )
79
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
81
+ outputs = self.model(
82
+ input_ids=input_ids,
83
+ attention_mask=attention_mask,
84
+ position_ids=position_ids,
85
+ past_key_values=past_key_values,
86
+ inputs_embeds=inputs_embeds,
87
+ use_cache=use_cache,
88
+ output_attentions=output_attentions,
89
+ output_hidden_states=output_hidden_states,
90
+ return_dict=return_dict,
91
+ cache_position=cache_position,
92
+ **loss_kwargs,
93
+ )
94
+
95
+ hidden_states = outputs[0]
96
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
97
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
98
+ kept_hidden_states = hidden_states[:, slice_indices, :]
99
+ shift_labels = loss_kwargs.pop("shift_labels", None)
100
+ loss = None
101
+ logits = None
102
+ token_accuracy = None
103
+
104
+ if skip_logits is None:
105
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
106
+
107
+ # Compute loss
108
+ if skip_logits:
109
+ result = LigerForCausalLMLoss(
110
+ hidden_states=kept_hidden_states,
111
+ lm_head_weight=self.lm_head.weight,
112
+ labels=labels,
113
+ shift_labels=shift_labels,
114
+ hidden_size=self.config.hidden_size,
115
+ final_logit_softcapping=self.config.final_logit_softcapping,
116
+ **loss_kwargs,
117
+ )
118
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
119
+ else:
120
+ logits = self.lm_head(kept_hidden_states)
121
+ if self.config.final_logit_softcapping is not None:
122
+ logits = logits / self.config.final_logit_softcapping
123
+ logits = torch.tanh(logits)
124
+ logits = logits * self.config.final_logit_softcapping
125
+ if labels is not None or shift_labels is not None:
126
+ loss = self.loss_function(
127
+ logits=logits,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ vocab_size=self.vocab_size,
131
+ **loss_kwargs,
132
+ )
133
+
134
+ if not return_dict:
135
+ output_tuple = (logits,) + outputs[1:]
136
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
137
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
138
+ return output_tuple
139
+
140
+ # Return custom output class with token_accuracy field
141
+ return LigerCausalLMOutputWithPast(
142
+ loss=loss,
143
+ logits=logits,
144
+ past_key_values=outputs.past_key_values,
145
+ hidden_states=outputs.hidden_states,
146
+ attentions=outputs.attentions,
147
+ token_accuracy=token_accuracy,
148
+ )
149
+
150
+
151
+ def multimodal_forward(
152
+ self,
153
+ input_ids: torch.LongTensor = None,
154
+ pixel_values: torch.FloatTensor = None,
155
+ attention_mask: Optional[torch.Tensor] = None,
156
+ position_ids: Optional[torch.LongTensor] = None,
157
+ past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
158
+ token_type_ids: Optional[torch.LongTensor] = None,
159
+ cache_position: Optional[torch.LongTensor] = None,
160
+ inputs_embeds: Optional[torch.FloatTensor] = None,
161
+ labels: Optional[torch.LongTensor] = None,
162
+ use_cache: Optional[bool] = None,
163
+ output_attentions: Optional[bool] = None,
164
+ output_hidden_states: Optional[bool] = None,
165
+ return_dict: Optional[bool] = None,
166
+ logits_to_keep: Union[int, torch.Tensor] = 0,
167
+ skip_logits: Optional[bool] = None,
168
+ **lm_kwargs,
169
+ ) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
170
+ r"""
171
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
172
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
173
+ config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
174
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
175
+
176
+ Example:
177
+
178
+ ```python
179
+ >>> from PIL import Image
180
+ >>> import requests
181
+ >>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
182
+
183
+ >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
184
+ >>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
185
+
186
+ >>> messages = [
187
+ ... {
188
+ ... "role": "system",
189
+ ... "content": [
190
+ ... {"type": "text", "text": "You are a helpful assistant."}
191
+ ... ]
192
+ ... },
193
+ ... {
194
+ ... "role": "user", "content": [
195
+ ... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
196
+ ... {"type": "text", "text": "Where is the cat standing?"},
197
+ ... ]
198
+ ... },
199
+ ... ]
200
+
201
+ >>> inputs = processor.apply_chat_template(
202
+ ... messages,
203
+ ... tokenize=True,
204
+ ... return_dict=True,
205
+ ... return_tensors="pt",
206
+ ... add_generation_prompt=True
207
+ ... )
208
+ >>> # Generate
209
+ >>> generate_ids = model.generate(**inputs)
210
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
211
+ "user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
212
+ ```
213
+ """
214
+
215
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
216
+ output_hidden_states = (
217
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
218
+ )
219
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
220
+
221
+ outputs = self.model(
222
+ input_ids=input_ids,
223
+ pixel_values=pixel_values,
224
+ token_type_ids=token_type_ids,
225
+ attention_mask=attention_mask,
226
+ position_ids=position_ids,
227
+ past_key_values=past_key_values,
228
+ inputs_embeds=inputs_embeds,
229
+ use_cache=use_cache,
230
+ labels=labels,
231
+ output_attentions=output_attentions,
232
+ output_hidden_states=output_hidden_states,
233
+ return_dict=return_dict,
234
+ cache_position=cache_position,
235
+ **lm_kwargs,
236
+ )
237
+
238
+ shift_labels = lm_kwargs.pop("shift_labels", None)
239
+ hidden_states = outputs[0]
240
+
241
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
242
+ kept_hidden_states = hidden_states[:, slice_indices, :]
243
+
244
+ loss = None
245
+ logits = None
246
+ token_accuracy = None
247
+ if skip_logits and labels is None:
248
+ raise ValueError("skip_logits is True, but labels is None")
249
+
250
+ if skip_logits is None:
251
+ skip_logits = self.training and (labels is not None)
252
+
253
+ if skip_logits:
254
+ shift_hidden_states = kept_hidden_states[..., :-1, :]
255
+ shift_labels = labels[..., 1:]
256
+
257
+ hidden_device = shift_hidden_states.device
258
+ if attention_mask is not None:
259
+ # we use the input attention mask to shift the hidden_states and labels, because it is 2D.
260
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
261
+ shift_attention_mask = attention_mask[:, -shift_hidden_states.shape[1] :].to(hidden_device)
262
+ shift_hidden_states = shift_hidden_states[shift_attention_mask.to(hidden_device) != 0].contiguous()
263
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
264
+ else:
265
+ shift_hidden_states = shift_hidden_states.contiguous()
266
+ shift_labels = shift_labels.contiguous()
267
+
268
+ # Flatten hidden state
269
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
270
+ shift_labels = shift_labels.view(-1).to(hidden_device)
271
+
272
+ lce = LigerFusedLinearCrossEntropyLoss()
273
+ result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
274
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
275
+
276
+ else:
277
+ logits = self.lm_head(kept_hidden_states)
278
+ if labels is not None:
279
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
280
+ logits = logits.float()
281
+ shift_logits = logits[..., :-1, :]
282
+ shift_labels = labels[..., 1:]
283
+ if attention_mask is not None:
284
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
285
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
286
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
287
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
288
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
289
+ else:
290
+ shift_logits = shift_logits.contiguous()
291
+ shift_labels = shift_labels.contiguous()
292
+ # Flatten the tokens
293
+ loss_fct = nn.CrossEntropyLoss()
294
+
295
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
296
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
297
+ loss = loss_fct(flat_logits, flat_labels)
298
+ elif shift_labels is not None:
299
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
300
+ logits = logits.float()
301
+ shift_logits = logits[..., :-1, :]
302
+ if attention_mask is not None:
303
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
304
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
305
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
306
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
307
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
308
+ else:
309
+ shift_logits = shift_logits.contiguous()
310
+ shift_labels = shift_labels.contiguous()
311
+ # Flatten the tokens
312
+ loss_fct = nn.CrossEntropyLoss()
313
+
314
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
315
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
316
+ loss = loss_fct(flat_logits, flat_labels)
317
+
318
+ if not return_dict:
319
+ output = (logits,) + outputs[1:]
320
+ output = (loss,) + output if loss is not None else output
321
+ output = output + (token_accuracy,) if token_accuracy is not None else output
322
+ return output
323
+
324
+ return LigerGemma3CausalLMOutputWithPast(
325
+ loss=loss,
326
+ logits=logits,
327
+ past_key_values=outputs.past_key_values,
328
+ hidden_states=outputs.hidden_states,
329
+ attentions=outputs.attentions,
330
+ image_hidden_states=outputs.image_hidden_states,
331
+ token_accuracy=token_accuracy,
332
+ )
@@ -0,0 +1,141 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoTokenizer, Glm4ForCausalLM
53
+
54
+ >>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
56
+
57
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
64
+ ```
65
+ """
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+
72
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
+ outputs = self.model(
74
+ input_ids=input_ids,
75
+ attention_mask=attention_mask,
76
+ position_ids=position_ids,
77
+ past_key_values=past_key_values,
78
+ inputs_embeds=inputs_embeds,
79
+ use_cache=use_cache,
80
+ output_attentions=output_attentions,
81
+ output_hidden_states=output_hidden_states,
82
+ return_dict=return_dict,
83
+ cache_position=cache_position,
84
+ **kwargs,
85
+ )
86
+
87
+ hidden_states = outputs[0]
88
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
89
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
90
+ kept_hidden_states = hidden_states[:, slice_indices, :]
91
+
92
+ shift_labels = kwargs.pop("shift_labels", None)
93
+ logits = None
94
+ loss = None
95
+ token_accuracy = None
96
+
97
+ if skip_logits and labels is None and shift_labels is None:
98
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
99
+
100
+ if skip_logits is None:
101
+ # By default, if in training mode, don't materialize logits
102
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
103
+
104
+ # Compute loss
105
+ if skip_logits:
106
+ result = LigerForCausalLMLoss(
107
+ hidden_states=kept_hidden_states,
108
+ lm_head_weight=self.lm_head.weight,
109
+ labels=labels,
110
+ shift_labels=shift_labels,
111
+ hidden_size=self.config.hidden_size,
112
+ **kwargs,
113
+ )
114
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
115
+
116
+ else:
117
+ logits = self.lm_head(kept_hidden_states)
118
+ if labels is not None or shift_labels is not None:
119
+ loss = self.loss_function(
120
+ logits=logits,
121
+ labels=labels,
122
+ shift_labels=shift_labels,
123
+ vocab_size=self.config.vocab_size,
124
+ **kwargs,
125
+ )
126
+
127
+ if not return_dict:
128
+ output = (logits,) + outputs[1:]
129
+ output = ((loss,) + output) if loss is not None else output
130
+ output = output + (token_accuracy,) if token_accuracy is not None else output
131
+ return output
132
+
133
+ # Return custom output class with token_accuracy field
134
+ return LigerCausalLMOutputWithPast(
135
+ loss=loss,
136
+ logits=logits,
137
+ past_key_values=outputs.past_key_values,
138
+ hidden_states=outputs.hidden_states,
139
+ attentions=outputs.attentions,
140
+ token_accuracy=token_accuracy,
141
+ )
@@ -0,0 +1,163 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from PIL import Image
53
+ >>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
54
+
55
+ >>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
56
+ >>> messages = [
57
+ {
58
+ "role": "user",
59
+ "content": [
60
+ {
61
+ "type": "image",
62
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
63
+ },
64
+ {
65
+ "type": "text",
66
+ "text": "describe this image"
67
+ }
68
+ ],
69
+ }
70
+ ]
71
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
72
+ >>> model = Glm4vForConditionalGeneration.from_pretrained(
73
+ pretrained_model_name_or_path=MODEL_PATH,
74
+ dtype=torch.bfloat16,
75
+ device_map="auto",
76
+ )
77
+ >>> inputs = processor.apply_chat_template(
78
+ messages,
79
+ tokenize=True,
80
+ add_generation_prompt=True,
81
+ return_dict=True,
82
+ return_tensors="pt"
83
+ ).to(model.device)
84
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
85
+ output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
86
+ <think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
87
+ ```"""
88
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
89
+ output_hidden_states = (
90
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
91
+ )
92
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
93
+
94
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
95
+ outputs = self.model(
96
+ input_ids=input_ids,
97
+ attention_mask=attention_mask,
98
+ position_ids=position_ids,
99
+ past_key_values=past_key_values,
100
+ inputs_embeds=inputs_embeds,
101
+ use_cache=use_cache,
102
+ output_attentions=output_attentions,
103
+ output_hidden_states=output_hidden_states,
104
+ return_dict=return_dict,
105
+ cache_position=cache_position,
106
+ **kwargs,
107
+ )
108
+
109
+ hidden_states = outputs[0]
110
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
111
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
112
+ kept_hidden_states = hidden_states[:, slice_indices, :]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ logits = None
116
+ loss = None
117
+ token_accuracy = None
118
+
119
+ if skip_logits and labels is None and shift_labels is None:
120
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
121
+
122
+ if skip_logits is None:
123
+ # By default, if in training mode, don't materialize logits
124
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
125
+
126
+ # Compute loss
127
+ if skip_logits:
128
+ result = LigerForCausalLMLoss(
129
+ hidden_states=kept_hidden_states,
130
+ lm_head_weight=self.lm_head.weight,
131
+ labels=labels,
132
+ shift_labels=shift_labels,
133
+ hidden_size=self.config.hidden_size,
134
+ **kwargs,
135
+ )
136
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
137
+
138
+ else:
139
+ logits = self.lm_head(kept_hidden_states)
140
+ if labels is not None or shift_labels is not None:
141
+ loss = self.loss_function(
142
+ logits=logits,
143
+ labels=labels,
144
+ shift_labels=shift_labels,
145
+ vocab_size=self.config.vocab_size,
146
+ **kwargs,
147
+ )
148
+
149
+ if not return_dict:
150
+ output = (logits,) + outputs[1:]
151
+ output = ((loss,) + output) if loss is not None else output
152
+ output = output + (token_accuracy,) if token_accuracy is not None else output
153
+ return output
154
+
155
+ # Return custom output class with token_accuracy field
156
+ return LigerCausalLMOutputWithPast(
157
+ loss=loss,
158
+ logits=logits,
159
+ past_key_values=outputs.past_key_values,
160
+ hidden_states=outputs.hidden_states,
161
+ attentions=outputs.attentions,
162
+ token_accuracy=token_accuracy,
163
+ )